diff --git a/.github/dlsmt.sh b/.github/dlsmt.sh
new file mode 100755
index 0000000..f741a67
--- /dev/null
+++ b/.github/dlsmt.sh
@@ -0,0 +1,73 @@
+# No shebang!
+
+## Weigl's little helper to download SMT-solvers.
+# SPDX-License-Identifier: GPL-2.0-or-later
+
+# This script is meant to be executed inside an Github Action to download the SMT-solver.
+# It uses the Github cli tool "gh", which allows an easy access to the releases of a
+# repository, and to download it artifacts.
+#
+# This script will always the latest uploaded artifact.
+#
+#
+# For performance, you should consider caching. This script skips downloading if files are present.
+
+
+## Github workflow commands
+# Please have a look at https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions
+# which explains a lot of workflow commands and special files in Github Actions.
+
+
+## TODO
+# It would be nice to convert it into a real! Github action, which can also exploit
+# the API library of Github. A manual/tutorial is here:
+#
+# https://docs.github.com/en/actions/creating-actions/developing-a-third-party-cli-action
+
+mkdir smt-solvers
+cd smt-solvers
+
+
+#################################################
+echo "::group::{install z3}"
+echo "Check for Z3, if present skip installation"
+
+if readlink -f */bin/z3; then
+ echo "::notice::{Z3 found. Caching works! Skip installation}"
+else
+ echo "Download Z3"
+ wget 'https://github.com/Z3Prover/z3/releases/download/z3-4.12.2/z3-4.12.2-x64-glibc-2.31.zip'
+ unzip -n z3*.zip
+ rm z3-*.zip
+fi
+
+Z3=$(readlink -f */bin/z3)
+chmod u+x $Z3
+echo "Z3 added to path: $Z3"
+echo $(dirname $Z3) >> $GITHUB_PATH
+
+echo "::endgroup::"
+#################################################
+
+#################################################
+echo "::group::{install cvc5}"
+if -f cvc5-Linux; then
+ echo "::notice::{Z3 found. Caching works! Skip installation}"
+else
+ echo "Install CVC5"
+ gh release download --skip-existing -p 'cvc5-Linux' -R cvc5/cvc5
+fi
+
+CVC5=$(readlink -f cvc5-Linux)
+echo "CVC5 installed and added to path: CVC5"
+chmod u+x $CVC5
+echo $(dirname $CVC5) >> $GITHUB_PATH
+
+echo "::endgroup::"
+#################################################
+
+echo "::group::{check installation/versions}"
+$Z3 -version
+
+$CVC5 --version
+echo "::endgroup::"
\ No newline at end of file
diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml
index 269ba31..f3b598e 100644
--- a/.github/workflows/tests.yml
+++ b/.github/workflows/tests.yml
@@ -1,51 +1,45 @@
-name: Broad Release Tests
+name: Proof Replay
-on:
- workflow_dispatch:
- push:
- branches: ["main", "master"]
- schedule:
- - cron: '0 5 * * 1' # every monday morning
+on: [ push ]
permissions:
- checks: write
+ checks: write
jobs:
- unit-tests:
- strategy:
- fail-fast: false
- matrix:
- os: [macos-latest, ubuntu-latest, windows-latest]
- java: [8,11,17,21]
- continue-on-error: false
- runs-on: ${{ matrix.os }}
- env:
- GH_TOKEN: ${{ github.token }}
- steps:
- - uses: actions/checkout@v3
- - name: Set up JDK ${{ matrix.java }}
- uses: actions/setup-java@v3
- with:
- java-version: ${{ matrix.java }}
- distribution: 'corretto'
+ compile_and_test:
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up JDK 21
+ uses: actions/setup-java@v3
+ with:
+ java-version: 21
+ distribution: 'corretto'
+ - name: Build with Gradle
+ uses: gradle/gradle-build-action@v2.4.2
+ with:
+ arguments: --continue assemble check
- - name: Build with Gradle
- uses: gradle/gradle-build-action@v2.4.2
- with:
- arguments: --continue test
+ replay-proofs:
+ strategy:
+ fail-fast: false
+ matrix:
+ # target: [ check-overflow-methods, check-overflow-constructors, check-methods, check-constructors ]
+ # Reduce checks until overflow is fixed
+ target: [ check-methods, check-constructors ]
+ runs-on: ubuntu-latest
+ env:
+ GH_TOKEN: ${{ github.token }}
- - name: Verify with KeY
- uses: gradle/gradle-build-action@v2.4.2
- with:
- arguments: --continue checkAll
-
-
- - name: Upload test results
- uses: actions/upload-artifact@v3.1.1
- if: success() || failure()
- with:
- name: test-results-${{ matrix.os }}
- path: |
- **/build/test-results/*/*.xml
- **/build/reports/
- !**/jacocoTestReport.xml
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up JDK 21
+ uses: actions/setup-java@v3
+ with:
+ java-version: 21
+ distribution: 'corretto'
+ - name: Install SMT-Solvers
+ run: .github/dlsmt.sh
+ shell: bash
+ - name: "Verify with KeY ${{ matrix.target }}"
+ run: make ${{ matrix.target }}
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..29fd787
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,50 @@
+KEY_JAR=tools/key-2.11.0-exe.jar
+KEY_OVERFLOW_JAR=tools/key-2.11.0-o-exe.jar
+CI_TOOL=tools/citool-1.4.0-mini.jar
+
+checkCommand=java -Dlogback.configurationFile=./gradle/disablelogging.xml -Dkey.contractOrder="contract-order.txt" -cp "$(KEY_JAR):$(CI_TOOL)" de.uka.ilkd.key.CheckerKt --no-auto-mode --proof-path src/main/key
+
+checkOverflowCommand=java -Dlogback.configurationFile=./gradle/disablelogging.xml -Dkey.contractOrder="contract-order.txt" -cp "$(KEY_OVERFLOW_JAR):$(CI_TOOL)" de.uka.ilkd.key.CheckerKt -v --no-auto-mode --proof-path src/main/key-overflow
+
+default:
+ @echo Available targets:
+ @sed -n 's/^\([a-zA-Z_-]\+\):.*/ \1/p' Makefile
+
+proofSettings:
+ mkdir -p $${HOME}/.key
+ cp proofIndependentSettings.props $${HOME}/.key
+
+run:
+ @echo Consider loading one of the following files:
+ @find -iname "project*.key"
+ java -Dkey.contractOrder="contract-order.txt" -jar $(KEY_JAR)
+
+compile:
+ find -name "*.java" > sources.txt
+ javac @sources.txt
+
+constr-src:
+ rm -rf src/main/java-constr
+ cp -r src/main/java src/main/java-constr
+ sed -i 's/no_state int bucketStart/int bucketStart/' src/main/java-constr/de/wiesler/BucketPointers.java
+ sed -i 's/no_state int bucketSize/int bucketSize/' src/main/java-constr/de/wiesler/BucketPointers.java
+
+constr-overflow-src:
+ rm -rf src/main/java-constr-overflow
+ cp -r src/main/java src/main/java-constr-overflow
+ sed -i 's/no_state int bucketStart/int bucketStart/' src/main/java-constr-overflow/de/wiesler/BucketPointers.java
+ sed -i 's/no_state int bucketSize/int bucketSize/' src/main/java-constr-overflow/de/wiesler/BucketPointers.java
+
+check: check-methods check-constructors check-overflow-methods check-overflow-constructors
+
+check-methods: proofSettings
+ $(checkCommand) --forbid-contracts-file "contracts/ignore.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-methods.json src/main/key/project.key
+
+check-constructors: constr-src
+ $(checkCommand) --contracts-file contracts/constructors.txt -s statistics-constructors.json src/main/key/project-constr.key
+
+check-overflow-methods:
+ $(checkOverflowCommand) --contracts-file "contracts/overflow.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-overflow-methods.json src/main/key-overflow/project.key
+
+check-overflow-constructors: constr-overflow-src
+ $(checkOverflowCommand) --contracts-file "contracts/constructors.txt" -s statistics-overflow-constructors.json src/main/key-overflow/project-constr.key
diff --git a/README.md b/README.md
index e777c99..ff796c6 100644
--- a/README.md
+++ b/README.md
@@ -1,22 +1,159 @@
-# Formal Specification and Verification of a Java Implementation of In-Place Super Scalar Sample Sort
+# A Formally Verified Efficient Sorting Routine For Java
-This is the verified code and all proof files.
+This repostiory contains a sorting routine for Java programs that
+combines two important properties that a decent algorithm should have: [2]
+1. The implementation is competitively efficient.
+2. The implementation is correct in all possible application cases.
-The code in [`src`](src) is based on [this](https://github.com/jwiesler/ips4o) Rust rewrite of the [original paper implementation](https://github.com/ips4o/ips4o).
+The first point is shown empirically by benchmarking (see Section 5 of
+[2] and the [Sascha Witt's
+repository](https://github.com/SaschaWitt/ips4o-java-benchmark)). The
+correctness of the implementation has been formally proven using the
+[deductive verification engine KeY](https://www.key-project.org) with
+which Java programs can be verified against a formal specification
+using the [Java Modeling Language
+(JML)](https://www.cs.ucf.edu/~leavens/JML/index.shtml).
-The proofs are located in [`proofs`](proofs) and can be loaded using the KeY binaries in [`tools`](tools).
-The [`contracts`](contracts) folder contains listing of subsets of all contracts used for filtering.
-The proof statistics can be found in [`statistics`](statistics).
+You can use the algorithm in your Java programs by declaring a
+maven/gradle dependency in your project (s. below).
+## In-Place Super Scalar Sample Sort
+
+The sorting algorithm [1] implemented in this project is a Java
+implementation of in-place super scalar sample sort (ips4o), an award
+winning highly efficient sorting routine that was algorithmically
+engineered to make use of CPU features like caching, predictive
+execution or SIMD.
+
+The [source code](src/main/java) is based on [this Rust
+rewrite](https://github.com/jwiesler/ips4o) of the [original paper
+implementation](https://github.com/ips4o/ips4o).
+
+The source code comprises approximately 900 lines of code. The JML
+specification that annotates the Java code (in comments) adds another
+2500 lines to the sources.
+
+## Using ips4o in your project
+
+You can use the following [maven coordinates](todo) to use `ips4o` in your JVM projects.
+
+
+```groovy
+dependencies {
+ implementation("org.key-project.ips4o:ips4o-verify:1.0")
+}
+```
+
+```xml
+
+ org.key-project.ips4o
+ ips4o-verify
+ 1.0
+
+```
+
+## Verified Properties
+
+In this case study, the following properties of the Java ips4o implementation
+have been specified and successfully verified:
+1. **Sorting Property:** The array is sorted after the method invocation.
+2. **Permutation Property:** The content of the input array after sorting is a permutation of the initial content.
+3. **Exception Safety:** No uncaught exceptions are thrown.
+4. **Memory Safety:** The implementation does not modify any previously allocated memory location except the entries of the input array.
+5. **Termination:** Every method invocation terminates.
+6. **Absence of Overflows:** During the execution of the method, no integer operation will overflow or underflow.
+
+The top-level specification of the sorting routine reads as follows:
+```
+/*@ public normal_behaviour
+ @ requires values.length <= Buffers.MAX_LEN;
+ @
+ @ ensures \dl_seqPerm(\dl_array2seq(values), \old(\dl_array2seq(values)));
+ @ ensures Functions.isSortedSlice(values, 0, values.length);
+ @
+ @ assignable values[*];
+ @*/
+public static void sort(int[] values) { ... }
+```
+
+This repository contains the verified code incl. the specification and all proof files.
## Usage
-You can either run the respective KeY binaries in [`tools`](tools) or take some inspiration from the [`justfile`](justfile).
-Make sure to pass `-Dkey.contractOrder=""` to java such that the contract order file is loaded.
+### Compilation
+
+In order to compile the sources invoke
+```
+./gradlew compileJava
+```
+
+In order to obtain a jar file with the binary class files of the implementation invoke
+```
+./gradlew jar
+```
+and find the jar file in `./build/libs/ips4o-verify-1.0.jar`.
+
+### Verification
+
+In order to check / redo the proofs, you can load the interactive interface of KeY using
+```
+make run
+```
+
+To check whether all proofs can be replpayed, invoke
+```
+make check
+```
+This may take some time (possible hours).
+
+You find the respective KeY binaries in the directory
+[`tools`](tools). The [`Makefile`](Makefile) gives you hints on how to
+execute the checker.
+
+The proofs are located in [`proofs`](proofs) and can be loaded using
+the KeY binaries in [`tools`](tools).
+
+The [`contracts`](contracts) folder contains listing of subsets of all
+contracts used for filtering. The proof statistics can be found in
+[`statistics`](statistics).
+
+
+Make sure to pass `-Dkey.contractOrder=""`
+to java such that the contract order file is loaded.
## Caveats
-* Overflow proofs and annotations can be found on the branch `overflow`. They have to be loaded using the second KeY binary [`key-2.11.0-o-exe.jar`](tools/key-2.11.0-o-exe.jar).
-* To run proofs in [`contracts/constructors.txt`](contracts/constructors.txt) the `no_state` modifier on `BucketPointers::bucketStart` and `BucketPointers::bucketSize` has to be removed. Both methods are only `no_state` when using the final heap which has a soundness problem with constructors. There is currently no nicer way to do this in KeY automatically.
+
+* The overflow proofs have been conducted after the other proofs. The
+ annotated sources can be found under
+ [`src/main/java-overflow`](src/main/java-overflow). In them most
+ artifacts are assumed without proving them (using the `_free`) since
+ they have been shown in the original proof obligations. They have
+ to be loaded using the second KeY binary
+ [`key-2.11.0-o-exe.jar`](tools/key-2.11.0-o-exe.jar).
+
+* To run proofs in
+ [`contracts/constructors.txt`](contracts/constructors.txt) the
+ `no_state` modifier on `BucketPointers::bucketStart` and
+ `BucketPointers::bucketSize` has to be removed. Both methods are
+ only `no_state` when using the final heap which has a soundness
+ problem with constructors. There is currently no nicer way to do
+ this in KeY automatically. The Makefile takes care of this
+ adaptation.
+
* The methods `Tree::classify`, `Tree::classify_all` as well as `Tree::build` were left out as future work.
+
* To run the code use the `bench` branch which has the proper fallback sorting algorithm not commented out.
+
* The sampling function `Functions::select_n` is left empty and should probably be implemented.
+
+## Publications
+
+1. Axtmann, M., Ferizovic, D., Sanders, P., Witt, S.: [*Engineering
+in-place (shared- memory) sorting
+algorithms*](https://dl.acm.org/doi/full/10.1145/3505286). ACM
+Transaction on Parallel Computing 9(1), 2:1– 2:62 (2022), see also
+[github.com/ips4o](https://github.com/ips4o). Conference version in
+ESA 2017
+
+2. B. Beckert, P. Sanders, M. Ulbrich, J. Wiesler, and S. Witt:
+ *Formally Verifying an Efficient Sorter*. arxiv
diff --git a/build.gradle.kts b/build.gradle.kts
index a6d94fe..dbd16c7 100644
--- a/build.gradle.kts
+++ b/build.gradle.kts
@@ -108,84 +108,4 @@ nexusPublishing {
// If you get the error "java.net.SocketTimeoutException: timeout", these lines will help.
connectTimeout = Duration.ofMinutes(3)
clientTimeout = Duration.ofMinutes(3)
-}
-
-// verification
-
-val keyClasspath: Configuration = configurations.create("key")
-val keyClasspathOverflow: Configuration = configurations.create("keyoverflow")
-dependencies {
- keyClasspath(files("tools/key-2.11.0-exe.jar", "tools/citool-1.4.0-mini.jar"))
- keyClasspathOverflow(files("tools/key-2.11.0-o-exe.jar", "tools/citool-1.4.0-mini.jar"))
-}
-
-val mainClassName = "de.uka.ilkd.key.CheckerKt"
-
-fun JavaExec.checkCommand() {
- mainClass = "de.uka.ilkd.key.CheckerKt"
- classpath = keyClasspath
- systemProperty("key.contractOrder", "contract-order.txt")
- args("--verbose", "--no-auto-mode", "--proof-path", "src/main/key/", "src/main/key/project.key")
- group = "key"
- tasks.named("check").get().dependsOn(this)
-}
-
-fun JavaExec.checkOverflowCommand() {
- mainClass = "de.uka.ilkd.key.CheckerKt"
- systemProperty("key.contractOrder", "contract-order.txt")
- args("-v", "--no-auto-mode", "--proof-path", "proofs-overflow/", "src/main/key/project.key")
- classpath = keyClasspathOverflow
- group = "key"
- tasks.named("check").get().dependsOn(this)
-}
-
-tasks.create("run") {
- mainClass = "de.uka.ilkd.key.core.Main"
- classpath = files("tools/key-2.11.0-exe.jar", "tools/citool-1.4.0-mini.jar")
- systemProperty("key.contractOrder", "contract-order.txt")
-}
-
-tasks.create("checkAll") {
- checkCommand()
- args("--forbid-contracts-file", "contracts/ignore.txt", "-s", "statistics.json")
-}
-
-tasks.create("checkMethods") {
- checkCommand()
- args(
- "--forbid-contracts-file", "contracts/ignore.txt", "-s", "statistics-methods.json",
- "--forbid-contracts-file", "contracts/constructors.txt"
- )
-}
-
-tasks.create("checkConstructors") {
- checkCommand()
- args("--contracts-file", "contracts/constructors.txt", "-s", "statistics-constructors.json")
-}
-
-tasks.create("checkClassTarget")
-{
- checkCommand()
- args(
- "--forbid-contracts",
- "-file",
- "contracts/ignore.txt",
- "--contracts-filter",
- """^de.wiesler.{{target}}[.*""",
- "-s",
- "statistics.json"
- )
-}
-
-tasks.create("checkOverflowMethods") {
- checkOverflowCommand()
- args(
- "--contracts-file", "contracts/overflow.txt", "--forbid-contracts-file", "contracts/constructors.txt",
- "-s", "statistics-overflow-methods.json"
- )
-}
-
-tasks.create("checkOverflowConstructors") {
- checkOverflowCommand()
- args("--contracts-file", "contracts/constructors.txt", "-s", "statistics-overflow-constructors.json")
-}
+}
\ No newline at end of file
diff --git a/contract-order.txt b/contract-order.txt
index f4f088d..e794972 100644
--- a/contract-order.txt
+++ b/contract-order.txt
@@ -109,6 +109,7 @@ de.wiesler.Partition[de.wiesler.Partition::bucketCountsToTotalCount([I,int,int,[
de.wiesler.SampleParameters[de.wiesler.SampleParameters::isValidForLen(int)].JML model_behavior operation contract.0
+de.wiesler.Sorter[de.wiesler.Sorter::seqUpd(\seq,int,int)].JML model_behavior operation contract.0
de.wiesler.Sorter[de.wiesler.Sorter::allBucketsInRangeSorted([I,int,int,[I,int,int,int)].JML model_behavior operation contract.0
de.wiesler.Sorter[de.wiesler.Sorter::allBucketsPartitioned([I,int,int,[I,int)].JML model_behavior operation contract.0
de.wiesler.Sorter[de.wiesler.Sorter::allBucketsPartitionedLemma(de.wiesler.Classifier,[I,int,int,[I)].JML model_behavior operation contract.0
@@ -227,6 +228,7 @@ de.wiesler.Classifier[de.wiesler.Classifier::classify_locally_batched([I,int,int
de.wiesler.Classifier[de.wiesler.Classifier::classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+de.wiesler.Sorter[de.wiesler.Sorter::insertion_sort([I,int,int)].JML normal_behavior operation contract.0
de.wiesler.Sorter[de.wiesler.Sorter::fallback_sort([I,int,int)].JML normal_behavior operation contract.0
de.wiesler.Sorter[de.wiesler.Sorter::base_case_sort([I,int,int)].JML normal_behavior operation contract.0
diff --git a/gradle/disablelogging.xml b/gradle/disablelogging.xml
new file mode 100644
index 0000000..ce4ce39
--- /dev/null
+++ b/gradle/disablelogging.xml
@@ -0,0 +1,13 @@
+
+
+
+
+
+ [%date{HH:mm:ss.SSS}] %highlight(%-5level) %cyan(%logger{0}) - %msg%ex%n
+
+
+
+
+
+
+
diff --git a/justfile b/justfile
deleted file mode 100644
index ec68a4e..0000000
--- a/justfile
+++ /dev/null
@@ -1,34 +0,0 @@
-KEY_JAR := "tools/key-2.11.0-exe.jar"
-KEY_OVERFLOW_JAR := "tools/key-2.11.0-o-exe.jar"
-CI_TOOL := "tools/citool-1.4.0-mini.jar"
-
-checkCommand := 'java -Dkey.contractOrder="contract-order.txt" -cp "' + KEY_JAR + ';' + CI_TOOL + '" de.uka.ilkd.key.CheckerKt --no-auto-mode --proof-path proofs/ project.key'
-checkOverflowCommand := 'java -Dkey.contractOrder="contract-order.txt" -cp "' + KEY_OVERFLOW_JAR + ';' + CI_TOOL + '" de.uka.ilkd.key.CheckerKt -v --no-auto-mode --proof-path proofs-overflow/ project.key'
-
-default:
- @just --list
-
-run:
- java -Dkey.contractOrder="contract-order.txt" -jar {{KEY_JAR}}
-
-compile:
- find -name "*.java" > sources.txt
- javac @sources.txt
-
-check:
- {{checkCommand}} --forbid-contracts-file "contracts/ignore.txt" -s statistics.json
-
-check-methods:
- {{checkCommand}} --forbid-contracts-file "contracts/ignore.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-methods.json
-
-check-constructors:
- {{checkCommand}} --contracts-file contracts/constructors.txt -s statistics-constructors.json
-
-check-class target:
- {{checkCommand}} --forbid-contracts-file "contracts/ignore.txt" --contracts-filter "^de\.wiesler\.{{target}}\[.*" -s statistics.json
-
-check-overflow-methods:
- {{checkOverflowCommand}} --contracts-file "contracts/overflow.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-overflow-methods.json
-
-check-overflow-constructors:
- {{checkOverflowCommand}} --contracts-file "contracts/constructors.txt" -s statistics-overflow-constructors.json
diff --git a/loc.sh b/loc.sh
deleted file mode 100644
index 9b36d09..0000000
--- a/loc.sh
+++ /dev/null
@@ -1,6 +0,0 @@
-for f in src/de/wiesler/*.java; do
- spec=$(cat "$f" | egrep "@" | egrep -v "@\s*$" | egrep -v "@ //" | wc -l)
- code=$(cat "$f" | egrep -v "(@|^\s+$)" | wc -l)
- base=$(basename $f)
- echo "$base,$code,$spec"
-done
diff --git a/los.csv b/los.csv
deleted file mode 100644
index 22ab0a7..0000000
--- a/los.csv
+++ /dev/null
@@ -1,15 +0,0 @@
-BMC.java,13,0
-BucketPointers.java,48,441
-Buffers.java,44,175
-Classifier.java,123,481
-Cleanup.java,102,181
-Constants.java,45,16
-Functions.java,43,149
-Increment.java,9,6
-Partition.java,30,73
-PartitionResult.java,9,4
-Permute.java,130,413
-SampleParameters.java,42,28
-Sorter.java,93,382
-Storage.java,24,57
-Tree.java,34,97
diff --git a/proofIndependentSettings.props b/proofIndependentSettings.props
new file mode 100644
index 0000000..502b524
--- /dev/null
+++ b/proofIndependentSettings.props
@@ -0,0 +1,72 @@
+#Proof-Independent-Settings-File. Generated Fri Oct 27 16:18:59 CEST 2023
+#Fri Oct 27 16:18:59 CEST 2023
+[General]UseJML=true
+[SMTSettings]solverParametersV1CVC4=\#beg--no-print-success -m --interactive --lang smt2\#end
+[View][Heatmap]maxAge=5
+[View]SequentViewTooltips=true
+[General]RightClickMacros=true
+[View]HideIntermediateProofsteps=false
+[SMTSettings]solverCommandZ3\ FP=\#begz3\#end
+[View][Heatmap]newest=true
+[View]ShowWholeTaclet=false
+[View]SourceViewTooltips=true
+[View]showUninstantiatedTaclet=true
+[View][Heatmap]sf=true
+[SMTSettings]objectBound=3
+[View]HighlightOrigin=true
+[General]DnDDirectionSensitive=true
+[SMTSettings]solverParametersV1Z3=\#beg-in -smt2\#end
+[View]UseSystemLookAndFeel=false
+[View]ShowLoadExamplesDialog=true
+[SMTSettings]fieldBound=3
+[SMTSettings]SolverTimeout=20000
+[View]UseUnicodeSymbols=false
+[View]SyntaxHighlighting=true
+[View]hideInteractiveGoals=false
+[Extensions]disabled=
+[SMTSettings]intBound=3
+[General]StupidMode=true
+[SMTSettings]solverParametersV1Z3\ FP=\#beg-in -smt2\#end
+[SMTSettings]timeoutZ3\ FP=-1
+[SMTSettings]solverCommandZ3_CE=\#begz3\#end
+[SMTSettings]solverCommandZ3\ (Legacy\ Translation)=\#begz3\#end
+[SMTSettings]solverParametersV1CVC4\ (Legacy\ Translation)=\#beg--no-print-success -m --interactive --lang smt2\#end
+[View]ConfirmExit=true
+[SMTSettings]ActiveSolver=\#begZ3\#end
+[View]clutterRules=add_eq,add_greatereq,add_lesseq,add_non_neq_square,apply_eq_monomialseqTermCut,boxToDiamond,case_distinction_l,case_distinction_r,commute_and_2,commute_or_2,cut_direct_l,cut_direct_r,divIncreasingNeg,divIncreasingPos,divide_equation,divide_geq,equal_add_one,geq_add_one,instAll,instEx,jdivAddMultDenom,jmodAltZero,jmodDivisble,jmodUnique1,jmodeUnique2,jmodjmod,leq_add_one,less_is_total,less_zero_is_total,local_cut,polySimp_addOrder,polySimp_expand,pullOut,typeStatic
+[SMTSettings]solverCommandINVISMT=\#beginvismt\#end
+[View]HideClosedSubtrees=false
+[View]FontIndex=2
+[SMTSettings]solverParametersV1Z3_CE=\#beg-in -smt2\#end
+[SMTSettings]checkForSupport=true
+[View]uiFontSizeFactor=1.0
+[View]HideAutomodeProofsteps=false
+[View][Heatmap]enabled=false
+[SMTSettings]solverParametersV1Z3\ (Legacy\ Translation)=\#beg-in -smt2\#end
+[View]clutterRuleSets=inEqSimp_commute,inEqSimp_expand,inEqSimp_nonLin,inEqSimp_nonLin_divide,inEqSimp_special_nonLin,notHumanReadable,obsolete,polySimp_directEquations,polySimp_normalise,pullOutQuantifierAll,pullOutQuantifierEx
+[General]AutoSavePeriod=0
+[SMTSettings]solverCommandZ3=\#begz3\#end
+[General]EnsureSourceConsistency=true
+[SMTSettings]locsetBound=3
+[SMTSettings]solverCommandCVC4=\#begcvc4\#end
+[SMTSettings]pathForSMTTranslation=\#beg\#end
+[SMTSettings]timeoutZ3_CE=-1
+[View]notifyLoadBehaviour=false
+[View]folderBookmarks=/home/mattias
+[View]PrettySyntax=true
+[SMTSettings]solverCommandCVC4\ (Legacy\ Translation)=\#begcvc4\#end
+[SMTSettings]timeoutZ3\ (Legacy\ Translation)=-1
+[SMTSettings]maxConcurrentProcesses=2
+[SMTSettings]timeoutCVC4\ (Legacy\ Translation)=-1
+[SMTSettings]showSMTResDialog=false
+[SMTSettings]solverParametersV1INVISMT=\#beg-in\#end
+[SMTSettings]timeoutCVC4=-1
+[SMTSettings]timeoutINVISMT=-1
+[SMTSettings]modeOfProgressDialog=0
+[SMTSettings]pathForTacletTranslation=\#beg\#end
+[View]MaxTooltipLines=40
+[SMTSettings]timeoutZ3=-1
+[LemmaGenerator]showDialogWhenUsingTacletsAsAxioms=true
+[View]HidePackagePrefix=false
+[LemmaGenerator]showDialogWhenAddingAxioms=true
+[SMTSettings]heapBound=3
diff --git a/src/main/java/de/wiesler/BMC.java b/src/main/java-overflow/de/wiesler/BMC.java
similarity index 100%
rename from src/main/java/de/wiesler/BMC.java
rename to src/main/java-overflow/de/wiesler/BMC.java
diff --git a/src/main/java-overflow/de/wiesler/BucketPointers.java b/src/main/java-overflow/de/wiesler/BucketPointers.java
new file mode 100644
index 0000000..c30dcb8
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/BucketPointers.java
@@ -0,0 +1,587 @@
+package de.wiesler;
+
+public final class BucketPointers {
+ // 2 * n integer (read, write)
+ private /*@ spec_public @*/ final int[] buffer;
+
+ //@ ghost final int num_buckets;
+ //@ ghost final \seq bucket_starts;
+ //@ ghost final int first_empty_position;
+
+ //@ public instance invariant_free 0 <= 2 * this.num_buckets <= this.buffer.length;
+ //@ public instance invariant_free 0 <= this.first_empty_position <= (int) this.bucket_starts[num_buckets] <= Buffers.MAX_LEN && Buffers.isBlockAligned(this.first_empty_position);
+ //@ public instance invariant_free this.bucket_starts.length == this.num_buckets + 1;
+ //@ public instance invariant_free (int) this.bucket_starts[0] == 0 && Functions.isSortedSeqTransitive(this.bucket_starts);
+ //@ public instance invariant_free (\forall int b; 0 <= b < this.num_buckets; this.isValidBucketPointer(b));
+ //@ accessible \inv: this.buffer[*];
+
+ /*@ model_behaviour
+ @ requires true;
+ @ model boolean isValidBucketPointer(int bucket) {
+ @ return this.bucketStart(bucket) <= this.buffer[2 * bucket] <= this.bucketStart(bucket + 1) &&
+ @ this.bucketStart(bucket) <= this.buffer[2 * bucket + 1] <= this.bucketStart(bucket + 1) &&
+ @ (this.bucketStart(bucket) == this.buffer[2 * bucket] || this.buffer[2 * bucket] <= this.first_empty_position) &&
+ @ Buffers.isBlockAligned(this.buffer[2 * bucket]) &&
+ @ Buffers.isBlockAligned(this.buffer[2 * bucket + 1]);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket <= this.num_buckets;
+ @ requires \invariant_for(this);
+ @
+ @ ensures_free 0 <= \result <= this.bucketStart(this.num_buckets) <= Buffers.MAX_LEN;
+ @ ensures_free Buffers.isBlockAligned(\result);
+ @ ensures_free bucket < this.num_buckets ==> \result <= this.bucketStart(bucket + 1);
+ @ ensures_free 0 < bucket <= this.num_buckets ==> this.bucketStart(bucket - 1) <= \result;
+ @
+ @ // final only no_state
+ @ model int bucketStart(int bucket) {
+ @ return Buffers.blockAligned((int) this.bucket_starts[bucket]);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires \invariant_for(this);
+ @
+ @ ensures_free \result >= 0;
+ @ ensures_free Buffers.isBlockAligned(\result);
+ @
+ @ // final only no_state
+ @ model int bucketSize(int bucket) {
+ @ return this.bucketStart(bucket + 1) - this.bucketStart(bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ ensures_free 0 <= this.bucketStart(bucket) <= \result <= this.bucketStart(bucket + 1) <= this.bucketStart(this.num_buckets);
+ @ ensures_free \result <= this.first_empty_position || \result == this.bucketStart(bucket);
+ @ ensures_free this.first_empty_position <= this.bucketStart(this.num_buckets);
+ @ ensures_free Buffers.isBlockAligned(\result);
+ @
+ @ accessible this.buffer[2 * bucket];
+ @ model int lastReadOf(int bucket) {
+ @ return this.buffer[2 * bucket];
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ ensures_free 0 <= this.bucketStart(bucket) <= \result <= this.bucketStart(bucket + 1) <= this.bucketStart(this.num_buckets);
+ @ ensures_free Buffers.isBlockAligned(\result);
+ @
+ @ accessible this.buffer[2 * bucket + 1];
+ @ model int nextWriteOf(int bucket) {
+ @ return this.buffer[2 * bucket + 1];
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ accessible this.buffer[2 * bucket + 1];
+ @ model int writtenCountOfBucket(int bucket) {
+ @ return this.nextWriteOf(bucket) - this.bucketStart(bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ accessible this.buffer[2 * bucket + 1];
+ @ model int remainingWriteCountOfBucket(int bucket) {
+ @ return this.bucketStart(bucket + 1) - this.nextWriteOf(bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ ensures_free \result >= 0;
+ @ ensures_free Buffers.isBlockAligned(\result);
+ @
+ @ accessible this.buffer[2 * bucket], this.buffer[2 * bucket + 1];
+ @ model int toReadCountOfBucket(int bucket) {
+ @ return this.nextWriteOf(bucket) < this.lastReadOf(bucket) ? this.lastReadOf(bucket) - this.nextWriteOf(bucket) : 0;
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires overflow.length == Buffers.BUFFER_SIZE;
+ @ requires \invariant_for(classifier);
+ @
+ @ accessible values[begin + this.bucketStart(bucket) .. begin + this.nextWriteOf(bucket) - 1], overflow[*], this.buffer[2 * bucket + 1], classifier.sorted_splitters[*], classifier.tree.tree[*];
+ @ model boolean writtenElementsOfBucketClassified(Classifier classifier, int[] values, int begin, int end, int[] overflow, int bucket) {
+ @ return end - begin < this.nextWriteOf(bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(bucket) ?
+ @ classifier.isClassOfSlice(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket) - Buffers.BUFFER_SIZE, bucket) &&
+ @ classifier.isClassOfSlice(overflow, 0, Buffers.BUFFER_SIZE, bucket) :
+ @ classifier.isClassOfSlice(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket), bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires \invariant_for(classifier);
+ @
+ @ accessible values[begin + this.nextWriteOf(bucket) .. begin + this.lastReadOf(bucket) - 1], this.buffer[2 * bucket..2 * bucket + 1], classifier.sorted_splitters[*], classifier.tree.tree[*];
+ @ model boolean elementsToReadOfBucketBlockClassified(Classifier classifier, int[] values, int begin, int end, int bucket) {
+ @ return this.nextWriteOf(bucket) < this.lastReadOf(bucket) ==> classifier.isClassifiedBlocksRange(values, begin + this.nextWriteOf(bucket), begin + this.lastReadOf(bucket));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires overflow.length == Buffers.BUFFER_SIZE;
+ @
+ @ accessible values[begin + this.bucketStart(bucket) .. begin + this.nextWriteOf(bucket) - 1], overflow[*], this.buffer[2 * bucket + 1];
+ @ model int writtenElementsOfBucketCountElement(int[] values, int begin, int end, int[] overflow, int bucket, int element) {
+ @ return end - begin < this.nextWriteOf(bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(bucket) ?
+ @ Functions.countElement(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket) - Buffers.BUFFER_SIZE, element) +
+ @ Functions.countElement(overflow, 0, Buffers.BUFFER_SIZE, element) :
+ @ Functions.countElement(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket), element);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ accessible values[begin + this.nextWriteOf(bucket) .. begin + this.lastReadOf(bucket) - 1], this.buffer[2 * bucket..2 * bucket + 1];
+ @ model int elementsToReadOfBucketCountElement(int[] values, int begin, int end, int bucket, int element) {
+ @ return Functions.countElement(values, begin + this.nextWriteOf(bucket), begin + this.lastReadOf(bucket), element);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires overflow.length == Buffers.BUFFER_SIZE;
+ @
+ @ model int countElement(int[] values, int begin, int end, int[] overflow, int element) {
+ @ return this.elementsToReadCountElement(values, begin, end, element) +
+ @ this.writtenElementsCountElement(values, begin, end, overflow, element);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires overflow.length == Buffers.BUFFER_SIZE;
+ @
+ @ model int writtenElementsCountElement(int[] values, int begin, int end, int[] overflow, int element) {
+ @ return (\sum int b; 0 <= b < this.num_buckets;
+ @ this.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= split_bucket < this.num_buckets;
+ @ requires begin + this.bucketStart(split_bucket) <= begin + this.nextWriteOf(split_bucket) - Buffers.BUFFER_SIZE <= begin + this.nextWriteOf(split_bucket);
+ @ ensures_free \result;
+ @ model boolean writtenElementsCountElementSplitBucket(int[] values, int begin, int end, int[] overflow, int split_bucket) {
+ @ return (\forall int element; true;
+ @ this.writtenElementsCountElement(values, begin, end, overflow, element) ==
+ @ (\sum int b; 0 <= b < this.num_buckets;
+ @ (b == split_bucket) ?
+ @ Functions.countElement(values, begin + this.bucketStart(split_bucket), begin + this.nextWriteOf(split_bucket) - Buffers.BUFFER_SIZE, element) :
+ @ this.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element)
+ @ ) +
+ @ (end - begin < this.nextWriteOf(split_bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(split_bucket) ?
+ @ Functions.countElement(overflow, 0, Buffers.BUFFER_SIZE, element) :
+ @ Functions.countElement(values, begin + this.nextWriteOf(split_bucket) - Buffers.BUFFER_SIZE, begin + this.nextWriteOf(split_bucket), element))
+ @ );
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires true;
+ @
+ @ model int elementsToReadCountElement(int[] values, int begin, int end, int element) {
+ @ return (\sum int b; 0 <= b < this.num_buckets;
+ @ this.elementsToReadOfBucketCountElement(values, begin, end, b, element)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= split_bucket < this.num_buckets;
+ @ requires begin + this.nextWriteOf(split_bucket) <= mid <= begin + this.lastReadOf(split_bucket);
+ @ ensures_free \result;
+ @ model boolean elementsToReadCountElementSplitBucket(int[] values, int begin, int mid, int end, int split_bucket, boolean pullout_first) {
+ @ return (\forall int element; true;
+ @ this.elementsToReadCountElement(values, begin, end, element) ==
+ @ (\sum int b; 0 <= b < this.num_buckets; (b == split_bucket) ?
+ @ (pullout_first ?
+ @ Functions.countElement(values, mid, begin + this.lastReadOf(b), element) :
+ @ Functions.countElement(values, begin + this.nextWriteOf(b), mid, element)
+ @ ) :
+ @ this.elementsToReadOfBucketCountElement(values, begin, end, b, element)) +
+ @ (pullout_first ?
+ @ Functions.countElement(values, begin + this.nextWriteOf(split_bucket), mid, element) :
+ @ Functions.countElement(values, mid, begin + this.lastReadOf(split_bucket), element)
+ @ )
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires this.num_buckets == classifier.num_buckets;
+ @ requires \invariant_for(classifier);
+ @ ensures_free \result >= 0;
+ @ accessible values[begin + this.nextWriteOf(bucket) .. begin + this.lastReadOf(bucket) - 1], this.buffer[2 * bucket..2 * bucket + 1], classifier.sorted_splitters[*], classifier.tree.tree[*];
+ @ model int elementsToReadOfBucketCountClassEq(Classifier classifier, int[] values, int begin, int end, int bucket, int cls) {
+ @ return classifier.countClassOfSliceEq(values, begin + this.nextWriteOf(bucket), begin + this.lastReadOf(bucket), cls);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires 0 <= begin <= end <= values.length;
+ @ ensures_free \result >= 0;
+ @ model int elementsToReadCountClassEq(Classifier classifier, int[] values, int begin, int end, int bucket) {
+ @ return (\sum int b; 0 <= b < this.num_buckets;
+ @ this.elementsToReadOfBucketCountClassEq(classifier, values, begin, end, b, bucket)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= split_bucket < this.num_buckets;
+ @ requires this.num_buckets == classifier.num_buckets;
+ @ requires begin + this.nextWriteOf(split_bucket) <= mid <= begin + this.lastReadOf(split_bucket);
+ @ ensures_free \result;
+ @ model boolean elementsToReadCountClassEqSplitBucket(Classifier classifier, int[] values, int begin, int mid, int end, int split_bucket, boolean pullout_first) {
+ @ return (\forall int bucket; 0 <= bucket < this.num_buckets;
+ @ this.elementsToReadCountClassEq(classifier, values, begin, end, bucket) ==
+ @ (\sum int b; 0 <= b < this.num_buckets; (b == split_bucket) ?
+ @ (pullout_first ?
+ @ classifier.countClassOfSliceEq(values, mid, begin + this.lastReadOf(b), bucket) :
+ @ classifier.countClassOfSliceEq(values, begin + this.nextWriteOf(b), mid, bucket)
+ @ ) :
+ @ this.elementsToReadOfBucketCountClassEq(classifier, values, begin, end, b, bucket)) +
+ @ (pullout_first ?
+ @ classifier.countClassOfSliceEq(values, begin + this.nextWriteOf(split_bucket), mid, bucket) :
+ @ classifier.countClassOfSliceEq(values, mid, begin + this.lastReadOf(split_bucket), bucket)
+ @ )
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ ensures_free \result;
+ @ model boolean disjointBucketsLemma(int bucket) {
+ @ return (\forall int b; 0 <= b < this.num_buckets && b != bucket;
+ @ (b < bucket ==> this.bucketStart(b + 1) <= this.bucketStart(bucket)) &&
+ @ (b > bucket ==> this.bucketStart(bucket + 1) <= this.bucketStart(b))
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end;
+ @ requires end - begin == (int) this.bucket_starts[num_buckets];
+ @ ensures_free \result;
+ @ model boolean overflowBucketCharacteristic(int begin, int end) {
+ @ return (\forall int b; 0 <= b < this.num_buckets;
+ @ end - begin < this.nextWriteOf(b) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(b) ==>
+ @ this.bucketStart(b) < end - begin &&
+ @ this.nextWriteOf(b) == this.bucketStart(b + 1) &&
+ @ this.bucketStart(b + 1) == this.bucketStart(this.num_buckets)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end;
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires end - begin == (int) this.bucket_starts[num_buckets];
+ @ requires end - begin < this.nextWriteOf(bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(bucket);
+ @ requires this.disjointBucketsLemma(bucket);
+ @ requires this.overflowBucketCharacteristic(begin, end);
+ @ ensures_free \result;
+ @ model boolean overflowBucketUniqueLemma(int begin, int end, int bucket) {
+ @ return (\forall int b; 0 <= b < this.num_buckets && b != bucket;
+ @ // Show that nextWriteOf(bucket) == bucketStart(bucket) == bucketStart(num_buckets)
+ @ // b > bucket: writtenCountOfBucket can't be > 0 since nextWriteOf(b) <= bucketStart(num_buckets)
+ @ // b < bucket: bucketStart(bucket) <= end - begin
+ @ !(end - begin < this.nextWriteOf(b) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(b))
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ requires begin + this.bucketStart(bucket) <= subBegin <= subEnd <= begin + this.bucketStart(bucket + 1);
+ @ requires this.disjointBucketsLemma(bucket);
+ @ ensures_free \result;
+ @ model boolean disjointBucketsAreaLemma(int[] values, int begin, int end, int bucket, int subBegin, int subEnd) {
+ @ return (\forall int b; 0 <= b < this.num_buckets && b != bucket;
+ @ \disjoint(\dl_arrayRange(values, begin + this.bucketStart(b), begin + this.nextWriteOf(b) - 1), \dl_arrayRange(values, subBegin, subEnd - 1)) &&
+ @ \disjoint(\dl_arrayRange(values, begin + this.nextWriteOf(b), begin + this.lastReadOf(b) - 1), \dl_arrayRange(values, subBegin, subEnd - 1))
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires start <= read <= stop;
+ @ static model no_state boolean readIsMaximal(int start, int read, int stop, int first_empty_position) {
+ @ return read == (first_empty_position <= start ? start : (stop <= first_empty_position ? stop : first_empty_position));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ accessible this.buffer[2 * bucket..2 * bucket + 1];
+ @ model boolean isAtInitialBucketState(int bucket) {
+ @ return this.writtenCountOfBucket(bucket) == 0 &&
+ @ BucketPointers.readIsMaximal(this.bucketStart(bucket), this.lastReadOf(bucket), this.bucketStart(bucket + 1), this.first_empty_position);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ model boolean isAtInitialState() {
+ @ return (\forall int b; 0 <= b < this.num_buckets;
+ @ this.isAtInitialBucketState(b)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires end - begin == (int) this.bucket_starts[num_buckets];
+ @ requires this.isAtInitialState();
+ @ requires classifier.isClassifiedBlocksRange(values, begin, begin + this.first_empty_position);
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean initialReadAreasBlockClassified(Classifier classifier, int[] values, int begin, int end) {
+ @ return (\forall int b; 0 <= b < this.num_buckets; this.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires end - begin == (int) this.bucket_starts[num_buckets];
+ @ requires this.isAtInitialState();
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean initialReadAreasCountLemma(int[] values, int begin, int end) {
+ @ return (\forall int iv; 0 <= iv <= this.num_buckets;
+ @ (\forall int element; true;
+ @ Functions.countElement(values, begin, begin + (this.bucketStart(iv) < first_empty_position ? this.bucketStart(iv) : first_empty_position), element) ==
+ @ (\sum int b; 0 <= b < iv; this.elementsToReadOfBucketCountElement(values, begin, end, b, element))
+ @ )
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires this.initialReadAreasCountLemma(values, begin, end);
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean initialReadAreasCount(int[] values, int begin, int end) {
+ @ return (\forall int element; true;
+ @ Functions.countElement(values, begin, begin + first_empty_position, element) ==
+ @ this.elementsToReadCountElement(values, begin, end, element)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires end - begin == (int) this.bucket_starts[num_buckets];
+ @ requires this.isAtInitialState();
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean initialReadAreasCountBucketElementsLemma(Classifier classifier, int[] values, int begin, int end) {
+ @ return (\forall int iv; 0 <= iv <= this.num_buckets;
+ @ (\forall int bucket; 0 <= bucket < this.num_buckets;
+ @ classifier.countClassOfSliceEq(values, begin, begin + (this.bucketStart(iv) < first_empty_position ? this.bucketStart(iv) : first_empty_position), bucket) ==
+ @ (\sum int b; 0 <= b < iv; this.elementsToReadOfBucketCountClassEq(classifier, values, begin, end, b, bucket))
+ @ )
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires this.initialReadAreasCountBucketElementsLemma(classifier, values, begin, end);
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean initialReadAreasCountBucketElements(Classifier classifier, int[] values, int begin, int end) {
+ @ return (\forall int bucket; 0 <= bucket < this.num_buckets;
+ @ classifier.countClassOfSliceEq(values, begin, begin + first_empty_position, bucket) ==
+ @ this.elementsToReadCountClassEq(classifier, values, begin, end, bucket)
+ @ );
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires_free 0 <= start <= stop <= Buffers.MAX_LEN;
+ @ ensures_free \result;
+ @ static model no_state boolean alignedBoundariesKeepEnoughSpace(int start, int stop) {
+ @ return stop - start - Buffers.bufferSizeForBucketLen(stop - start) <= Buffers.blockAligned(stop) - Buffers.blockAligned(start);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free Functions.isSortedSliceTransitive(bucket_starts, 0, num_buckets + 1);
+ @ requires_free num_buckets + 1 <= bucket_starts.length;
+ @ requires_free bucket_starts[num_buckets] <= Buffers.MAX_LEN;
+ @ requires_free bucket_starts[0] == 0;
+ @ requires_free 0 <= 2 * num_buckets <= buffer.length;
+ @ requires_free 0 <= first_empty_position <= bucket_starts[num_buckets];
+ @ requires_free Buffers.isBlockAligned(first_empty_position);
+ @ requires_free \disjoint(bucket_starts[*], buffer[*]);
+ @
+ @ ensures_free this.num_buckets == num_buckets && this.buffer == buffer && this.first_empty_position == first_empty_position;
+ @ ensures_free bucket_starts[num_buckets] == (int) this.bucket_starts[num_buckets];
+ @ ensures_free this.isAtInitialState();
+ @ ensures_free (\forall int b; 0 <= b < num_buckets;
+ @ // enough space to write everything except the buffer content
+ @ bucket_starts[b + 1] - bucket_starts[b] - Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b]) <= this.bucketSize(b)
+ @ );
+ @ ensures_free (\forall int b; 0 <= b <= num_buckets; this.bucketStart(b) == Buffers.blockAligned(bucket_starts[b]));
+ @
+ @ assignable_free buffer[0..2 * num_buckets - 1];
+ @*/
+ public BucketPointers(final int[] bucket_starts, final int num_buckets, final int first_empty_position, final int[] buffer) {
+ //@ set this.num_buckets = num_buckets;
+ //@ set this.first_empty_position = first_empty_position;
+ //@ set this.bucket_starts = \dl_seq_def_workaround(0, num_buckets + 1, bucket_starts);
+
+ /*@ assume
+ @ (\forall int b; 0 <= b <= num_buckets; this.bucketStart(b) == Buffers.blockAligned(bucket_starts[b])) &&
+ @ Functions.isSortedSeqTransitive(this.bucket_starts);
+ @*/
+
+ this.buffer = buffer;
+
+ /*@ loop_invariant_free 0 <= bucket && bucket <= num_buckets;
+ @ loop_invariant_free (\forall int b; 0 <= b < bucket;
+ @ this.isValidBucketPointer(b) &&
+ @ this.isAtInitialBucketState(b) &&
+ @ bucket_starts[b + 1] - bucket_starts[b] - Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b]) <= this.bucketSize(b)
+ @ );
+ @
+ @ decreases num_buckets - bucket;
+ @
+ @ assignable_free this.buffer[0..2 * num_buckets - 1];
+ @*/
+ for (int bucket = 0; bucket < num_buckets; ++bucket) {
+ //@ assume 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets];
+ int start = Buffers.align_to_next_block(bucket_starts[bucket]);
+ int stop = Buffers.align_to_next_block(bucket_starts[bucket + 1]);
+ //@ assume start == this.bucketStart(bucket) && stop == this.bucketStart(bucket + 1) && start <= stop;
+ int read = -1;
+
+ /*@ normal_behaviour
+ @ ensures_free start <= read <= stop;
+ @ ensures_free Buffers.isBlockAligned(read);
+ @ ensures_free BucketPointers.readIsMaximal(start, read, stop, this.first_empty_position);
+ @
+ @ assignable_free \strictly_nothing;
+ @*/
+ {
+ if (first_empty_position <= start) {
+ read = start;
+ } else if (stop <= first_empty_position) {
+ read = stop;
+ } else {
+ read = first_empty_position;
+ }
+ }
+
+ this.buffer[2 * bucket] = read;
+ this.buffer[2 * bucket + 1] = start;
+
+ //@ assume BucketPointers.alignedBoundariesKeepEnoughSpace(bucket_starts[bucket], bucket_starts[bucket + 1]);
+ }
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket < this.num_buckets;
+ @
+ @ ensures_free \result == this.nextWriteOf(bucket);
+ @ ensures_free \result == this.writtenCountOfBucket(bucket) + this.bucketStart(bucket);
+ @
+ @ assignable_free \strictly_nothing;
+ @*/
+ public int write(int bucket) {
+ final int write_pos = 2 * bucket + 1;
+ return this.buffer[write_pos];
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket < this.num_buckets;
+ @ requires_free this.bucketSize(bucket) >= this.writtenCountOfBucket(bucket) + Buffers.BUFFER_SIZE;
+ @
+ @ ensures_free \old(this.nextWriteOf(bucket)) + Buffers.BUFFER_SIZE == this.nextWriteOf(bucket);
+ @ ensures_free \old(this.remainingWriteCountOfBucket(bucket)) == this.remainingWriteCountOfBucket(bucket) + Buffers.BUFFER_SIZE;
+ @ ensures_free \old(this.writtenCountOfBucket(bucket)) + Buffers.BUFFER_SIZE == this.writtenCountOfBucket(bucket);
+ @ ensures_free this.lastReadOf(bucket) == \old(this.lastReadOf(bucket));
+ @ // read count either decreased or stayed 0
+ @ ensures_free \old(this.toReadCountOfBucket(bucket)) >= Buffers.BUFFER_SIZE ?
+ @ this.toReadCountOfBucket(bucket) < \old(this.toReadCountOfBucket(bucket)) :
+ @ this.toReadCountOfBucket(bucket) == 0;
+ @
+ @ ensures_free \result.position == \old(this.nextWriteOf(bucket));
+ @ ensures_free \result.occupied <==> \old(this.toReadCountOfBucket(bucket)) >= Buffers.BUFFER_SIZE;
+ @
+ @ assignable_free this.buffer[2 * bucket + 1];
+ @*/
+ public Increment increment_write(int bucket) {
+ final int read_pos = 2 * bucket;
+ final int write_pos = 2 * bucket + 1;
+ final int write = this.buffer[write_pos];
+ this.buffer[write_pos] += Buffers.BUFFER_SIZE;
+ return new Increment(this.buffer[read_pos] > write, write);
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket < this.num_buckets;
+ @
+ @ ensures_free \result <==> this.toReadCountOfBucket(bucket) >= Buffers.BUFFER_SIZE;
+ @
+ @ assignable_free \strictly_nothing;
+ @*/
+ public boolean hasRemainingRead(int bucket) {
+ final int read_pos = 2 * bucket;
+ final int write_pos = 2 * bucket + 1;
+ int read = this.buffer[read_pos];
+ final int write = this.buffer[write_pos];
+ return read > write;
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket < this.num_buckets;
+ @ requires_free this.toReadCountOfBucket(bucket) != 0;
+ @
+ @ ensures_free \result == this.lastReadOf(bucket);
+ @
+ @ ensures_free this.toReadCountOfBucket(bucket) + Buffers.BUFFER_SIZE == \old(this.toReadCountOfBucket(bucket));
+ @ ensures_free \old(this.lastReadOf(bucket)) == this.lastReadOf(bucket) + Buffers.BUFFER_SIZE;
+ @ // ensures (\forall int b; 0 <= b < this.num_buckets && b != bucket; this.toReadCountOfBucket(b) == \old(this.toReadCountOfBucket(b)));
+ @ // ensures (\forall int b; 0 <= b < this.num_buckets; this.writtenCountOfBucket(b) == \old(this.writtenCountOfBucket(b)));
+ @
+ @ assignable_free this.buffer[2 * bucket];
+ @*/
+ public int decrement_read(int bucket) {
+ final int read_pos = 2 * bucket;
+ int read = this.buffer[read_pos];
+ read -= Buffers.BUFFER_SIZE;
+ this.buffer[read_pos] = read;
+ return read;
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Buffers.java b/src/main/java-overflow/de/wiesler/Buffers.java
new file mode 100644
index 0000000..4a9a40c
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Buffers.java
@@ -0,0 +1,283 @@
+package de.wiesler;
+
+public final class Buffers {
+ public static final int BUFFER_SIZE = 1024 / 4;
+ public static final int MAX_INT = 0x7FFFFFFF;
+ public static final int MAX_LEN = MAX_INT - BUFFER_SIZE + 1;
+
+ /*@ public model_behaviour
+ @ requires 0 <= len;
+ @
+ @ ensures_free 0 <= \result <= BUFFER_SIZE;
+ @
+ @ // A remainder modulo BUFFER_SIZE that is never 0 for nonempty buckets
+ @ static no_state model int bufferSizeForBucketLen(int len) {
+ @ return (len >= Buffers.BUFFER_SIZE && len % Buffers.BUFFER_SIZE == 0) ?
+ @ Buffers.BUFFER_SIZE : (len % Buffers.BUFFER_SIZE);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= value <= MAX_LEN;
+ @
+ @ // checked by exhaustive search below
+ @ ensures_free Buffers.isBlockAligned(\result);
+ @ ensures_free \result >= value;
+ @ ensures_free \result - value < BUFFER_SIZE;
+ @
+ @ static no_state model int blockAligned(int value) {
+ @ return (value + BUFFER_SIZE - 1) & (-BUFFER_SIZE);
+ @ }
+ @*/
+
+ private static boolean testBlockAlignedContract(int value, int result) {
+ return
+ result % BUFFER_SIZE == 0 &&
+ result >= value &&
+ result - value < BUFFER_SIZE;
+ }
+
+ /*@ public model_behaviour
+ @ requires value >= 0;
+ @
+ @ static no_state model boolean isBlockAligned(int value) {
+ @ return value % BUFFER_SIZE == 0;
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= i;
+ @ requires 0 <= j;
+ @ requires isBlockAligned(i) && isBlockAligned(j);
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean isBlockAlignedAdd(int i, int j) {
+ @ return isBlockAligned(i + j);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= j <= i;
+ @ requires isBlockAligned(i) && isBlockAligned(j);
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean isBlockAlignedSub(int i, int j) {
+ @ return isBlockAligned(i - j);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= offset <= MAX_LEN;
+ @
+ @ ensures_free \result == blockAligned(offset);
+ @
+ @ assignable_free \strictly_nothing;
+ @*/
+ public static int align_to_next_block(int offset) {
+ return (offset + BUFFER_SIZE - 1) & (-BUFFER_SIZE);
+ }
+
+ public static void testContracts(int i) {
+ if (0 <= i && i <= MAX_LEN && !testBlockAlignedContract(i, align_to_next_block(i))) {
+ throw new Error("blockAligned contract fails for " + i);
+ }
+ }
+
+ private /*@ spec_public @*/ final int[] buffer;
+ private /*@ spec_public @*/ final int[] indices;
+ //@ ghost final int num_buckets;
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ ensures_free \result ==> this.count() == 0;
+ @ ensures_free \result ==> (\forall int element; true; this.countElement(element) == 0);
+ @ model boolean isEmpty() {
+ @ return (\forall int b; 0 <= b < this.num_buckets; this.bufferLen(b) == 0);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @ ensures_free 0 <= \result <= BUFFER_SIZE;
+ @ accessible this.indices[bucket];
+ @ model int bufferLen(int bucket) {
+ @ return this.indices[bucket];
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @ accessible this.buffer[bucket * BUFFER_SIZE + offset];
+ @ model int bufferElement(int bucket, int offset) {
+ @ return this.buffer[bucket * BUFFER_SIZE + offset];
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ accessible this.indices[0..this.num_buckets - 1];
+ @ model int count() {
+ @ return (\sum int b; 0 <= b < this.num_buckets; this.bufferLen(b));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires \invariant_for(classifier);
+ @ requires classifier.num_buckets == this.num_buckets;
+ @
+ @ accessible this.indices[0..this.num_buckets - 1], this.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1], classifier.sorted_splitters[*], classifier.tree.tree[*];
+ @ model boolean isClassifiedWith(Classifier classifier) {
+ @ return (\forall
+ @ int b;
+ @ 0 <= b < this.num_buckets;
+ @ classifier.isClassOfSlice(this.buffer, b * BUFFER_SIZE, b * BUFFER_SIZE + this.bufferLen(b), b)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ model int countElementInBucket(int bucket, int element) {
+ @ return Functions.countElement(this.buffer, bucket * BUFFER_SIZE, bucket * BUFFER_SIZE + this.bufferLen(bucket), element);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ accessible this.indices[0..this.num_buckets - 1], this.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1];
+ @ model int countElement(int element) {
+ @ return (\sum int b; 0 <= b < this.num_buckets; this.countElementInBucket(b, element));
+ @ }
+ @*/
+
+ /*@
+ @ invariant_free this.buffer != this.indices;
+ @ invariant_free this.buffer.length == Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS;
+ @ invariant_free this.indices.length == Constants.MAX_BUCKETS;
+ @ invariant_free 0 <= this.num_buckets <= Constants.MAX_BUCKETS;
+ @ invariant_free (\forall int b; 0 <= b && b < this.num_buckets; 0 <= this.indices[b] && this.indices[b] <= BUFFER_SIZE);
+ @
+ @ accessible \inv: this.indices[*];
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free buffer != indices;
+ @ requires_free buffer.length == Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS;
+ @ requires_free indices.length == Constants.MAX_BUCKETS;
+ @ requires_free 0 <= num_buckets <= Constants.MAX_BUCKETS;
+ @
+ @ ensures_free this.num_buckets == num_buckets;
+ @ ensures_free this.buffer == buffer;
+ @ ensures_free this.indices == indices;
+ @ ensures_free this.isEmpty();
+ @
+ @ assignable_free indices[0..num_buckets - 1];
+ @*/
+ public Buffers(int[] buffer, int[] indices, int num_buckets) {
+ this.buffer = buffer;
+ this.indices = indices;
+ //@ set this.num_buckets = num_buckets;
+
+ Functions.fill(this.indices, 0, num_buckets, 0);
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket && bucket < this.num_buckets;
+ @
+ @ requires_free this.bufferLen(bucket) != BUFFER_SIZE;
+ @
+ @ ensures_free this.bufferLen(bucket) == \old(this.bufferLen(bucket)) + 1;
+ @ ensures_free this.bufferElement(bucket, \old(this.bufferLen(bucket))) == value;
+ @ ensures_free this.count() == \old(this.count()) + 1;
+ @
+ @ ensures_free (\forall int element; true; this.countElement(element) == \old(this.countElement(element)) + (element == value ? 1 : 0));
+ @
+ @ assignable_free this.indices[bucket];
+ @ assignable_free this.buffer[bucket * BUFFER_SIZE + this.bufferLen(bucket)];
+ @*/
+ public void push(int bucket, int value) {
+ /*@ normal_behaviour
+ @ assignable \nothing;
+ @*/
+ {
+ value = value;
+ }
+ int buffer_offset = bucket * BUFFER_SIZE;
+ int index = this.indices[bucket];
+ this.buffer[buffer_offset + index] = value;
+ this.indices[bucket] = index + 1;
+ //@ assume Functions.countElementSplit(this.buffer, bucket * BUFFER_SIZE, bucket * BUFFER_SIZE + index, bucket * BUFFER_SIZE + index + 1);
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket < this.num_buckets;
+ @ requires_free \disjoint(values[*], this.buffer[*], this.indices[*]);
+ @ requires_free this.bufferLen(bucket) == BUFFER_SIZE;
+ @ requires_free 0 <= write <= end <= values.length;
+ @ requires_free end - write >= BUFFER_SIZE;
+ @
+ @ ensures_free this.bufferLen(bucket) == 0;
+ @ ensures_free (\forall int i; 0 <= i && i < BUFFER_SIZE; values[write + i] == \old(this.buffer[bucket * BUFFER_SIZE + i]));
+ @ ensures_free (\forall int element; true;
+ @ \old(this.countElement(element)) ==
+ @ Functions.countElement(values, write, write + BUFFER_SIZE, element) +
+ @ this.countElement(element)
+ @ );
+ @ ensures_free this.count() == \old(this.count()) - BUFFER_SIZE;
+ @
+ @ assignable_free this.indices[bucket];
+ @ assignable_free values[write..write + BUFFER_SIZE - 1];
+ @*/
+ public void flush(int bucket, int[] values, int write, int end) {
+ int buffer_offset = bucket * BUFFER_SIZE;
+ Functions.copy_nonoverlapping(this.buffer, buffer_offset, values, write, BUFFER_SIZE);
+ this.indices[bucket] = 0;
+ //@ assume (\forall int element; true; \old(this.countElementInBucket(bucket, element)) == Functions.countElement(values, write, write + BUFFER_SIZE, element));
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket && bucket < this.num_buckets;
+ @ requires_free \disjoint(values[*], this.buffer[*], this.indices[*]);
+ @
+ @ requires_free 0 <= head_start <= head_start + head_len <= values.length;
+ @ requires_free 0 <= tail_start <= tail_start + tail_len <= values.length;
+ @
+ @ requires_free head_len + tail_len == this.bufferLen(bucket);
+ @ // Don't overlap
+ @ requires_free \disjoint(values[head_start..(head_start + head_len - 1)], values[tail_start..(tail_start + tail_len - 1)]);
+ @
+ @ ensures_free (\forall int i; 0 <= i && i < head_len; values[head_start + i] == \old(this.bufferElement(bucket, i)));
+ @ ensures_free (\forall int i; 0 <= i && i < tail_len; values[tail_start + i] == \old(this.bufferElement(bucket, head_len + i)));
+ @
+ @ ensures_free (\forall int element; true;
+ @ Functions.countElement(values, head_start, head_start + head_len, element) +
+ @ Functions.countElement(values, tail_start, tail_start + tail_len, element) ==
+ @ \old(this.countElementInBucket(bucket, element))
+ @ );
+ @
+ @ assignable_free values[head_start..(head_start + head_len - 1)];
+ @ assignable_free values[tail_start..(tail_start + tail_len - 1)];
+ @*/
+ public void distribute(int bucket, int[] values, int head_start, int head_len, int tail_start, int tail_len) {
+ //@ assume head_len + tail_len == this.indices[bucket];
+ int offset = bucket * BUFFER_SIZE;
+ //@ assume Functions.countElementSplit(this.buffer, offset, offset + head_len, offset + head_len + tail_len);
+ Functions.copy_nonoverlapping(this.buffer, offset, values, head_start, head_len);
+ Functions.copy_nonoverlapping(this.buffer, offset + head_len, values, tail_start, tail_len);
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= bucket < this.num_buckets;
+ @ ensures_free \result == this.bufferLen(bucket);
+ @ assignable_free \strictly_nothing;
+ @*/
+ public int len(int bucket) {
+ return this.indices[bucket];
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Classifier.java b/src/main/java-overflow/de/wiesler/Classifier.java
new file mode 100644
index 0000000..22c68b9
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Classifier.java
@@ -0,0 +1,759 @@
+package de.wiesler;
+
+public final class Classifier {
+ public static final int STORAGE_SIZE = (1 << Constants.LOG_MAX_BUCKETS);
+
+ private /*@ spec_public @*/ final Tree tree;
+ private /*@ spec_public @*/ final int num_buckets;
+ private /*@ spec_public @*/ final int[] sorted_splitters;
+ private /*@ spec_public @*/ final boolean equal_buckets;
+
+ /*@ invariant_free 2 <= this.num_buckets <= Constants.MAX_BUCKETS;
+ @ invariant_free this.num_buckets == (this.equal_buckets ? 2 * this.tree.num_buckets : this.tree.num_buckets);
+ @ invariant_free this.tree.sorted_splitters == this.sorted_splitters;
+ @ invariant_free Functions.isSortedSliceTransitive(this.sorted_splitters, 0, this.tree.num_buckets);
+ @ invariant_free this.sorted_splitters[this.tree.num_buckets - 1] == this.sorted_splitters[this.tree.num_buckets - 2];
+ @ invariant_free \invariant_for(this.tree);
+ @
+ @ accessible \inv: this.sorted_splitters[*], this.tree.tree[*];
+ @*/
+
+ // This is a wrapper around classify not to be expanded in partition.
+ /*@ public model_behaviour
+ @ ensures_free 0 <= \result < this.num_buckets;
+ @ ensures_free this.isClassifiedAs(value, \result);
+ @ accessible this.sorted_splitters[*], this.tree.tree[*];
+ @ model int classOf(int value) {
+ @ return this.classify(value);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ accessible this.sorted_splitters[*], this.tree.tree[*], values[begin..end - 1];
+ @ model boolean isClassOfSlice(int[] values, int begin, int end, int bucket) {
+ @ return (\forall
+ @ int i;
+ @ begin <= i < end;
+ @ this.classOf(values[i]) == bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires begin <= mid <= end;
+ @
+ @ ensures_free \result;
+ @
+ @ // Verified
+ @ model boolean isClassOfSliceSplit(int[] values, int begin, int mid, int end, int bucket) {
+ @ return this.isClassOfSlice(values, begin, end, bucket) <==>
+ @ this.isClassOfSlice(values, begin, mid, bucket) && this.isClassOfSlice(values, mid, end, bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires this.isClassOfSlice(src, srcPos, srcPos + length, bucket);
+ @ requires (\forall int i; 0 <= i && i < length; dest[destPos + i] == src[srcPos + i]);
+ @
+ @ ensures_free \result;
+ @
+ @ // Verified
+ @ model boolean isClassOfSliceCopy(int[] src, int srcPos, int[] dest, int destPos, int length, int bucket) {
+ @ return this.isClassOfSlice(dest, destPos, destPos + length, bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ accessible values[begin..end - 1], this.sorted_splitters[*], this.tree.tree[*];
+ @ model int countClassOfSliceEq(int[] values, int begin, int end, int bucket) {
+ @ return (\num_of
+ @ int i;
+ @ begin <= i < end;
+ @ this.classOf(values[i]) == bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires this.isClassOfSlice(values, begin, end, bucket);
+ @ requires begin <= end;
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean countClassOfSliceEqLemma(int[] values, int begin, int end, int bucket) {
+ @ return (\forall int b; 0 <= b < this.num_buckets;
+ @ this.countClassOfSliceEq(values, begin, end, b) ==
+ @ (b == bucket ? end - begin : 0)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ accessible this.sorted_splitters[*], this.tree.tree[*], values[begin..end - 1];
+ @ model boolean isClassifiedBlock(int[] values, int begin, int end) {
+ @ return (\exists int bucket; 0 <= bucket < this.num_buckets; this.isClassOfSlice(values, begin, end, bucket));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires this.isClassifiedBlock(values, begin, end);
+ @ requires this.classOf(values[begin]) == bucket;
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean classOfClassifiedBlockFromFirst(int[] values, int begin, int end, int bucket) {
+ @ return this.isClassOfSlice(values, begin, end, bucket);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires Buffers.isBlockAligned(end - begin);
+ @ accessible this.sorted_splitters[*], this.tree.tree[*], values[begin..end - 1];
+ @ model boolean isClassifiedBlocksRange(int[] values, int begin, int end) {
+ @ return (\forall
+ @ int block;
+ @ 0 <= block && block < (end - begin) / Buffers.BUFFER_SIZE;
+ @ this.isClassifiedBlock(values, begin + block * Buffers.BUFFER_SIZE, begin + (block + 1) * Buffers.BUFFER_SIZE)
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires begin <= mid <= end;
+ @ requires Buffers.isBlockAligned(end - begin);
+ @ requires Buffers.isBlockAligned(mid - begin);
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean isClassifiedBlocksRangeSplit(int[] values, int begin, int mid, int end) {
+ @ return this.isClassifiedBlocksRange(values, begin, end) <==>
+ @ this.isClassifiedBlocksRange(values, begin, mid) && this.isClassifiedBlocksRange(values, mid, end);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free tree != sorted_splitters;
+ @ requires_free 1 <= log_buckets <= Constants.LOG_MAX_BUCKETS;
+ @ requires_free 0 <= (1 << log_buckets) <= sorted_splitters.length;
+ @ requires_free Functions.isSortedSliceTransitive(sorted_splitters, 0, 1 << log_buckets);
+ @ requires_free (1 << log_buckets) <= tree.length;
+ @ requires_free sorted_splitters[(1 << log_buckets) - 1] == sorted_splitters[(1 << log_buckets) - 2];
+ @
+ @ ensures_free this.tree.tree == tree && this.sorted_splitters == sorted_splitters;
+ @ ensures_free this.tree.log_buckets == log_buckets && this.equal_buckets == equal_buckets && this.num_buckets == (equal_buckets ? 2 * (1 << log_buckets) : (1 << log_buckets));
+ @
+ @ assignable_free tree[*];
+ @*/
+ public Classifier(int[] sorted_splitters, int[] tree, int log_buckets, boolean equal_buckets) {
+ int num_buckets = 1 << log_buckets;
+ //@ assume 2 <= num_buckets <= (1 << Constants.LOG_MAX_BUCKETS);
+
+ int num_splitters = num_buckets - 1;
+ //@ assume (sorted_splitters[num_splitters] == sorted_splitters[num_splitters - 1]);
+
+ this.tree = new Tree(sorted_splitters, tree, log_buckets);
+ //@ assume this.tree.log_buckets == log_buckets;
+ //@ assume sorted_splitters[num_splitters] == sorted_splitters[num_splitters - 1];
+ this.sorted_splitters = sorted_splitters;
+ /*@ normal_behaviour
+ @ ensures_free this.num_buckets == (equal_buckets ? 2 * num_buckets : num_buckets);
+ @ assignable_free this.num_buckets;
+ @*/
+ {
+ this.num_buckets = equal_buckets ? 2 * num_buckets : num_buckets;
+ }
+ this.equal_buckets = equal_buckets;
+ }
+
+ /*@ public model_behaviour
+ @ requires this.tree.classOfFirstSplitters();
+ @ ensures_free \result;
+ @
+ @ model boolean classOfFirstSplitters() {
+ @ return this.classOf(this.sorted_splitters[0]) != this.classOf(this.sorted_splitters[1]);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= num_splitters <= splitters.length;
+ @ requires_free (\forall
+ @ int j;
+ @ 0 <= j < num_splitters - 1;
+ @ splitters[j] < splitters[j + 1]
+ @ );
+ @ requires_free \disjoint(splitters[*], tree[*]);
+ @
+ @ requires_free 2 <= num_splitters && num_splitters <= num_buckets - 1;
+ @ requires_free 2 <= num_buckets && num_buckets <= (1 << Constants.LOG_MAX_BUCKETS);
+ @ requires_free splitters.length == Classifier.STORAGE_SIZE;
+ @ requires_free tree.length == Classifier.STORAGE_SIZE;
+ @
+ @ ensures_free \fresh(\result);
+ @ ensures_free \invariant_free_for(\result);
+ @ ensures \invariant_for(\result);
+ @ ensures_free \result.sorted_splitters == splitters && \result.tree.tree == tree;
+ @ ensures_free \result.num_buckets % 2 == 0;
+ @ ensures_free splitters[0] == \old(splitters[0]) && splitters[1] == \old(splitters[1]);
+ @ ensures_free \result.classOf(splitters[0]) != \result.classOf(splitters[1]);
+ @
+ @ assignable_free splitters[*], tree[*];
+ @*/
+ public static Classifier from_sorted_samples(
+ int[] splitters,
+ int[] tree,
+ int num_splitters,
+ int num_buckets
+ ) {
+ // Check for duplicate splitters
+ boolean use_equal_buckets = (num_buckets - 1 - num_splitters) >= Constants.EQUAL_BUCKETS_THRESHOLD;
+
+ // Fill the array to the next power of two
+ int log_buckets = Constants.log2(num_splitters) + 1;
+ // Cut for result >= Constants.LOG_MAX_BUCKETS, lower bound
+ //@ assume log_buckets <= Constants.LOG_MAX_BUCKETS;
+ int actual_num_buckets = 1 << log_buckets;
+ //@ assume actual_num_buckets <= splitters.length && num_splitters < actual_num_buckets;
+
+ /*@ loop_invariant_free num_splitters <= i && i <= actual_num_buckets;
+ @
+ @ loop_invariant_free (\forall
+ @ int j;
+ @ 0 <= j < num_splitters;
+ @ // It is unchanged
+ @ splitters[j] == \old(splitters[j])
+ @ );
+ @ loop_invariant_free (\forall int j; num_splitters <= j < i; splitters[j] == splitters[num_splitters - 1]);
+ @ loop_invariant_free 0 <= i <= splitters.length;
+ @ loop_invariant_free Functions.isSortedSlice(splitters, 0, i);
+ @
+ @ decreases actual_num_buckets - i;
+ @ assignable_free splitters[num_splitters..actual_num_buckets - 1];
+ @*/
+ for (int i = num_splitters; i < actual_num_buckets; ++i) {
+ splitters[i] = splitters[num_splitters - 1];
+ }
+
+ Classifier classifier = new Classifier(splitters, tree, log_buckets, use_equal_buckets);
+ //@ assume classifier.classOfFirstSplitters();
+ return classifier;
+ }
+
+ /*@ public normal_behaviour
+ @ ensures_free \result == this.num_buckets;
+ @ assignable_free \strictly_nothing;
+ @*/
+ public int num_buckets() {
+ return this.num_buckets;
+ }
+
+ /*@ public normal_behaviour
+ @ ensures_free \result == this.equal_buckets;
+ @ assignable_free \strictly_nothing;
+ @*/
+ public boolean equal_buckets() {
+ return this.equal_buckets;
+ }
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ model boolean isClassifiedAs(int value, int bucket) {
+ @ return this.equal_buckets ?
+ @ ((bucket % 2 == 0 || bucket == this.num_buckets - 1) ?
+ @ ((0 < bucket ==> this.sorted_splitters[bucket / 2 - 1] < value) &&
+ @ (bucket < this.num_buckets - 1 ==> value < this.sorted_splitters[bucket / 2])) :
+ @ (this.sorted_splitters[bucket / 2] == value &&
+ @ // elements land in equality buckets iff the non equality bucket actually allows elements
+ @ (0 < bucket / 2 ==> this.sorted_splitters[bucket / 2 - 1] < value))) :
+ @ ((0 < bucket ==> this.sorted_splitters[bucket - 1] < value) &&
+ @ (bucket < this.num_buckets - 1 ==> value <= this.sorted_splitters[bucket]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ ensures_free \result;
+ @
+ @ model boolean classOfTrans() {
+ @ return (\forall int i, j, classI, classJ; 0 <= classI < classJ < this.num_buckets;
+ @ this.isClassifiedAs(i, classI) && this.isClassifiedAs(j, classJ) ==> i < j
+ @ );
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free \dl_inInt(value);
+ @ ensures_free 0 <= \result < this.num_buckets;
+ @ ensures_free this.isClassifiedAs(value, \result);
+ @
+ @ // Needed to bring this method to logic
+ @ ensures_free \result == this.classify(value);
+ @
+ @ assignable_free \strictly_nothing;
+ @
+ @ accessible this.sorted_splitters[*], this.tree.tree[*];
+ @*/
+ public int classify(int value) {
+ /*@ normal_behaviour
+ @ assignable \nothing;
+ @*/
+ {
+ value = value;
+ }
+ int index = this.tree.classify(value);
+ int bucket;
+ if (this.equal_buckets) {
+ int bucket_index = index - this.num_buckets / 2;
+ boolean equal_to_splitter = !Constants.cmp(value, this.sorted_splitters[bucket_index]);
+ bucket = 2 * index + Constants.toInt(equal_to_splitter) - this.num_buckets;
+ } else {
+ bucket = index - this.num_buckets;
+ }
+ return bucket;
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin == indices.length;
+ @ requires_free \disjoint(values[*], indices[*], this.tree.tree[*], this.sorted_splitters[*]);
+ @
+ @ ensures_free (\forall int i; 0 <= i && i < indices.length; this.classOf(values[begin + i]) == indices[i]);
+ @
+ @ assignable_free indices[*];
+ @*/
+ public void classify_all(int[] values, int begin, int end, int[] indices) {
+ this.tree.classify_all(values, begin, end, indices);
+ if (this.equal_buckets) {
+ /*@ loop_invariant_free 0 <= i <= indices.length;
+ @ loop_invariant_free (\forall int j; 0 <= j < i; this.classify(values[begin + j]) == indices[j]);
+ @ loop_invariant_free (\forall int j; i <= j < indices.length; this.tree.classify(values[begin + j]) == indices[j]);
+ @ loop_invariant_free \invariant_for(this) && \invariant_for(this.tree);
+ @
+ @ decreases indices.length - i;
+ @ assignable_free indices[*];
+ @*/
+ for (int i = 0; i < indices.length; ++i) {
+ final int value = values[begin + i];
+ //@ assume \dl_inInt(value);
+ final int index = indices[i];
+ //@ assert this.tree.num_buckets <= index < 2 * this.tree.num_buckets;
+ //@ assume 0 <= (index - this.num_buckets / 2) < this.sorted_splitters.length;
+ final int bucket = index - this.num_buckets / 2;
+ final boolean equal_to_splitter = !Constants.cmp(value, this.sorted_splitters[bucket]);
+ indices[i] = 2 * index + Constants.toInt(equal_to_splitter) - this.num_buckets;
+ }
+ } else {
+ /*@ loop_invariant_free 0 <= i <= indices.length;
+ @ loop_invariant_free (\forall int j; 0 <= j < i; this.classify(values[begin + j]) == indices[j]);
+ @ loop_invariant_free (\forall int j; i <= j < indices.length; this.tree.classify(values[begin + j]) == indices[j]);
+ @ loop_invariant_free \invariant_for(this) && \invariant_for(this.tree);
+ @
+ @ decreases indices.length - i;
+ @ assignable_free indices[*];
+ @*/
+ for (int i = 0; i < indices.length; ++i) {
+ //@ assume \dl_inInt(values[begin + i]);
+ indices[i] -= this.num_buckets;
+ }
+ }
+ }
+
+ /*@ model_behaviour
+ @ requires bucket_starts.length >= this.num_buckets;
+ @ accessible this.sorted_splitters[*];
+ @ accessible this.tree.tree[*];
+ @ accessible values[begin..write - 1];
+ @ accessible bucket_starts[0..this.num_buckets];
+ @ model boolean allElementsCounted(int[] values, int begin, int write, int[] bucket_starts) {
+ @ return
+ @ (\forall int b; 0 <= b && b < this.num_buckets; bucket_starts[b] == this.countClassOfSliceEq(values, begin, write, b)) &&
+ @ (\sum int b; 0 <= b < this.num_buckets; bucket_starts[b]) == write - begin;
+ @ }
+ @*/
+
+ public static final int BATCH_SIZE = 16;
+
+ /*@ model_behaviour
+ @ requires \invariant_for(buffers);
+ @
+ @ requires bucket_starts.length >= this.num_buckets;
+ @ requires buffers.num_buckets == this.num_buckets;
+ @ requires Buffers.isBlockAligned(write - begin);
+ @ accessible
+ @ this.sorted_splitters[*], this.tree.tree[*],
+ @ values[begin..write - 1],
+ @ bucket_starts[0..this.num_buckets],
+ @ buffers.indices[0..this.num_buckets - 1],
+ @ buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1];
+ @ model boolean isClassifiedUntil(int[] values, int begin, int write, int i, int[] bucket_starts, Buffers buffers) {
+ @ return this.allElementsCounted(values, begin, write, bucket_starts) &&
+ @ isClassifiedBlocksRange(values, begin, write) &&
+ @ buffers.isClassifiedWith(this) &&
+ @ (\forall int b; 0 <= b < this.num_buckets; isValidBufferLen(buffers.bufferLen(b), bucket_starts[b])) &&
+ @ buffers.count() == i - write;
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires \invariant_for(buffers);
+ @ ensures_free \result >= 0;
+ @
+ @ accessible values[begin..write - 1];
+ @ accessible values[read..end - 1];
+ @ accessible buffers.indices[0..buffers.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * buffers.num_buckets - 1];
+ @ model static int countElement(int[] values, int begin, int write, int read, int end, Buffers buffers, int element) {
+ @ return
+ @ // element in [begin,write)
+ @ Functions.countElement(values, begin, write, element) +
+ @ // element in [read,end)
+ @ Functions.countElement(values, read, end, element) +
+ @ // element in all buffers
+ @ buffers.countElement(element);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires 0 <= len <= Buffers.BUFFER_SIZE;
+ @
+ @ ensures_free \result ==> Buffers.bufferSizeForBucketLen(len + writtenElements) == len;
+ @ static model no_state boolean isValidBufferLen(int len, int writtenElements) {
+ @ return
+ @ 0 <= writtenElements &&
+ @ Buffers.isBlockAligned(writtenElements) &&
+ @ (0 < writtenElements ==> len != 0);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free \invariant_free_for(buffers);
+ @
+ @ requires_free bucket_starts.length >= this.num_buckets + 1;
+ @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*], indices[*]);
+ @ requires_free buffers.num_buckets == this.num_buckets;
+ @
+ @ requires_free 0 <= begin <= end <= values.length;
+ @
+ @ requires_free begin <= write <= i && i + indices.length <= end;
+ @ requires_free Buffers.isBlockAligned(write - begin);
+ @ requires_free (i - begin) % BATCH_SIZE == 0;
+ @ requires_free indices.length <= BATCH_SIZE;
+ @
+ @ requires_free (\forall int j; 0 <= j < indices.length; this.classOf(values[i + j]) == indices[j]);
+ @
+ @ requires_free this.isClassifiedUntil(values, begin, write, i, bucket_starts, buffers);
+ @
+ @ ensures_free \invariant_free_for(buffers) && \invariant_free_for(this);
+ @ ensures \invariant_for(buffers) && \invariant_for(this);
+ @
+ @ ensures_free write <= \result && \result <= i && Buffers.isBlockAligned(\result - begin);
+ @ ensures_free this.isClassifiedUntil(values, begin, \result, i + indices.length, bucket_starts, buffers);
+ @
+ @ ensures_free (\forall int element; true;
+ @ \old(Classifier.countElement(values, begin, write, i, end, buffers, element)) ==
+ @ Classifier.countElement(values, begin, \result, i + indices.length, end, buffers, element)
+ @ );
+ @
+ @ // Bucket starts
+ @
+ @ assignable_free values[write..i - 1];
+ @ assignable_free bucket_starts[0..this.num_buckets - 1];
+ @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1];
+ @*/
+ private int finish_batch(int[] indices, int[] values, int begin, int write, int i, int end, int[] bucket_starts, Buffers buffers) {
+ //@ ghost int old_write = write;
+ /*@ loop_invariant_free 0 <= j && j <= indices.length;
+ @
+ @ loop_invariant_free \old(write) <= write && write <= i;
+ @ loop_invariant_free Buffers.isBlockAligned(write - begin);
+ @
+ @ loop_invariant_free this.isClassifiedUntil(values, begin, write, i + j, bucket_starts, buffers);
+ @
+ @ loop_invariant_free (\forall int element; true;
+ @ \old(Classifier.countElement(values, begin, old_write, i, end, buffers, element)) ==
+ @ Classifier.countElement(values, begin, write, i + j, end, buffers, element)
+ @ );
+ @
+ @ loop_invariant_free \invariant_for(buffers) && \invariant_for(this);
+ @
+ @ decreases indices.length - j;
+ @
+ @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1];
+ @ assignable_free values[old_write..i - 1];
+ @ assignable_free bucket_starts[0..this.num_buckets - 1];
+ @*/
+ for (int j = 0; j < indices.length; ++j) {
+ //@ ghost \dl_Heap heapAtLoopBodyBegin = \dl_heap();
+
+ int bucket = indices[j];
+ int value = values[i + j];
+
+ //@ assume this.classOf(value) == bucket;
+ //@ assume 0 <= bucket < this.num_buckets;
+
+ /*@ public normal_behaviour
+ @ ensures_free buffers.bufferLen(bucket) != Buffers.BUFFER_SIZE;
+ @
+ @ ensures_free \old(write) <= write && write <= i;
+ @ ensures_free Buffers.isBlockAligned(write - begin);
+ @
+ @ ensures_free this.allElementsCounted(values, begin, write, bucket_starts) &&
+ @ isClassifiedBlocksRange(values, begin, write) &&
+ @ buffers.isClassifiedWith(this) &&
+ @ buffers.count() == i + j - write;
+ @
+ @ ensures_free (\forall int b; 0 <= b < this.num_buckets;
+ @ isValidBufferLen(buffers.bufferLen(b) + (b == bucket ? 1 : 0), bucket_starts[b])
+ @ );
+ @
+ @ ensures_free (\forall int element; true;
+ @ \old(Classifier.countElement(values, begin, old_write, i, end, buffers, element)) ==
+ @ Classifier.countElement(values, begin, write, i + j, end, buffers, element)
+ @ );
+ @
+ @ ensures_free \invariant_free_for(buffers) && \invariant_free_for(this);
+ @ ensures \invariant_for(buffers) && \invariant_for(this);
+ @
+ @ assignable_free buffers.indices[bucket];
+ @ assignable_free values[old_write..i - 1];
+ @ assignable_free bucket_starts[bucket];
+ @*/
+ {
+ if (buffers.len(bucket) == Buffers.BUFFER_SIZE) {
+ // Use element lower bound
+ /*@ assume write + 256 <= i &&
+ @ Buffers.isBlockAlignedAdd(write - begin, Buffers.BUFFER_SIZE) &&
+ @ Buffers.isBlockAlignedAdd(bucket_starts[bucket], Buffers.BUFFER_SIZE);
+ @*/
+
+ // This was moved ahead to remove heap modifications after flush, changes nothing in the algorithm
+ bucket_starts[bucket] += Buffers.BUFFER_SIZE;
+
+ buffers.flush(bucket, values, write, i);
+
+ /*@ assume
+ @ \invariant_for(this) &&
+ @ Buffers.isBlockAligned(write + Buffers.BUFFER_SIZE - begin) &&
+ @ Buffers.isBlockAligned(bucket_starts[bucket]);
+ @*/
+
+ // Split off the written part
+ /*@ assume
+ @ this.isClassifiedBlocksRangeSplit(values, begin, write, write + Buffers.BUFFER_SIZE) &&
+ @ this.isClassOfSliceCopy(buffers.buffer, bucket * Buffers.BUFFER_SIZE, values, write, Buffers.BUFFER_SIZE, bucket) &&
+ @ Functions.countElementSplit(values, begin, write, write + Buffers.BUFFER_SIZE);
+ @*/
+ //@ assume this.isClassOfSlice(values, write, write + Buffers.BUFFER_SIZE, bucket);
+ //@ assume this.countClassOfSliceEqLemma(values, write, write + Buffers.BUFFER_SIZE, bucket);
+ /*@ assume (\forall int b; 0 <= b && b < this.num_buckets;
+ @ \at(this.countClassOfSliceEq(values, begin, write, b), heapAtLoopBodyBegin) + (b == bucket ? Buffers.BUFFER_SIZE : 0) ==
+ @ this.countClassOfSliceEq(values, begin, write + Buffers.BUFFER_SIZE, b)
+ @ );
+ @*/
+
+ /*@ assume (\sum int b; 0 <= b < this.num_buckets; bucket_starts[b]) ==
+ @ (\sum int b; 0 <= b < this.num_buckets; \at(bucket_starts[b], heapAtLoopBodyBegin)) + Buffers.BUFFER_SIZE;
+ @*/
+
+ write += Buffers.BUFFER_SIZE;
+ }
+ }
+ //@ assume \dl_inInt(value);
+ buffers.push(bucket, value);
+ //@ assume \invariant_for(this) && Functions.countElementSplit(values, i + j, i + j + 1, end);
+ // permutation property: elements in [begin,write) stayed the same, split first in [read,end), split on element = value
+ }
+
+ return write;
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free \invariant_free_for(buffers);
+ @
+ @ requires_free bucket_starts.length >= this.num_buckets + 1;
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free (\forall int b; 0 <= b < this.num_buckets; bucket_starts[b] == 0);
+ @ requires_free buffers.isEmpty();
+ @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*]);
+ @ requires_free buffers.num_buckets == this.num_buckets;
+ @
+ @ ensures_free \invariant_free_for(buffers);
+ @ ensures \invariant_for(buffers);
+ @
+ @ // classifies until end - (end - begin) % BATCH_SIZE
+ @
+ @ ensures_free begin <= \result && \result <= (end - (end - begin) % BATCH_SIZE) && Buffers.isBlockAligned(\result - begin);
+ @ ensures_free this.isClassifiedUntil(values, begin, \result, end - (end - begin) % BATCH_SIZE, bucket_starts, buffers);
+ @ ensures_free (\forall int element; true;
+ @ \old(Classifier.countElement(values, begin, begin, begin, end, buffers, element)) ==
+ @ Classifier.countElement(values, begin, \result, end - (end - begin) % BATCH_SIZE, end, buffers, element)
+ @ );
+ @
+ @ assignable_free values[begin..end - (end - begin) % BATCH_SIZE - 1];
+ @ assignable_free bucket_starts[0..this.num_buckets - 1];
+ @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1];
+ @*/
+ public int classify_locally_batched(int[] values, int begin, int end, int[] bucket_starts, Buffers buffers) {
+ int write = begin;
+ int i = begin;
+
+ /*@ assume
+ @ this.isClassifiedUntil(values, begin, write, i, bucket_starts, buffers) &&
+ @ (\forall int element; true;
+ @ \old(Classifier.countElement(values, begin, begin, begin, end, buffers, element)) ==
+ @ Classifier.countElement(values, begin, write, i, end, buffers, element)
+ @ );
+ @*/
+ if (end - begin >= BATCH_SIZE) {
+ int cutoff = end - BATCH_SIZE;
+ final int[] indices = new int[BATCH_SIZE];
+ //@ assume \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*], indices[*]);
+
+ /*@ loop_invariant_free begin <= i && i <= end - (end - begin) % BATCH_SIZE;
+ @
+ @ loop_invariant_free begin <= write && write <= i;
+ @ loop_invariant_free (i - begin) % BATCH_SIZE == 0;
+ @ loop_invariant_free Buffers.isBlockAligned(write - begin);
+ @
+ @ // Bucket starts contain all elements in values[..write]
+ @ loop_invariant_free this.isClassifiedUntil(values, begin, write, i, bucket_starts, buffers);
+ @
+ @ loop_invariant_free (\forall int element; true;
+ @ \old(Classifier.countElement(values, begin, begin, begin, end, buffers, element)) ==
+ @ Classifier.countElement(values, begin, write, i, end, buffers, element)
+ @ );
+ @
+ @ loop_invariant_free \invariant_for(buffers) && \invariant_for(this);
+ @
+ @ decreases end - i;
+ @
+ @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1];
+ @ assignable_free values[begin..end - (end - begin) % BATCH_SIZE - 1];
+ @ assignable_free bucket_starts[0..this.num_buckets - 1];
+ @ assignable_free indices[*];
+ @*/
+ while (i <= cutoff) {
+ this.classify_all(values, i, i + BATCH_SIZE, indices);
+
+ write = this.finish_batch(indices, values, begin, write, i, end, bucket_starts, buffers);
+
+ i += BATCH_SIZE;
+ }
+ //@ assume i == end - (end - begin) % BATCH_SIZE;
+ }
+
+ return write;
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free \invariant_free_for(buffers);
+ @
+ @ requires_free bucket_starts.length >= this.num_buckets + 1;
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*]);
+ @ requires_free buffers.num_buckets == this.num_buckets;
+ @ requires_free this.isClassifiedUntil(values, begin, write, end, bucket_starts, buffers);
+ @ requires_free begin <= write <= end;
+ @ requires_free Buffers.isBlockAligned(write - begin);
+ @
+ @ ensures_free Functions.isValidBucketStarts(bucket_starts, this.num_buckets) && bucket_starts[this.num_buckets] == end - begin;
+ @ ensures_free (\forall int b; 0 <= b < this.num_buckets;
+ @ bucket_starts[b + 1] - bucket_starts[b] ==
+ @ \old(this.countClassOfSliceEq(values, begin, write, b)) + \old(buffers.bufferLen(b))
+ @ );
+ @
+ @ assignable_free bucket_starts[0..this.num_buckets];
+ @*/
+ public void calculate_bucket_starts(int[] values, int begin, int write, int end, int[] bucket_starts, Buffers buffers) {
+ // bucket_starts contains the bucket counts without buffer contents
+ // Calculate bucket starts
+ int sum = 0;
+
+ /*@ loop_invariant_free 0 <= j <= this.num_buckets;
+ @ loop_invariant_free 0 < j ==> bucket_starts[j - 1] <= sum && bucket_starts[0] == 0;
+ @ loop_invariant_free sum == (\sum int b; 0 <= b < j;
+ @ \old(this.countClassOfSliceEq(values, begin, write, b)) + \old(buffers.bufferLen(b))
+ @ );
+ @ loop_invariant_free Functions.isSortedSlice(bucket_starts, 0, j);
+ @ loop_invariant_free (\forall int b; j <= b < this.num_buckets; bucket_starts[b] == \old(this.countClassOfSliceEq(values, begin, write, b)));
+ @ loop_invariant_free (\forall int b; 0 <= b < j;
+ @ (b + 1 == j ? sum : bucket_starts[b + 1]) - bucket_starts[b] ==
+ @ \old(this.countClassOfSliceEq(values, begin, write, b)) + \old(buffers.bufferLen(b))
+ @ );
+ @
+ @ decreases this.num_buckets - j;
+ @
+ @ assignable_free bucket_starts[0..this.num_buckets];
+ @*/
+ for (int j = 0; j < this.num_buckets; ++j) {
+ //@ assume \invariant_for(buffers);
+ /*@ assume
+ @ bucket_starts[j] == \old(this.countClassOfSliceEq(values, begin, write, j)) &&
+ @ buffers.bufferLen(j) == \old(buffers.bufferLen(j));
+ @*/
+ // Add the partially filled buffers
+ int size = bucket_starts[j] + buffers.len(j);
+
+ // Exclusive prefix sum
+ bucket_starts[j] = sum;
+ sum += size;
+ //@ assume size >= 0;
+ }
+ bucket_starts[this.num_buckets] = sum;
+
+ //@ assume sum == end - begin && Functions.isSortedSlice(bucket_starts, 0, this.num_buckets + 1);
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free \invariant_free_for(buffers);
+ @
+ @ requires_free bucket_starts.length >= this.num_buckets + 1;
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free (\forall int b; 0 <= b < this.num_buckets; bucket_starts[b] == 0);
+ @ requires_free buffers.isEmpty();
+ @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*]);
+ @ requires_free buffers.num_buckets == this.num_buckets;
+ @
+ @ ensures_free begin <= \result && \result <= end && Buffers.isBlockAligned(\result - begin);
+ @ ensures_free this.isClassifiedBlocksRange(values, begin, \result);
+ @ ensures_free buffers.isClassifiedWith(this);
+ @ ensures_free Functions.isValidBucketStarts(bucket_starts, this.num_buckets) && bucket_starts[this.num_buckets] == end - begin;
+ @
+ @ ensures_free (\forall int b; 0 <= b < this.num_buckets;
+ @ // Bucket starts contains the bucket counts
+ @ bucket_starts[b + 1] - bucket_starts[b] ==
+ @ buffers.bufferLen(b) + this.countClassOfSliceEq(values, begin, \result, b) &&
+ @ // Buffer len is correct for the bucket size
+ @ buffers.bufferLen(b) == Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b])
+ @ );
+ @ ensures_free (\forall int element; true;
+ @ \old(Functions.countElement(values, begin, end, element)) ==
+ @ Functions.countElement(values, begin, \result, element) +
+ @ buffers.countElement(element)
+ @ );
+ @ ensures_free \invariant_free_for(buffers);
+ @ ensures \invariant_for(buffers);
+ @
+ @ // All values are either in a buffer or in values[..\result]
+ @ // Bucket starts
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_starts[0..this.num_buckets];
+ @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1];
+ @*/
+ public int classify_locally(int[] values, int begin, int end, int[] bucket_starts, Buffers buffers) {
+ /*@ assume (\forall int element; true;
+ @ Functions.countElement(values, begin, end, element) ==
+ @ Classifier.countElement(values, begin, begin, begin, end, buffers, element)
+ @ );
+ @*/
+ int write = this.classify_locally_batched(values, begin, end, bucket_starts, buffers);
+ int i = end - (end - begin) % BATCH_SIZE;
+ //@ assume end - i >= 0;
+ int[] indices = new int[end - i];
+ //@ assume \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*], indices[*]);
+ this.classify_all(values, i, end, indices);
+ write = this.finish_batch(indices, values, begin, write, i, end, bucket_starts, buffers);
+
+ this.calculate_bucket_starts(values, begin, write, end, bucket_starts, buffers);
+ return write;
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Cleanup.java b/src/main/java-overflow/de/wiesler/Cleanup.java
new file mode 100644
index 0000000..ed460fe
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Cleanup.java
@@ -0,0 +1,335 @@
+package de.wiesler;
+
+public final class Cleanup {
+ /*@ public model_behaviour
+ @ requires \invariant_for(classifier);
+ @
+ @ accessible values[begin + bucket_begin..begin + bucket_end - 1], classifier.sorted_splitters[*], classifier.tree.tree[*];
+ @
+ @ static model boolean cleanedUpSlice(int[] values, int begin, int end, int bucket_begin, int bucket_end, Classifier classifier, int bucket) {
+ @ return classifier.isClassOfSlice(values, begin + bucket_begin, begin + bucket_end, bucket) &&
+ @ Sorter.smallBucketIsSorted(values, begin, end, bucket_begin, bucket_end);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets);
+ @ requires_free bucket_starts[classifier.num_buckets] == end - begin;
+ @ requires_free classifier.num_buckets == buffers.num_buckets && classifier.num_buckets == bucket_pointers.num_buckets;
+ @ requires_free \invariant_free_for(buffers) && \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier);
+ @ requires \invariant_for(buffers) && \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ requires_free \disjoint(values[*], bucket_starts[*], overflow[*], bucket_pointers.buffer[*], buffers.indices[*], buffers.buffer[*], classifier.sorted_splitters[*], classifier.tree.tree[*]);
+ @ requires_free overflow.length == Buffers.BUFFER_SIZE;
+ @
+ @ requires_free (\forall int b; 0 <= b <= classifier.num_buckets;
+ @ bucket_pointers.bucketStart(b) == Buffers.blockAligned(bucket_starts[b])
+ @ );
+ @ requires_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ classifier.isClassOfSlice(buffers.buffer, b * Buffers.BUFFER_SIZE, b * Buffers.BUFFER_SIZE + buffers.bufferLen(b), b) &&
+ @ // All elements are read
+ @ bucket_pointers.toReadCountOfBucket(b) == 0 &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) &&
+ @ // Remaining elements: bucket size == buffer length + written elements
+ @ bucket_starts[b + 1] - bucket_starts[b] == buffers.bufferLen(b) + bucket_pointers.writtenCountOfBucket(b) &&
+ @ buffers.bufferLen(b) == Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b])
+ @ );
+ @
+ @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ classifier.isClassOfSlice(values, begin + bucket_starts[b], begin + bucket_starts[b + 1], b) &&
+ @ Sorter.smallBucketIsSorted(values, begin, end, bucket_starts[b], bucket_starts[b + 1])
+ @ );
+ @
+ @ // Permutation property
+ @ ensures_free (\forall int element; true;
+ @ \old(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element)) +
+ @ \old(buffers.countElement(element)) ==
+ @ Functions.countElement(values, begin, end, element)
+ @ );
+ @
+ @ assignable_free values[begin..end - 1];
+ @*/
+ public static void cleanup(
+ final int[] values,
+ final int begin,
+ final int end,
+ final Buffers buffers,
+ final int[] bucket_starts,
+ final BucketPointers bucket_pointers,
+ final Classifier classifier,
+ final int[] overflow
+ ) {
+ //@ ghost \dl_Heap heapOld = \dl_heap();
+ final int num_buckets = classifier.num_buckets();
+ final boolean is_last_level = end - begin <= Constants.SINGLE_LEVEL_THRESHOLD;
+
+ /*@ loop_invariant_free 0 <= bucket <= num_buckets;
+ @ loop_invariant_free (\forall int b; 0 <= b < bucket;
+ @ cleanedUpSlice(values, begin, end, \old(bucket_starts[b]), \old(bucket_starts[b + 1]), classifier, b)
+ @ );
+ @
+ @ loop_invariant_free (\forall int element; true;
+ @ (\sum int b; 0 <= b < bucket; \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element))) +
+ @ (\sum int b; 0 <= b < bucket; \old(buffers.countElementInBucket(b, element))) ==
+ @ Functions.countElement(values, begin, begin + \old(bucket_starts[bucket]), element)
+ @ );
+ @
+ @ loop_invariant_free (\forall int b; bucket <= b < classifier.num_buckets;
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) &&
+ @ (\forall int element; true;
+ @ \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element)) ==
+ @ bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element) &&
+ @ \old(buffers.countElementInBucket(b, element)) ==
+ @ buffers.countElementInBucket(b, element))
+ @ );
+ @
+ @ loop_invariant_free \invariant_for(classifier) && \invariant_for(bucket_pointers) && \invariant_for(buffers);
+ @
+ @ assignable_free values[begin..end - 1];
+ @
+ @ decreases num_buckets - bucket;
+ @*/
+ for (int bucket = 0; bucket < num_buckets; ++bucket) {
+ //@ assert \old(Functions.bucketStartsOrdering(bucket_starts, num_buckets, bucket));
+ final int relative_start = bucket_starts[bucket];
+ final int relative_stop = bucket_starts[bucket + 1];
+ final int relative_write = bucket_pointers.write(bucket);
+ //@ assert \dl_inInt(begin + relative_start) && \dl_inInt(begin + relative_stop);
+ final int start = begin + relative_start;
+ final int stop = begin + relative_stop;
+ final int write = begin + relative_write;
+
+ /*@ assume 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets] &&
+ @ Buffers.blockAligned(bucket_starts[num_buckets]) == bucket_pointers.bucketStart(num_buckets);
+ @*/
+
+ //@ assert \dl_inInt(begin + bucket_pointers.bucketStart(bucket)) && \dl_inInt(begin + bucket_pointers.bucketStart(bucket + 1));
+
+ /*@ normal_behaviour
+ @ ensures_free classifier.isClassOfSlice(values, start, stop, bucket);
+ @ ensures_free (\forall int element; true;
+ @ \at(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element), heapOld) +
+ @ \at(buffers.countElementInBucket(bucket, element), heapOld) ==
+ @ Functions.countElement(values, start, stop, element)
+ @ );
+ @
+ @ assignable_free values[start..stop - 1];
+ @*/
+ {
+ /*@ assume relative_write == \old(bucket_pointers.nextWriteOf(bucket)) &&
+ @ Buffers.blockAligned(bucket_starts[bucket]) == bucket_pointers.bucketStart(bucket) &&
+ @ Buffers.blockAligned(bucket_starts[bucket + 1]) == bucket_pointers.bucketStart(bucket + 1);
+ @*/
+ //@ assume Buffers.blockAligned(bucket_starts[bucket]) <= relative_write <= Buffers.blockAligned(bucket_starts[bucket + 1]);
+
+ final int head_start = start;
+ int head_stop = -1;
+
+ int tail_start = -1;
+ final int tail_stop = stop;
+
+ /*@ normal_behaviour
+ @ requires_free begin <= start <= stop <= end;
+ @
+ @ ensures_free \invariant_free_for(classifier) && \invariant_free_for(bucket_pointers);
+ @ ensures \invariant_for(classifier) && \invariant_for(bucket_pointers);
+ @
+ @ ensures_free start <= head_start <= head_stop <= tail_start <= tail_stop <= stop <= end <= values.length;
+ @ ensures_free tail_start - head_stop == \at(bucket_pointers.writtenCountOfBucket(bucket), heapOld);
+ @ ensures_free classifier.isClassOfSlice(values, head_stop, tail_start, bucket);
+ @ ensures_free (\forall int element; true;
+ @ Functions.countElement(values, head_stop, tail_start, element) ==
+ @ \at(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element), heapOld)
+ @ );
+ @
+ @ assignable_free values[start..stop - 1];
+ @*/
+ {
+ // Overflow happened:
+ // - block was written at least once
+ // - write was out of bounds
+
+ if (relative_stop - relative_start <= Buffers.BUFFER_SIZE) {
+ // Nothing written
+ // Valid: use precondition and split on the buffer length
+ //@ assume \old(bucket_pointers.writtenCountOfBucket(bucket)) == 0;
+ //@ assume (\forall int element; true; \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element)) == 0);
+
+ // Bucket is at most one block large => head is the full block, no tail
+ head_stop = stop;
+ tail_start = stop;
+ // verified
+ } else {
+ final int aligned_relative_start = Buffers.align_to_next_block(relative_start);
+ //@ assume aligned_relative_start == Buffers.blockAligned(relative_start);
+ //@ assume aligned_relative_start == bucket_pointers.bucketStart(bucket);
+ head_stop = begin + aligned_relative_start;
+
+ // Valid: use precondition and observer dependency
+ //@ assume head_start <= head_stop <= tail_stop;
+
+ if (stop < write) {
+ // Final block has been written
+ // Write pointer must be at aligned end of bucket
+
+ // Valid: use contract from nextWrite and blockAlign
+ //@ assume relative_write == Buffers.blockAligned(relative_stop);
+
+ if (end < write) {
+ // Overflow: write is out of bounds, content is in overflow
+
+ tail_start = write - Buffers.BUFFER_SIZE;
+
+ // Valid: Use contract of blockAligned
+ //@ assume head_start <= head_stop <= tail_start <= tail_stop;
+
+ int tail_len = tail_stop - tail_start;
+
+ // There must be space for all elements
+ // Valid: Precondition and observer
+ //@ assume Buffers.BUFFER_SIZE + buffers.bufferLen(bucket) == (tail_stop - tail_start) + (head_stop - head_start);
+
+ // Fill tail
+ Functions.copy_nonoverlapping(overflow, 0, values, tail_start, tail_len);
+
+ // Write remaining elements to end of head
+ int head_elements = Buffers.BUFFER_SIZE - tail_len;
+ head_stop -= head_elements;
+ Functions.copy_nonoverlapping(overflow, tail_len, values, head_stop, head_elements);
+
+ //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers);
+
+ /*@ assume
+ @ classifier.isClassOfSlice(overflow, 0, Buffers.BUFFER_SIZE, bucket) &&
+ @ // Follows from writtenElementsOfBucketClassified
+ @ classifier.isClassOfSlice(values, head_stop + head_elements, tail_start, bucket) &&
+ @ classifier.isClassOfSliceSplit(overflow, 0, tail_len, Buffers.BUFFER_SIZE, bucket) &&
+ @ classifier.isClassOfSliceSplit(values, head_stop, head_stop + head_elements, tail_start, bucket) &&
+ @ classifier.isClassOfSliceSplit(values, head_stop, tail_start, tail_stop, bucket);
+ @*/
+ /*@ assume
+ @ classifier.isClassOfSliceCopy(overflow, 0, values, tail_start, tail_len, bucket) &&
+ @ classifier.isClassOfSliceCopy(overflow, tail_len, values, head_stop, head_elements, bucket);
+ @*/
+
+ /*@ assume (\forall int element; true;
+ @ \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element)) ==
+ @ Functions.countElement(values, head_stop + head_elements, tail_start, element) +
+ @ Functions.countElement(overflow, 0, Buffers.BUFFER_SIZE, element)
+ @ );
+ @*/
+
+ /*@ assume
+ @ // Split overflow buffer
+ @ Functions.countElementSplit(overflow, 0, tail_len, Buffers.BUFFER_SIZE) &&
+ @ // Split off tail
+ @ Functions.countElementSplit(values, head_stop, tail_start, tail_stop) &&
+ @ // Split off head
+ @ Functions.countElementSplit(values, head_stop, head_stop + head_elements, tail_start);
+ @*/
+
+ tail_start = tail_stop;
+ // rest verified
+ } else {
+ // Normal overflow: write is in bounds and content is after the end of the bucket
+ int overflow_len = write - stop;
+
+ //@ assume head_start <= head_stop <= stop <= stop + overflow_len <= end;
+
+ // Must fit, no other empty space left
+ // Follows from precondition and lots of observers
+ //@ assume overflow_len + buffers.bufferLen(bucket) == head_stop - head_start;
+ // Follows from previous and buffer length >= 0
+ //@ assume head_start <= head_stop - overflow_len;
+
+ // Write overflow of last block to [head_stop - overflow_len..head_stop)
+ head_stop -= overflow_len;
+
+ Functions.copy_nonoverlapping(values, stop, values, head_stop, overflow_len);
+
+ //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers);
+
+ //@ assume classifier.isClassOfSlice(values, head_stop + overflow_len, write, bucket);
+ //@ assume classifier.isClassOfSliceSplit(values, head_stop + overflow_len, stop, write, bucket);
+ //@ assume classifier.isClassOfSliceCopy(values, stop, values, head_stop, overflow_len, bucket);
+ //@ assume classifier.isClassOfSliceSplit(values, head_stop, head_stop + overflow_len, stop, bucket);
+
+ /*@ assume (\forall int element; true;
+ @ \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element)) ==
+ @ Functions.countElement(values, begin + bucket_pointers.bucketStart(bucket), begin + \old(bucket_pointers.nextWriteOf(bucket)), element)
+ @ );
+ @*/
+ //@ assume Functions.countElementSplit(values, head_stop + overflow_len, stop, write);
+ //@ assume Functions.countElementSplit(values, head_stop, head_stop + overflow_len, stop);
+
+ // Tail is empty
+ tail_start = tail_stop;
+ // rest verified (all the dependency contracts)
+ }
+ } else {
+ // No overflow, write <= stop
+ tail_start = write;
+
+ // verified: use equality
+ }
+ }
+
+ //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers);
+ }
+
+ int head_len = head_stop - head_start;
+ int tail_len = tail_stop - tail_start;
+ //@ assume buffers.bufferLen(bucket) == head_len + tail_len;
+ // Write remaining elements from buffer to head and tail
+ buffers.distribute(
+ bucket,
+ values,
+ head_start,
+ head_len,
+ tail_start,
+ tail_len
+ );
+ /*@ assume Functions.countElementSplit(values, head_start, head_stop, tail_stop) &&
+ @ Functions.countElementSplit(values, head_stop, tail_start, tail_stop) &&
+ @ buffers.bufferLen(bucket) == head_len + tail_len &&
+ @ \invariant_for(classifier);
+ @*/
+ //@ ghost int bucketOffset = bucket * Buffers.BUFFER_SIZE;
+ /*@ assume
+ @ classifier.isClassOfSlice(buffers.buffer, bucketOffset, bucketOffset + buffers.bufferLen(bucket), bucket) &&
+ @ classifier.isClassOfSliceSplit(buffers.buffer, bucketOffset, bucketOffset + head_len, bucketOffset + buffers.bufferLen(bucket), bucket);
+ @*/
+ /*@ assume
+ @ classifier.isClassOfSliceCopy(buffers.buffer, bucketOffset, values, head_start, head_len, bucket) &&
+ @ classifier.isClassOfSliceCopy(buffers.buffer, bucketOffset + head_len, values, tail_start, tail_len, bucket) &&
+ @ classifier.isClassOfSliceSplit(values, head_start, head_stop, tail_stop, bucket) &&
+ @ classifier.isClassOfSliceSplit(values, head_stop, tail_start, tail_stop, bucket);
+ @*/
+ }
+
+ /*@ normal_behaviour
+ @ ensures_free cleanedUpSlice(values, begin, end, \at(bucket_starts[bucket], heapOld), \at(bucket_starts[bucket + 1], heapOld), classifier, bucket);
+ @ ensures_free (\forall int element; true;
+ @ \at(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element), heapOld) +
+ @ \at(buffers.countElementInBucket(bucket, element), heapOld) ==
+ @ Functions.countElement(values, start, stop, element)
+ @ );
+ @
+ @ assignable_free values[start..stop - 1];
+ @*/
+ {}
+
+ /*@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers) && \invariant_for(buffers) &&
+ @ Functions.countElementSplit(values, begin, begin + \old(bucket_starts[bucket]), begin + \old(bucket_starts[bucket + 1])) &&
+ @ (\forall int b; 0 <= b < num_buckets && b != bucket;
+ @ (b < bucket ==> 0 <= \old(bucket_starts[b]) <= \old(bucket_starts[b + 1]) <= \old(bucket_starts[bucket])) &&
+ @ (b > bucket ==> \old(bucket_starts[bucket + 1]) <= \old(bucket_starts[b]) <= \old(bucket_starts[b + 1]) <= \old(bucket_starts[num_buckets]) &&
+ @ \old(bucket_starts[b]) <= bucket_pointers.bucketStart(b)
+ @ ));
+ @*/
+ }
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Constants.java b/src/main/java-overflow/de/wiesler/Constants.java
new file mode 100644
index 0000000..01bbbf0
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Constants.java
@@ -0,0 +1,70 @@
+package de.wiesler;
+
+public final class Constants {
+ public static final int BASE_CASE_SIZE = 32;
+ public static final int ACTUAL_BASE_CASE_SIZE = 4 * BASE_CASE_SIZE;
+ public static final int LOG_MAX_BUCKETS = 8;
+ public static final int MAX_BUCKETS = 1 << (LOG_MAX_BUCKETS + 1);
+ public static final int SINGLE_LEVEL_THRESHOLD = BASE_CASE_SIZE * (1 << LOG_MAX_BUCKETS);
+ public static final int TWO_LEVEL_THRESHOLD = SINGLE_LEVEL_THRESHOLD * (1 << LOG_MAX_BUCKETS);
+ public static final int EQUAL_BUCKETS_THRESHOLD = 5;
+
+ /*@ public model_behaviour
+ @ requires n > 0;
+ @ static no_state model boolean isLog2Of(int n, int log) {
+ @ return log >= 0 &&
+ @ log <= 30 &&
+ @ (1 << log) <= n &&
+ @ (log != 30 ==> n < (1 << (log + 1)));
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free n > 0;
+ @
+ @ ensures_free isLog2Of(n, \result);
+ @
+ @ assignable_free \strictly_nothing;
+ @*/
+ public static int log2(int n) {
+ int log = 0;
+ if ((n & 0xffff0000) != 0) {
+ n >>>= 16;
+ log = 16;
+ }
+ if (n >= 256) {
+ n >>>= 8;
+ log += 8;
+ }
+ if (n >= 16) {
+ n >>>= 4;
+ log += 4;
+ }
+ if (n >= 4) {
+ n >>>= 2;
+ log += 2;
+ }
+ return log + (n >>> 1);
+ }
+
+ private static boolean testLogContract(int n, int log) {
+ return log >= 0 &&
+ log <= 30 &&
+ (1 << log) <= n &&
+ (log == 30 || n < (1 << (log + 1)));
+ }
+
+ public static void testContracts(int i) {
+ if (i > 0 && !testLogContract(i, log2(i))) {
+ throw new Error("log2 contract fails for " + i);
+ }
+ }
+
+ public static /*@ strictly_pure */ int toInt(boolean b) {
+ return b ? 1 : 0;
+ }
+
+ public static /*@ strictly_pure */ boolean cmp(int a, int b) {
+ return a < b;
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Functions.java b/src/main/java-overflow/de/wiesler/Functions.java
new file mode 100644
index 0000000..c801669
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Functions.java
@@ -0,0 +1,233 @@
+package de.wiesler;
+
+public final class Functions {
+ /*@ public model_behaviour
+ @ accessible values[begin..end - 1];
+ @
+ @ static model int countElement(int[] values, int begin, int end, int element) {
+ @ return (\num_of int i; begin <= i < end; values[i] == element);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires begin <= mid <= end;
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean countElementSplit(int[] values, int begin, int mid, int end) {
+ @ return (\forall int element; true; countElement(values, begin, end, element) == countElement(values, begin, mid, element) + countElement(values, mid, end, element));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ ensures_free \result ==> Functions.isSortedSliceTransitive(values, begin, end);
+ @
+ @ accessible values[begin..end - 1];
+ @ static model boolean isSortedSlice(int[] values, int begin, int end) {
+ @ return (\forall int i; begin <= i && i < end - 1; values[i] <= values[i + 1]);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ ensures_free \result ==> Functions.isSortedSlice(values, begin, end);
+ @
+ @ accessible values[begin..end - 1];
+ @
+ @ static model boolean isSortedSliceTransitive(int[] values, int begin, int end) {
+ @ return
+ @ (\forall int i; begin <= i < end;
+ @ (\forall int j; i <= j < end; values[i] <= values[j]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ ensures_free \result;
+ @ static model boolean isSortedSeqTransitiveFromSlice(int[] values, int begin, int end) {
+ @ return isSortedSliceTransitive(values, begin, end) ==> isSortedSeqTransitive(\dl_seq_def_workaround(begin, end, values));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @ static no_state model boolean isSortedSeqTransitive(\seq values) {
+ @ return
+ @ (\forall int i; 0 <= i < values.length;
+ @ (\forall int j; i <= j < values.length; (int) values[i] <= (int) values[j]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ accessible bucket_starts[0..num_buckets];
+ @ static model boolean isValidBucketStarts(int[] bucket_starts, int num_buckets) {
+ @ return 2 <= num_buckets &&
+ @ num_buckets + 1 <= bucket_starts.length &&
+ @ isSortedSliceTransitive(bucket_starts, 0, num_buckets + 1) &&
+ @ bucket_starts[0] == 0;
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free 1 <= num_samples && num_samples <= end - begin;
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @
+ @ assignable_free values[begin..end - 1];
+ @*/
+ public static void select_n(int[] values, int begin, int end, int num_samples) {}
+
+ /*@ public normal_behaviour
+ @ ensures_free \result == ((a >= b) ? a : b);
+ @ assignable_free \strictly_nothing;
+ @*/
+ public static int max(int a, int b) {
+ return (a >= b) ? a : b;
+ }
+
+ /*@ public normal_behaviour
+ @ ensures_free \result == ((a <= b) ? a : b);
+ @ assignable_free \strictly_nothing;
+ @*/
+ public static int min(int a, int b) {
+ return (a <= b) ? a : b;
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @
+ @ ensures_free (\forall int i; begin <= i < end; values[i] == value);
+ @
+ @ assignable_free values[begin..end - 1];
+ @*/
+ public static void fill(int[] values, int begin, int end, int value) {
+ /*@ loop_invariant_free begin <= i <= end;
+ @ loop_invariant_free (\forall int j; begin <= j < i; values[j] == value);
+ @ assignable_free values[begin..end - 1];
+ @ decreases end - i;
+ @*/
+ for (int i = begin; i < end; i++) {
+ values[i] = value;
+ }
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= length;
+ @ requires_free 0 <= srcPos && srcPos + length <= src.length;
+ @ requires_free 0 <= destPos && destPos + length <= dest.length;
+ @ requires_free \disjoint(src[srcPos..srcPos + length - 1], dest[destPos..destPos + length - 1]);
+ @
+ @ ensures_free (\forall int i; 0 <= i && i < length; dest[destPos + i] == src[srcPos + i]);
+ @ // ensures \dl_seq_def_workaround(destPos, destPos + length, dest) == \dl_seq_def_workaround(srcPos, srcPos + length, src);
+ @ ensures_free (\forall int element; true;
+ @ countElement(dest, destPos, destPos + length, element) == countElement(src, srcPos, srcPos + length, element)
+ @ );
+ @
+ @ assignable_free dest[destPos..destPos + length - 1];
+ @*/
+ public static void copy_nonoverlapping(int[] src, int srcPos, int[] dest, int destPos, int length) {
+ /*@ loop_invariant_free 0 <= i <= length;
+ @ loop_invariant_free (\forall int j; 0 <= j < i; dest[destPos + j] == src[srcPos + j]);
+ @
+ @ decreases length - i;
+ @
+ @ assignable_free dest[destPos..destPos + length - 1];
+ @*/
+ for (int i = 0; i < length; ++i) {
+ dest[destPos + i] = src[srcPos + i];
+ }
+ // System.arraycopy(src, srcPos, dest, destPos, length);
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free Functions.isSortedSlice(values, begin, end);
+ @ requires_free \disjoint(target[*], values[*]);
+ @
+ @ requires_free target.length >= count;
+ @
+ @ requires_free count > 0;
+ @ requires_free step > 0;
+ @ requires_free begin + count * step - 1 < end;
+ @
+ @ ensures_free (\forall
+ @ int i;
+ @ 0 <= i < \result;
+ @ // It is from the source array
+ @ (\exists int j; begin <= j < end; values[j] == target[i])
+ @ );
+ @ ensures_free (\forall
+ @ int i;
+ @ 0 <= i < \result;
+ @ // It is unique in the target array (or: strictly ascending)
+ @ (i < \result - 1 ==> target[i] < target[i + 1])
+ @ );
+ @ ensures_free 1 <= \result <= count;
+ @
+ @ assignable_free target[0..count - 1];
+ @*/
+ public static int copy_unique(
+ int[] values,
+ int begin,
+ int end,
+ int count,
+ int step,
+ int[] target
+ ) {
+ int offset = begin + step - 1;
+ //@ assume offset < end;
+ target[0] = values[offset];
+ int target_offset = 1;
+ offset += step;
+
+ /*@
+ @ loop_invariant_free 1 <= i && i <= count;
+ @ loop_invariant_free 1 <= target_offset && target_offset <= i;
+ @
+ @ loop_invariant_free begin <= offset;
+ @ loop_invariant_free offset == begin + (step * (i + 1)) - 1;
+ @ loop_invariant_free i < count ==> offset < end;
+ @
+ @ loop_invariant_free (\forall
+ @ int j;
+ @ 0 <= j < target_offset;
+ @ // It is from the source array
+ @ (\exists int k; begin <= k < end; values[k] == target[j])
+ @ );
+ @ loop_invariant_free (\forall
+ @ int j;
+ @ 0 <= j < target_offset - 1;
+ @ // It is unique in the target array (or: strictly ascending)
+ @ target[j] < target[j + 1]
+ @ );
+ @
+ @ decreases count - i;
+ @ assignable_free target[1..count - 1];
+ @*/
+ for (int i = 1; i < count; ++i) {
+ // multiply both sides by step, this can't be proven automatically
+ //@ assume i + 2 <= count ==> (i + 2) * step <= count * step;
+ if (Constants.cmp(target[target_offset - 1], values[offset])) {
+ target[target_offset] = values[offset];
+ target_offset += 1;
+ }
+ offset += step;
+ }
+
+ return target_offset;
+ }
+
+ /*@ public model_behaviour
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets);
+ @ requires 0 <= bucket < num_buckets;
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean bucketStartsOrdering(int[] bucket_starts, int num_buckets, int bucket) {
+ @ return 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets] &&
+ @ (\forall int b; 0 <= b < num_buckets && b != bucket;
+ @ (b < bucket ==> 0 <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[bucket]) &&
+ @ (b > bucket ==> bucket_starts[bucket + 1] <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[num_buckets])
+ @ );
+ @ }
+ @*/
+}
diff --git a/src/main/java-overflow/de/wiesler/Increment.java b/src/main/java-overflow/de/wiesler/Increment.java
new file mode 100644
index 0000000..e1ad783
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Increment.java
@@ -0,0 +1,17 @@
+package de.wiesler;
+
+public final class Increment {
+ public final boolean occupied;
+ public final int position;
+
+ /*@ public normal_behaviour
+ @ requires_free true;
+ @ ensures_free this.occupied == occupied;
+ @ ensures_free this.position == position;
+ @ assignable_free \nothing;
+ @*/
+ public Increment(boolean occupied, int position) {
+ this.occupied = occupied;
+ this.position = position;
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Partition.java b/src/main/java-overflow/de/wiesler/Partition.java
new file mode 100644
index 0000000..2b70ebb
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Partition.java
@@ -0,0 +1,117 @@
+package de.wiesler;
+
+public final class Partition {
+ /*@ public model_behaviour
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets);
+ @ requires 0 <= begin <= end <= values.length;
+ @
+ @ ensures_free \result;
+ @ static model boolean bucketCountsToTotalCount(int[] values, int begin, int end, int[] bucket_starts, int num_buckets) {
+ @ return (\forall int bucket; 0 <= bucket <= num_buckets;
+ @ (\forall int element; true;
+ @ (\sum int b; 0 <= b < bucket; Functions.countElement(values, begin + bucket_starts[b], begin + bucket_starts[b + 1], element)) ==
+ @ Functions.countElement(values, begin, begin + bucket_starts[bucket], element)
+ @ )
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @ static model boolean allBucketsClassified(int[] values, int begin, int end, Classifier classifier, int[] bucket_starts) {
+ @ return (\forall int b; 0 <= b < classifier.num_buckets;
+ @ classifier.isClassOfSlice(values, begin + bucket_starts[b], begin + bucket_starts[b + 1], b)
+ @ );
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free bucket_starts.length == Constants.MAX_BUCKETS + 1;
+ @ requires_free (\forall int b; 0 <= b < bucket_starts.length; bucket_starts[b] == 0);
+ @ requires_free end - begin > Constants.ACTUAL_BASE_CASE_SIZE;
+ @ requires_free \invariant_free_for(storage) && \invariant_free_for(classifier);
+ @ requires \invariant_for(storage) && \invariant_for(classifier);
+ @
+ @ requires_free \disjoint(
+ @ values[*],
+ @ bucket_starts[*],
+ @ classifier.tree.tree[*],
+ @ classifier.sorted_splitters[*],
+ @ storage.bucket_pointers[*],
+ @ storage.buffers_buffer[*],
+ @ storage.buffers_indices[*],
+ @ storage.swap_1[*],
+ @ storage.swap_2[*],
+ @ storage.overflow[*]
+ @ );
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets);
+ @ ensures_free bucket_starts[classifier.num_buckets] == end - begin;
+ @ ensures_free allBucketsClassified(values, begin, end, classifier, bucket_starts);
+ @ ensures_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, classifier.num_buckets, 0, classifier.num_buckets);
+ @ ensures_free \invariant_free_for(storage) && \invariant_free_for(classifier);
+ @ ensures \invariant_for(storage) && \invariant_for(classifier);
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_starts[*];
+ @ assignable_free storage.bucket_pointers[*];
+ @ assignable_free storage.buffers_buffer[*];
+ @ assignable_free storage.buffers_indices[*];
+ @ assignable_free storage.swap_1[*];
+ @ assignable_free storage.swap_2[*];
+ @ assignable_free storage.overflow[*];
+ @*/
+ public static void partition(
+ int[] values,
+ int begin,
+ int end,
+ int[] bucket_starts,
+ Classifier classifier,
+ Storage storage
+ ) {
+ Buffers buffers = new Buffers(storage.buffers_buffer, storage.buffers_indices, classifier.num_buckets());
+ int first_empty_position = classifier.classify_locally(values, begin, end, bucket_starts, buffers);
+ //@ ghost \dl_Heap heapAfterClassify = \dl_heap();
+
+ BucketPointers bucket_pointers = new BucketPointers(
+ bucket_starts,
+ classifier.num_buckets(),
+ first_empty_position - begin,
+ storage.bucket_pointers
+ );
+
+ /*@ assume
+ @ \invariant_for(classifier) &&
+ @ Buffers.blockAligned(end - begin) == bucket_pointers.bucketStart(bucket_pointers.num_buckets);
+ @*/
+ /*@ assume
+ @ bucket_pointers.initialReadAreasCount(values, begin, end) &&
+ @ bucket_pointers.initialReadAreasBlockClassified(classifier, values, begin, end) &&
+ @ bucket_pointers.initialReadAreasCountBucketElements(classifier, values, begin, end);
+ @*/
+ /*@ assume (\forall int b; 0 <= b < classifier.num_buckets;
+ @ \at(classifier.countClassOfSliceEq(values, begin, first_empty_position, b), heapAfterClassify) ==
+ @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)
+ @ );
+ @*/
+
+ int[] overflow = storage.overflow;
+ Permute.permute(values, begin, end, classifier, bucket_pointers, storage.swap_1, storage.swap_2, overflow);
+
+ Cleanup.cleanup(values,
+ begin,
+ end,
+ buffers,
+ bucket_starts,
+ bucket_pointers,
+ classifier,
+ overflow);
+
+ //@ assume Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets);
+ //@ assume Partition.bucketCountsToTotalCount(values, begin, end, bucket_starts, classifier.num_buckets);
+ //@ assume (\forall int element; true; Functions.countElement(values, begin, end, element) == \old(Functions.countElement(values, begin, end, element)));
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/PartitionResult.java b/src/main/java-overflow/de/wiesler/PartitionResult.java
new file mode 100644
index 0000000..e450ff7
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/PartitionResult.java
@@ -0,0 +1,16 @@
+package de.wiesler;
+
+public final class PartitionResult {
+ public final int num_buckets;
+ public final boolean equal_buckets;
+
+ /*@ public normal_behaviour
+ @ ensures_free this.num_buckets == num_buckets && this.equal_buckets == equal_buckets;
+ @
+ @ assignable_free \nothing;
+ @*/
+ public PartitionResult(int num_buckets, boolean equal_buckets) {
+ this.num_buckets = num_buckets;
+ this.equal_buckets = equal_buckets;
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Permute.java b/src/main/java-overflow/de/wiesler/Permute.java
new file mode 100644
index 0000000..06e5c35
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Permute.java
@@ -0,0 +1,637 @@
+package de.wiesler;
+
+public final class Permute {
+ // Places the block in current_swap into target_bucket
+ // Might skip blocks in current_swap if they are occupied and already in the right bucket
+ //
+ // If the target is occupied it is copied to other_swap and current_swap is placed in its position => result >= 0 && result == new_target
+ // Else it is placed there or in the overflow buffer => result == -1
+ //
+ // Permutation between:
+ // * the occupied area of each bucket
+ // * the written area of each bucket
+ // * current_swap
+ // * overflow if written
+ // and
+ // * the new occupied area of each bucket
+ // * the new written area of each bucket
+ // * other_swap
+ // * overflow if written now or before
+ /*@ public normal_behaviour
+ @ requires_free \invariant_free_for(bucket_pointers);
+ @ requires \invariant_for(bucket_pointers);
+ @ requires_free \invariant_free_for(classifier);
+ @ requires \invariant_for(classifier);
+ @ requires_free classifier.num_buckets == bucket_pointers.num_buckets;
+ @ requires_free current_swap.length == Buffers.BUFFER_SIZE && other_swap.length == Buffers.BUFFER_SIZE && overflow.length == Buffers.BUFFER_SIZE;
+ @
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free 0 <= target_bucket < classifier.num_buckets;
+ @ requires_free (int) bucket_pointers.bucket_starts[classifier.num_buckets] == end - begin;
+ @ requires_free bucket_pointers.first_empty_position <= end - begin;
+ @
+ @ requires_free \disjoint(values[*], current_swap[*], other_swap[*], overflow[*], bucket_pointers.buffer[*], classifier.sorted_splitters[*], classifier.tree.tree[*]);
+ @
+ @ // The buffer is classified as target_bucket
+ @ requires_free classifier.isClassOfSlice(current_swap, 0, Buffers.BUFFER_SIZE, target_bucket);
+ @
+ @ requires_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ // Enough space for bucket elements
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0)
+ @ <= bucket_pointers.bucketSize(b) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @
+ @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ // Count of bucket elements is maintained
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) +
+ @ (b == \result ? Buffers.BUFFER_SIZE : 0) ==
+ @ (\old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier)) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0)) &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ // only decreases elements to read
+ @ bucket_pointers.toReadCountOfBucket(b) <= \old(bucket_pointers.toReadCountOfBucket(b))
+ @ );
+ @
+ @ ensures_free bucket_pointers.remainingWriteCountOfBucket(target_bucket) < \old(bucket_pointers.remainingWriteCountOfBucket(target_bucket));
+ @
+ @ ensures_free \result != -1 ==>
+ @ classifier.isClassOfSlice(other_swap, 0, Buffers.BUFFER_SIZE, \result) &&
+ @ 0 <= \result < classifier.num_buckets;
+ @
+ @ ensures_free (\forall int element; true;
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) +
+ @ (\result != -1 ? Functions.countElement(other_swap, 0, Buffers.BUFFER_SIZE, element) : 0) ==
+ @ \old(bucket_pointers.countElement(values, begin, end, overflow, element)) +
+ @ \old(Functions.countElement(current_swap, 0, Buffers.BUFFER_SIZE, element))
+ @ );
+ @
+ @ ensures_free \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier);
+ @ ensures \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_pointers.buffer[2 * target_bucket + 1];
+ @ assignable_free other_swap[*], overflow[*];
+ @*/
+ private static int swap_block(
+ int target_bucket,
+ int[] values,
+ int begin,
+ int end,
+ Classifier classifier,
+ BucketPointers bucket_pointers,
+ int[] current_swap,
+ int[] other_swap,
+ int[] overflow
+ ) {
+ //@ assume bucket_pointers.bucketStart(classifier.num_buckets) == Buffers.blockAligned(end - begin) && bucket_pointers.disjointBucketsLemma(target_bucket);
+
+ /*@ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) ==
+ @ \old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier))
+ @ );
+ @
+ @ // current_swap isn't changed, we need to maintain only countElement
+ @ loop_invariant_free (\forall int element; true;
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) ==
+ @ \old(bucket_pointers.countElement(values, begin, end, overflow, element))
+ @ );
+ @
+ @ loop_invariant_free bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, target_bucket);
+ @ // All written elements are classified as b
+ @ loop_invariant_free bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, target_bucket);
+ @ loop_invariant_free bucket_pointers.toReadCountOfBucket(target_bucket) <= \old(bucket_pointers.toReadCountOfBucket(target_bucket));
+ @ loop_invariant_free bucket_pointers.remainingWriteCountOfBucket(target_bucket) <= \old(bucket_pointers.remainingWriteCountOfBucket(target_bucket));
+ @
+ @ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ assignable_free bucket_pointers.buffer[2 * target_bucket + 1];
+ @
+ @ decreases bucket_pointers.remainingWriteCountOfBucket(target_bucket);
+ @*/
+ while (true) {
+ //@ ghost \dl_Heap heapAtLoopBodyBegin = \dl_heap();
+
+ //@ assume bucket_pointers.writtenCountOfBucket(target_bucket) + Buffers.BUFFER_SIZE <= bucket_pointers.bucketSize(target_bucket);
+ Increment increment = bucket_pointers.increment_write(target_bucket);
+ boolean occupied = increment.occupied;
+ int write = begin + increment.position;
+
+ /*@ assume
+ @ Buffers.isBlockAligned(increment.position) &&
+ @ begin <= write <= end &&
+ @ bucket_pointers.lastReadOf(target_bucket) == \at(bucket_pointers.lastReadOf(target_bucket), heapAtLoopBodyBegin);
+ @*/
+
+ /*@ assume
+ @ \old(bucket_pointers.disjointBucketsAreaLemma(values, begin, end, target_bucket, write, write + Buffers.BUFFER_SIZE)) &&
+ @ \at(bucket_pointers.disjointBucketsAreaLemma(values, begin, end, target_bucket, write, write + Buffers.BUFFER_SIZE), heapAtLoopBodyBegin);
+ @*/
+
+ if (occupied) {
+ // Follows from contract of lastReadOf and definition of toReadCount
+ // other case is start == read which contradicts start <= write < read
+ //@ assume \at(bucket_pointers.lastReadOf(target_bucket), heapAtLoopBodyBegin) - \at(bucket_pointers.nextWriteOf(target_bucket), heapAtLoopBodyBegin) >= Buffers.BUFFER_SIZE;
+ /*@ assume \at(bucket_pointers.elementsToReadCountClassEqSplitBucket(
+ @ classifier,
+ @ values,
+ @ begin,
+ @ begin + bucket_pointers.nextWriteOf(target_bucket) + Buffers.BUFFER_SIZE,
+ @ end,
+ @ target_bucket,
+ @ true
+ @ ), heapAtLoopBodyBegin) &&
+ @ \at(bucket_pointers.elementsToReadCountElementSplitBucket(
+ @ values,
+ @ begin,
+ @ begin + bucket_pointers.nextWriteOf(target_bucket) + Buffers.BUFFER_SIZE,
+ @ end,
+ @ target_bucket,
+ @ true
+ @ ), heapAtLoopBodyBegin) &&
+ @ Buffers.isBlockAlignedSub(bucket_pointers.lastReadOf(target_bucket), \at(bucket_pointers.nextWriteOf(target_bucket), heapAtLoopBodyBegin));
+ @*/
+ //@ assume write + Buffers.BUFFER_SIZE <= end && Buffers.isBlockAligned(bucket_pointers.lastReadOf(target_bucket) - \at(bucket_pointers.nextWriteOf(target_bucket), heapAtLoopBodyBegin));
+
+ //@ assume \dl_inInt(values[write]);
+ int new_target = classifier.classify(values[write]);
+ //@ assume classifier.isClassifiedBlocksRange(values, write, begin + bucket_pointers.lastReadOf(target_bucket));
+ //@ assume classifier.isClassifiedBlocksRangeSplit(values, write, write + Buffers.BUFFER_SIZE, begin + bucket_pointers.lastReadOf(target_bucket));
+ //@ assume classifier.classOfClassifiedBlockFromFirst(values, write, write + Buffers.BUFFER_SIZE, new_target);
+ //@ assume classifier.classOfClassifiedBlockFromFirst(values, write, write + Buffers.BUFFER_SIZE, new_target);
+ //@ assume \at(classifier.countClassOfSliceEqLemma(values, write, write + Buffers.BUFFER_SIZE, new_target), heapAtLoopBodyBegin);
+
+ //@ assume bucket_pointers.toReadCountOfBucket(target_bucket) <= \old(bucket_pointers.toReadCountOfBucket(target_bucket));
+ //@ assume bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, target_bucket);
+
+ // Todo disjointness of the ranges
+ // Write area is disjoint from all other read and write areas
+
+ // Swap only if this block is not already in the right bucket
+ if (new_target != target_bucket) {
+ //@ ghost \dl_Heap heapBeforeWrite = \dl_heap();
+
+ // Copy to other swap
+ Functions.copy_nonoverlapping(values, write, other_swap, 0, Buffers.BUFFER_SIZE);
+ //@ assume \invariant_for(classifier);
+ //@ assume classifier.isClassOfSliceCopy(values, write, other_swap, 0, Buffers.BUFFER_SIZE, new_target);
+
+ // Copy in current swap
+ Functions.copy_nonoverlapping(current_swap, 0, values, write, Buffers.BUFFER_SIZE);
+
+ /*@ assume
+ @ \invariant_for(classifier) &&
+ @ \invariant_for(bucket_pointers) &&
+ @ bucket_pointers.lastReadOf(target_bucket) == \at(bucket_pointers.lastReadOf(target_bucket), heapBeforeWrite) &&
+ @ bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite);
+ @*/
+
+ //@ assume classifier.isClassOfSliceCopy(current_swap, 0, values, write, Buffers.BUFFER_SIZE, target_bucket);
+
+ /*@ assume
+ @ classifier.isClassOfSliceSplit(
+ @ values,
+ @ begin + bucket_pointers.bucketStart(target_bucket),
+ @ write,
+ @ write + Buffers.BUFFER_SIZE,
+ @ target_bucket
+ @ ) &&
+ @ bucket_pointers.writtenElementsCountElementSplitBucket(values, begin, end, overflow, target_bucket);
+ @*/
+
+ /*@ assume (\forall int b; 0 <= b < classifier.num_buckets;
+ @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) +
+ @ (b == new_target ? Buffers.BUFFER_SIZE : 0) ==
+ @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBodyBegin) &&
+ @ bucket_pointers.writtenCountOfBucket(b) ==
+ @ \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBodyBegin) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0)
+ @ );
+ @*/
+
+ /*@ assume (\forall int element; true;
+ @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) +
+ @ Functions.countElement(other_swap, 0, Buffers.BUFFER_SIZE, element) ==
+ @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBodyBegin) &&
+ @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) ==
+ @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBodyBegin) +
+ @ \old(Functions.countElement(current_swap, 0, Buffers.BUFFER_SIZE, element))
+ @ );
+ @*/
+ return new_target;
+ }
+
+ /*@ assume
+ @ classifier.isClassOfSliceSplit(
+ @ values,
+ @ begin + bucket_pointers.bucketStart(target_bucket),
+ @ write,
+ @ write + Buffers.BUFFER_SIZE,
+ @ target_bucket
+ @ ) &&
+ @ bucket_pointers.writtenElementsCountElementSplitBucket(values, begin, end, overflow, target_bucket);
+ @*/
+
+ /*@ assume (\forall int b; 0 <= b < classifier.num_buckets;
+ @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) ==
+ @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBodyBegin) &&
+ @ bucket_pointers.writtenCountOfBucket(b) == \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBodyBegin) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0)
+ @ );
+ @*/
+
+ /*@ assume (\forall int element; true;
+ @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) +
+ @ Functions.countElement(values, write, write + Buffers.BUFFER_SIZE, element) ==
+ @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBodyBegin) &&
+ @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) ==
+ @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBodyBegin) +
+ @ Functions.countElement(values, write, write + Buffers.BUFFER_SIZE, element)
+ @ );
+ @*/
+ {}
+ } else {
+ // Destination block is empty
+ // Read area is empty
+ //@ ghost \dl_Heap heapBeforeWrite = \dl_heap();
+
+ /*@ normal_behaviour
+ @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @ ensures_free (\forall int element; true;
+ @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) ==
+ @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBodyBegin) +
+ @ \old(Functions.countElement(current_swap, 0, Buffers.BUFFER_SIZE, element))
+ @ );
+ @ ensures_free \invariant_free_for(classifier) && \invariant_free_for(bucket_pointers);
+ @ ensures \invariant_for(classifier) && \invariant_for(bucket_pointers);
+ @ assignable_free values[write..write + (write + Buffers.BUFFER_SIZE <= end ? Buffers.BUFFER_SIZE - 1 : 0)], overflow[*];
+ @*/
+ {
+ if (end < write + Buffers.BUFFER_SIZE) {
+ //@ assume write + Buffers.BUFFER_SIZE == begin + Buffers.blockAligned(end - begin);
+ // Out-of-bounds; write to overflow buffer instead
+ Functions.copy_nonoverlapping(current_swap, 0, overflow, 0, Buffers.BUFFER_SIZE);
+ //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers);
+ //@ assume bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite);
+ // writtenCount >= 256 follows from increment_write
+ //@ assume classifier.isClassOfSliceCopy(current_swap, 0, overflow, 0, Buffers.BUFFER_SIZE, target_bucket);
+ //@ assume bucket_pointers.overflowBucketUniqueLemma(begin, end, target_bucket);
+ // TODO show that this can't be happening for all other buckets (by disjointness)
+ {}
+ } else {
+ // Write block
+ Functions.copy_nonoverlapping(current_swap, 0, values, write, Buffers.BUFFER_SIZE);
+ //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers);
+ //@ assume bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite);
+ //@ assume classifier.isClassOfSliceCopy(current_swap, 0, values, write, Buffers.BUFFER_SIZE, target_bucket);
+ /*@ assume classifier.isClassOfSliceSplit(
+ @ values,
+ @ begin + bucket_pointers.bucketStart(target_bucket),
+ @ write,
+ @ write + Buffers.BUFFER_SIZE,
+ @ target_bucket
+ @ );
+ @*/
+ }
+
+ //@ assume bucket_pointers.writtenElementsCountElementSplitBucket(values, begin, end, overflow, target_bucket);
+ }
+ /*@ assume
+ @ bucket_pointers.lastReadOf(target_bucket) == \at(bucket_pointers.lastReadOf(target_bucket), heapBeforeWrite) &&
+ @ bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite);
+ @*/
+
+ /*@ assume (\forall int b; 0 <= b < classifier.num_buckets;
+ @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) ==
+ @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBodyBegin) &&
+ @ bucket_pointers.writtenCountOfBucket(b) == \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBodyBegin) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0)
+ @ );
+ @*/
+
+ /*@ assume (\forall int element; true;
+ @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) ==
+ @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBodyBegin)
+ @ );
+ @*/
+
+ return -1;
+ }
+ }
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free \invariant_free_for(bucket_pointers);
+ @ requires \invariant_for(bucket_pointers);
+ @ requires_free \invariant_free_for(classifier);
+ @ requires \invariant_for(classifier);
+ @ requires_free classifier.num_buckets == bucket_pointers.num_buckets;
+ @ requires_free swap_1.length == Buffers.BUFFER_SIZE && swap_2.length == Buffers.BUFFER_SIZE && overflow.length == Buffers.BUFFER_SIZE;
+ @ requires_free \disjoint(values[*], swap_1[*], swap_2[*], overflow[*], bucket_pointers.buffer[*], classifier.sorted_splitters[*], classifier.tree.tree[*]);
+ @
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free 0 <= target_bucket < classifier.num_buckets;
+ @ requires_free (int) bucket_pointers.bucket_starts[classifier.num_buckets] == end - begin;
+ @ requires_free bucket_pointers.first_empty_position <= end - begin;
+ @
+ @ // swap_1 is classified as target_bucket
+ @ requires_free classifier.isClassOfSlice(swap_1, 0, Buffers.BUFFER_SIZE, target_bucket);
+ @ requires_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0)
+ @ <= bucket_pointers.bucketSize(b) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @
+ @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ (countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) ==
+ @ (\old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier)) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0))) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @ // only decreases elements to read
+ @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets; bucket_pointers.toReadCountOfBucket(b) <= \old(bucket_pointers.toReadCountOfBucket(b)));
+ @
+ @ ensures_free (\forall int element; true;
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) ==
+ @ \old(
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) +
+ @ Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element))
+ @ );
+ @
+ @ ensures_free \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier);
+ @ ensures \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_pointers.buffer[*];
+ @ assignable_free swap_1[*], swap_2[*], overflow[*];
+ @*/
+ private static void place_block(
+ int target_bucket,
+ final int[] values,
+ final int begin,
+ final int end,
+ final Classifier classifier,
+ final BucketPointers bucket_pointers,
+ final int[] swap_1,
+ final int[] swap_2,
+ final int[] overflow
+ ) {
+ //@ ghost int first_target_bucket = target_bucket;
+ boolean first_is_current_swap = true;
+
+ /*@ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ // The old countBucketElementsEverywhere is missing the BUFFER_SIZE elements of first_target_bucket that were in swap_1
+ @ // The current countBucketElementsEverywhere is missing the BUFFER_SIZE elements of target_bucket that are in swap_1
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) +
+ @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) ==
+ @ (\old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier)) +
+ @ (b == first_target_bucket ? Buffers.BUFFER_SIZE : 0)) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @ loop_invariant_free 0 <= target_bucket < classifier.num_buckets;
+ @ // The buffer is classified as target_bucket
+ @ loop_invariant_free classifier.isClassOfSlice(first_is_current_swap ? swap_1 : swap_2, 0, Buffers.BUFFER_SIZE, target_bucket);
+ @ // only decreases elements to read
+ @ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets; bucket_pointers.toReadCountOfBucket(b) <= \old(bucket_pointers.toReadCountOfBucket(b)));
+ @ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ loop_invariant_free (\forall int element; true;
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) +
+ @ Functions.countElement(first_is_current_swap ? swap_1 : swap_2, 0, Buffers.BUFFER_SIZE, element) ==
+ @ \old(bucket_pointers.countElement(values, begin, end, overflow, element)) +
+ @ \old(Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element))
+ @ );
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_pointers.buffer[*];
+ @ assignable_free swap_1[*], swap_2[*], overflow[*];
+ @
+ @ decreases (\sum int b; 0 <= b < classifier.num_buckets; bucket_pointers.remainingWriteCountOfBucket(b));
+ @*/
+ while (true) {
+ int new_target = swap_block(
+ target_bucket,
+ values,
+ begin,
+ end,
+ classifier,
+ bucket_pointers,
+ first_is_current_swap ? swap_1 : swap_2,
+ first_is_current_swap ? swap_2 : swap_1,
+ overflow
+ );
+ if (new_target == -1) {
+ break;
+ }
+ first_is_current_swap = !first_is_current_swap;
+ target_bucket = new_target;
+ }
+ }
+
+ /*@ model_behaviour
+ @ requires_free 0 <= bucket < bucket_pointers.num_buckets;
+ @ requires_free bucket_pointers.num_buckets == classifier.num_buckets;
+ @ static model int countBucketElementsEverywhere(int[] values, int begin, int end, int bucket, BucketPointers bucket_pointers, Classifier classifier) {
+ @ return bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, bucket) + bucket_pointers.writtenCountOfBucket(bucket);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free \invariant_free_for(bucket_pointers);
+ @ requires \invariant_for(bucket_pointers);
+ @ requires_free \invariant_free_for(classifier);
+ @ requires \invariant_for(classifier);
+ @ requires_free classifier.num_buckets == bucket_pointers.num_buckets;
+ @ requires_free swap_1.length == Buffers.BUFFER_SIZE && swap_2.length == Buffers.BUFFER_SIZE && overflow.length == Buffers.BUFFER_SIZE;
+ @ requires_free \disjoint(values[*], swap_1[*], swap_2[*], overflow[*], classifier.sorted_splitters[*], classifier.tree.tree[*], bucket_pointers.buffer[*]);
+ @
+ @ // requires (int) bucket_pointers.aligned_bucket_starts[0] == 0 && (int) bucket_pointers.aligned_bucket_starts[classifier.num_buckets] == Buffers.blockAligned(end - begin);
+ @
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free (int) bucket_pointers.bucket_starts[classifier.num_buckets] == end - begin;
+ @ requires_free bucket_pointers.first_empty_position <= end - begin;
+ @ requires_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) <= bucket_pointers.bucketSize(b) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ bucket_pointers.writtenCountOfBucket(b) == 0
+ @ );
+ @
+ @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ // Blocks are maintained
+ @ bucket_pointers.writtenCountOfBucket(b) ==
+ @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)) &&
+ @ // All elements are read
+ @ bucket_pointers.toReadCountOfBucket(b) == 0 &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @
+ @ ensures_free (\forall int element; true;
+ @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) ==
+ @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element))
+ @ );
+ @
+ @ ensures_free \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier);
+ @ ensures \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_pointers.buffer[*];
+ @ assignable_free swap_1[*], swap_2[*], overflow[*];
+ @*/
+ public static void permute(
+ final int[] values,
+ final int begin,
+ final int end,
+ final Classifier classifier,
+ final BucketPointers bucket_pointers,
+ final int[] swap_1,
+ final int[] swap_2,
+ final int[] overflow
+ ) {
+ //@ assume bucket_pointers.bucketStart(classifier.num_buckets) == Buffers.blockAligned(end - begin);
+ final int num_buckets = classifier.num_buckets();
+
+ /*@ loop_invariant_free 0 <= bucket <= num_buckets;
+ @ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ loop_invariant_free (\forall int b; 0 <= b < bucket; bucket_pointers.toReadCountOfBucket(b) == 0);
+ @ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ // Blocks are maintained
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) ==
+ @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @ loop_invariant_free (\forall int element; true;
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) ==
+ @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element))
+ @ );
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_pointers.buffer[*];
+ @ assignable_free swap_1[*], swap_2[*], overflow[*];
+ @
+ @ decreases num_buckets - bucket;
+ @*/
+ for (int bucket = 0; bucket < num_buckets; ++bucket) {
+ /*@ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier);
+ @
+ @ loop_invariant_free (\forall int b; 0 <= b < bucket; bucket_pointers.toReadCountOfBucket(b) == 0);
+ @ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets;
+ @ // Blocks are maintained
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) ==
+ @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)) &&
+ @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) &&
+ @ // All written elements are classified as b
+ @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b)
+ @ );
+ @ loop_invariant_free (\forall int element; true;
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) ==
+ @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element))
+ @ );
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free bucket_pointers.buffer[*];
+ @ assignable_free swap_1[*], swap_2[*], overflow[*];
+ @
+ @ decreases bucket_pointers.toReadCountOfBucket(bucket);
+ @*/
+ while (bucket_pointers.hasRemainingRead(bucket)) {
+ //@ ghost \dl_Heap heapAtLoopBegin = \dl_heap();
+
+ /*@ assume
+ @ bucket_pointers.elementsToReadCountClassEqSplitBucket(classifier, values, begin, begin + bucket_pointers.lastReadOf(bucket) - Buffers.BUFFER_SIZE, end, bucket, false) &&
+ @ bucket_pointers.elementsToReadCountElementSplitBucket(values, begin, begin + bucket_pointers.lastReadOf(bucket) - Buffers.BUFFER_SIZE, end, bucket, false);
+ @*/
+ int read = bucket_pointers.decrement_read(bucket);
+
+ //@ assume begin + read + Buffers.BUFFER_SIZE <= end;
+
+ Functions.copy_nonoverlapping(values, begin + read, swap_1, 0, Buffers.BUFFER_SIZE);
+ //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers);
+ /*@ assume bucket_pointers.lastReadOf(bucket) == read &&
+ @ bucket_pointers.nextWriteOf(bucket) == \at(bucket_pointers.nextWriteOf(bucket), heapAtLoopBegin);
+ @*/
+ /*@ assume bucket_pointers.nextWriteOf(bucket) <= read &&
+ @ bucket_pointers.toReadCountOfBucket(bucket) < \at(bucket_pointers.toReadCountOfBucket(bucket), heapAtLoopBegin);
+ @*/
+ //@ assume Buffers.isBlockAlignedSub(read, bucket_pointers.nextWriteOf(bucket));
+ //@ assume Buffers.isBlockAligned(read - bucket_pointers.nextWriteOf(bucket));
+ //@ assume Buffers.isBlockAlignedAdd(read - bucket_pointers.nextWriteOf(bucket), Buffers.BUFFER_SIZE);
+ //@ assume Buffers.isBlockAligned(read + Buffers.BUFFER_SIZE - bucket_pointers.nextWriteOf(bucket));
+
+ //@ assume classifier.isClassifiedBlocksRange(values, begin + bucket_pointers.nextWriteOf(bucket), begin + read + Buffers.BUFFER_SIZE);
+ //@ assume classifier.isClassifiedBlocksRangeSplit(values, begin + bucket_pointers.nextWriteOf(bucket), begin + read, begin + read + Buffers.BUFFER_SIZE);
+ //@ assume classifier.isClassifiedBlock(values, begin + read, begin + read + Buffers.BUFFER_SIZE);
+ int first_value = swap_1[0];
+ //@ assume \dl_inInt(first_value);
+ int target_bucket = classifier.classify(first_value);
+ //@ assume classifier.classOfClassifiedBlockFromFirst(values, begin + read, begin + read + Buffers.BUFFER_SIZE, target_bucket);
+ /*@ assume
+ @ classifier.isClassOfSlice(values, begin + read, begin + read + Buffers.BUFFER_SIZE, target_bucket) &&
+ @ classifier.isClassOfSliceCopy(values, begin + read, swap_1, 0, Buffers.BUFFER_SIZE, target_bucket);
+ @*/
+ //@ assume classifier.countClassOfSliceEqLemma(values, begin + read, begin + read + Buffers.BUFFER_SIZE, target_bucket);
+
+ /*@ assume (\forall int b; 0 <= b < classifier.num_buckets;
+ @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) + (b == target_bucket ? Buffers.BUFFER_SIZE : 0) ==
+ @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBegin) &&
+ @ bucket_pointers.writtenCountOfBucket(b) == \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBegin)
+ @ );
+ @*/
+
+ /*@ assume (\forall int b; 0 <= b < classifier.num_buckets;
+ @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) + (b == target_bucket ? Buffers.BUFFER_SIZE : 0) ==
+ @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b))
+ @ );
+ @*/
+
+ /*@ assume (\forall int element; true;
+ @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) +
+ @ Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element) ==
+ @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBegin) &&
+ @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) ==
+ @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBegin)
+ @ );
+ @*/
+ /*@ assume (\forall int element; true;
+ @ bucket_pointers.countElement(values, begin, end, overflow, element) +
+ @ Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element) ==
+ @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element))
+ @ );
+ @*/
+
+ place_block(
+ target_bucket,
+ values,
+ begin,
+ end,
+ classifier,
+ bucket_pointers,
+ swap_1,
+ swap_2,
+ overflow
+ );
+ }
+ }
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/SampleParameters.java b/src/main/java-overflow/de/wiesler/SampleParameters.java
new file mode 100644
index 0000000..e36e7af
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/SampleParameters.java
@@ -0,0 +1,90 @@
+package de.wiesler;
+
+public final class SampleParameters {
+ public final int num_samples;
+ public final int num_buckets;
+ public final int step;
+
+ /*@ public normal_behaviour
+ @ requires_free n >= Constants.BASE_CASE_SIZE;
+ @
+ @ assignable_free \strictly_nothing;
+ @*/
+ public static int log_buckets(int n) {
+ if (n <= Constants.SINGLE_LEVEL_THRESHOLD) {
+ // Only one more level until the base case, reduce the number of buckets
+ return Functions.max(1, Constants.log2(n / Constants.BASE_CASE_SIZE));
+ } else if (n <= Constants.TWO_LEVEL_THRESHOLD) {
+ // Only two more levels until we reach the base case, split the buckets
+ // evenly
+ return Functions.max(1, (Constants.log2(n / Constants.BASE_CASE_SIZE) + 1) / 2);
+ } else {
+ // Use the maximum number of buckets
+ return Constants.LOG_MAX_BUCKETS;
+ }
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free n >= Constants.BASE_CASE_SIZE;
+ @
+ @ assignable_free \strictly_nothing;
+ @*/
+ public static int oversampling_factor(int n) {
+ return Constants.log2(n) / 5;
+ }
+
+ /*@ public model_behaviour
+ @ requires true;
+ @ accessible \nothing;
+ @ model boolean isValidForLen(int n) {
+ @ return
+ @ 3 <= this.num_samples <= n / 2 &&
+ @ // This states the same as the previous line but is somehow hard to deduce
+ @ this.num_samples < n &&
+ @ 1 <= this.step &&
+ @ 2 <= this.num_buckets <= 1 << Constants.LOG_MAX_BUCKETS &&
+ @ this.num_buckets % 2 == 0 &&
+ @ // there are enough samples to perform num_buckets selections with the given step size
+ @ this.step * this.num_buckets - 1 <= this.num_samples;
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @ accessible \nothing;
+ @ model boolean isInInt() {
+ @ return
+ @ \dl_inInt(this.num_samples) &&
+ @ \dl_inInt(this.step) &&
+ @ \dl_inInt(this.num_buckets);
+ @ }
+ @*/
+
+ private static boolean isValidForLen(SampleParameters p, int n) {
+ return
+ 3 <= p.num_samples && p.num_samples <= n / 2 &&
+ p.num_samples < n &&
+ 1 <= p.step &&
+ 2 <= p.num_buckets && p.num_buckets <= 1 << Constants.LOG_MAX_BUCKETS &&
+ p.num_buckets % 2 == 0 &&
+ p.step * p.num_buckets - 1 <= p.num_samples;
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free n >= Constants.ACTUAL_BASE_CASE_SIZE;
+ @ ensures_free this.isValidForLen(n) && this.isInInt();
+ @ assignable_free \nothing;
+ @*/
+ public SampleParameters(int n) {
+ int log_buckets = log_buckets(n);
+ this.num_buckets = 1 << log_buckets;
+ this.step = Functions.max(1, oversampling_factor(n));
+ this.num_samples = step * num_buckets - 1;
+ }
+
+ public static void testContracts(int i) {
+ if (i >= Constants.ACTUAL_BASE_CASE_SIZE && !isValidForLen(new SampleParameters(i), i)) {
+ throw new Error("SampleParameters contract fails for " + i);
+ }
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Sorter.java b/src/main/java-overflow/de/wiesler/Sorter.java
new file mode 100644
index 0000000..3c0b84d
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Sorter.java
@@ -0,0 +1,646 @@
+package de.wiesler;
+
+public final class Sorter {
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free Constants.ACTUAL_BASE_CASE_SIZE < end - begin <= Buffers.MAX_LEN;
+ @ requires_free \invariant_free_for(storage);
+ @ requires_free \disjoint(storage.allArrays, values[*]);
+ @ requires \invariant_for(storage);
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free \result.isValidForLen(end - begin);
+ @ ensures_free Functions.isSortedSlice(values, begin, begin + \result.num_samples);
+ @ ensures_free \invariant_free_for(storage);
+ @ ensures_free \fresh(\result);
+ @ ensures \invariant_for(storage);
+ @ ensures \result.isInInt();
+ @
+ @ // Calls sort directly => +0
+ @ measured_by end - begin, 0;
+ @
+ @ assignable_free storage.allArrays;
+ @ assignable_free values[begin..end - 1];
+ @*/
+ private static SampleParameters sample(int[] values, int begin, int end, Storage storage) {
+ SampleParameters parameters = new SampleParameters(end - begin);
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ measured_by end - begin, 0;
+ @ assignable_free \strictly_nothing;
+ @*/
+ {;;}
+
+ Functions.select_n(values, begin, end, parameters.num_samples);
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ measured_by end - begin, 0;
+ @ assignable_free \strictly_nothing;
+ @*/
+ {;;}
+ //@ ghost \seq before_sort = \dl_seq_def_workaround(begin, end, values);
+ sort(values, begin, begin + parameters.num_samples, storage);
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), before_sort);
+ @ measured_by end - begin, 0;
+ @ assignable_free \strictly_nothing;
+ @*/
+ {;;}
+
+ return parameters;
+ }
+
+ /*@ public model_behaviour
+ @ requires true;
+ @
+ @ static model boolean isBucketPartitioned(int[] values, int begin, int end, int bucket_begin, int bucket_end) {
+ @ return // for all bucket elements
+ @ (\forall
+ @ int i;
+ @ begin + bucket_begin <= i < begin + bucket_end;
+ @ // all subsequent elements are bigger
+ @ (\forall int j; begin + bucket_end <= j < end; values[i] < values[j])
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets];
+ @
+ @ // accessible values[begin..end - 1], bucket_starts[0..num_buckets + 1];
+ @
+ @ static model boolean allBucketsPartitioned(int[] values, int begin, int end, int[] bucket_starts, int num_buckets) {
+ @ return (\forall int b; 0 <= b < num_buckets; Sorter.isBucketPartitioned(values, begin, end, bucket_starts[b], bucket_starts[b + 1]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires \invariant_for(classifier);
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires nonEmptyBucketsLemma(classifier, values, begin, end, bucket_starts);
+ @ requires classifier.classOfTrans();
+ @ requires Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets) && end - begin == bucket_starts[classifier.num_buckets];
+ @ requires Partition.allBucketsClassified(values, begin, end, classifier, bucket_starts);
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean allBucketsPartitionedLemma(Classifier classifier, int[] values, int begin, int end, int[] bucket_starts) {
+ @ return allBucketsPartitioned(values, begin, end, bucket_starts, classifier.num_buckets);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires 0 <= lower && lower <= upper && upper <= num_buckets;
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets];
+ @
+ @ // accessible values[begin..end - 1], bucket_starts[0..num_buckets + 1];
+ @
+ @ static model boolean allBucketsInRangeSorted(int[] values, int begin, int end, int[] bucket_starts, int num_buckets, int lower, int upper) {
+ @ return (\forall int b; lower <= b < upper; Functions.isSortedSlice(values, begin + bucket_starts[b], begin + bucket_starts[b + 1]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ accessible values[begin..end - 1];
+ @
+ @ static model boolean isEqualityBucket(int[] values, int begin, int end) {
+ @ return
+ @ (\forall int i; begin <= i < end - 1; values[i] == values[i + 1]);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires 0 <= lower && lower <= upper && upper <= num_buckets;
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets];
+ @
+ @ // accessible values[begin..end - 1], bucket_starts[lower..upper];
+ @
+ @ static model boolean equalityBucketsInRange(int[] values, int begin, int end, int[] bucket_starts, int num_buckets, int lower, int upper) {
+ @ return
+ @ (\forall int b;
+ @ lower <= b < upper && b % 2 == 1;
+ @ Sorter.isEqualityBucket(values, begin + bucket_starts[b], begin + bucket_starts[b + 1]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires \invariant_for(classifier);
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets) && end - begin == bucket_starts[classifier.num_buckets];
+ @ requires Partition.allBucketsClassified(values, begin, end, classifier, bucket_starts);
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean equalityBucketsLemma(Classifier classifier, int[] values, int begin, int end, int[] bucket_starts) {
+ @ return classifier.equal_buckets ==>
+ @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, classifier.num_buckets, 1, classifier.num_buckets - 1);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires true;
+ @ static model boolean smallBucketIsSorted(int[] values, int begin, int end, int bucket_begin, int bucket_end) {
+ @ return true;
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires 0 <= lower <= upper <= num_buckets;
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets];
+ @ // accessible values[begin..end - 1], bucket_starts[lower..upper];
+ @
+ @ static model boolean smallBucketsInRangeSorted(int[] values, int begin, int end, int[] bucket_starts, int num_buckets, int lower, int upper) {
+ @ return (\forall int b; lower <= b < upper; Sorter.smallBucketIsSorted(values, begin, end, bucket_starts[b], bucket_starts[b + 1]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && len == bucket_starts[num_buckets];
+ @
+ @ accessible bucket_starts[0..num_buckets];
+ @
+ @ static model boolean notAllValuesInOneBucket(int[] bucket_starts, int num_buckets, int len) {
+ @ return (\forall int b; 0 <= b < num_buckets; bucket_starts[b + 1] - bucket_starts[b] < len);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets);
+ @ requires bucket_starts[num_buckets] == end - begin;
+ @
+ @ // Buckets are partitioned
+ @ requires Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets);
+ @
+ @ // Buckets are sorted
+ @ requires Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, num_buckets);
+ @
+ @ requires bucketIndexFromOffset(bucket_starts, num_buckets, end - begin);
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean sortednessFromPartitionSorted(int[] values, int begin, int end, int[] bucket_starts, int num_buckets) {
+ @ return Functions.isSortedSlice(values, begin, end);
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets);
+ @ requires bucket_starts[num_buckets] == len;
+ @
+ @ ensures_free \result;
+ @ // ( nv >= 0
+ @ // -> nv <= num_buckets & i_0 < bucket_starts[nv]
+ @ // -> \exists int b; (0 <= b & b < nv & bucket_starts[b] <= i_0 & i_0 < bucket_starts[b + 1]))
+ @
+ @ static model boolean bucketIndexFromOffset(int[] bucket_starts, int num_buckets, int len) {
+ @ return (\forall int i; 0 <= i < len; (\exists int b; 0 <= b < num_buckets; bucket_starts[b] <= i < bucket_starts[b + 1]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires \invariant_for(classifier);
+ @ requires Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets) && end - begin == bucket_starts[classifier.num_buckets];
+ @ requires bucketIndexFromOffset(bucket_starts, classifier.num_buckets, end - begin);
+ @ requires Partition.allBucketsClassified(values, begin, end, classifier, bucket_starts);
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean nonEmptyBucketsLemma(Classifier classifier, int[] values, int begin, int end, int[] bucket_starts) {
+ @ return (\forall int i; begin <= i < end;
+ @ bucket_starts[classifier.classOf(values[i])] <= i - begin < bucket_starts[classifier.classOf(values[i]) + 1]
+ @ );
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && len == bucket_starts[num_buckets];
+ @ requires (\forall int b; 0 <= b < num_buckets;
+ @ (\exists int c; 0 <= c < num_buckets && b != c; bucket_starts[c] < bucket_starts[c + 1])
+ @ );
+ @
+ @ ensures_free \result;
+ @
+ @ static model boolean notAllValuesInOneBucketLemma(int[] bucket_starts, int num_buckets, int len) {
+ @ return notAllValuesInOneBucket(bucket_starts, num_buckets, len);
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free bucket_starts.length == Constants.MAX_BUCKETS + 1;
+ @ requires_free (\forall int b; 0 <= b < bucket_starts.length; bucket_starts[b] == 0);
+ @ requires_free end - begin > Constants.ACTUAL_BASE_CASE_SIZE;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free \invariant_free_for(storage);
+ @ requires \invariant_for(storage);
+ @
+ @ requires_free \disjoint(values[*], bucket_starts[*], storage.allArrays);
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free \result != null ==>
+ @ \result.num_buckets % 2 == 0 &&
+ @ Functions.isValidBucketStarts(bucket_starts, \result.num_buckets) &&
+ @ bucket_starts[\result.num_buckets] == end - begin &&
+ @ // Buckets are partitioned
+ @ Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, \result.num_buckets) &&
+ @ // Small buckets are sorted
+ @ Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, \result.num_buckets, 0, \result.num_buckets) &&
+ @ // Equality buckets at odd indices except the last bucket
+ @ (\result.equal_buckets ==> Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, \result.num_buckets, 1, \result.num_buckets - 1)) &&
+ @ Sorter.notAllValuesInOneBucket(bucket_starts, \result.num_buckets, end - begin);
+ @ ensures_free \invariant_free_for(storage);
+ @ ensures \invariant_for(storage);
+ @
+ @ // Calls sample which has +0 => +1
+ @ measured_by end - begin, 1;
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free storage.allArrays;
+ @ assignable_free bucket_starts[*];
+ @*/
+ private static /*@ nullable */ PartitionResult partition(
+ int[] values,
+ int begin,
+ int end,
+ int[] bucket_starts,
+ Storage storage
+ ) {
+ /*@ normal_behaviour
+ @ ensures_free \disjoint(
+ @ values[*],
+ @ bucket_starts[*],
+ @ storage.tree[*],
+ @ storage.splitters[*],
+ @ storage.bucket_pointers[*],
+ @ storage.buffers_buffer[*],
+ @ storage.buffers_indices[*],
+ @ storage.swap_1[*],
+ @ storage.swap_2[*],
+ @ storage.overflow[*]
+ @ );
+ @
+ @ assignable_free \strictly_nothing;
+ @
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+
+ //@ ghost \seq oldValues = \dl_seq_def_workaround(begin, end, values);
+
+ final SampleParameters sample = sample(values, begin, end, storage);
+ final int num_samples = sample.num_samples;
+ final int num_buckets = sample.num_buckets;
+ final int step = sample.step;
+ final int[] splitters = storage.splitters;
+
+ //@ ghost \seq before_copy_unique = \dl_seq_def_workaround(begin, end, values);
+
+ // Select num_buckets - 1 splitters
+ final int num_splitters = Functions.copy_unique(values, begin, begin + num_samples, num_buckets - 1, step, splitters);
+
+ //@ ghost \seq before_from_sorted_samples = \dl_seq_def_workaround(begin, end, values);
+ /*@ normal_behaviour
+ @ ensures_free before_from_sorted_samples == before_copy_unique;
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(before_from_sorted_samples, oldValues);
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+
+ if (num_splitters <= 1) {
+ return null;
+ }
+
+ // >= 2 unique splitters, therefore >= 3 buckets and >= 2 nonempty buckets
+ final Classifier classifier = Classifier.from_sorted_samples(splitters, storage.tree, num_splitters, num_buckets);
+
+ // Create this first, classifier is immutable and this removes heap mutations after partition
+ final PartitionResult r = new PartitionResult(classifier.num_buckets(), classifier.equal_buckets());
+
+ //@ ghost \seq valuesBeforePartition = \dl_seq_def_workaround(begin, end, values);
+ /*@ normal_behaviour
+ @ ensures_free valuesBeforePartition == before_from_sorted_samples;
+ @ ensures_free \invariant_free_for(classifier);
+ @ ensures \invariant_for(classifier);
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(valuesBeforePartition, oldValues);
+ @ ensures_free (\exists int i; begin <= i < end; (\exists int j; begin <= j < end; classifier.classOf(values[i]) != classifier.classOf(values[j])));
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+ Partition.partition(values, begin, end, bucket_starts, classifier, storage);
+
+ //@ ghost \seq valuesAfterPartition = \dl_seq_def_workaround(begin, end, values);
+ /*@ normal_behaviour
+ @ ensures_free bucketIndexFromOffset(bucket_starts, classifier.num_buckets, end - begin);
+ @ ensures_free (\exists int i; 0 <= i < valuesAfterPartition.length;
+ @ (\exists int j; 0 <= j < valuesAfterPartition.length;
+ @ classifier.classOf((int) valuesAfterPartition[i]) != classifier.classOf((int) valuesAfterPartition[j]))
+ @ );
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+
+ /*@ normal_behaviour
+ @ ensures_free (\exists int i; begin <= i < end; (\exists int j; begin <= j < end; classifier.classOf(values[i]) != classifier.classOf(values[j])));
+ @ ensures_free nonEmptyBucketsLemma(classifier, values, begin, end, bucket_starts);
+ @ ensures_free equalityBucketsLemma(classifier, values, begin, end, bucket_starts);
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+
+ /*@ normal_behaviour
+ @ ensures_free notAllValuesInOneBucketLemma(bucket_starts, classifier.num_buckets, end - begin);
+ @ ensures_free allBucketsPartitionedLemma(classifier, values, begin, end, bucket_starts);
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+
+ // assignable: apply eq of allArrays
+
+ return r;
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free 0 <= bucket && bucket < num_buckets;
+ @ requires_free Functions.isValidBucketStarts(bucket_starts, num_buckets) && bucket_starts[num_buckets] == end - begin;
+ @ requires_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, bucket);
+ @
+ @ // Stays partitioned
+ @ requires_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets);
+ @ // All subsequent buckets keep the sorting property
+ @ requires_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, bucket, num_buckets);
+ @ // Equality buckets
+ @ requires_free equal_buckets ==>
+ @ (bucket % 2 == 0 || bucket == num_buckets - 1) &&
+ @ // starting at the next bucket, ending before the last bucket
+ @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets - 1);
+ @ requires_free Sorter.notAllValuesInOneBucket(bucket_starts, num_buckets, end - begin);
+ @ requires_free \disjoint(storage.allArrays, values[*], bucket_starts[*]);
+ @ requires_free \invariant_free_for(storage);
+ @ requires \invariant_for(storage);
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @
+ @ // Previous stay sorted, current is now sorted
+ @ ensures_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, bucket + 1);
+ @ // Stays partitioned
+ @ ensures_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets);
+ @ // All subsequent buckets keep the sorting property
+ @ ensures_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets);
+ @ // Equality buckets at odd indices except the last bucket
+ @ ensures_free equal_buckets ==>
+ @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets - 1);
+ @ ensures_free \invariant_free_for(storage);
+ @ ensures \invariant_for(storage);
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free storage.allArrays;
+ @
+ @ measured_by end - begin, 1;
+ @*/
+ private static void sample_sort_recurse_on(int[] values, int begin, int end, Storage storage, int[] bucket_starts, int num_buckets, boolean equal_buckets, int bucket) {
+ int inner_begin = begin + bucket_starts[bucket];
+ int inner_end = begin + bucket_starts[bucket + 1];
+
+ /*@ normal_behaviour
+ @ ensures_free Functions.bucketStartsOrdering(bucket_starts, num_buckets, bucket);
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+ /*@ normal_behaviour
+ @ ensures_free 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets] &&
+ @ (\forall int b; 0 <= b < num_buckets && b != bucket;
+ @ (b < bucket ==> 0 <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[bucket]) &&
+ @ (b > bucket ==> bucket_starts[bucket + 1] <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[num_buckets]));
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin + bucket_starts[bucket], inner_end, values), \old(\dl_seq_def_workaround(begin + bucket_starts[bucket], begin + bucket_starts[bucket + 1], values)));
+ @ ensures_free Functions.isSortedSlice(values, begin + bucket_starts[bucket], inner_end);
+ @ assignable_free values[inner_begin..inner_end - 1], storage.allArrays;
+ @ measured_by end - begin, 1;
+ @*/
+ {
+ if (inner_end - inner_begin > Constants.ACTUAL_BASE_CASE_SIZE) {
+ sample_sort(values, inner_begin, inner_end, storage);
+ } else {
+ base_case_sort(values, inner_begin, inner_end);
+ }
+ }
+ /*@ normal_behaviour
+ @ ensures_free \dl_seq_def_workaround(begin, inner_begin, values) == \old(\dl_seq_def_workaround(begin, begin + bucket_starts[bucket], values));
+ @ ensures_free \dl_seq_def_workaround(inner_end, end, values) == \old(\dl_seq_def_workaround(begin + bucket_starts[bucket + 1], end, values));
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, inner_begin, values), \old(\dl_seq_def_workaround(begin, begin + bucket_starts[bucket], values)));
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(inner_end, end, values), \old(\dl_seq_def_workaround(begin + bucket_starts[bucket + 1], end, values)));
+ @ assignable_free \strictly_nothing;
+ @ measured_by end - begin, 1;
+ @*/
+ {;;}
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin > Constants.ACTUAL_BASE_CASE_SIZE;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free \invariant_free_for(storage);
+ @ requires \invariant_for(storage);
+ @ requires_free \disjoint(storage.allArrays, values[*]);
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free Functions.isSortedSlice(values, begin, end);
+ @ ensures_free \invariant_free_for(storage);
+ @ ensures \invariant_for(storage);
+ @
+ @ // partition has +1, sample_sort_recurse +0 => +2
+ @ measured_by end - begin, 2;
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free storage.allArrays;
+ @*/
+ private static void sample_sort(int[] values, int begin, int end, Storage storage) {
+ int[] bucket_starts = Storage.createArray(Constants.MAX_BUCKETS + 1);
+
+ /*@ normal_behaviour
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free \disjoint(\all_fields(values), \all_fields(bucket_starts), storage.allArrays);
+ @ ensures_free \disjoint(storage.*, storage.allArrays);
+ @
+ @ assignable_free \strictly_nothing;
+ @
+ @ measured_by end - begin, 2;
+ @*/
+ {;;}
+
+ PartitionResult partition = partition(values, begin, end, bucket_starts, storage);
+
+ if (partition == null) {
+ fallback_sort(values, begin, end);
+ return;
+ }
+
+ int num_buckets = partition.num_buckets;
+ boolean equal_buckets = partition.equal_buckets;
+
+ /*@ normal_behaviour
+ @ // this is needed in many places and harder to deduce
+ @ requires_free \disjoint(\all_fields(values), \all_fields(bucket_starts), storage.allArrays, storage.*);
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, num_buckets);
+ @ ensures_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets);
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free storage.allArrays;
+ @
+ @ measured_by end - begin, 2;
+ @*/
+ {
+ /*@ loop_invariant_free 0 <= bucket && bucket <= num_buckets;
+ @ loop_invariant_free equal_buckets ==> bucket % 2 == 0;
+ @ loop_invariant_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @
+ @ loop_invariant_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, bucket < num_buckets || !equal_buckets ? bucket : num_buckets - 1);
+ @ // Stays partitioned
+ @ loop_invariant_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets);
+ @ // All subsequent buckets keep the small sorted property (especially the last one if equal_buckets)
+ @ loop_invariant_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, bucket < num_buckets || !equal_buckets ? bucket : num_buckets - 1, num_buckets);
+ @ loop_invariant_free equal_buckets ==>
+ @ bucket % 2 == 0 && bucket != num_buckets - 1 &&
+ @ // starting at the next bucket, ending before the last bucket
+ @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets - 1);
+ @
+ @ decreases num_buckets - bucket;
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free storage.allArrays;
+ @*/
+ for (int bucket = 0; bucket < num_buckets; bucket += 1 + Constants.toInt(equal_buckets)) {
+ sample_sort_recurse_on(values, begin, end, storage, bucket_starts, num_buckets, equal_buckets, bucket);
+ }
+
+ if (equal_buckets) {
+ sample_sort_recurse_on(values, begin, end, storage, bucket_starts, num_buckets, equal_buckets, num_buckets - 1);
+ }
+ }
+
+ /*@ normal_behaviour
+ @ ensures_free sortednessFromPartitionSorted(values, begin, end, bucket_starts, num_buckets);
+ @
+ @ assignable_free \strictly_nothing;
+ @
+ @ measured_by end - begin, 2;
+ @*/
+ {;;}
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free (\forall int element; true;
+ @ Functions.countElement(values, begin, end, element) ==
+ @ \old(Functions.countElement(values, begin, end, element))
+ @ );
+ @ ensures_free Functions.isSortedSlice(values, begin, end);
+ @
+ @ assignable_free values[begin..end - 1];
+ @*/
+ public static void fallback_sort(int[] values, int begin, int end) {
+ // insertion_sort(values, begin, end);
+ }
+
+ public static void insertion_sort(int[] values, int begin, int end) {
+ if (end - begin < 2) return;
+
+ for (++begin; begin < end; ++begin) {
+ int value = values[begin];
+ int hole = begin;
+ for (int i = begin - 1; i > 0 && value < values[i]; --i) {
+ values[hole] = values[i];
+ hole = i;
+ }
+ values[hole] = value;
+ }
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free Functions.isSortedSlice(values, begin, end);
+ @
+ @ assignable_free values[begin..end - 1];
+ @*/
+ private static void base_case_sort(int[] values, int begin, int end) {
+ fallback_sort(values, begin, end);
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free end - begin <= Buffers.MAX_LEN;
+ @ requires_free \invariant_free_for(storage);
+ @ requires \invariant_for(storage);
+ @ requires_free \disjoint(storage.allArrays, values[*]);
+ @
+ @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @ ensures_free Functions.isSortedSlice(values, begin, end);
+ @ ensures_free \invariant_free_for(storage);
+ @ ensures \invariant_for(storage);
+ @
+ @ // sample_sort has +2 => +3
+ @ measured_by end - begin, 3;
+ @
+ @ assignable_free values[begin..end - 1];
+ @ assignable_free storage.allArrays;
+ @*/
+ public static void sort(int[] values, int begin, int end, Storage storage) {
+ if (end - begin <= Constants.ACTUAL_BASE_CASE_SIZE) {
+ base_case_sort(values, begin, end);
+ } else {
+ sample_sort(values, begin, end, storage);
+ }
+ }
+
+ /*@ public normal_behaviour
+ @ requires_free values.length <= Buffers.MAX_LEN;
+ @
+ @ ensures_free \dl_seqPerm(\dl_array2seq(values), \old(\dl_array2seq(values)));
+ @ ensures_free Functions.isSortedSlice(values, 0, values.length);
+ @
+ @ assignable_free values[*];
+ @*/
+ public static void sort(int[] values) {
+ Storage storage = new Storage();
+ //@ assume \disjoint(storage.allArrays, values);
+ sort(values, 0, values.length, storage);
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Storage.java b/src/main/java-overflow/de/wiesler/Storage.java
new file mode 100644
index 0000000..dc958f5
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Storage.java
@@ -0,0 +1,90 @@
+package de.wiesler;
+
+public final class Storage {
+ /*@ public normal_behaviour
+ @ requires_free length >= 0;
+ @ ensures_free \result.length == length;
+ @ ensures_free \fresh(\result);
+ @ ensures_free (\forall int i; 0 <= i < length; \result[i] == 0);
+ @ assignable_free \nothing;
+ @*/
+ static int[] createArray(int length) {
+ return new int[length];
+ }
+
+ final int[] tree;
+ final int[] splitters;
+ final int[] bucket_pointers;
+ final int[] buffers_buffer;
+ final int[] buffers_indices;
+ final int[] swap_1;
+ final int[] swap_2;
+ final int[] overflow;
+
+ //@ ghost final \locset allArrays;
+
+ /*@ public instance invariant_free this.tree.length == Classifier.STORAGE_SIZE &&
+ @ this.splitters.length == Classifier.STORAGE_SIZE &&
+ @ this.bucket_pointers.length == 2 * Constants.MAX_BUCKETS &&
+ @ this.buffers_buffer.length == Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS &&
+ @ this.buffers_indices.length == Constants.MAX_BUCKETS &&
+ @ this.swap_1.length == Buffers.BUFFER_SIZE &&
+ @ this.swap_2.length == Buffers.BUFFER_SIZE &&
+ @ this.overflow.length == Buffers.BUFFER_SIZE;
+ @*/
+
+ /*@ public instance invariant_free this.allArrays == \set_union(
+ @ \set_union(
+ @ \set_union(
+ @ \all_fields(tree),
+ @ \all_fields(splitters)
+ @ ),
+ @ \set_union(
+ @ \all_fields(bucket_pointers),
+ @ \all_fields(buffers_buffer)
+ @ )
+ @ ),
+ @ \set_union(
+ @ \set_union(
+ @ \all_fields(buffers_indices),
+ @ \all_fields(swap_1)
+ @ ),
+ @ \set_union(
+ @ \all_fields(swap_2),
+ @ \all_fields(overflow)
+ @ )
+ @ )
+ @ );
+ @*/
+
+ /*@ public instance invariant_free \disjoint(
+ @ \all_fields(tree),
+ @ \all_fields(splitters),
+ @ \all_fields(bucket_pointers),
+ @ \all_fields(buffers_buffer),
+ @ \all_fields(buffers_indices),
+ @ \all_fields(swap_1),
+ @ \all_fields(swap_2),
+ @ \all_fields(overflow)
+ @ );
+ @*/
+
+ //@ accessible \inv: this.*;
+
+ /*@ public normal_behaviour
+ @ ensures_free \fresh(this.allArrays);
+ @ assignable_free \nothing;
+ @*/
+ public Storage() {
+ this.splitters = createArray(Classifier.STORAGE_SIZE);
+ this.tree = createArray(Classifier.STORAGE_SIZE);
+ this.bucket_pointers = createArray(2 * Constants.MAX_BUCKETS);
+ this.buffers_buffer = createArray(Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS);
+ this.buffers_indices = createArray(Constants.MAX_BUCKETS);
+ this.swap_1 = createArray(Buffers.BUFFER_SIZE);
+ this.swap_2 = createArray(Buffers.BUFFER_SIZE);
+ this.overflow = createArray(Buffers.BUFFER_SIZE);
+
+ //@ set this.allArrays = \set_union(\set_union(\set_union(\all_fields(tree), \all_fields(splitters)), \set_union(\all_fields(bucket_pointers), \all_fields(buffers_buffer))), \set_union(\set_union(\all_fields(buffers_indices), \all_fields(swap_1)), \set_union(\all_fields(swap_2), \all_fields(overflow))));
+ }
+}
diff --git a/src/main/java-overflow/de/wiesler/Tree.java b/src/main/java-overflow/de/wiesler/Tree.java
new file mode 100644
index 0000000..6d5783d
--- /dev/null
+++ b/src/main/java-overflow/de/wiesler/Tree.java
@@ -0,0 +1,442 @@
+package de.wiesler;
+
+public final class Tree {
+ private /*@ spec_public @*/ final int[] tree;
+ private /*@ spec_public @*/ final int log_buckets;
+ //@ ghost final int num_buckets;
+ //@ ghost final int[] sorted_splitters;
+
+ /*@ public invariant 1 <= this.log_buckets <= Constants.LOG_MAX_BUCKETS;
+ @ public invariant this.num_buckets == (1 << this.log_buckets);
+ @ public invariant 2 <= this.num_buckets <= this.tree.length;
+ @ public invariant this.num_buckets <= this.sorted_splitters.length;
+ @ public invariant Functions.isSortedSliceTransitive(this.sorted_splitters, 0, this.num_buckets - 1);
+ @
+ @ invariant (\forall int i; 1 <= i < this.num_buckets; 1 <= Tree.pi(i, this.log_buckets) < this.num_buckets);
+ @ invariant (\forall int i; 1 <= i < this.num_buckets; this.tree[i] == this.sorted_splitters[Tree.pi(i, this.log_buckets) - 1]);
+ @
+ @ accessible \inv: this.tree[*], this.sorted_splitters[*];
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires_free 1 <= log_buckets <= Constants.LOG_MAX_BUCKETS;
+ @ requires_free 0 <= (1 << log_buckets) <= sorted_splitters.length;
+ @ requires_free Functions.isSortedSliceTransitive(sorted_splitters, 0, (1 << log_buckets) - 1);
+ @ requires_free (1 << log_buckets) <= tree.length;
+ @ requires_free \disjoint(sorted_splitters[*], tree[*]);
+ @
+ @ ensures_free this.log_buckets == log_buckets;
+ @ ensures_free this.tree == tree;
+ @ ensures_free this.sorted_splitters == sorted_splitters;
+ @
+ @ assignable_free tree[*];
+ @*/
+ public Tree(int[] sorted_splitters, int[] tree, int log_buckets) {
+ //@ set num_buckets = 1 << log_buckets;
+ //@ set this.sorted_splitters = sorted_splitters;
+ final int num_buckets = 1 << log_buckets;
+ final int num_splitters = num_buckets - 1;
+
+ //@ assume 2 <= num_buckets <= tree.length;
+
+ this.log_buckets = log_buckets;
+ this.tree = tree;
+ this.build(sorted_splitters);
+ //@ assert (1 << this.log_buckets) == \dl_pow(2, this.log_buckets);
+ //@ assert (\forall int i; 1 <= i < this.num_buckets; Tree.piInRangeLower(i, log_buckets) && Tree.piInRangeUpper(i, log_buckets));
+ }
+
+ /*@ public normal_behaviour
+ @ requires this.tree != null && sorted_splitters != null;
+ @ requires \disjoint(sorted_splitters[*], this.tree[*]);
+ @ requires this.num_buckets <= sorted_splitters.length;
+ @ requires 1 <= this.log_buckets <= Constants.LOG_MAX_BUCKETS;
+ @ requires 2 <= this.num_buckets <= tree.length;
+ @ requires this.num_buckets == (1 << this.log_buckets);
+ @ requires Functions.isSortedSliceTransitive(sorted_splitters, 0, (1 << this.log_buckets) - 1);
+ @
+ @ ensures (\forall int i; 1 <= i < this.num_buckets; this.tree[i] == sorted_splitters[Tree.pi(i, this.log_buckets) - 1]);
+ @
+ @ assignable this.tree[*];
+ @*/
+ /*@ helper */ void build(int[] sorted_splitters) {
+ //@ assert 1 <= \dl_pow(2, this.log_buckets) <= \dl_pow(2, 6);
+ //@ assert (1 << this.log_buckets) == \dl_pow(2, this.log_buckets);
+ int num_buckets = 1 << this.log_buckets;
+ //@ assert this.num_buckets == num_buckets;
+
+ int tree_offset = 1;
+ int offset = num_buckets;
+ /*@ loop_invariant 0 <= l <= this.log_buckets;
+ @ loop_invariant tree_offset == \dl_pow(2, l);
+ @ loop_invariant offset == \dl_pow(2, this.log_buckets - l);
+ @ loop_invariant (\forall int i; 1 <= i < tree_offset;
+ @ this.tree[i] == sorted_splitters[Tree.pi(i, this.log_buckets) - 1]
+ @ );
+ @
+ @ decreases this.log_buckets - l;
+ @ assignable this.tree[*];
+ @*/
+ for (int l = 0; l < this.log_buckets; ++l) {
+ final int step = offset;
+ offset /= 2;
+
+ //@ assert step == \dl_pow(2, this.log_buckets - l);
+ //@ assert offset == \dl_pow(2, this.log_buckets - l - 1);
+ //@ assert step == offset * 2;
+ //@ assert 1 <= offset < num_buckets;
+ //@ assert \dl_pow(2, l + 1) <= num_buckets;
+
+ //@ ghost int tree_start_offset = tree_offset;
+
+ //@ assert \dl_pow(2, l + 1) - \dl_pow(2, l) == \dl_pow(2, l);
+ //@ assert step * \dl_pow(2, l) == \dl_pow(2, this.log_buckets);
+ //@ assert offset - 1 + step * \dl_pow(2, l) >= num_buckets;
+ //@ assert offset - 1 + step * (\dl_pow(2, l) - 1) < num_buckets;
+
+ /*@ loop_invariant offset - 1 <= o < step + num_buckets;
+ @ loop_invariant o == offset - 1 + step * (tree_offset - tree_start_offset);
+ @ loop_invariant \dl_pow(2, l) <= tree_offset <= \dl_pow(2, l + 1);
+ @ loop_invariant (\forall int i; 1 <= i < tree_offset;
+ @ this.tree[i] == sorted_splitters[Tree.pi(i, this.log_buckets) - 1]
+ @ );
+ @
+ @ decreases step + num_buckets - o;
+ @ assignable this.tree[*];
+ @*/
+ for (int o = offset - 1; o < num_buckets; o += step) {
+ //@ assert \dl_log(2, tree_offset) == l;
+ //@ assert Tree.pi(tree_offset, this.log_buckets) - 1 == o;
+ this.tree[tree_offset] = sorted_splitters[o];
+ tree_offset += 1;
+ }
+
+ //@ assert tree_offset == \dl_pow(2, l + 1);
+ }
+ }
+
+ /*@ model_behaviour
+ @ requires true;
+ @ static no_state model int pi(int b, int log_buckets) {
+ @ return (2 * (b - \dl_pow(2, \dl_log(2, b))) + 1) * \dl_pow(2, log_buckets - 1 - \dl_log(2, b));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires 0 <= bucket < this.num_buckets;
+ @
+ @ model boolean isClassifiedAs(int value, int bucket) {
+ @ return ((0 < bucket ==> this.sorted_splitters[bucket - 1] < value) &&
+ @ (bucket < this.num_buckets - 1 ==> value <= this.sorted_splitters[bucket]));
+ @ }
+ @*/
+
+ /*@ public model_behaviour
+ @ requires this.sorted_splitters[0] < this.sorted_splitters[1];
+ @ ensures_free \result;
+ @
+ @ model boolean classOfFirstSplitters() {
+ @ return this.classify(this.sorted_splitters[0]) != this.classify(this.sorted_splitters[1]);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires b >= 1;
+ @ ensures \result;
+ @ // Provable using powLogMore2
+ @ static model boolean piLemmaUpperBound(int b) {
+ @ return 2 * (b - \dl_pow(2, \dl_log(2, b))) + 1 < \dl_pow(2, \dl_log(2, b) + 1);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires 1 <= b < \dl_pow(2, log_buckets);
+ @ requires 1 <= log_buckets;
+ @ ensures \result;
+ @ static model boolean piInRangeLower(int b, int log_buckets) {
+ @ return 1 <= Tree.pi(b, log_buckets);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires 1 <= b < \dl_pow(2, log_buckets);
+ @ requires 1 <= log_buckets;
+ @ requires Tree.piLemmaUpperBound(b);
+ @ ensures \result;
+ @ static model boolean piInRangeUpper(int b, int log_buckets) {
+ @ return Tree.pi(b, log_buckets) < \dl_pow(2, log_buckets);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires 1 <= b < \dl_pow(2, log_buckets - 1);
+ @ requires 1 <= log_buckets;
+ @ ensures \result;
+ @ static model boolean piLemmaLeft(int b, int log_buckets) {
+ @ return Tree.pi(b, log_buckets) - Tree.pi(2 * b, log_buckets) == \dl_pow(2, log_buckets - 2 - \dl_log(2, b));
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires 1 <= b < \dl_pow(2, log_buckets - 1);
+ @ requires 1 <= log_buckets;
+ @ ensures \result;
+ @ static model boolean piLemmaRight(int b, int log_buckets) {
+ @ return Tree.pi(2 * b + 1, log_buckets) - Tree.pi(b, log_buckets) == \dl_pow(2, log_buckets - 2 - \dl_log(2, b));
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires 1 <= b < \dl_pow(2, log_buckets - 1);
+ @ requires 1 <= log_buckets;
+ @ ensures \result;
+ @ static model boolean piLemma(int b, int log_buckets) {
+ @ return Tree.piLemmaLeft(b, log_buckets) && Tree.piLemmaRight(b, log_buckets);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires log_buckets >= 1;
+ @ ensures \result;
+ @ static model boolean piOf1(int log_buckets) {
+ @ return Tree.pi(1, log_buckets) == \dl_pow(2, log_buckets) - \dl_pow(2, log_buckets) / 2;
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires true;
+ @ accessible this.sorted_splitters[*];
+ @ model boolean binarySearchInvariant(int b, int d, int value) {
+ @ return d - 1 <= b <= this.num_buckets - 1 &&
+ @ (b - d == -1 || this.sorted_splitters[b - d] < value) &&
+ @ (b == this.num_buckets - 1 || value <= this.sorted_splitters[b]);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires this.binarySearchInvariant(b, d, value);
+ @ requires 0 <= l < this.log_buckets;
+ @ requires d == \dl_pow(2, this.log_buckets - l);
+ @ ensures \result;
+ @
+ @ model boolean binarySearchInvariantLemma(int b, int d, int value, int l) {
+ @ return this.binarySearchInvariant(this.sorted_splitters[b - d / 2] < value ? b : b - d / 2, d / 2, value);
+ @ }
+ @*/
+
+ /*@ model_behaviour
+ @ requires true;
+ @ // final only no_state
+ @ model boolean treeSearchInvariant(int b, int l, int b_bin, int d_bin) {
+ @ return \dl_pow(2, l) <= b < \dl_pow(2, l + 1) &&
+ @ \dl_log(2, b) == l &&
+ @ (l < this.log_buckets ==> b_bin - d_bin / 2 == Tree.pi(b, this.log_buckets) - 1) &&
+ @ (l == this.log_buckets ==> b_bin == b - \dl_pow(2, this.log_buckets));
+ @ }
+ @*/
+
+ /*@ normal_behaviour
+ @ requires this.binarySearchInvariant(b_bin, d_bin, value);
+ @ requires treeSearchInvariant(b, l, b_bin, d_bin);
+ @ requires 0 <= l < this.log_buckets;
+ @ requires d_bin == \dl_pow(2, this.log_buckets - l);
+ @ requires this.num_buckets == \dl_pow(2, this.log_buckets);
+ @ ensures treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2);
+ @ ensures \result;
+ @ assignable \strictly_nothing;
+ @*/
+ boolean treeSearchInvariantLemmaImpl(int b, int l, int b_bin, int d_bin, int value) {
+ //@ assert 1 <= \dl_pow(2, l);
+ //@ assert \dl_pow(2, l + 1) == 2 * \dl_pow(2, l);
+ //@ assert \dl_pow(2, l + 2) == 2 * \dl_pow(2, l + 1);
+ //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets);
+ //@ assert this.sorted_splitters[b_bin - d_bin / 2] == this.tree[b];
+ //@ assert \dl_log(2, 2 * b + (this.tree[b] < value ? 1 : 0)) == l + 1;
+ if (l < this.log_buckets - 1) {
+ //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets - 1);
+ //@ assert Tree.piLemma(b, this.log_buckets);
+ /*@ assert Tree.pi(2 * b + (this.tree[b] < value ? 1 : 0), this.log_buckets) - Tree.pi(b, this.log_buckets) == (
+ @ this.tree[b] < value ? (\dl_pow(2, this.log_buckets - 2 - \dl_log(2, b))) : -(\dl_pow(2, this.log_buckets - 2 - \dl_log(2, b)))
+ @ );
+ @*/
+ //@ assert \dl_pow(2, this.log_buckets - 2 - \dl_log(2, b)) == d_bin / 2 / 2;
+ }
+ return true;
+ }
+
+ /*@ model_behaviour
+ @ requires this.binarySearchInvariant(b_bin, d_bin, value);
+ @ requires treeSearchInvariant(b, l, b_bin, d_bin);
+ @ requires 0 <= l < this.log_buckets;
+ @ requires d_bin == \dl_pow(2, this.log_buckets - l);
+ @ requires this.num_buckets == \dl_pow(2, this.log_buckets);
+ @ ensures \result ==> treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2);
+ @ ensures \result;
+ @
+ @ model boolean treeSearchInvariantLemma(int b, int l, int b_bin, int d_bin, int value) {
+ @ return treeSearchInvariantLemmaImpl(b, l, b_bin, d_bin, value);
+ @ }
+ @*/
+
+ /*@ normal_behaviour
+ @ requires_free \dl_inInt(value);
+ @ ensures_free this.num_buckets <= \result < 2 * this.num_buckets;
+ @
+ @ ensures_free this.isClassifiedAs(value, \result - this.num_buckets);
+ @
+ @ // Needed to bring this method to logic
+ @ ensures_free \result == this.classify(value);
+ @
+ @ assignable_free \strictly_nothing;
+ @
+ @ accessible this.tree[*], this.sorted_splitters[*];
+ @*/
+ int classify(int value) {
+ //@ assert \dl_pow(2, 1) <= \dl_pow(2, this.log_buckets) <= \dl_pow(2, Constants.LOG_MAX_BUCKETS);
+ //@ assert \dl_pow(2, this.log_buckets) == this.num_buckets;
+ //@ ghost int b_bin = this.num_buckets - 1;
+ //@ ghost int d_bin = this.num_buckets;
+ int b = 1;
+
+ //@ assert Tree.piOf1(this.log_buckets);
+
+ /*@ loop_invariant 0 <= l && l <= this.log_buckets;
+ @ loop_invariant d_bin == \dl_pow(2, this.log_buckets - l);
+ @
+ @ // Ghost binary search
+ @ loop_invariant this.binarySearchInvariant(b_bin, d_bin, value);
+ @ loop_invariant this.treeSearchInvariant(b, l, b_bin, d_bin);
+ @
+ @ decreases this.log_buckets - l;
+ @ assignable \strictly_nothing;
+ @*/
+ for (int l = 0; l < this.log_buckets; ++l) {
+ //@ assert treeSearchInvariantLemma(b, l, b_bin, d_bin, value);
+ //@ assert this.binarySearchInvariantLemma(b_bin, d_bin, value, l);
+ //@ assert treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2);
+ //@ assert this.binarySearchInvariant(this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2, value);
+
+ //@ assert (d_bin / 2) * 2 == d_bin;
+ //@ set d_bin = d_bin / 2;
+ //@ assert 0 <= \dl_pow(2, this.log_buckets - l) <= \dl_pow(2, this.log_buckets);
+ //@ assert 0 <= b_bin - d_bin < this.num_buckets;
+ //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets);
+ //@ assert 0 <= b < this.num_buckets;
+ //@ assert d_bin == \dl_pow(2, this.log_buckets - l - 1);
+ //@ assert \dl_inInt(l + 1);
+ //@ assert \dl_inInt(2 * b + (this.tree[b] < value ? 1 : 0));
+ //@ set b_bin = this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin;
+ b = 2 * b + (this.tree[b] < value ? 1 : 0);
+ }
+ return b;
+ }
+
+ /*@ normal_behaviour
+ @ requires_free 0 <= begin <= end <= values.length;
+ @ requires_free indices.length == end - begin;
+ @ requires_free \disjoint(values[*], indices[*], this.tree[*], this.sorted_splitters[*]);
+ @
+ @ ensures_free (\forall int i; 0 <= i < indices.length; this.num_buckets <= indices[i] < 2 * this.num_buckets);
+ @ // Needed to bring this method to logic
+ @ ensures_free (\forall int i; 0 <= i < indices.length; indices[i] == this.classify(values[begin + i]));
+ @
+ @ assignable_free indices[*];
+ @*/
+ void classify_all(int[] values, int begin, int end, int[] indices) {
+ Functions.fill(indices, 0, indices.length, 1);
+
+ //@ assert \dl_pow(2, 1) <= \dl_pow(2, this.log_buckets) <= \dl_pow(2, Constants.LOG_MAX_BUCKETS);
+ //@ assert \dl_pow(2, this.log_buckets) == this.num_buckets;
+ //@ ghost int[] b_bins = new int[indices.length];
+ //@ ghost int d_bin = this.num_buckets;
+
+ //@ assert Tree.piOf1(this.log_buckets);
+
+ /*@ loop_invariant 0 <= o <= indices.length;
+ @
+ @ // Ghost binary search
+ @ loop_invariant (\forall int j; 0 <= j < o;
+ @ b_bins[j] == this.num_buckets - 1
+ @ );
+ @
+ @ decreases indices.length - o;
+ @ assignable b_bins[*];
+ @*/
+ for (int o = 0; o < indices.length; ++o) {
+ //@ set b_bins[o] = this.num_buckets - 1;
+ }
+
+ /*@ loop_invariant 0 <= l && l <= this.log_buckets;
+ @ loop_invariant d_bin == \dl_pow(2, this.log_buckets - l);
+ @
+ @ // Ghost binary search
+ @ loop_invariant (\forall int i; 0 <= i < indices.length;
+ @ this.binarySearchInvariant(b_bins[i], d_bin, values[begin + i]) &&
+ @ this.treeSearchInvariant(indices[i], l, b_bins[i], d_bin)
+ @ );
+ @
+ @ decreases this.log_buckets - l;
+ @ assignable b_bins[*], indices[*];
+ @*/
+ for (int l = 0; l < this.log_buckets; ++l) {
+ //@ assert (d_bin / 2) * 2 == d_bin;
+ //@ set d_bin = d_bin / 2;
+
+ //@ assert \dl_pow(2, l + 1) == 2 * \dl_pow(2, l) && \dl_pow(2, l + 2) == 2 * \dl_pow(2, l + 1);
+
+ /*@ loop_invariant 0 <= j && j <= indices.length;
+ @
+ @ loop_invariant (\forall int i; 0 <= i < j;
+ @ this.binarySearchInvariant(b_bins[i], d_bin, values[begin + i]) &&
+ @ this.treeSearchInvariant(indices[i], l + 1, b_bins[i], d_bin)
+ @ );
+ @
+ @ loop_invariant (\forall int i; j <= i < indices.length;
+ @ this.binarySearchInvariant(b_bins[i], 2 * d_bin, values[begin + i]) &&
+ @ this.treeSearchInvariant(indices[i], l, b_bins[i], 2 * d_bin)
+ @ );
+ @
+ @ decreases indices.length - j;
+ @ assignable b_bins[*], indices[*];
+ @*/
+ for (int j = 0; j < indices.length; ++j) {
+ //@ assert indices != b_bins && values != b_bins;
+ //@ assert this.sorted_splitters != b_bins && this.tree != b_bins;
+
+ /*@ normal_behaviour
+ @ ensures this.binarySearchInvariant(b_bins[j], d_bin, values[begin + j]) &&
+ @ this.treeSearchInvariant(indices[j], l + 1, b_bins[j], d_bin);
+ @ assignable b_bins[j], indices[j];
+ @*/
+ {
+ int value = values[begin + j];
+ int b = indices[j];
+
+ //@ ghost int b_bin = b_bins[j];
+ /*@ assert this.binarySearchInvariant(b_bin, 2 * d_bin, value) &&
+ @ this.treeSearchInvariant(b, l, b_bin, 2 * d_bin);
+ @*/
+
+ //@ assert treeSearchInvariantLemma(b, l, b_bin, 2 * d_bin, value);
+ //@ assert \invariant_for(this);
+ //@ assert this.binarySearchInvariantLemma(b_bin, 2 * d_bin, value, l);
+ //@ assert treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin, d_bin);
+ //@ assert this.binarySearchInvariant(this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin, d_bin, value);
+
+ //@ assert 0 <= \dl_pow(2, this.log_buckets - l) <= \dl_pow(2, this.log_buckets);
+ //@ assert 0 <= b_bin - d_bin < this.num_buckets;
+ //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets);
+ //@ assert 0 <= b < this.num_buckets;
+ //@ assert d_bin == \dl_pow(2, this.log_buckets - l - 1);
+ //@ assert \dl_inInt(l + 1);
+ //@ assert \dl_inInt(2 * b + (this.tree[b] < value ? 1 : 0));
+ //@ set b_bins[j] = this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin;
+ indices[j] = 2 * b + (this.tree[b] < value ? 1 : 0);
+ }
+ {;;}
+ }
+ }
+
+ //@ assert d_bin == 1;
+ }
+}
diff --git a/src/main/java/de/wiesler/Cleanup.java b/src/main/java/de/wiesler/Cleanup.java
index 53c944a..50ec32c 100644
--- a/src/main/java/de/wiesler/Cleanup.java
+++ b/src/main/java/de/wiesler/Cleanup.java
@@ -315,7 +315,16 @@ public static void cleanup(
@
@ assignable values[start..stop - 1];
@*/
- {}
+ {
+ if (stop - start <= Constants.ACTUAL_BASE_CASE_SIZE || is_last_level) {
+ //@ ghost \seq bucketValuesBeforeSort = \dl_seq_def_workaround(start, stop, values);
+ // seqPerm(seq, seq2)
+ // forall i in seq2; f(i) ==> forall i in seq; f(i)
+ Sorter.fallback_sort(values, start, stop);
+ //@ ghost \seq bucketValuesAfterSort = \dl_seq_def_workaround(start, stop, values);
+ //@ assert (\forall int i; 0 <= i < bucketValuesAfterSort.length; classifier.classOf((int)bucketValuesAfterSort[i]) == bucket);
+ }
+ }
/*@ assert \invariant_for(classifier) && \invariant_for(bucket_pointers) && \invariant_for(buffers) &&
@ Functions.countElementSplit(values, begin, begin + \old(bucket_starts[bucket]), begin + \old(bucket_starts[bucket + 1])) &&
diff --git a/src/main/java/de/wiesler/Sorter.java b/src/main/java/de/wiesler/Sorter.java
index 04276f9..a842c27 100644
--- a/src/main/java/de/wiesler/Sorter.java
+++ b/src/main/java/de/wiesler/Sorter.java
@@ -565,19 +565,63 @@ private static void sample_sort(int[] values, int begin, int end, Storage storag
@ assignable values[begin..end - 1];
@*/
public static void fallback_sort(int[] values, int begin, int end) {
- // insertion_sort(values, begin, end);
+ insertion_sort(values, begin, end);
}
+ /*@ model_behaviour
+ @ requires 0 <= idx < seq.length;
+ @ ensures (\forall int x; 0 <= x < seq.length;
+ @ \result[x] == (x == idx ? value : seq[x]));
+ @ ensures \result.length == seq.length;
+ @ static no_state model \seq seqUpd(\seq seq, int idx, int value) {
+ @ return \seq_concat(\seq_concat(
+ @ \seq_sub(seq, 0, idx),
+ @ \seq_singleton(value)),
+ @ \seq_sub(seq, idx+1, seq.length));
+ @ }
+ @*/
+
+ /*@ public normal_behaviour
+ @ requires 0 <= begin <= end <= values.length;
+ @
+ @ ensures \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values)));
+ @
+ @ ensures Functions.isSortedSlice(values, begin, end);
+ @
+ @ assignable values[begin..end - 1];
+ @*/
public static void insertion_sort(int[] values, int begin, int end) {
if (end - begin < 2) return;
+ int k = begin + 1;
- for (++begin; begin < end; ++begin) {
- int value = values[begin];
- int hole = begin;
- for (int i = begin - 1; i > 0 && value < values[i]; --i) {
+ /*@ loop_invariant \dl_seqPerm(\dl_seq_def_workaround(begin, end, values),
+ @ \old(\dl_seq_def_workaround(begin, end, values)));
+ @ loop_invariant begin < k <= end;
+ @ loop_invariant (\forall int x; k <= x < end; values[x] == \old(values[x]));
+ @ loop_invariant Functions.isSortedSlice(values, begin, k);
+ @ assignable values[begin..end - 1];
+ @ decreases end - k;
+ @*/
+ for (; k < end; ++k) {
+ int value = values[k];
+ int hole = k;
+
+ /*@ loop_invariant hole == i + 1;
+ @ loop_invariant begin-1 <= i < k;
+ @ loop_invariant i == k - 1 || Functions.isSortedSlice(values, begin, k+1);
+ @ loop_invariant Functions.isSortedSlice(values, begin, k);
+ @ loop_invariant \dl_seqPerm(
+ @ seqUpd(\dl_seq_def_workaround(begin, end, values), hole - begin, value),
+ @ \old(\dl_seq_def_workaround(begin, end, values)));
+ @ loop_invariant value <= values[hole];
+ @ assignable values[begin..k];
+ @ decreases i + 1;
+ */
+ for(int i = k - 1; i >= begin && value < values[i]; i--) {
values[hole] = values[i];
hole = i;
}
+
values[hole] = value;
}
}
diff --git a/src/main/java/de/wiesler/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/java/de/wiesler/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..6d8dfe5
--- /dev/null
+++ b/src/main/java/de/wiesler/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,8039 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Tue Oct 24 17:46:35 CEST 2023
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:off , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:off , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_INVARIANT
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=7000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource ".";
+
+\proofObligation "#Proof Obligation Settings
+#Tue Oct 24 17:46:35 CEST 2023
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "mattias" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "98267")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "translateJavaSubInt" (formula "1") (term "2,2,0,0,0,0,1,0,1,1"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "notLeft" (formula "6"))
+(rule "andLeft" (formula "4"))
+(rule "eqSymm" (formula "8") (term "1,0,0,1,0,1"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "8") (term "2,2,0,0,0,0,1,0,1"))
+(rule "mul_literals" (formula "8") (term "1,2,2,0,0,0,0,1,0,1"))
+(rule "polySimp_addComm0" (formula "8") (term "2,2,0,0,0,0,1,0,1"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "elementOfArrayRange" (formula "8") (term "0,0,0,0,1,0,1") (inst "iv=iv"))
+(rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1,0,0,0,0,1,0,1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_insertion_sort,savedHeapBefore_insertion_sort,_beginBefore_insertion_sort,_endBefore_insertion_sort,_valuesBefore_insertion_sort"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "ifUnfold" (formula "8") (term "1") (inst "#boolv=x"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "x"))
+(rule "compound_less_than_comparison_1" (formula "8") (term "1") (inst "#v0=x_1"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "x_1"))
+(rule "assignmentSubtractionInt" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "translateJavaSubInt" (formula "8") (term "0,1,0"))
+(rule "polySimp_elimSub" (formula "8") (term "0,1,0"))
+(rule "polySimp_addComm0" (formula "8") (term "0,1,0"))
+(rule "less_than_comparison_simple" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "ifSplit" (formula "8"))
+(branch "if x true"
+ (builtin "One Step Simplification" (formula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "methodCallEmptyReturn" (formula "9") (term "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "tryEmpty" (formula "9") (term "1"))
+ (rule "emptyModality" (formula "9") (term "1"))
+ (rule "andRight" (formula "9"))
+ (branch "Case 1"
+ (rule "andRight" (formula "9"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "9") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0"))
+ (rule "allRight" (formula "9") (inst "sk=i_0"))
+ (rule "impRight" (formula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "2"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeTrue" (formula "9"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeTrue" (formula "9"))
+ )
+)
+(branch "if x false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "notLeft" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "9") (term "1"))
+ (rule "variableDeclaration" (formula "9") (term "1") (newnames "k"))
+ (rule "assignmentAdditionInt" (formula "9") (term "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaAddInt" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,1,0"))
+ (rule "for_to_while" (formula "9") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "elim_double_block_3" (formula "9") (term "1"))
+ (builtin "Loop Invariant" (formula "9") (newnames "variant,b,heapBefore_LOOP,kBefore_LOOP,k_0,heap_After_LOOP,anon_heap_LOOP,o,f"))
+ (branch "Invariant Initially Valid"
+ (rule "andRight" (formula "9"))
+ (branch "Case 1"
+ (rule "andRight" (formula "9"))
+ (branch "Case 1"
+ (rule "andRight" (formula "9"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "9"))
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "9"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltRight" (formula "7"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "8") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "9")))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "8") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "1,1,0,0"))
+ (rule "allRight" (formula "8") (inst "sk=i_0"))
+ (rule "impRight" (formula "8"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "2"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "9"))
+ )
+ )
+ (branch "Body Preserves Invariant"
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "2,2,0,0,0,0,1,0,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1,1"))
+ (rule "andLeft" (formula "8"))
+ (rule "impRight" (formula "12"))
+ (rule "andLeft" (formula "9"))
+ (rule "eqSymm" (formula "14") (term "1,0,0,1,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "11") (term "2,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,2,1,0,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "2,1,0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,2,1,0,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,1,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "1") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "mul_literals" (formula "14") (term "1,2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "2,1,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "1") (term "1"))
+ (rule "variableDeclarationAssign" (formula "14") (term "1"))
+ (rule "variableDeclaration" (formula "1") (term "1") (newnames "b_1"))
+ (rule "variableDeclaration" (formula "14") (term "1") (newnames "exc_25"))
+ (rule "assignment" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "variableDeclaration" (formula "14") (term "1") (newnames "thrownExc"))
+ (rule "blockThrow" (formula "14") (term "1,0,0,1"))
+ (rule "elementOfArrayRange" (formula "14") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1"))
+ (rule "boxToDiamond" (formula "1") (term "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "less_than_comparison_simple" (formula "11") (term "1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "methodCallEmpty" (formula "11") (term "1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "emptyModality" (formula "11") (term "1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "notRight" (formula "11"))
+ (rule "ifUnfold" (formula "14") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "14") (term "1") (newnames "x_2"))
+ (rule "less_than_comparison_simple" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "replace_known_left" (formula "14") (term "0,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "arrayLengthNotNegative" (formula "7") (term "0"))
+ (rule "arrayLengthIsAnInt" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "ifSplit" (formula "15"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "value"))
+ (rule "assignment_array2" (formula "15"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "pullOutSelect" (formula "15") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15")) (ifInst "" (formula "4")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "variableDeclarationAssign" (formula "16") (term "1"))
+ (rule "variableDeclaration" (formula "16") (term "1") (newnames "hole"))
+ (rule "assignment" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "variableDeclarationAssign" (formula "16") (term "1"))
+ (rule "variableDeclaration" (formula "16") (term "1") (newnames "i"))
+ (rule "assignmentSubtractionInt" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0"))
+ (builtin "Loop Invariant" (formula "16") (newnames "variant_0,b_0,heapBefore_LOOP_0,iBefore_LOOP,holeBefore_LOOP,i_0,hole_0,heap_After_LOOP_0,anon_heap_LOOP_0,o,f"))
+ (branch "Invariant Initially Valid"
+ (rule "andRight" (formula "16"))
+ (branch "Case 1"
+ (rule "andRight" (formula "16"))
+ (branch "Case 1"
+ (rule "andRight" (formula "16"))
+ (branch "Case 1"
+ (rule "andRight" (formula "16"))
+ (branch "Case 1"
+ (rule "andRight" (formula "16"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "16"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaSubInt" (formula "16") (term "0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0"))
+ (rule "mul_literals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "14"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "16"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "1"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "1,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0"))
+ (rule "add_zero_right" (formula "11") (term "0"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "16"))
+ (builtin "One Step Simplification" (formula "17"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaAddInt" (formula "17") (term "3,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimSub" (formula "16") (term "0"))
+ (rule "mul_literals" (formula "16") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,0"))
+ (rule "times_zero_1" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeTrue" (formula "16"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "16"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "selectOfAnon" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "15")) (ifInst "" (formula "4")))
+ (rule "elementOfArrayRange" (formula "16") (term "0,1") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "wellFormedAnon" (formula "16"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Body Preserves Invariant"
+ (builtin "One Step Simplification" (formula "15"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaSubInt" (formula "15") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "3,0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "18") (term "1,0,0,0,0,0,0,1,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "18") (term "0,1,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "18") (term "1,0,1,0,0,0,0,1,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "18") (term "3,0,1,1,0,0,0,0,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,0,1,0,0,0,0,0,1,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "18") (term "0,1,1,1,0,1,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "impRight" (formula "19"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "eqSymm" (formula "24") (term "0,1,0,0,0,0,1,1,0,1"))
+ (rule "eqSymm" (formula "24") (term "1,0,0,1,0,1,1,0,1"))
+ (rule "eqSymm" (formula "19") (term "0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,0,1,0,0,0,0,0,1,1,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "17") (term "0"))
+ (rule "mul_literals" (formula "17") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,0,1,0,0,0,0,1,1,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,0,0,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "3,0,1,1,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "3,0,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,1,0,0,0,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "variableDeclarationAssign" (formula "1") (term "1"))
+ (rule "variableDeclarationAssign" (formula "24") (term "1"))
+ (rule "variableDeclaration" (formula "1") (term "1") (newnames "b_0_1"))
+ (rule "variableDeclaration" (formula "24") (term "1") (newnames "exc_26"))
+ (rule "assignment" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "variableDeclaration" (formula "24") (term "1") (newnames "thrownExc_1"))
+ (rule "blockThrow" (formula "24") (term "1,0,0,1"))
+ (rule "blockThrow" (formula "24") (term "1,0,0,1"))
+ (rule "elementOfArrayRange" (formula "24") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1"))
+ (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "24")) (ifInst "" (formula "5")))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0"))
+ (rule "pullOutSelect" (formula "21") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "25")) (ifInst "" (formula "5")))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
+ (rule "boxToDiamond" (formula "1") (term "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "commute_or" (formula "18"))
+ (rule "compound_assignment_3_nonsimple" (formula "23") (term "1"))
+ (rule "ifUnfold" (formula "26") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_3"))
+ (rule "compound_assignment_3_nonsimple" (formula "26") (term "1"))
+ (rule "ifElseUnfold" (formula "23") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_4"))
+ (rule "compound_assignment_2" (formula "23") (term "1") (inst "#v=x_5"))
+ (rule "variableDeclarationAssign" (formula "23") (term "1"))
+ (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_5"))
+ (rule "greater_equal_than_comparison_simple" (formula "23") (term "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "compound_assignment_1_new" (formula "23") (term "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "ifElseUnfold" (formula "26") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_6"))
+ (rule "compound_assignment_2" (formula "26") (term "1") (inst "#v=x_7"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_7"))
+ (rule "greater_equal_than_comparison_simple" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "compound_assignment_1_new" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "ifElseSplit" (formula "23"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "24"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_right" (formula "27") (term "0,0,1,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "assignment" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "methodCallEmpty" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "emptyModality" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeTrue" (formula "24"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "24"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_left" (formula "27") (term "0,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "compound_less_than_comparison_2" (formula "24") (term "1") (inst "#v1=x_1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "24") (term "1"))
+ (rule "variableDeclaration" (formula "24") (term "1") (newnames "x_8"))
+ (rule "assignment" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "variableDeclarationAssign" (formula "24") (term "1"))
+ (rule "variableDeclaration" (formula "24") (term "1") (newnames "x_9"))
+ (rule "assignment_array2" (formula "24"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "0,1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "6")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "7")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "less_than_comparison_simple" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "methodCallEmpty" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "emptyModality" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notRight" (formula "26"))
+ (rule "ifElseSplit" (formula "29"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "compound_less_than_comparison_2" (formula "29") (term "1") (inst "#v1=x_5") (inst "#v0=x_4"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_10"))
+ (rule "assignment" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_11"))
+ (rule "assignment_array2" (formula "29"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "replaceKnownSelect_taclet0110011_3" (formula "29") (term "0,1,0"))
+ (rule "less_than_comparison_simple" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "replace_known_left" (formula "29") (term "0,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "blockEmpty" (formula "29") (term "1"))
+ (rule "ifSplit" (formula "29"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "eval_order_array_access3" (formula "29") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_12"))
+ (rule "assignment" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_13"))
+ (rule "assignment_array2" (formula "29"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "replaceKnownSelect_taclet0110011_3" (formula "29") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "29"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "assignment" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "postdecrement" (formula "29") (term "1"))
+ (rule "compound_subtraction_1" (formula "29") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_14"))
+ (rule "widening_identity_cast_5" (formula "29") (term "1"))
+ (rule "assignment" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "assignmentSubtractionInt" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,1,0"))
+ (rule "tryEmpty" (formula "29") (term "1"))
+ (rule "methodCallEmpty" (formula "29") (term "1"))
+ (rule "emptyModality" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "29"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i_1") (userinteraction))
+ (builtin "One Step Simplification" (formula "30") (userinteraction))
+ (rule "allRight" (formula "30") (inst "sk=i_1_0") (userinteraction))
+ (rule "eqTermCut" (formula "30") (term "1,0,1,1,0") (inst "s=i_0") (userinteraction))
+ (branch "Assume k_0 = i_0"
+ (rule "translateJavaSubInt" (formula "31") (term "1,1,0") (userinteraction))
+ (rule "orLeft" (formula "23") (userinteraction))
+ (branch " de.wiesler.Functions.isSortedSlice(values, begin, 1 + k_0) @heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] = TRUE"
+ (builtin "SMTRule")
+ )
+ (branch "-1 + k_0 = i_0"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Assume k_0 != i_0"
+ (rule "translateJavaSubInt" (formula "31") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "31") (term "0,2,1,1"))
+ (rule "notLeft" (formula "1"))
+ (rule "impRight" (formula "31"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_homoEq" (formula "21"))
+ (rule "polySimp_homoEq" (formula "24") (term "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,1"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "30"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "polySimp_sepPosMonomial" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "applyEqRigid" (formula "6") (term "0,2,1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "7") (term "1,0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "0,2,1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0"))
+ (rule "applyEqRigid" (formula "6") (term "0,2,2,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "31") (term "1") (ifseqformula "23"))
+ (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0"))
+ (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "26") (term "0,0,1"))
+ (rule "applyEqRigid" (formula "33") (term "0,0") (ifseqformula "23"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "false_right" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,1,1") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,0") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "5") (term "0") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "8"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "2"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "castDel" (formula "2") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "inEqSimp_subsumption0" (formula "8") (term "0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "28")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0"))
+ (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0"))
+ (rule "wellFormedAnon" (formula "19") (term "1,0"))
+ (rule "replace_known_left" (formula "19") (term "1,1,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "20")))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "26") (term "0"))
+ (rule "wellFormedAnon" (formula "26") (term "1,0"))
+ (rule "wellFormedAnon" (formula "26") (term "0,1,0"))
+ (rule "replace_known_left" (formula "26") (term "0,1") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "29")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "21")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaSubInt" (formula "27") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "27") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_imp2or" (formula "25") (term "0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "26") (term "0"))
+ (rule "wellFormedAnon" (formula "26") (term "1,0"))
+ (rule "wellFormedAnon" (formula "26") (term "0,1,0"))
+ (rule "replace_known_left" (formula "26") (term "1,1,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "30")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "27")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "27") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "26") (term "0"))
+ (rule "wellFormedAnon" (formula "26") (term "1,0"))
+ (rule "wellFormedAnon" (formula "26") (term "0,1,0"))
+ (rule "replace_known_right" (formula "26") (term "0,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "21")) (ifInst "" (formula "27")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaSubInt" (formula "27") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "27") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = hole_0 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEqRigid" (formula "2") (term "1,0,2,2,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "1"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "applyEqRigid" (formula "6") (term "1,1") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_contradEq7" (formula "24") (term "1") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,1"))
+ (rule "leq_literals" (formula "24") (term "0,1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "commute_or" (formula "17") (term "0,0,1,0"))
+ (rule "commute_or" (formula "22") (term "0,0,1,0"))
+ (rule "all_pull_out3" (formula "17") (term "0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "all_pull_out3" (formula "22") (term "0"))
+ (rule "shift_paren_or" (formula "22") (term "0,0"))
+ (rule "shift_paren_or" (formula "22") (term "0,0,0"))
+ (rule "allLeft" (formula "23") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,2,0,1"))
+ (rule "add_literals" (formula "23") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "23") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10011_1" (formula "23") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "23") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "23") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "inEqSimp_commuteGeq" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "allLeft" (formula "20") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1"))
+ (rule "add_literals" (formula "20") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "20") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10011_2" (formula "20") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_10" (formula "20") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "20") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "1,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "29")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "20") (term "0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "20") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "20"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "inEqSimp_commuteGeq" (formula "20"))
+ (rule "allLeft" (formula "24") (inst "t=begin"))
+ (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "30")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_commuteGeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0"))
+ (rule "replace_known_left" (formula "24") (term "1,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "30")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "allLeft" (formula "25") (inst "t=begin<>"))
+ (rule "replaceKnownSelect_taclet0110000000010110011_24" (formula "25") (term "1,1"))
+ (rule "replaceKnownSelect_taclet0110000000010110011_22" (formula "25") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_25" (formula "25") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_23" (formula "25") (term "0,1"))
+ (rule "replace_known_left" (formula "25") (term "1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "allLeft" (formula "25") (inst "t=hole_0"))
+ (rule "replaceKnownSelect_taclet10011_1" (formula "25") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "25") (term "1,1"))
+ (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "25") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "25") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "leq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfAnon" (formula "25"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "31")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_commuteGeq" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0"))
+ (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25"))
+ (rule "hideAuxiliaryEq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_contradInEq0" (formula "25") (ifseqformula "2"))
+ (rule "andLeft" (formula "25"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "1,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0"))
+ (rule "add_literals" (formula "25") (term "0"))
+ (rule "leq_literals" (formula "25"))
+ (rule "closeFalse" (formula "25"))
+ )
+ (branch "i_1_0 = hole_0 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + hole_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "6") (term "1"))
+ (rule "add_literals" (formula "6") (term "0,1"))
+ (rule "add_zero_left" (formula "6") (term "1"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "1"))
+ (rule "polySimp_homoEq" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0"))
+ (rule "add_literals" (formula "28") (term "0"))
+ (rule "equal_literals" (formula "28"))
+ (rule "false_right" (formula "28"))
+ (rule "applyEqRigid" (formula "2") (term "0,2,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "i_1_0 = -1 + hole_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0"))
+ (rule "commute_or" (formula "17") (term "0,0,1,0"))
+ (rule "commute_or" (formula "24") (term "0,0,1,0"))
+ (rule "cut_direct" (formula "23") (term "1"))
+ (branch "CUT: k_0 = hole_0 TRUE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "23") (term "1,1,0,0") (ifseqformula "22"))
+ (rule "applyEqRigid" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,0"))
+ (rule "times_zero_1" (formula "21") (term "0"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEqRigid" (formula "6") (term "0,2,1,1") (ifseqformula "21"))
+ (rule "applyEq" (formula "16") (term "1,0,0,0,1,0") (ifseqformula "21"))
+ (rule "applyEq" (formula "22") (term "2,1,0,1,1,0,1,0") (ifseqformula "21"))
+ (rule "applyEqRigid" (formula "23") (term "1,1,1,0,0") (ifseqformula "21"))
+ (rule "applyEq" (formula "23") (term "2,1,0,0,1,0") (ifseqformula "21"))
+ (rule "applyEqRigid" (formula "22") (term "2,1,0,0,1,0,1,0") (ifseqformula "21"))
+ (rule "applyEqRigid" (formula "17") (term "1,1,1,0,0") (ifseqformula "21"))
+ (rule "applyEqRigid" (formula "16") (term "1,1,0,0") (ifseqformula "21"))
+ (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "applyEqRigid" (formula "21") (term "1,0,0,0,1,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "23") (term "0,2,1") (ifseqformula "20"))
+ (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0") (ifseqformula "20"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_contradEq3" (formula "25") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "qeq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "false_right" (formula "25"))
+ (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "24"))
+ (rule "polySimp_addAssoc" (formula "5") (term "1"))
+ (rule "add_literals" (formula "5") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "24") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "false_right" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "all_pull_out3" (formula "15") (term "0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0,0"))
+ (rule "all_pull_out3" (formula "21") (term "0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "allLeft" (formula "16") (inst "t=i_1_0"))
+ (rule "inEqSimp_contradInEq0" (formula "16") (term "1,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "16") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "16"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "26")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_commuteGeq" (formula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "16") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "16") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "16"))
+ (rule "hideAuxiliaryEq" (formula "16"))
+ (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "16"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "26")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0"))
+ (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_subsumption0" (formula "16") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "16"))
+ (rule "hideAuxiliaryEq" (formula "16"))
+ (rule "allLeft" (formula "23") (inst "t=i_1_0"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq0" (formula "23") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "pullOutSelect" (formula "23") (term "1") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "9")))
+ (rule "replaceKnownSelect_taclet011110000000010110011_20" (formula "23") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet011110000000010110011_21" (formula "23") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0"))
+ (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption0" (formula "23") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "9")))
+ (rule "replaceKnownSelect_taclet011110000000010110011_18" (formula "23") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet011110000000010110011_19" (formula "23") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (term "1,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "23") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "23"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "CUT: k_0 = hole_0 FALSE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_strengthen1" (formula "22") (ifseqformula "27"))
+ (rule "inEqSimp_contradEq7" (formula "27") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "false_right" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "all_pull_out3" (formula "17") (term "0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "all_pull_out3" (formula "24") (term "0"))
+ (rule "shift_paren_or" (formula "24") (term "0,0"))
+ (rule "shift_paren_or" (formula "24") (term "0,0,0"))
+ (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,1,1,0,0"))
+ (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (term "1,0,0,0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (term "0,0,0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "1,1,0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "31")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1,1,0") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "commute_or" (formula "24") (term "0,0"))
+ (rule "allLeft" (formula "17") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,1,1,0,0"))
+ (rule "inEqSimp_commuteGeq" (formula "17") (term "1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0,0,0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0"))
+ (rule "leq_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0,0,0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "leq_literals" (formula "17") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "pullOutSelect" (formula "17") (term "1,1,0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "17"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "32")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "17") (term "0,0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "applyEqReverse" (formula "18") (term "1,1,0") (ifseqformula "17"))
+ (rule "hideAuxiliaryEq" (formula "17"))
+ (rule "commute_or" (formula "17") (term "0,0"))
+ (rule "allLeft" (formula "19") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "replaceKnownSelect_taclet111110000000010110011_20" (formula "19") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_21" (formula "19") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,2,0,1"))
+ (rule "add_literals" (formula "19") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "19") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10011_2" (formula "19") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_10" (formula "19") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "19") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "19") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "allLeft" (formula "25") (inst "t=begin<>"))
+ (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "leq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "pullOutSelect" (formula "25") (term "1") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "25"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25"))
+ (rule "hideAuxiliaryEq" (formula "25"))
+ (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "25"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_commuteGeq" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0"))
+ (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25"))
+ (rule "hideAuxiliaryEq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "allLeft" (formula "26") (inst "t=hole_0"))
+ (rule "replaceKnownSelect_taclet10011_1" (formula "26") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "26") (term "1,1"))
+ (rule "inEqSimp_commuteGeq" (formula "26") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "26") (term "1,0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "26") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_contradInEq1" (formula "26") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfAnon" (formula "26"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "35")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_commuteGeq" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,0"))
+ (rule "replace_known_left" (formula "26") (term "1,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "26") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "26") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "26"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "allLeft" (formula "27") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "replaceKnownSelect_taclet111110000000010110011_18" (formula "27") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_19" (formula "27") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,2,0,1"))
+ (rule "add_literals" (formula "27") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "27") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10011_1" (formula "27") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "27") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "27") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (term "1,0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "27") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "27") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0"))
+ (rule "leq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "allLeft" (formula "32") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "replaceKnownSelect_taclet111110000000010110011_18" (formula "32") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_19" (formula "32") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,2,0,1"))
+ (rule "add_literals" (formula "32") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "32") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10011_1" (formula "32") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "32") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "32") (term "1"))
+ (rule "replace_known_left" (formula "32") (term "1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "allLeft" (formula "29") (inst "t=begin"))
+ (rule "replaceKnownSelect_taclet111110000000010110011_24" (formula "29") (term "0,1"))
+ (rule "replaceKnownSelect_taclet111110000000010110011_22" (formula "29") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_25" (formula "29") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_23" (formula "29") (term "1,1"))
+ (rule "replace_known_left" (formula "29") (term "1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "allLeft" (formula "29") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet110000000010110011_12" (formula "29") (term "1,1"))
+ (rule "replaceKnownSelect_taclet110000000010110011_14" (formula "29") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_13" (formula "29") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_15" (formula "29") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "29") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "29") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,1"))
+ (rule "add_literals" (formula "29") (term "0,0,1"))
+ (rule "leq_literals" (formula "29") (term "0,1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_contradInEq1" (formula "29") (term "1") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,1"))
+ (rule "add_literals" (formula "29") (term "0,0,1"))
+ (rule "leq_literals" (formula "29") (term "0,1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "29"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "22") (term "1"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,1"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0,1"))
+ (rule "inEqSimp_ltRight" (formula "27"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "mul_literals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "4") (term "1,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "20"))
+ (rule "applyEqRigid" (formula "21") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0"))
+ (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "applyEq" (formula "22") (term "1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "1,0,0,1") (ifseqformula "20"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "26"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "27") (term "3,0,0") (ifseqformula "4"))
+ (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "5"))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0"))
+ (rule "wellFormedAnon" (formula "19") (term "1,0"))
+ (rule "wellFormedAnon" (formula "19") (term "0,1,0"))
+ (rule "replace_known_left" (formula "19") (term "1,1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "22")) (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "20")))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "18") (term "0,0"))
+ (rule "wellFormedAnon" (formula "18") (term "1,0"))
+ (rule "wellFormedAnon" (formula "18") (term "0,1,0"))
+ (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "14")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0,0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0"))
+ (rule "allRight" (formula "24") (inst "sk=i_1_0"))
+ (rule "impRight" (formula "24"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "2"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "castDel" (formula "2") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "29")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "1,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "24") (term "0,0"))
+ (rule "wellFormedAnon" (formula "24") (term "1,0"))
+ (rule "wellFormedAnon" (formula "24") (term "0,1,0"))
+ (rule "replace_known_left" (formula "24") (term "0,0,1,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "30")) (ifInst "" (formula "17")) (ifInst "" (formula "20")) (ifInst "" (formula "25")))
+ (rule "true_left" (formula "24"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "24") (term "0,1"))
+ (rule "wellFormedAnon" (formula "24") (term "1,0"))
+ (rule "wellFormedAnon" (formula "24") (term "0,1,0"))
+ (rule "replace_known_right" (formula "24") (term "0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "20")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "nnf_imp2or" (formula "25") (term "0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "27") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0,0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0,1,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "25") (term "0,1") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1,0,1"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1"))
+ (rule "nnf_imp2or" (formula "25") (term "0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1"))
+ (rule "nnf_imp2or" (formula "25") (term "0,1,0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,1,0,1"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,1,0,1"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1,0,1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0,1") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,1"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0,1"))
+ (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,1,1,0,0,1"))
+ (rule "add_zero_left" (formula "24") (term "1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1"))
+ (rule "nnf_imp2or" (formula "24") (term "0,1"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1"))
+ (rule "cut_direct" (formula "26") (term "1"))
+ (branch "CUT: k_0 = hole_0 TRUE"
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "applyEq" (formula "25") (term "1,1,1,0,0,1,0,1") (ifseqformula "26"))
+ (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "26"))
+ (rule "applyEq" (formula "26") (term "2,1,0,0,1,0,1,0") (ifseqformula "25"))
+ (rule "applyEqRigid" (formula "23") (term "1,1,1,0,0,1,0,0") (ifseqformula "25"))
+ (rule "applyEqRigid" (formula "22") (term "0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,0"))
+ (rule "times_zero_1" (formula "22") (term "0"))
+ (rule "leq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "24"))
+ (rule "applyEqRigid" (formula "27") (term "0,2,1") (ifseqformula "24"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "24"))
+ (rule "applyEqRigid" (formula "25") (term "2,1,0,0,1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "24") (term "2,1,0,1,1,0,1,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "1,1,0,0,1,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "8") (term "0,2,1,1") (ifseqformula "23"))
+ (rule "applyEq" (formula "22") (term "2,1,0,1,1,0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "21") (term "1,1,0,0,1") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "21") (term "2,1,0,0,1,0,1") (ifseqformula "23"))
+ (rule "applyEq" (formula "22") (term "2,1,0,0,1,0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "25") (term "2,1,0,1,1,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "22") (term "1,1,0,0,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "22") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "1,1,0,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "21") (term "2,1,0,1,1,0,1") (ifseqformula "23"))
+ (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "22") (term "1,1,1,0,0,1") (ifseqformula "23"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "23"))
+ (rule "applyEq" (formula "25") (term "1,1,1,0,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "21") (term "2,1,0,0,1,0,1,0,0") (ifseqformula "23"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_contradEq3" (formula "2") (term "0,0") (ifseqformula "7"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "commute_or" (formula "22") (term "0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "0,0,1,0,1"))
+ (rule "commute_or" (formula "19") (term "0,0,1,0,0"))
+ (rule "impLeft" (formula "20"))
+ (branch "Case 1"
+ (rule "allRight" (formula "24") (inst "sk=i_1_1"))
+ (rule "orRight" (formula "24"))
+ (rule "orRight" (formula "24"))
+ (rule "inEqSimp_geqRight" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_leqRight" (formula "25"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "28")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "28")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "impLeft" (formula "22"))
+ (branch "Case 1"
+ (rule "allRight" (formula "26") (inst "sk=i_1_2"))
+ (rule "orRight" (formula "26"))
+ (rule "orRight" (formula "26"))
+ (rule "allRight" (formula "28") (inst "sk=j_0"))
+ (rule "orRight" (formula "28"))
+ (rule "orRight" (formula "28"))
+ (rule "inEqSimp_geqRight" (formula "27"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "27"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_geqRight" (formula "29"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "30"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "32")) (ifInst "" (formula "18")))
+ (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "2")))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "33")) (ifInst "" (formula "19")))
+ (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfAnon" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34")) (ifInst "" (formula "20")))
+ (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "8")))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0"))
+ (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "all_pull_out3" (formula "30") (term "0"))
+ (rule "shift_paren_or" (formula "30") (term "0,0"))
+ (rule "shift_paren_or" (formula "30") (term "0,0,0"))
+ (rule "allLeft" (formula "31") (inst "t=i_1_0"))
+ (rule "inEqSimp_contradInEq0" (formula "31") (term "1,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "31") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_contradInEq1" (formula "31") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0"))
+ (rule "leq_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "pullOutSelect" (formula "31") (term "1") (inst "selectSK=arr_14"))
+ (rule "simplifySelectOfAnon" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "35")) (ifInst "" (formula "19")))
+ (rule "elementOfArrayRangeConcrete" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0"))
+ (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "31") (term "0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "31") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "applyEqReverse" (formula "32") (term "1") (ifseqformula "31"))
+ (rule "hideAuxiliaryEq" (formula "31"))
+ (rule "pullOutSelect" (formula "31") (term "0") (inst "selectSK=arr_15"))
+ (rule "simplifySelectOfAnon" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "35")) (ifInst "" (formula "19")))
+ (rule "elementOfArrayRangeConcrete" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_commuteGeq" (formula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "31") (term "1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "31") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "31") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "31") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "applyEqReverse" (formula "32") (term "1") (ifseqformula "31"))
+ (rule "hideAuxiliaryEq" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_contradInEq1" (formula "11") (ifseqformula "31"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "1,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0"))
+ (rule "add_literals" (formula "11") (term "0"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ (branch "Case 2"
+ (rule "all_pull_out3" (formula "24") (term "0"))
+ (rule "shift_paren_or" (formula "24") (term "0,0"))
+ (rule "shift_paren_or" (formula "24") (term "0,0,0"))
+ (rule "allLeft" (formula "25") (inst "t=i_1_0"))
+ (rule "inEqSimp_contradInEq0" (formula "25") (term "1,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "25") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "leq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "25"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "29")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_commuteGeq" (formula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "25") (term "1,0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25"))
+ (rule "hideAuxiliaryEq" (formula "25"))
+ (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "25"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "29")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0"))
+ (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_subsumption0" (formula "25") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25"))
+ (rule "hideAuxiliaryEq" (formula "25"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "25"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_literals" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "all_pull_out3" (formula "22") (term "0"))
+ (rule "shift_paren_or" (formula "22") (term "0,0"))
+ (rule "shift_paren_or" (formula "22") (term "0,0,0"))
+ (rule "all_pull_out3" (formula "20") (term "0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "allLeft" (formula "15") (inst "t=i_1_0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq0" (formula "15") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "pullOutSelect" (formula "15") (term "1") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "15"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "27")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0"))
+ (rule "replace_known_left" (formula "15") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "15") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "15"))
+ (rule "hideAuxiliaryEq" (formula "15"))
+ (rule "pullOutSelect" (formula "15") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "15"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "27")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_commuteGeq" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (term "1,0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "15"))
+ (rule "hideAuxiliaryEq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "allLeft" (formula "24") (inst "t=i_1_0"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_contradInEq0" (formula "24") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "1") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "9")))
+ (rule "replaceKnownSelect_taclet101000000010110011_18" (formula "24") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet101000000010110011_19" (formula "24") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0"))
+ (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "24") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "9")))
+ (rule "replaceKnownSelect_taclet101000000010110011_20" (formula "24") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet101000000010110011_21" (formula "24") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_commuteGeq" (formula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (term "1,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "24"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "CUT: k_0 = hole_0 FALSE"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_strengthen1" (formula "23") (ifseqformula "29"))
+ (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "false_right" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "commute_or" (formula "26") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = hole_0 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "2") (term "0,0,0") (ifseqformula "1"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEqRigid" (formula "2") (term "1,0,2,0,1,0") (ifseqformula "1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "commute_or" (formula "20") (term "0,0,1,0"))
+ (rule "all_pull_out3" (formula "22") (term "0"))
+ (rule "shift_paren_or" (formula "22") (term "0,0"))
+ (rule "shift_paren_or" (formula "22") (term "0,0,0"))
+ (rule "all_pull_out3" (formula "20") (term "0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "allLeft" (formula "23") (inst "t=hole_0"))
+ (rule "replaceKnownSelect_taclet10011_1" (formula "23") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_5" (formula "23") (term "1,1"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "1,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "23") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (term "0,0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "23") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "24") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10011_1" (formula "24") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_5" (formula "24") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "24") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (term "1,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "24") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "25"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "i_1_0 = hole_0 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + hole_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "applyEqRigid" (formula "6") (term "1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "6") (term "1"))
+ (rule "add_literals" (formula "6") (term "0,1"))
+ (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "i_1_0 = -1 + hole_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "commute_or" (formula "22") (term "0,0,1,0"))
+ (rule "allLeft" (formula "25") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet1000000010110011_14" (formula "25") (term "0,1"))
+ (rule "replaceKnownSelect_taclet1000000010110011_12" (formula "25") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_15" (formula "25") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_13" (formula "25") (term "1,1"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "25") (term "1,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "25") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "leq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "25"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "selectOfStore" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "castDel" (formula "29") (term "1,0"))
+ (rule "selectOfAnon" (formula "29") (term "2,0"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "28")) (ifInst "" (formula "8")))
+ (rule "elementOfArrayRange" (formula "29") (term "0,2,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "selectOfAnon" (formula "29") (term "2,2,0"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "28")) (ifInst "" (formula "8")))
+ (rule "elementOfArrayRange" (formula "29") (term "0,2,2,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "29") (inst "sk=f_0"))
+ (rule "allRight" (formula "29") (inst "sk=o_0"))
+ (rule "orRight" (formula "29"))
+ (rule "orRight" (formula "29"))
+ (rule "selectOfAnon" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "elementOfArrayRange" (formula "31") (term "0,0,0,0") (inst "iv=iv"))
+ (rule "selectOfStore" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "castDel" (formula "31") (term "1,1"))
+ (rule "selectOfAnon" (formula "31") (term "2,1"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "30")))
+ (rule "elementOfArrayRange" (formula "31") (term "0,0,2,1") (inst "iv=iv"))
+ (rule "selectOfAnon" (formula "31") (term "2,2,1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "elementOfArrayRange" (formula "31") (term "0,0,0,2,2,1") (inst "iv=iv"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_12 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)"
+ (rule "false_right" (formula "25"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (rule "commute_or" (formula "1"))
+ (rule "ifElseSplit" (formula "27"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "compound_less_than_comparison_2" (formula "27") (term "1") (inst "#v1=x_5") (inst "#v0=x_4"))
+ (rule "variableDeclarationAssign" (formula "27") (term "1"))
+ (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_10"))
+ (rule "assignment" (formula "27") (term "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "variableDeclarationAssign" (formula "27") (term "1"))
+ (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_11"))
+ (rule "assignment_array2" (formula "27"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "pullOutSelect" (formula "27") (term "0,1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "7")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "8")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "less_than_comparison_simple" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "blockEmpty" (formula "29") (term "1"))
+ (rule "ifSplit" (formula "29"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eval_order_array_access3" (formula "30") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_12"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_13"))
+ (rule "assignment_array2" (formula "30"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "replaceKnownSelect_taclet012110011_3" (formula "30") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "30"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "postdecrement" (formula "30") (term "1"))
+ (rule "compound_subtraction_1" (formula "30") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_14"))
+ (rule "widening_identity_cast_5" (formula "30") (term "1"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "assignmentSubtractionInt" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "translateJavaSubInt" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,1,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,1,0"))
+ (rule "tryEmpty" (formula "30") (term "1"))
+ (rule "methodCallEmpty" (formula "30") (term "1"))
+ (rule "emptyModality" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "30"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "selectOfStore" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "castDel" (formula "30") (term "1,0"))
+ (rule "selectOfAnon" (formula "30") (term "2,0"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRange" (formula "30") (term "0,2,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "selectOfAnon" (formula "30") (term "2,2,0"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRange" (formula "30") (term "0,2,2,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "30") (inst "sk=f_0"))
+ (rule "allRight" (formula "30") (inst "sk=o_0"))
+ (rule "orRight" (formula "30"))
+ (rule "orRight" (formula "30"))
+ (rule "selectOfAnon" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "elementOfArrayRange" (formula "32") (term "0,0,0,0") (inst "iv=iv"))
+ (rule "selectOfStore" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "castDel" (formula "32") (term "1,1"))
+ (rule "selectOfAnon" (formula "32") (term "2,1"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "31")))
+ (rule "elementOfArrayRange" (formula "32") (term "0,0,2,1") (inst "iv=iv"))
+ (rule "selectOfAnon" (formula "32") (term "2,2,1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "elementOfArrayRange" (formula "32") (term "0,0,0,2,2,1") (inst "iv=iv"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_12 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "31"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "31"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "tryEmpty" (formula "30") (term "1"))
+ (rule "methodCallEmpty" (formula "30") (term "1"))
+ (rule "emptyModality" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "21")) (ifInst "" (formula "23")))
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "orRight" (formula "30"))
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "selectOfAnon" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "8")))
+ (rule "elementOfArrayRange" (formula "30") (term "0,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "selectOfAnon" (formula "30") (term "2,0"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "8")))
+ (rule "elementOfArrayRange" (formula "30") (term "0,2,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "30") (inst "sk=f_0"))
+ (rule "allRight" (formula "30") (inst "sk=o_0"))
+ (rule "orRight" (formula "30"))
+ (rule "orRight" (formula "30"))
+ (rule "selectOfAnon" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "31")))
+ (rule "elementOfArrayRange" (formula "32") (term "0,0,1") (inst "iv=iv"))
+ (rule "selectOfAnon" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "elementOfArrayRange" (formula "32") (term "0,0,0,0") (inst "iv=iv"))
+ (rule "selectOfAnon" (formula "32") (term "2,1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "elementOfArrayRange" (formula "32") (term "0,0,0,2,1") (inst "iv=iv"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")))
+ (builtin "SMTRule")
+ )
+ )
+ )
+ )
+ )
+ (branch "Use Case"
+ (builtin "One Step Simplification" (formula "15"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaSubInt" (formula "15") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "3,0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "1,0,0,0,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "16"))
+ (rule "eqSymm" (formula "18") (term "0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0"))
+ (rule "mul_literals" (formula "16") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "3,0,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "variableDeclarationAssign" (formula "23") (term "1"))
+ (rule "variableDeclaration" (formula "23") (term "1") (newnames "b_0_1"))
+ (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23")) (ifInst "" (formula "4")))
+ (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,0"))
+ (rule "pullOutSelect" (formula "20") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "24")) (ifInst "" (formula "4")))
+ (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0"))
+ (rule "commute_or" (formula "18"))
+ (rule "compound_assignment_3_nonsimple" (formula "25") (term "1"))
+ (rule "ifElseUnfold" (formula "25") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "25") (term "1") (newnames "x_3"))
+ (rule "compound_assignment_2" (formula "25") (term "1") (inst "#v=x_4"))
+ (rule "variableDeclarationAssign" (formula "25") (term "1"))
+ (rule "variableDeclaration" (formula "25") (term "1") (newnames "x_4"))
+ (rule "greater_equal_than_comparison_simple" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "compound_assignment_1_new" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "ifElseSplit" (formula "25"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "methodCallEmpty" (formula "26") (term "1"))
+ (rule "emptyModality" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "assignment_to_primitive_array_component" (formula "26"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "blockEmpty" (formula "26") (term "1"))
+ (rule "preincrement" (formula "26") (term "1"))
+ (rule "compound_int_cast_expression" (formula "26") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_5"))
+ (rule "remove_parentheses_right" (formula "26") (term "1"))
+ (rule "assignmentAdditionInt" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "26") (term "1"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "tryEmpty" (formula "26") (term "1"))
+ (rule "methodCallEmpty" (formula "26") (term "1"))
+ (rule "emptyModality" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_homoEq" (formula "18") (term "1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,1"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0,1"))
+ (rule "inEqSimp_geqRight" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_ltRight" (formula "24"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "17"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0"))
+ (rule "applyEqRigid" (formula "20") (term "1,0,0,1") (ifseqformula "17"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1"))
+ (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "17"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "replace_known_left" (formula "22") (term "0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEqReverse" (formula "24") (term "0") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "3"))
+ (rule "applyEqReverse" (formula "25") (term "3,0,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_antiSymm" (formula "15") (ifseqformula "2"))
+ (rule "applyEq" (formula "20") (term "0,0,0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "applyEq" (formula "21") (term "0,2,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "20") (term "0,2,1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "19") (term "0,2,2,0") (ifseqformula "14"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "14"))
+ (rule "applyEq" (formula "22") (term "0,2,0,0") (ifseqformula "14"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "15"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,0"))
+ (rule "times_zero_1" (formula "15") (term "0"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEq" (formula "13") (term "1,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "14"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_contradEq7" (formula "16") (term "1") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,1"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,1"))
+ (rule "leq_literals" (formula "16") (term "0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "17") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "hideAuxiliaryEq" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaAddInt" (formula "11") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0"))
+ (rule "allRight" (formula "19") (inst "sk=i_1_0"))
+ (rule "impRight" (formula "19"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfStore" (formula "2"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "castDel" (formula "2") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "23")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0"))
+ (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "20") (term "0"))
+ (rule "wellFormedAnon" (formula "20") (term "1,0"))
+ (rule "wellFormedAnon" (formula "20") (term "0,1,0"))
+ (rule "replace_known_right" (formula "20") (term "0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "17")) (ifInst "" (formula "21")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = begin TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "2") (term "1,0,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "1,1") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "all_pull_out3" (formula "17") (term "0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "allLeft" (formula "18") (inst "t=begin<>"))
+ (rule "inEqSimp_commuteGeq" (formula "18") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0"))
+ (rule "leq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "pullOutSelect" (formula "18") (term "1") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfAnon" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "23")) (ifInst "" (formula "6")))
+ (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "18") (term "0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "18") (term "0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "23")) (ifInst "" (formula "6")))
+ (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_commuteGeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,0"))
+ (rule "replace_known_left" (formula "18") (term "1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (ifseqformula "22"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "1,1,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0"))
+ (rule "add_literals" (formula "18") (term "0"))
+ (rule "leq_literals" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+ (branch "i_1_0 = begin FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_strengthen1" (formula "2") (ifseqformula "23"))
+ (rule "inEqSimp_contradEq7" (formula "23") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "false_right" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "all_pull_out3" (formula "19") (term "0"))
+ (rule "shift_paren_or" (formula "19") (term "0,0"))
+ (rule "shift_paren_or" (formula "19") (term "0,0,0"))
+ (rule "allLeft" (formula "20") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet1000020011_10" (formula "20") (term "1,1"))
+ (rule "replaceKnownSelect_taclet1000020011_8" (formula "20") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1000020011_11" (formula "20") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1000020011_9" (formula "20") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "20") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "20") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "20") (term "0,0,1"))
+ (rule "leq_literals" (formula "20") (term "0,1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "20") (term "0,0,1"))
+ (rule "leq_literals" (formula "20") (term "0,1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "3"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "26") (inst "sk=f_0"))
+ (rule "allRight" (formula "26") (inst "sk=o_0"))
+ (rule "orRight" (formula "26"))
+ (rule "orRight" (formula "26"))
+ (rule "selectOfStore" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "castDel" (formula "28") (term "1,1"))
+ (rule "selectOfAnon" (formula "28") (term "2,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "elementOfArrayRange" (formula "28") (term "0,0,0,2,1") (inst "iv=iv"))
+ (rule "selectOfAnon" (formula "28") (term "2,2,1"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27")))
+ (rule "elementOfArrayRange" (formula "28") (term "0,0,2,2,1") (inst "iv=iv"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but hole Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "compound_less_than_comparison_2" (formula "26") (term "1") (inst "#v1=x_1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_5"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_6"))
+ (rule "assignment_array2" (formula "26"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "pullOutSelect" (formula "26") (term "0,1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")) (ifInst "" (formula "6")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "7")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "less_than_comparison_simple" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "methodCallEmpty" (formula "28") (term "1"))
+ (rule "emptyModality" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "impRight" (formula "28"))
+ (rule "notLeft" (formula "1"))
+ (rule "assignment_to_primitive_array_component" (formula "29"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "blockEmpty" (formula "29") (term "1"))
+ (rule "preincrement" (formula "29") (term "1"))
+ (rule "compound_int_cast_expression" (formula "29") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_7"))
+ (rule "remove_parentheses_right" (formula "29") (term "1"))
+ (rule "assignmentAdditionInt" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "translateJavaAddInt" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "29") (term "1"))
+ (rule "assignment" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "tryEmpty" (formula "29") (term "1"))
+ (rule "methodCallEmpty" (formula "29") (term "1"))
+ (rule "emptyModality" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i_1") (userinteraction))
+ (builtin "One Step Simplification" (formula "29") (userinteraction))
+ (rule "allRight" (formula "29") (inst "sk=i_1_0") (userinteraction))
+ (rule "orLeft" (formula "21") (userinteraction))
+ (branch " de.wiesler.Functions.isSortedSlice(values, begin, 1 + k_0) @heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] = TRUE"
+ (rule "translateJavaAddInt" (formula "29") (term "0,2,1,1"))
+ (rule "translateJavaSubInt" (formula "29") (term "1,1,0"))
+ (rule "impRight" (formula "29"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "20"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "inEqSimp_ltRight" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "29"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "4"))
+ (rule "polySimp_sepPosMonomial" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "applyEqRigid" (formula "6") (term "0,2,1,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "7") (term "1,0,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0"))
+ (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "0,2,1,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "6") (term "0,2,2,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,0,0"))
+ (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,1,1") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,0") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "8"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "2"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "castDel" (formula "2") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "inEqSimp_subsumption0" (formula "8") (term "0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "28")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0"))
+ (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "25") (term "0"))
+ (rule "wellFormedAnon" (formula "25") (term "1,0"))
+ (rule "wellFormedAnon" (formula "25") (term "0,1,0"))
+ (rule "replace_known_right" (formula "25") (term "0,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "20")) (ifInst "" (formula "26")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "25") (term "0"))
+ (rule "wellFormedAnon" (formula "25") (term "1,0"))
+ (rule "wellFormedAnon" (formula "25") (term "0,1,0"))
+ (rule "replace_known_left" (formula "25") (term "1,1,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "29")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "26")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "26") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = hole_0 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "1,0,2,2,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "8") (term "1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "1"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "commute_or" (formula "21") (term "0,0,1,0"))
+ (rule "all_pull_out3" (formula "21") (term "0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "allLeft" (formula "17") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,2,0,1"))
+ (rule "add_literals" (formula "17") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "17") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet20011_2" (formula "17") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010000120011_10" (formula "17") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "17") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "leq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "pullOutSelect" (formula "17") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "17"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "26")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "17") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "17"))
+ (rule "hideAuxiliaryEq" (formula "17"))
+ (rule "inEqSimp_commuteGeq" (formula "17"))
+ (rule "allLeft" (formula "23") (inst "t=add(Z(neglit(1(#))), hole_0)"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,2,0,1"))
+ (rule "add_literals" (formula "23") (term "0,0,2,0,1"))
+ (rule "add_zero_left" (formula "23") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet20011_1" (formula "23") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010000120011_5" (formula "23") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "23") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "10")))
+ (rule "replaceKnownSelect_taclet0010000120011_18" (formula "23") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0010000120011_19" (formula "23") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "23") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "inEqSimp_commuteGeq" (formula "23"))
+ (rule "allLeft" (formula "21") (inst "t=begin"))
+ (rule "inEqSimp_commuteGeq" (formula "21") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "pullOutSelect" (formula "21") (term "1") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "28")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "28")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_commuteGeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0"))
+ (rule "replace_known_left" (formula "21") (term "1,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "allLeft" (formula "22") (inst "t=hole_0"))
+ (rule "replaceKnownSelect_taclet20011_1" (formula "22") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010000120011_5" (formula "22") (term "1,1"))
+ (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "1,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfAnon" (formula "22"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "29")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_commuteGeq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0"))
+ (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "22") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "22"))
+ (rule "hideAuxiliaryEq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "28"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0"))
+ (rule "add_literals" (formula "22") (term "0"))
+ (rule "leq_literals" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ (branch "i_1_0 = hole_0 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + hole_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "7") (term "1"))
+ (rule "add_literals" (formula "7") (term "0,1"))
+ (rule "add_zero_left" (formula "7") (term "1"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "1"))
+ (rule "polySimp_homoEq" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_literals" (formula "26") (term "0"))
+ (rule "equal_literals" (formula "26"))
+ (rule "false_right" (formula "26"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "2"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_literals" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "i_1_0 = -1 + hole_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "commute_or" (formula "23") (term "0,0,1,0"))
+ (rule "all_pull_out3" (formula "23") (term "0"))
+ (rule "shift_paren_or" (formula "23") (term "0,0"))
+ (rule "shift_paren_or" (formula "23") (term "0,0,0"))
+ (rule "allLeft" (formula "22") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet010000120011_12" (formula "22") (term "1,1"))
+ (rule "replaceKnownSelect_taclet010000120011_14" (formula "22") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010000120011_13" (formula "22") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010000120011_15" (formula "22") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1"))
+ (rule "add_literals" (formula "22") (term "0,0,1"))
+ (rule "leq_literals" (formula "22") (term "0,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "6"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0"))
+ (rule "add_literals" (formula "22") (term "0"))
+ (rule "leq_literals" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ )
+ )
+ (branch "-1 + k_0 = i_0"
+ (rule "translateJavaAddInt" (formula "29") (term "0,2,1,1"))
+ (rule "translateJavaSubInt" (formula "29") (term "1,1,0"))
+ (rule "impRight" (formula "29"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "20"))
+ (rule "polySimp_homoEq" (formula "23"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "29"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "4"))
+ (rule "polySimp_sepPosMonomial" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "applyEq" (formula "6") (term "0,2,1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,0,0"))
+ (rule "applyEqRigid" (formula "7") (term "1,0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "7") (term "0,2,1,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0"))
+ (rule "applyEq" (formula "6") (term "0,2,2,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0"))
+ (rule "applyEqRigid" (formula "26") (term "1,0,0") (ifseqformula "23"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "applyEq" (formula "9") (term "0,1,0,0") (ifseqformula "26"))
+ (rule "applyEqRigid" (formula "21") (term "3,0") (ifseqformula "26"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "26"))
+ (rule "applyEqRigid" (formula "9") (term "0,2,1,0") (ifseqformula "26"))
+ (rule "applyEqRigid" (formula "19") (term "0,1,0") (ifseqformula "26"))
+ (rule "applyEqRigid" (formula "7") (term "0,0,0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0"))
+ (rule "leq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "3") (term "0,1,0") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "applyEqRigid" (formula "27") (term "0,1,0,0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "27") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "27") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "applyEqRigid" (formula "25") (term "2,1,0,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "9") (term "1,0") (ifseqformula "24"))
+ (rule "applyEqRigid" (formula "8") (term "0,2,2,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "1") (term "2,1,0,0,0,1,0") (ifseqformula "24"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEqRigid" (formula "25") (term "3,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "24"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "applyEqRigid" (formula "8") (term "0,0,0,0") (ifseqformula "24"))
+ (rule "applyEqRigid" (formula "23") (term "0,1,0") (ifseqformula "24"))
+ (rule "polySimp_pullOutFactor1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "1,0"))
+ (rule "times_zero_1" (formula "23") (term "0"))
+ (rule "leq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "25"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,0,1,0,0") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,1,0") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "3") (term "0,0") (ifseqformula "8"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "inEqSimp_commuteGeq" (formula "26"))
+ (rule "applyEq" (formula "1") (term "2,1,0,0,1,0") (ifseqformula "22"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0"))
+ (rule "replace_known_left" (formula "6") (term "0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,1,0,0") (ifseqformula "23"))
+ (rule "applyEqReverse" (formula "3") (term "0,0") (ifseqformula "23"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,0,1,0") (ifseqformula "23"))
+ (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "22")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption0" (formula "1") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "11")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "16") (term "0"))
+ (rule "wellFormedAnon" (formula "16") (term "1,0"))
+ (rule "replace_known_left" (formula "16") (term "0,1,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "23")) (ifInst "" (formula "15")) (ifInst "" (formula "17")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "16") (term "0"))
+ (rule "wellFormedAnon" (formula "16") (term "1,0"))
+ (rule "replace_known_left" (formula "16") (term "0,1") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "24")) (ifInst "" (formula "9")) (ifInst "" (formula "15")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "17") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0"))
+ (rule "commute_or" (formula "16") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + hole_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "applyEqRigid" (formula "2") (term "0,2,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6"))
+ (rule "polySimp_pullOutFactor1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,0"))
+ (rule "times_zero_1" (formula "6") (term "0"))
+ (rule "qeq_literals" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "4"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "i_1_0 = -1 + hole_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "22"))
+ (rule "polySimp_addAssoc" (formula "5") (term "1"))
+ (rule "add_literals" (formula "5") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "22") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "false_right" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "7"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "all_pull_out3" (formula "15") (term "0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0,0"))
+ (rule "allLeft" (formula "20") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet110000120011_11" (formula "20") (term "1,1"))
+ (rule "replaceKnownSelect_taclet110000120011_14" (formula "20") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000120011_12" (formula "20") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110000120011_15" (formula "20") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "20") (term "1,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_literals" (formula "20") (term "0"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "29") (inst "sk=f_0"))
+ (rule "allRight" (formula "29") (inst "sk=o_0"))
+ (rule "orRight" (formula "29"))
+ (rule "orRight" (formula "29"))
+ (rule "selectOfStore" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "castDel" (formula "31") (term "1,1"))
+ (rule "selectOfAnon" (formula "31") (term "2,1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "elementOfArrayRange" (formula "31") (term "0,0,0,2,1") (inst "iv=iv"))
+ (rule "selectOfAnon" (formula "31") (term "2,2,1"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "30")))
+ (rule "elementOfArrayRange" (formula "31") (term "0,0,2,2,1") (inst "iv=iv"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but hole Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (builtin "SMTRule")
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but k Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15")))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Use Case"
+ (builtin "One Step Simplification" (formula "11"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "polySimp_elimSub" (formula "13") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "2,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "2,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "b_1"))
+ (rule "less_than_comparison_simple" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallEmpty" (formula "13") (term "1"))
+ (rule "emptyModality" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "impRight" (formula "13"))
+ (rule "notLeft" (formula "1"))
+ (rule "methodCallEmpty" (formula "14") (term "1"))
+ (rule "tryEmpty" (formula "14") (term "1"))
+ (rule "emptyModality" (formula "14") (term "1"))
+ (rule "andRight" (formula "14"))
+ (branch "Case 1"
+ (rule "andRight" (formula "14"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "14"))
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "closeTrue" (formula "14"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "allRight" (formula "14") (inst "sk=f_0"))
+ (rule "allRight" (formula "14") (inst "sk=o_0"))
+ (rule "orRight" (formula "14"))
+ (rule "orRight" (formula "14"))
+ (rule "selectOfAnon" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "15")))
+ (rule "elementOfArrayRange" (formula "16") (term "0,0,1") (inst "iv=iv"))
+ (builtin "SMTRule")
+ )
+ )
+)
+)
+}
diff --git a/src/main/java/de/wiesler/notes.tmp b/src/main/java/de/wiesler/notes.tmp
new file mode 100644
index 0000000..1695e56
--- /dev/null
+++ b/src/main/java/de/wiesler/notes.tmp
@@ -0,0 +1,43 @@
+
+
+sp(su(cur),old)
+
+before = su(cur)
+
+su(cur') = swap(before, i, hole)
+
+---------------
+
+sp(su(cur'), old)
+
+
+sp(swap(before, i, hole), old)
+
+
+cut: sp(swap(before, i, hole), before)
+
+
+
+
+
+
+1 2 4 5 3
+
+1 2 4 5 5
+ 3
+
+1 2 4 4 5
+ 3
+ ^ hole
+ ^ i
+
+ ^ hole
+ ^ i
+
+1 2 4 3 5
+
+
+
+upd(S, hole, value)
+
+
diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..562a43c
--- /dev/null
+++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,4908 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 15:23:19 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 15:23:19 CEST 2022
+contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:BucketPointers([I,int,int,[I)].JML normal_behavior operation contract.0
+name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:BucketPointers([I,int,int,[I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "14944")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "12"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "15"))
+(rule "translateJavaAddInt" (formula "9") (term "3,0"))
+(rule "translateJavaAddInt" (formula "10") (term "0"))
+(rule "translateJavaMulInt" (formula "13") (term "1"))
+(rule "translateJavaMulInt" (formula "14") (term "0"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_mulComm0" (formula "13") (term "1"))
+(rule "polySimp_mulComm0" (formula "14") (term "0"))
+(rule "polySimp_addComm0" (formula "9") (term "3,0"))
+(rule "polySimp_addComm0" (formula "10") (term "0"))
+(rule "disjointDefinition" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+(rule "notLeft" (formula "18"))
+(rule "eqSymm" (formula "18"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "assignment" (formula "21") (term "1"))
+ (builtin "One Step Simplification" (formula "21"))
+(rule "variableDeclarationAssign" (formula "21") (term "1"))
+(rule "variableDeclaration" (formula "21") (term "1") (newnames "self_25"))
+(rule "arrayLengthIsAShort" (formula "14") (term "0"))
+(rule "expand_inShort" (formula "14"))
+(rule "replace_short_MIN" (formula "14") (term "0,1"))
+(rule "replace_short_MAX" (formula "14") (term "1,0"))
+(rule "andLeft" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "arrayLengthNotNegative" (formula "16") (term "0"))
+(rule "arrayLengthNotNegative" (formula "10") (term "0"))
+(rule "arrayLengthIsAShort" (formula "11") (term "0"))
+(rule "expand_inShort" (formula "11"))
+(rule "replace_short_MAX" (formula "11") (term "1,0"))
+(rule "replace_short_MIN" (formula "11") (term "0,1"))
+(rule "andLeft" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "27") (term "1") (inst "#v0=b"))
+(rule "variableDeclaration" (formula "27") (term "1") (newnames "b"))
+(rule "methodBodyExpand" (formula "27") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "variableDeclaration" (formula "27") (term "1") (newnames "__NEW__"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "27") (term "1") (inst "#v0=b_1"))
+(rule "variableDeclaration" (formula "27") (term "1") (newnames "b_1"))
+(rule "allocateInstance" (formula "27"))
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "blockEmpty" (formula "30") (term "1"))
+(rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodCallWithinClass" (formula "30") (term "1"))
+(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodCallSuper" (formula "30") (term "1"))
+(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodCallEmpty" (formula "30") (term "1"))
+(rule "blockEmpty" (formula "30") (term "1"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodCallEmpty" (formula "30") (term "1"))
+(rule "blockEmpty" (formula "30") (term "1"))
+(rule "methodCallReturnIgnoreResult" (formula "30") (term "1"))
+(rule "methodCallReturn" (formula "30") (term "1"))
+(rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodCallEmpty" (formula "30") (term "1"))
+(rule "blockEmpty" (formula "30") (term "1"))
+(rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "blockEmpty" (formula "30") (term "1"))
+(rule "variableDeclarationAssign" (formula "30") (term "1"))
+(rule "variableDeclaration" (formula "30") (term "1") (newnames "var"))
+(rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "variableDeclarationAssign" (formula "30") (term "1"))
+(rule "variableDeclaration" (formula "30") (term "1") (newnames "var_1"))
+(rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "variableDeclarationAssign" (formula "30") (term "1"))
+(rule "variableDeclaration" (formula "30") (term "1") (newnames "var_2"))
+(rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "variableDeclarationAssign" (formula "30") (term "1"))
+(rule "variableDeclaration" (formula "30") (term "1") (newnames "var_3"))
+(rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_,varBefore_,var_1Before_,var_2Before_,var_3Before_,readBefore_,startBefore_,stopBefore_"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodCallSuper" (formula "30") (term "1"))
+(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "methodCallEmpty" (formula "30") (term "1"))
+(rule "blockEmpty" (formula "30") (term "1"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "assignment_write_attribute_this" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "Block Contract (Internal)" (formula "30") (newnames "exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+(branch "Validity"
+ (builtin "One Step Simplification" (formula "31"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "9")) (ifInst "" (formula "27")) (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaAddInt" (formula "32") (term "1,3,0,1,0,0"))
+ (rule "eqSymm" (formula "32") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "32") (term "1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "1,3,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "1,3,0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,3,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,3,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,3,0,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,3,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,3,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,3,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,3,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,3,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0"))
+ (rule "variableDeclarationAssign" (formula "32") (term "1"))
+ (rule "variableDeclaration" (formula "32") (term "1") (newnames "exc_25_1"))
+ (rule "assignment" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "emptyStatement" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "emptyStatement" (formula "32") (term "1"))
+ (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "26"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "29")))
+ (rule "castDel" (formula "26") (term "0"))
+ (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "tryEmpty" (formula "31") (term "1"))
+ (rule "blockEmptyLabel" (formula "31") (term "1"))
+ (rule "blockEmpty" (formula "31") (term "1"))
+ (rule "methodCallEmpty" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "emptyModality" (formula "31") (term "1"))
+ (rule "andRight" (formula "31"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeTrue" (formula "31"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeTrue" (formula "31"))
+ )
+)
+(branch "Precondition"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "9")))
+ (rule "closeTrue" (formula "30"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "wellFormedStorePrimitive" (formula "30"))
+ (rule "wellFormedStorePrimitive" (formula "30"))
+ (rule "wellFormedStorePrimitive" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "22"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "wellFormedStoreObject" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "wellFormedStorePrimitive" (formula "26"))
+ (rule "wellFormedCreate" (formula "26"))
+ (rule "close" (formula "26") (ifseqformula "2"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "30"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "translateJavaAddInt" (formula "30") (term "1,3,0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "1,3,0,0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "2,3,0,0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "20"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "closeTrue" (formula "27"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "30"))
+ )
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "31"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,0,1"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "27"))
+ (rule "translateJavaAddInt" (formula "34") (term "1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "1,3,0,0,1"))
+ (rule "translateJavaAddInt" (formula "28") (term "1,3,0,0,0"))
+ (rule "translateJavaAddInt" (formula "27") (term "1,3,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "27") (term "1,3,0,0,1,0"))
+ (rule "eqSymm" (formula "27") (term "1,0"))
+ (rule "replace_known_left" (formula "26") (term "0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "polySimp_addComm0" (formula "33") (term "1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,3,0,0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,3,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,3,0,0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,0,1,0"))
+ (rule "eqSymm" (formula "26") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "pullOutSelect" (formula "27") (term "0,0") (inst "selectSK=de_wiesler_BucketPointers_bucket_starts_0"))
+ (rule "simplifySelectOfStore" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "castDel" (formula "27") (term "0"))
+ (rule "applyEq" (formula "26") (term "3,0,0,1,0") (ifseqformula "27"))
+ (rule "applyEq" (formula "34") (term "3,0,1,0") (ifseqformula "27"))
+ (rule "eqSymm" (formula "26") (term "1,0"))
+ (rule "commute_and_2" (formula "26") (term "0,0"))
+ (rule "elim_double_block_2" (formula "34") (term "1"))
+ (rule "commute_and" (formula "26") (term "1,0,0,0"))
+ (rule "shift_paren_and" (formula "26") (term "0,0,0"))
+ (rule "commute_and" (formula "26") (term "0,0,0,0"))
+ (rule "ifUnfold" (formula "34") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "replace_known_left" (formula "34") (term "0,0,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "ifSplit" (formula "34"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "34") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "for_to_while" (formula "34") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "bucket"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "loopScopeInvDia" (formula "34") (term "1") (newnames "bucket_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "34"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "impRight" (formula "35"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaMulInt" (formula "38") (term "0,2,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "38") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "2,1,0,1,0,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,1,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,1,0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,1,0,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "38") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "2,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,2,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,1,1,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,1,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0,0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0,0,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,0,0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,2,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,1,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "pullOutSelect" (formula "38") (term "0,1,0,1,0,1,0") (inst "selectSK=de_wiesler_BucketPointers_buffer_0"))
+ (rule "applyEq" (formula "4") (term "0,1,0,0,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0,1,0,1,0,0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0,1,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0,1,0,0,0,0,0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0,1,0,0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0,1,0,1,0,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0,1,0,0,0,0,0,1,1,0") (ifseqformula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "4") (term "0,1,0,0,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "39") (term "0,1,0,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "4") (term "0,1,0,1,0,0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "4") (term "0,1,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "4") (term "0,1,0,0,0,0,0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "4") (term "0,1,0,0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "4") (term "0,1,0,1,0,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "4") (term "0,1,0,0,0,0,0,1,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "variableDeclaration" (formula "38") (term "1") (newnames "x_1"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "0,1,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0,0"))
+ (rule "equalityToSeqGetAndSeqLenLeft" (formula "31") (inst "iv=iv"))
+ (rule "andLeft" (formula "31"))
+ (rule "applyEq" (formula "32") (term "0,0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "ifElseUnfold" (formula "38") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "38") (term "1") (newnames "x_2"))
+ (rule "less_than_comparison_simple" (formula "38") (term "1"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "ifElseSplit" (formula "38"))
+ (branch "if x_2 true"
+ (builtin "Block Contract (Internal)" (formula "39") (newnames "exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "14")) (ifInst "" (formula "36")) (ifInst "" (formula "6")))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "34"))
+ (rule "eqSymm" (formula "41") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "41") (term "1"))
+ (rule "variableDeclaration" (formula "41") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "emptyStatement" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "emptyStatement" (formula "41") (term "1"))
+ (rule "pullOutSelect" (formula "35") (term "0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "38")))
+ (rule "castDel" (formula "35") (term "0"))
+ (rule "applyEqReverse" (formula "36") (term "0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "tryEmpty" (formula "40") (term "1"))
+ (rule "blockEmptyLabel" (formula "40") (term "1"))
+ (rule "blockEmpty" (formula "40") (term "1"))
+ (rule "methodCallEmpty" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "emptyModality" (formula "40") (term "1"))
+ (rule "andRight" (formula "40"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "closeTrue" (formula "40"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "closeTrue" (formula "40"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "39"))
+ (branch "Case 1"
+ (rule "andRight" (formula "39"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "39"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "wellFormedAnon" (formula "39"))
+ (rule "replace_known_left" (formula "39") (term "1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "wellFormedStoreObject" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "32")))
+ (rule "wellFormedStorePrimitive" (formula "34") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "34") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "34") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "34") (term "0"))
+ (rule "wellFormedCreate" (formula "34") (term "0"))
+ (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "applyEqReverse" (formula "35") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "35") (ifseqformula "11"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "39"))
+ (branch "Case 1"
+ (rule "andRight" (formula "39"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "35")))
+ (rule "closeTrue" (formula "39"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "orRight" (formula "39"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "35") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "closeTrue" (formula "35"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "6")))
+ (rule "closeTrue" (formula "39"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "36"))
+ (rule "translateJavaAddInt" (formula "38") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "0,2,1"))
+ (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_0"))
+ (rule "applyEq" (formula "37") (term "1") (ifseqformula "35"))
+ (rule "simplifySelectOfAnon" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43")))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "35") (term "0,0,0"))
+ (rule "eqSymm" (formula "35") (term "0,0,0,0,0"))
+ (rule "replace_known_right" (formula "35") (term "0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "35") (term "0"))
+ (rule "pullOutSelect" (formula "38") (term "1") (inst "selectSK=arr_1"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "simplifySelectOfAnon" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "44")))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "38") (term "0,0,0"))
+ (rule "eqSymm" (formula "38") (term "0,0,0,0,0"))
+ (rule "replace_known_right" (formula "38") (term "0,0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "ifthenelse_negated" (formula "38") (term "0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "1,0"))
+ (rule "pullOutSelect" (formula "39") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "45")))
+ (rule "dismissNonSelectedField" (formula "39") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "39") (term "0,0,0"))
+ (rule "eqSymm" (formula "39") (term "0,0,0,0,0"))
+ (rule "replace_known_right" (formula "39") (term "0,0,0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "dismissNonSelectedField" (formula "39") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "39") (term "0"))
+ (rule "dismissNonSelectedField" (formula "39") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "35") (term "1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfCreate" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43")))
+ (rule "applyEqReverse" (formula "36") (term "1,0") (ifseqformula "35"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "pullOutSelect" (formula "35") (term "0,0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "applyEq" (formula "39") (term "0,0,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "40") (term "0,0,0") (ifseqformula "35"))
+ (rule "simplifySelectOfCreate" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43")))
+ (rule "castDel" (formula "35") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "35") (term "0,0"))
+ (rule "replace_known_right" (formula "35") (term "1,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43")))
+ (rule "applyEqReverse" (formula "39") (term "0,0,0") (ifseqformula "35"))
+ (rule "applyEqReverse" (formula "40") (term "0,0,0") (ifseqformula "35"))
+ (rule "applyEqReverse" (formula "36") (term "0,0,0") (ifseqformula "35"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "replace_known_left" (formula "38") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "simplifySelectOfCreate" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "42")))
+ (rule "applyEqReverse" (formula "40") (term "1") (ifseqformula "38"))
+ (rule "applyEqReverse" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "hideAuxiliaryEq" (formula "38"))
+ (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "35"))
+ (rule "applyEqReverse" (formula "37") (term "1") (ifseqformula "35"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "replace_known_left" (formula "37") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "simplifySelectOfCreate" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "40")))
+ (rule "applyEqReverse" (formula "38") (term "0") (ifseqformula "37"))
+ (rule "hideAuxiliaryEq" (formula "37"))
+ (rule "elim_double_block_2" (formula "43") (term "1"))
+ (rule "ifUnfold" (formula "43") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "43") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "43") (term "1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "replace_known_left" (formula "43") (term "0,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "ifSplit" (formula "43"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "44"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "44"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "43") (term "1"))
+ (rule "variableDeclarationAssign" (formula "43") (term "1"))
+ (rule "variableDeclaration" (formula "43") (term "1") (newnames "start"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "43") (term "1"))
+ (rule "variableDeclarationAssign" (formula "43") (term "1"))
+ (rule "variableDeclaration" (formula "43") (term "1") (newnames "var_4"))
+ (rule "assignment_array2" (formula "43"))
+ (branch "Normal Execution (var != null)"
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "replaceKnownSelect_taclet20112_3" (formula "43") (term "0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20112_12" (formula "43") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "43") (newnames "heapBefore_align_to_next_block,result_21,exc_27") (contract "de.wiesler.Buffers[de.wiesler.Buffers::align_to_next_block(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "38") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "eqSymm" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "assignment" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "blockEmpty" (formula "47") (term "1"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "stop"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "47") (term "1"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "var_5"))
+ (rule "eval_order_array_access5" (formula "47") (term "1") (inst "#v1=x_2") (inst "#ar1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_4"))
+ (rule "assignmentAdditionInt" (formula "47") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "expand_inInt" (formula "47"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "1"))
+ (rule "mul_literals" (formula "47") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,1"))
+ (rule "add_literals" (formula "47") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1"))
+ (rule "mul_literals" (formula "47") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "46") (term "1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "46") (term "0,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_leqRight" (formula "46"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "neg_literal" (formula "21") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "21"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "20"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,0"))
+ (rule "assignment_array2" (formula "47"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "replaceKnownSelect_taclet20112_4" (formula "47") (term "0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20112_11" (formula "47") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "47") (newnames "heapBefore_align_to_next_block_0,result_22,exc_28") (contract "de.wiesler.Buffers[de.wiesler.Buffers::align_to_next_block(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "expand_inInt" (formula "42") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "eqSymm" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "51") (newnames "exc_29,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "14")) (ifInst "" (formula "48")) (ifInst "" (formula "6")))
+ (rule "andLeft" (formula "46"))
+ (rule "eqSymm" (formula "53") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "47") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "47") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "47") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "47") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "47") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "exc_29_1"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "emptyStatement" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "emptyStatement" (formula "53") (term "1"))
+ (rule "pullOutSelect" (formula "47") (term "0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "47"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "50")))
+ (rule "castDel" (formula "47") (term "0"))
+ (rule "applyEqReverse" (formula "48") (term "0,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "hideAuxiliaryEq" (formula "47"))
+ (rule "tryEmpty" (formula "52") (term "1"))
+ (rule "blockEmptyLabel" (formula "52") (term "1"))
+ (rule "blockEmpty" (formula "52") (term "1"))
+ (rule "methodCallEmpty" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "emptyModality" (formula "52") (term "1"))
+ (rule "andRight" (formula "52"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "closeTrue" (formula "52"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "closeTrue" (formula "52"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "51"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "wellFormedAnon" (formula "51"))
+ (rule "replace_known_left" (formula "51") (term "1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "wellFormedStoreObject" (formula "46"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "44")))
+ (rule "wellFormedStorePrimitive" (formula "46") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "46") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "46") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "46") (term "0"))
+ (rule "wellFormedCreate" (formula "46") (term "0"))
+ (rule "replace_known_left" (formula "46") (term "0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "dismissNonSelectedField" (formula "46") (term "0"))
+ (rule "dismissNonSelectedField" (formula "46") (term "0"))
+ (rule "dismissNonSelectedField" (formula "46") (term "0"))
+ (rule "dismissNonSelectedField" (formula "46") (term "0"))
+ (rule "pullOutSelect" (formula "46") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "45")))
+ (rule "applyEqReverse" (formula "47") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "47") (ifseqformula "11"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "47")))
+ (rule "closeTrue" (formula "51"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "orRight" (formula "51"))
+ (rule "dismissNonSelectedField" (formula "51") (term "0"))
+ (rule "dismissNonSelectedField" (formula "51") (term "0"))
+ (rule "dismissNonSelectedField" (formula "51") (term "0"))
+ (rule "dismissNonSelectedField" (formula "51") (term "0"))
+ (rule "dismissNonSelectedField" (formula "51") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "pullOutSelect" (formula "46") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "47") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "closeTrue" (formula "47"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "6")))
+ (rule "closeTrue" (formula "51"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "46"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "eqSymm" (formula "48"))
+ (rule "translateJavaAddInt" (formula "49") (term "2,1"))
+ (rule "eqSymm" (formula "49"))
+ (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "polySimp_addComm0" (formula "48") (term "2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "elim_double_block_2" (formula "55") (term "1"))
+ (rule "ifUnfold" (formula "55") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "55") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "replace_known_left" (formula "55") (term "0,0,1,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "ifSplit" (formula "55"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "56"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "56"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "55") (term "1"))
+ (rule "variableDeclarationAssign" (formula "55") (term "1"))
+ (rule "variableDeclaration" (formula "55") (term "1") (newnames "read"))
+ (rule "assignment" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (builtin "Block Contract (Internal)" (formula "55") (newnames "anonOut_heap,exc_0,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,read_Before_BLOCK#0,o,f,anonOut_read"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "14")) (ifInst "" (formula "52")) (ifInst "" (formula "6")))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "50") (term "1,0,1,0"))
+ (rule "expand_inInt" (formula "50") (term "1,1,0"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "50") (term "0,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,0,0,0,1,0"))
+ (rule "leq_literals" (formula "50") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "42")) (ifInst "" (formula "38")) (ifInst "" (formula "11")))
+ (rule "leq_literals" (formula "50") (term "1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "dismissNonSelectedField" (formula "54") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "54") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "54") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "54") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "54") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "variableDeclarationAssign" (formula "57") (term "1"))
+ (rule "variableDeclaration" (formula "57") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "pullOutSelect" (formula "51") (term "0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "51"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "54")))
+ (rule "castDel" (formula "51") (term "0"))
+ (rule "applyEqReverse" (formula "52") (term "0,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "hideAuxiliaryEq" (formula "51"))
+ (rule "ifElseUnfold" (formula "56") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_6"))
+ (rule "less_equal_than_comparison_simple" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "16") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "16") (term "0"))
+ (rule "expand_inShort" (formula "16"))
+ (rule "replace_short_MIN" (formula "16") (term "0,1"))
+ (rule "replace_short_MAX" (formula "16") (term "1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "equalityToSeqGetAndSeqLenLeft" (formula "32") (inst "iv=iv"))
+ (rule "andLeft" (formula "32"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "applyEq" (formula "32") (term "0,0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "ifElseSplit" (formula "56"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "assignment" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "tryEmpty" (formula "57") (term "1"))
+ (rule "blockEmptyLabel" (formula "57") (term "1"))
+ (rule "blockEmpty" (formula "57") (term "1"))
+ (rule "methodCallEmpty" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "emptyModality" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "closeTrue" (formula "57"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "ifElseUnfold" (formula "57") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "57") (term "1") (newnames "x_7"))
+ (rule "less_equal_than_comparison_simple" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "ifElseSplit" (formula "57"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "58"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "assignment" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "tryEmpty" (formula "58") (term "1"))
+ (rule "blockEmptyLabel" (formula "58") (term "1"))
+ (rule "blockEmpty" (formula "58") (term "1"))
+ (rule "methodCallEmpty" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "emptyModality" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "closeTrue" (formula "58"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "58"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "assignment" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "tryEmpty" (formula "58") (term "1"))
+ (rule "blockEmptyLabel" (formula "58") (term "1"))
+ (rule "blockEmpty" (formula "58") (term "1"))
+ (rule "methodCallEmpty" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "emptyModality" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "closeTrue" (formula "58"))
+ )
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "55"))
+ (branch
+ (rule "andRight" (formula "55"))
+ (branch
+ (rule "andRight" (formula "55"))
+ (branch
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "55"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "wellFormedAnon" (formula "55"))
+ (rule "replace_known_left" (formula "55") (term "1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "26"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "wellFormedStoreObject" (formula "50"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "48")))
+ (rule "wellFormedStorePrimitive" (formula "50") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "50") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "50") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "50") (term "0"))
+ (rule "wellFormedCreate" (formula "50") (term "0"))
+ (rule "replace_known_left" (formula "50") (term "0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "dismissNonSelectedField" (formula "50") (term "0"))
+ (rule "dismissNonSelectedField" (formula "50") (term "0"))
+ (rule "dismissNonSelectedField" (formula "50") (term "0"))
+ (rule "dismissNonSelectedField" (formula "50") (term "0"))
+ (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (rule "applyEqReverse" (formula "51") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "51") (ifseqformula "11"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "55"))
+ (branch
+ (rule "andRight" (formula "55"))
+ (branch
+ (rule "andRight" (formula "55"))
+ (branch
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0"))
+ (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_leqRight" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_contradInEq0" (formula "43") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "closeFalse" (formula "43"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0"))
+ (rule "leq_literals" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "leq_literals" (formula "55"))
+ (rule "closeTrue" (formula "55"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0"))
+ (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_leqRight" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_contradInEq0" (formula "39") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "closeFalse" (formula "39"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0"))
+ (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_leqRight" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "28"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch
+ (rule "andRight" (formula "55"))
+ (branch
+ (rule "andRight" (formula "55"))
+ (branch
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "51")))
+ (rule "closeTrue" (formula "55"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "orRight" (formula "55"))
+ (rule "dismissNonSelectedField" (formula "55") (term "0"))
+ (rule "dismissNonSelectedField" (formula "55") (term "0"))
+ (rule "dismissNonSelectedField" (formula "55") (term "0"))
+ (rule "dismissNonSelectedField" (formula "55") (term "0"))
+ (rule "dismissNonSelectedField" (formula "55") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "26"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "51") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "closeTrue" (formula "51"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "6")))
+ (rule "closeTrue" (formula "55"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "50") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "52"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "pullOutSelect" (formula "57") (term "3,0") (inst "selectSK=de_wiesler_BucketPointers_first_empty_position_0"))
+ (rule "simplifySelectOfAnon" (formula "57"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "60")))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "57") (term "0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0"))
+ (rule "pullOutSelect" (formula "57") (term "1,0") (inst "selectSK=de_wiesler_BucketPointers_first_empty_position_1"))
+ (rule "simplifySelectOfAnon" (formula "57"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "61")))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0"))
+ (rule "elementOfArrayRange" (formula "57") (term "0,0,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "ifthenelse_negated" (formula "57") (term "0"))
+ (rule "pullOutSelect" (formula "58") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "applyEq" (formula "57") (term "0,0,0") (ifseqformula "58"))
+ (rule "simplifySelectOfCreate" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "62")))
+ (rule "castDel" (formula "58") (term "0"))
+ (rule "applyEqReverse" (formula "57") (term "0,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "simplifySelectOfStore" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "castDel" (formula "57") (term "0"))
+ (rule "applyEqReverse" (formula "59") (term "0,0,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "applyEqReverse" (formula "60") (term "3,0") (ifseqformula "59"))
+ (rule "applyEqReverse" (formula "59") (term "0") (ifseqformula "57"))
+ (rule "applyEqReverse" (formula "60") (term "3,0") (ifseqformula "57"))
+ (rule "hideAuxiliaryEq" (formula "58"))
+ (rule "hideAuxiliaryEq" (formula "57"))
+ (rule "hideAuxiliaryEq" (formula "57"))
+ (rule "ifUnfold" (formula "63") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "63") (term "1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "replace_known_left" (formula "63") (term "0,0,1,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "0"))
+ (rule "equalityToSeqGetAndSeqLenLeft" (formula "32") (inst "iv=iv"))
+ (rule "andLeft" (formula "32"))
+ (rule "applyEq" (formula "33") (term "0,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "ifSplit" (formula "63"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "64"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "64"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "63") (term "1"))
+ (rule "eval_order_array_access1" (formula "63") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "63") (term "1"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_arr_1"))
+ (rule "assignment_read_attribute_this" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "pullOutSelect" (formula "63") (term "0,1,0") (inst "selectSK=de_wiesler_BucketPointers_buffer_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60")))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet21200100120112_17" (formula "1") (term "0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "1") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60")))
+ (rule "replaceKnownSelect_taclet112_1" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet112_2" (formula "1") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replaceKnownSelect_taclet21200100120112_17" (formula "1") (term "0,0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "1") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eval_order_array_access2" (formula "64") (term "1") (inst "#ar1=x_arr_2") (inst "#v0=x_2"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_arr_2"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_7"))
+ (rule "elementOfArrayRange" (formula "1") (term "0,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "64") (term "0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "assignmentMultiplicationInt" (formula "63") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "expand_inInt" (formula "63"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption6" (formula "61") (term "1") (ifseqformula "2"))
+ (rule "greater_literals" (formula "61") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0,1"))
+ (rule "leq_literals" (formula "61") (term "0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_leqRight" (formula "61"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "23"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "14"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "50"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "neg_literal" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "20"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "translateJavaMulInt" (formula "63") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "63"))
+ (branch "Normal Execution (x_arr_2 != null)"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "eval_order_array_access1" (formula "63") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "63") (term "1"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_arr_3"))
+ (rule "assignment_read_attribute_this" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0,1,0"))
+ (rule "replaceKnownSelect_taclet121200100120112_22" (formula "63") (term "0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet121200100120112_24" (formula "63") (term "0,1,0"))
+ (rule "eval_order_array_access2" (formula "63") (term "1") (inst "#ar1=x_arr_4") (inst "#v0=x_2"))
+ (rule "variableDeclarationAssign" (formula "63") (term "1"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_arr_4"))
+ (rule "assignment" (formula "63") (term "1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "variableDeclarationAssign" (formula "63") (term "1"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_8"))
+ (rule "compound_addition_1" (formula "63") (term "1") (inst "#v=x_9"))
+ (rule "variableDeclarationAssign" (formula "63") (term "1"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_9"))
+ (rule "assignmentMultiplicationInt" (formula "63") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "expand_inInt" (formula "63"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption6" (formula "59") (term "1") (ifseqformula "2"))
+ (rule "greater_literals" (formula "59") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1,0,1"))
+ (rule "leq_literals" (formula "59") (term "0,1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_leqRight" (formula "59"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "15"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "50"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "neg_literal" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "21"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "translateJavaMulInt" (formula "63") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "assignmentAdditionInt" (formula "63") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "expand_inInt" (formula "63"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1"))
+ (rule "add_literals" (formula "63") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption6" (formula "61") (term "1") (ifseqformula "2"))
+ (rule "greater_literals" (formula "61") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0,1"))
+ (rule "leq_literals" (formula "61") (term "0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_leqRight" (formula "61"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "49"))
+ (rule "mul_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "mul_literals" (formula "34") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "15"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "neg_literal" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "21"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "translateJavaAddInt" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "63"))
+ (branch "Normal Execution (x_arr_4 != null)"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "Block Contract (Internal)" (formula "63") (newnames "exc_1,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "14")) (ifInst "" (formula "60")) (ifInst "" (formula "6")))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "andLeft" (formula "58"))
+ (rule "eqSymm" (formula "65") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0"))
+ (rule "replaceKnownSelect_taclet21200100120112_17" (formula "59") (term "0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "59") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "exc_1_1"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "emptyStatement" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "emptyStatement" (formula "64") (term "1"))
+ (rule "tryEmpty" (formula "64") (term "1"))
+ (rule "blockEmptyLabel" (formula "64") (term "1"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (rule "methodCallEmpty" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "emptyModality" (formula "64") (term "1"))
+ (rule "andRight" (formula "64"))
+ (branch
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "closeTrue" (formula "64"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "closeTrue" (formula "64"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "63"))
+ (branch
+ (rule "andRight" (formula "63"))
+ (branch
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "63"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "wellFormedStorePrimitiveArray" (formula "63"))
+ (rule "wellFormedStorePrimitiveArray" (formula "63"))
+ (rule "wellFormedAnon" (formula "63"))
+ (rule "wellFormedAnon" (formula "63") (term "0"))
+ (rule "replace_known_left" (formula "63") (term "1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "51")))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "25"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "wellFormedStoreObject" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "56")))
+ (rule "wellFormedStorePrimitive" (formula "58") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "58") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "58") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "58") (term "0"))
+ (rule "wellFormedCreate" (formula "58") (term "0"))
+ (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "dismissNonSelectedField" (formula "58") (term "0"))
+ (rule "dismissNonSelectedField" (formula "58") (term "0"))
+ (rule "dismissNonSelectedField" (formula "58") (term "0"))
+ (rule "dismissNonSelectedField" (formula "58") (term "0"))
+ (rule "pullOutSelect" (formula "58") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "55")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")))
+ (rule "applyEqReverse" (formula "59") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "59") (ifseqformula "11"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "63"))
+ (branch
+ (rule "andRight" (formula "63"))
+ (branch
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "59")))
+ (rule "closeTrue" (formula "63"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "orRight" (formula "63"))
+ (rule "orRight" (formula "63"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0"))
+ (rule "dismissNonSelectedField" (formula "63") (term "0"))
+ (rule "replaceKnownSelect_taclet21200100120112_17" (formula "63") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "closeTrue" (formula "63"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "6")))
+ (rule "closeTrue" (formula "63"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "64"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "translateJavaAddInt" (formula "60") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "59") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0"))
+ (rule "pullOutSelect" (formula "59") (term "0,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfStore" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63")))
+ (rule "simplifySelectOfStore" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63")))
+ (rule "simplifySelectOfAnon" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "65")))
+ (rule "replaceKnownSelect_taclet20112_3" (formula "59") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20112_12" (formula "59") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "59") (term "0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0"))
+ (rule "replaceKnownSelect_taclet20112_8" (formula "59") (term "0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20112_9" (formula "59") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "applyEqReverse" (formula "60") (term "0,0") (ifseqformula "59"))
+ (rule "hideAuxiliaryEq" (formula "59"))
+ (rule "pullOutSelect" (formula "59") (term "1,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfStore" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63")))
+ (rule "simplifySelectOfStore" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63")))
+ (rule "simplifySelectOfAnon" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "65")))
+ (rule "replaceKnownSelect_taclet20112_4" (formula "59") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20112_11" (formula "59") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "59") (term "0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0"))
+ (rule "replaceKnownSelect_taclet20112_8" (formula "59") (term "0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20112_9" (formula "59") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "applyEqReverse" (formula "60") (term "1,0") (ifseqformula "59"))
+ (rule "hideAuxiliaryEq" (formula "59"))
+ (rule "elim_double_block_2" (formula "65") (term "1"))
+ (rule "ifUnfold" (formula "65") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "replace_known_left" (formula "65") (term "0,0,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "ifSplit" (formula "65"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "65") (term "1"))
+ (rule "emptyStatement" (formula "65") (term "1"))
+ (rule "blockEmpty" (formula "65") (term "1"))
+ (rule "preincrement" (formula "65") (term "1"))
+ (rule "compound_int_cast_expression" (formula "65") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "65") (term "1"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_11"))
+ (rule "remove_parentheses_right" (formula "65") (term "1"))
+ (rule "assignmentAdditionInt" (formula "65") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "expand_inInt" (formula "65"))
+ (rule "replace_int_MIN" (formula "65") (term "0,1"))
+ (rule "replace_int_MAX" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1"))
+ (rule "add_literals" (formula "65") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "65") (term "1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "65") (term "0,1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_leqRight" (formula "65"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "21") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "21"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "50"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "21"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "translateJavaAddInt" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "65") (term "1"))
+ (rule "assignment" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "blockEmpty" (formula "65") (term "1"))
+ (rule "lsContinue" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "precOfInt" (formula "65"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "65") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,1"))
+ (rule "add_literals" (formula "65") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "65") (term "1,0,1"))
+ (rule "add_zero_right" (formula "65") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,1"))
+ (rule "add_literals" (formula "65") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "65") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "65") (term "0,1"))
+ (rule "add_literals" (formula "65") (term "1,0,1"))
+ (rule "times_zero_1" (formula "65") (term "0,1"))
+ (rule "leq_literals" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_leqRight" (formula "65"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_4 = null)"
+ (rule "false_right" (formula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_4 != null, but x_8 Out of Bounds!)"
+ (rule "false_right" (formula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62")))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "28"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "3"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "22") (ifseqformula "2"))
+ (rule "greater_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0"))
+ (rule "add_literals" (formula "22") (term "0"))
+ (rule "leq_literals" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_2 = null)"
+ (rule "false_right" (formula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_2 != null, but x_7 Out of Bounds!)"
+ (rule "false_right" (formula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62")))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "3"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "24"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "1"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "21") (ifseqformula "2"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0"))
+ (rule "add_literals" (formula "21") (term "0"))
+ (rule "leq_literals" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "close" (formula "44") (ifseqformula "43"))
+ )
+ (branch "Pre (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "wellFormedAnon" (formula "47") (term "0"))
+ (rule "expand_inInt" (formula "47") (term "1"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1"))
+ (rule "replace_known_left" (formula "47") (term "1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "wellFormedStoreObject" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "40")))
+ (rule "wellFormedStorePrimitive" (formula "42") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "42") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "42") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "42") (term "0,0"))
+ (rule "wellFormedCreate" (formula "42") (term "0,0"))
+ (rule "replace_known_left" (formula "42") (term "0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0"))
+ (rule "pullOutSelect" (formula "42") (term "0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "41")))
+ (rule "applyEqReverse" (formula "43") (term "0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "23"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "44") (term "0") (ifseqformula "33"))
+ (rule "leq_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "1"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "16"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "33") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "closeFalse" (formula "33"))
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_4 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "false_right" (formula "48"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (ifseqformula "3"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "1,1,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0"))
+ (rule "add_zero_right" (formula "17") (term "0"))
+ (rule "leq_literals" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ )
+ )
+ (branch "Exceptional Post (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "close" (formula "40") (ifseqformula "39"))
+ )
+ (branch "Pre (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "wellFormedAnon" (formula "43") (term "0"))
+ (rule "expand_inInt" (formula "43") (term "1"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1"))
+ (rule "replace_known_left" (formula "43") (term "1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "40") (term "1,1") (ifseqformula "32"))
+ (rule "leq_literals" (formula "40") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "wellFormedStoreObject" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "36")))
+ (rule "wellFormedStorePrimitive" (formula "38") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "38") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "38") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "38") (term "0,0"))
+ (rule "wellFormedCreate" (formula "38") (term "0,0"))
+ (rule "replace_known_left" (formula "38") (term "0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "pullOutSelect" (formula "38") (term "0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")))
+ (rule "applyEqReverse" (formula "39") (term "0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "38") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_leqRight" (formula "38"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "1"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "17"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "25"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ )
+ (branch "Null Reference (var = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (var != null, but bucket Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "false_right" (formula "44"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "22"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "24"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "1"))
+ (rule "mul_literals" (formula "12") (term "0,0"))
+ (rule "add_zero_left" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (ifseqformula "2"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0"))
+ (rule "add_zero_right" (formula "14") (term "0"))
+ (rule "leq_literals" (formula "14"))
+ (rule "closeFalse" (formula "14"))
+ )
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "39"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockBreak" (formula "39") (term "1"))
+ (rule "lsBreak" (formula "39") (term "1"))
+ (rule "assignment" (formula "39") (term "1"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "methodCallEmpty" (formula "39") (term "1"))
+ (rule "blockEmpty" (formula "39") (term "1"))
+ (rule "assignment_write_attribute" (formula "39"))
+ (branch "Normal Execution (self_25 != null)"
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "tryEmpty" (formula "39") (term "1"))
+ (rule "emptyModality" (formula "39") (term "1"))
+ (rule "andRight" (formula "39"))
+ (branch "Case 1"
+ (rule "impRight" (formula "39"))
+ (rule "andRight" (formula "40"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "25"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "28") (term "1,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "4") (term "0,1,2,1,0,0,0,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "27") (term "1,1,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "4") (term "3,0,0,0,0,0,1,0,0,1,1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0"))
+ (rule "applyEq" (formula "22") (term "0,1") (ifseqformula "2"))
+ (rule "applyEq" (formula "17") (term "0,2,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "4") (term "0,1,2,1,0,0,1,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "35") (term "3,0,0,0,0,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "2"))
+ (rule "applyEq" (formula "35") (term "0,1,2,1,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "4") (term "3,0,0,0,0,0,0,1,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "22") (term "0,2,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,1,0,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0"))
+ (rule "applyEq" (formula "3") (term "0,1,2,1,0,1,0,0,1,0,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0"))
+ (rule "applyEq" (formula "3") (term "0,1,2,1,0,1,0,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0"))
+ (rule "applyEq" (formula "25") (term "3,0,0,0,1,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0,1,2,1,0,0,0,0,0,1,0,1,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,0,1,0,1,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0,1,2,1,0,0,1,0,0,0,1,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,1,0,0,0,1,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,0,0,1,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0,1,2,1,0,0,0,0,0,0,1,1,0") (ifseqformula "2"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "neg_literal" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "20"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "20"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "22"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_and_subsumption2" (formula "25") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "25") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_and_subsumption3" (formula "3") (term "0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "expand_inInt" (formula "27") (term "1,0,0"))
+ (rule "expand_inInt" (formula "27") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "27") (term "1,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "27") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "27") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "27") (term "0,1,0,1,0"))
+ (rule "lenOfSeqDefEQ" (formula "27") (term "1,1,0,0,0,1,0") (ifseqformula "26"))
+ (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1,0"))
+ (rule "times_zero_2" (formula "27") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,0,1,0"))
+ (rule "lenOfSeqDefEQ" (formula "27") (term "1,1,0,0,0") (ifseqformula "26"))
+ (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "times_zero_2" (formula "27") (term "1,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "times_zero_2" (formula "27") (term "1,0,0,0,1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "27") (term "0,0,1,1,1,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "27") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "27") (term "0,0,1,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "1,1,0,0,0"))
+ (rule "getOfSeqDefEQ" (formula "27") (term "1,1,0,1,0") (ifseqformula "26"))
+ (rule "add_zero_right" (formula "27") (term "0,2,0,1,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0,1,0"))
+ (rule "times_zero_2" (formula "27") (term "1,1,1,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,1,0,1,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,1,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,0,1,0"))
+ (rule "getOfSeqDefEQ" (formula "27") (term "0,1,0,1,0") (ifseqformula "26"))
+ (rule "add_zero_right" (formula "27") (term "0,2,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0,1,0,1,0"))
+ (rule "times_zero_2" (formula "27") (term "1,1,1,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "27") (term "1,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0,1,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "translateJavaMod" (formula "23") (term "0"))
+ (rule "jmod_axiom" (formula "23") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "newSym_eq" (formula "23") (inst "l=l_0") (inst "newSymDef=mul(first_empty_position, Z(0(#)))"))
+ (rule "times_zero_1" (formula "23") (term "1,1"))
+ (rule "add_zero_right" (formula "23") (term "1"))
+ (rule "applyEq" (formula "24") (term "0,0") (ifseqformula "23"))
+ (rule "eqSymm" (formula "24"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "24"))
+ (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,1,1,1,1,0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "3") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,1,0,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "34") (term "3,0,0,0,0,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "24"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "24"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "26") (term "3,0,0,1,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,1,0,0,1,0,0,1,1,0") (ifseqformula "24"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,1,0,1,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,1,0,0,0,1,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,0,1,1,0") (ifseqformula "24"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,1,0"))
+ (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "neg_literal" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "14"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "22") (ifseqformula "21"))
+ (rule "greater_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "nnf_imp2or" (formula "28") (term "0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "nnf_imp2or" (formula "28") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "28") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "28") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "3") (term "0,0,0,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "2,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,0,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,1,0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "26") (term "1,1,0"))
+ (rule "translateJavaCastInt" (formula "26") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "26") (term "1,0"))
+ (rule "castedGetAny" (formula "26") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "26") (term "1,0"))
+ (rule "pullOutSelect" (formula "26") (term "0,0,1,1,0") (inst "selectSK=de_wiesler_BucketPointers_bucket_starts_1"))
+ (rule "simplifySelectOfStore" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "castDel" (formula "26") (term "0"))
+ (rule "applyEqReverse" (formula "27") (term "0,0,1,1,0") (ifseqformula "26"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "getOfSeqDefEQ" (formula "26") (term "0,1,1,0") (ifseqformula "27"))
+ (rule "add_zero_right" (formula "26") (term "0,2,0,1,0,1,1,0"))
+ (rule "eqSymm" (formula "26") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0,0,1,0"))
+ (rule "times_zero_2" (formula "26") (term "1,1,1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "26") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "34"))
+ (rule "notRight" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0"))
+ (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=de_wiesler_BucketPointers_buffer_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32")))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "1") (term "1") (ifseqformula "2"))
+ (rule "ifEqualsNull" (formula "1"))
+ (rule "elementOfArrayRange" (formula "1") (term "0,0,0,1") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "applyEq" (formula "2") (term "0,0,1") (ifseqformula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "2") (term "0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=de_wiesler_BucketPointers_buffer_2"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "35") (ifseqformula "2"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "closeTrue" (formula "40"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "39"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (self_25 = null)"
+ (rule "false_right" (formula "40"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__decrement_read(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__decrement_read(int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..c3c96ba
--- /dev/null
+++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__decrement_read(int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,4294 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 14:36:20 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 14:36:20 CEST 2022
+contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:decrement_read(int)].JML normal_behavior operation contract.0
+name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:decrement_read(int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "13469")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "10"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+(rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_decrement_read,savedHeapBefore_decrement_read"))
+ (builtin "One Step Simplification" (formula "13"))
+(rule "variableDeclarationFinalAssign" (formula "13") (term "1"))
+(rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "read_pos"))
+(rule "assignmentMultiplicationInt" (formula "13") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "7"))
+ (rule "times_zero_1" (formula "12") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_leqRight" (formula "12"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "translateJavaAddInt" (formula "15") (term "1"))
+ (rule "translateJavaCastInt" (formula "16") (term "0"))
+ (rule "translateJavaMulInt" (formula "10") (term "0"))
+ (rule "translateJavaMulInt" (formula "9") (term "1"))
+ (rule "translateJavaCastInt" (formula "13") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1"))
+ (rule "castedGetAny" (formula "16") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "10"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "23") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "23")) (ifInst "" (formula "8")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "26"))
+ (rule "add_zero_right" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "26") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "false_right" (formula "26"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "22") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "22") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "22") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaMod" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "newSym_eq" (formula "19") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "19") (term "1,1"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19"))
+ (rule "eqSymm" (formula "20"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "20"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20"))
+ (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "elimGcdLeq_antec" (formula "16") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "neg_literal" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "16"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "0,0"))
+ (rule "translateJavaSubInt" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "3") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "expand_inInt" (formula "3") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "3") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "3") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "translateJavaAddInt" (formula "9") (term "1"))
+ (rule "translateJavaCastInt" (formula "10") (term "0"))
+ (rule "translateJavaMulInt" (formula "3") (term "1"))
+ (rule "translateJavaMulInt" (formula "4") (term "0"))
+ (rule "translateJavaCastInt" (formula "7") (term "0"))
+ (rule "translateJavaCastInt" (formula "6") (term "1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "1"))
+ (rule "castedGetAny" (formula "8") (term "0"))
+ (rule "castedGetAny" (formula "6") (term "0"))
+ (rule "castedGetAny" (formula "5") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "25"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "18"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "24"))
+ (rule "applyEq" (formula "4") (term "1") (ifseqformula "24"))
+ (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "18"))
+ (rule "times_zero_1" (formula "3") (term "1,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "1") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "28")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "1") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "0"))
+ (rule "translateJavaSubInt" (formula "2") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,0,1,1,0,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,0,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,0,1,0,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,0,0,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0,0"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "3") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "9")) (ifInst "" (formula "29")))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1"))
+ (rule "applyEq" (formula "3") (term "0,0,0,1,1,1") (ifseqformula "23"))
+ (rule "inEqSimp_commuteGeq" (formula "3") (term "0,0,1,1,1"))
+ (rule "applyEq" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "23"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "7"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "4") (term "1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "4") (term "0,2,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,2,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "expand_inInt" (formula "6") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "6") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "6") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "6") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "6") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "6") (term "0,1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "6") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "6") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "6") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "6") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,1,0"))
+ (rule "applyEq" (formula "6") (term "0,1,0,0,1,0,0,0") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "6") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "nnf_imp2or" (formula "6") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "6") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "6") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "25") (term "0,0"))
+ (rule "commute_or_2" (formula "26") (term "0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "translateJavaMod" (formula "5") (term "0"))
+ (rule "jmod_axiom" (formula "5") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor0" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "commute_or_2" (formula "24") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "1") (term "0,0,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "28")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "2") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "translateJavaMod" (formula "2") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "2") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "2") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,1"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,0,1,1,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,0,1,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,0,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "3") (term "1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,2,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "4") (term "0"))
+ (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "andLeft" (formula "4"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "11"))
+ (rule "replace_known_left" (formula "1") (term "0,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "4")) (ifInst "" (formula "12")))
+ (rule "andLeft" (formula "1"))
+ (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")) (ifInst "" (formula "13")))
+ (rule "newSym_eq" (formula "3") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::toReadCountOfBucket(heap,
+ self,
+ bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "3") (term "1,1"))
+ (rule "add_zero_right" (formula "3") (term "1"))
+ (rule "applyEq" (formula "4") (term "0,0") (ifseqformula "3"))
+ (rule "eqSymm" (formula "4"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "applyEq" (formula "3") (term "0,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "4"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1"))
+ (rule "polySimp_elimOne" (formula "8") (term "1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMod" (formula "16") (term "0"))
+ (rule "jmod_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "newSym_eq" (formula "16") (inst "l=l_2") (inst "newSymDef=mul(\\if (leq(int::select(heap,
+ int[]::final(self,
+ de.wiesler.BucketPointers::$buffer),
+ arr(add(Z(1(#)),
+ mul(bucket, Z(2(#)))))),
+ add(Z(neglit(1(#))),
+ int::select(heap,
+ int[]::final(self,
+ de.wiesler.BucketPointers::$buffer),
+ arr(mul(bucket, Z(2(#))))))))
+ \\then (add(int::select(heap,
+ int[]::final(self,
+ de.wiesler.BucketPointers::$buffer),
+ arr(mul(bucket, Z(2(#))))),
+ mul(int::select(heap,
+ int[]::final(self,
+ de.wiesler.BucketPointers::$buffer),
+ arr(add(Z(1(#)),
+ mul(bucket,
+ Z(2(#)))))),
+ Z(neglit(1(#))))))
+ \\else (Z(0(#))),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17"))
+ (rule "elimGcdGeq_antec" (formula "5") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "jdiv_axiom" (formula "33") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "33") (term "1") (ifseqformula "34"))
+ (rule "inEqSimp_subsumption6" (formula "33") (term "0,0") (ifseqformula "29"))
+ (rule "greater_literals" (formula "33") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "33") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "polyDiv_pullOut" (formula "33") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "33") (term "0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_pullOutFactor0" (formula "33") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "33") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "33") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "33") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "1,0"))
+ (rule "times_zero_1" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "translateJavaCastInt" (formula "10") (term "0,0"))
+ (rule "castedGetAny" (formula "10") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1"))
+ (rule "translateJavaCastInt" (formula "10") (term "0,1"))
+ (rule "castedGetAny" (formula "10") (term "0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "1,1"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "40")))
+ (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "11") (term "0,0,0,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1"))
+ (rule "replace_known_left" (formula "11") (term "1,0,1,1,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "1,0,1,1,1") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,1,1,1"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,1,1,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0,0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "11") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,1,1,1") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "12") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_right" (formula "12") (term "0,1,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "20")) (ifInst "" (formula "21")) (ifInst "" (formula "15")) (ifInst "" (formula "16")))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,0,1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "applyEq" (formula "12") (term "0,0,0,1,1,1") (ifseqformula "35"))
+ (rule "inEqSimp_commuteGeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,1,1,1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "applyEq" (formula "12") (term "1,1,1,1") (ifseqformula "35"))
+ (rule "replace_known_left" (formula "12") (term "1,1,1") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "13") (term "0,0"))
+ (rule "translateJavaMulInt" (formula "13") (term "0,2,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,2,0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1,1"))
+ (rule "translateJavaCastInt" (formula "13") (term "0,1,1"))
+ (rule "eqSymm" (formula "13") (term "1"))
+ (rule "castedGetAny" (formula "13") (term "0,0,1"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "9") (term "0"))
+ (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "9") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,1,1,1,1,1") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "21")) (ifInst "" (formula "22")) (ifInst "" (formula "42")) (ifInst "" (formula "16")))
+ (rule "polySimp_addComm0" (formula "9") (term "1,0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "0,0,1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "applyEq" (formula "9") (term "1,1,1,1,1") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "9") (term "1,1,1,1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "applyEq" (formula "9") (term "0,0,1,1,1") (ifseqformula "36"))
+ (rule "inEqSimp_commuteGeq" (formula "9") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1"))
+ (rule "translateJavaCastInt" (formula "10") (term "0,1"))
+ (rule "castedGetAny" (formula "10") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0,0"))
+ (rule "castedGetAny" (formula "15") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "6") (term "0"))
+ (rule "translateJavaCastInt" (formula "6") (term "0,0"))
+ (rule "castedGetAny" (formula "6") (term "0,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "8") (term "0"))
+ (rule "translateJavaMulInt" (formula "8") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,2,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "1"))
+ (rule "translateJavaCastInt" (formula "8") (term "0,1"))
+ (rule "castedGetAny" (formula "8") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "6") (term "0,0"))
+ (rule "add_zero_left" (formula "6") (term "0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaMod" (formula "17") (term "0"))
+ (rule "jmod_axiom" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "newSym_eq" (formula "17") (inst "l=l_3") (inst "newSymDef=mul(de.wiesler.BucketPointers::lastReadOf(heap,
+ self,
+ bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "17") (term "1,1"))
+ (rule "add_zero_right" (formula "17") (term "1"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17"))
+ (rule "eqSymm" (formula "18"))
+ (rule "applyEq" (formula "11") (term "1") (ifseqformula "18"))
+ (rule "applyEq" (formula "10") (term "0,0,1,1,1") (ifseqformula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,1,1,1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "10") (term "0,1,1,1,1") (ifseqformula "18"))
+ (rule "eqSymm" (formula "10") (term "1,1,1,1"))
+ (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "18"))
+ (rule "elimGcdGeq" (formula "10") (term "0,1,1,1") (inst "elimGcdRightDiv=l_3") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0,0,1,1,1"))
+ (rule "sub_literals" (formula "10") (term "0,0,0,0,0,0,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0,0,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,0,0,1,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,1,0,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,1,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,1,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,1,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "10") (term "0,1,0,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,0,1,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "0,1,0,0,1,1,1"))
+ (rule "leq_literals" (formula "10") (term "1,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "19") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "translateJavaCastInt" (formula "26") (term "0"))
+ (rule "translateJavaAddInt" (formula "25") (term "1"))
+ (rule "translateJavaMulInt" (formula "19") (term "1"))
+ (rule "translateJavaMulInt" (formula "20") (term "0"))
+ (rule "translateJavaCastInt" (formula "23") (term "0"))
+ (rule "translateJavaCastInt" (formula "22") (term "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "1"))
+ (rule "castedGetAny" (formula "24") (term "0"))
+ (rule "castedGetAny" (formula "22") (term "0"))
+ (rule "castedGetAny" (formula "21") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "21") (term "1") (ifseqformula "43"))
+ (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "42"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "35"))
+ (rule "greater_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "times_zero_1" (formula "19") (term "1,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "36"))
+ (rule "greater_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "times_zero_1" (formula "19") (term "1,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "4") (term "0"))
+ (rule "replace_known_right" (formula "4") (term "0,1,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "26")) (ifInst "" (formula "27")))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0"))
+ (rule "applyEq" (formula "4") (term "0,0,0,1,1,1") (ifseqformula "5"))
+ (rule "replace_known_left" (formula "4") (term "0,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "4") (term "0,0,1,1") (ifseqformula "5"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_subsumption6" (formula "4") (term "0,1,1") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "4") (term "1,1,0,0,1,1"))
+ (rule "greater_literals" (formula "4") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "leq_literals" (formula "4") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "5") (term "0"))
+ (rule "translateJavaSubInt" (formula "5") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "5") (term "0,1,0,0,0,0") (ifseqformula "19"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "translateJavaMod" (formula "2") (term "0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "applyEqRigid" (formula "2") (term "0,1,0") (ifseqformula "3"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "shift_paren_or" (formula "43") (term "0,0,0"))
+ (rule "commute_or" (formula "44") (term "1,0,0,0"))
+ (rule "seqGetAlphaCast" (formula "37") (term "0"))
+ (rule "castedGetAny" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "30") (ifseqformula "24"))
+ (rule "greater_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "closeFalse" (formula "30"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaMulInt" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "read"))
+ (rule "eval_order_array_access4" (formula "13") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr"))
+ (rule "assignment_read_attribute_this_final" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignment_array2" (formula "13"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "compound_assignment_op_minus" (formula "13") (term "1"))
+ (rule "compound_int_cast_expression" (formula "13") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x"))
+ (rule "remove_parentheses_right" (formula "13") (term "1"))
+ (rule "compound_subtraction_2" (formula "13") (term "1") (inst "#v0=x_1") (inst "#v1=x_2"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_2"))
+ (rule "remove_parentheses_right" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignmentSubtractionInt" (formula "13") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1"))
+ (rule "add_literals" (formula "13") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "11") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3")) (ifInst "" (formula "11")) (ifInst "" (formula "9")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "translateJavaCastInt" (formula "16") (term "0"))
+ (rule "translateJavaAddInt" (formula "15") (term "1"))
+ (rule "translateJavaMulInt" (formula "9") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1"))
+ (rule "castedGetAny" (formula "16") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "times_zero_1" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "orRight" (formula "24"))
+ (rule "notRight" (formula "24"))
+ (rule "translateJavaSubInt" (formula "25") (term "0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradEq3" (formula "25") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "qeq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "false_right" (formula "25"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "2") (term "0,0,1,1,1"))
+ (rule "replace_known_left" (formula "2") (term "1,0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "5")) (ifInst "" (formula "25")))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0"))
+ (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "3") (term "0,1"))
+ (rule "replace_known_right" (formula "3") (term "0,0,1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "22") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "22") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "22") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaMod" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "newSym_eq" (formula "19") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "19") (term "1,1"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19"))
+ (rule "eqSymm" (formula "20"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "20"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20"))
+ (rule "elimGcdLeq_antec" (formula "16") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "16") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "16"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0"))
+ (rule "commute_and" (formula "27"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "0,0,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "2") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0,0,1,1,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "3") (term "0,0,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "6")) (ifInst "" (formula "27")))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "4") (term "0"))
+ (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "andLeft" (formula "4"))
+ (rule "replace_known_left" (formula "2") (term "0,1,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_left" (formula "3") (term "0,1,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "1") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "1") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "1") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "29")))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,1,1,1"))
+ (rule "applyEq" (formula "1") (term "1,0,1,1,1,1") (ifseqformula "23"))
+ (rule "applyEq" (formula "1") (term "0,0,0,1,1,1") (ifseqformula "23"))
+ (rule "inEqSimp_commuteGeq" (formula "1") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "2") (term "1,1"))
+ (rule "translateJavaMulInt" (formula "2") (term "0,2,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,2,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "5") (term "0"))
+ (rule "replace_known_left" (formula "5") (term "1,0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "9")) (ifInst "" (formula "30")) (ifInst "" (formula "6")) (ifInst "" (formula "7")))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0"))
+ (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0"))
+ (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "4")))
+ (rule "true_left" (formula "5"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "5") (term "0"))
+ (rule "translateJavaSubInt" (formula "5") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "translateJavaMod" (formula "6") (term "0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "newSym_eq" (formula "6") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::toReadCountOfBucket(heap,
+ self,
+ bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "6") (term "1,1"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6"))
+ (rule "eqSymm" (formula "7"))
+ (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "7"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "3") (term "0,1,0,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_right" (formula "3") (term "0,1,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "9")) (ifInst "" (formula "10")))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "4") (term "0,0,0,0,1,1"))
+ (rule "translateJavaMulInt" (formula "4") (term "0,2,0,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,2,0,0,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "4") (term "0"))
+ (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "andLeft" (formula "4"))
+ (rule "andLeft" (formula "5"))
+ (rule "replace_known_left" (formula "7") (term "0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "4")) (ifInst "" (formula "6")))
+ (rule "true_left" (formula "7"))
+ (rule "replace_known_left" (formula "3") (term "0,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "4")) (ifInst "" (formula "6")))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "replace_known_left" (formula "1") (term "1,1,1,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "6")))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1"))
+ (rule "commute_or_2" (formula "39") (term "0,0"))
+ (rule "commute_or_2" (formula "38") (term "0,0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "7") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "7") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "7") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "7") (term "1,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "14")) (ifInst "" (formula "21")) (ifInst "" (formula "42")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "16")))
+ (rule "polySimp_addComm0" (formula "7") (term "1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "1,1,1,0,1"))
+ (rule "replace_known_left" (formula "7") (term "1,0,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0"))
+ (rule "replace_known_left" (formula "7") (term "0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,1"))
+ (rule "replace_known_left" (formula "7") (term "0,0,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,1"))
+ (rule "replace_known_left" (formula "7") (term "0,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1"))
+ (rule "replace_known_left" (formula "7") (term "1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "7") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "7") (term "0,2,1,1"))
+ (rule "translateJavaMulInt" (formula "7") (term "0,0,2,1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,2,1,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,2,1,1"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "commute_or_2" (formula "38") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "16") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "16") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "16") (term "1,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "13")) (ifInst "" (formula "20")) (ifInst "" (formula "42")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "15")))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1"))
+ (rule "replace_known_left" (formula "16") (term "1,0,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1"))
+ (rule "replace_known_left" (formula "16") (term "0,0,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1"))
+ (rule "replace_known_left" (formula "16") (term "1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1"))
+ (rule "replace_known_left" (formula "16") (term "1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "16") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "16") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "16") (term "1,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "20")) (ifInst "" (formula "21")) (ifInst "" (formula "42")) (ifInst "" (formula "13")) (ifInst "" (formula "6")) (ifInst "" (formula "15")))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "16") (term "1,0,0,1") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "16") (term "0,0,0,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1"))
+ (rule "replace_known_left" (formula "16") (term "1,0,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0"))
+ (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1"))
+ (rule "replace_known_left" (formula "16") (term "0,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "applyEq" (formula "16") (term "1,1,1") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "16") (term "1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "applyEq" (formula "16") (term "0,0,1") (ifseqformula "36"))
+ (rule "inEqSimp_commuteGeq" (formula "16") (term "0,1"))
+ (rule "replace_known_left" (formula "16") (term "1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "0,0,2,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,2,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,2,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0,1,1,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,1,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,2,0,1,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,2,0,0,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "0,0,2,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,2,0,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "16") (term "1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "0,2,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,2,1,1,0,0"))
+ (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "17") (term "0"))
+ (rule "translateJavaSubInt" (formula "17") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "13") (term "0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "13") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "13") (term "1,1,1,1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "40")) (ifInst "" (formula "12")))
+ (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1"))
+ (rule "replace_known_left" (formula "13") (term "1,0,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,1"))
+ (rule "replace_known_left" (formula "13") (term "1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,1,1"))
+ (rule "replace_known_left" (formula "13") (term "0,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1"))
+ (rule "replace_known_left" (formula "13") (term "1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaMod" (formula "13") (term "0"))
+ (rule "jmod_axiom" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "newSym_eq" (formula "13") (inst "l=l_2") (inst "newSymDef=add(mul(de.wiesler.BucketPointers::nextWriteOf(heap,
+ self,
+ bucket),
+ Z(0(#))),
+ mul(int::select(heap,
+ int[]::final(self,
+ de.wiesler.BucketPointers::$buffer),
+ arr(mul(bucket, Z(2(#))))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "13") (term "1,1,1"))
+ (rule "times_zero_1" (formula "13") (term "0,1,1"))
+ (rule "add_zero_left" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1"))
+ (rule "applyEq" (formula "13") (term "1,0,0") (ifseqformula "14"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "14"))
+ (rule "polySimp_addAssoc" (formula "7") (term "1"))
+ (rule "applyEq" (formula "41") (term "0,1") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "15") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "translateJavaAddInt" (formula "21") (term "1"))
+ (rule "translateJavaCastInt" (formula "22") (term "0"))
+ (rule "translateJavaMulInt" (formula "15") (term "1"))
+ (rule "translateJavaMulInt" (formula "16") (term "0"))
+ (rule "translateJavaCastInt" (formula "19") (term "0"))
+ (rule "translateJavaCastInt" (formula "18") (term "1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "1"))
+ (rule "castedGetAny" (formula "20") (term "0"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "17") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "16") (ifseqformula "33"))
+ (rule "times_zero_1" (formula "16") (term "1,1,0"))
+ (rule "greater_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption6" (formula "15") (ifseqformula "30"))
+ (rule "times_zero_1" (formula "15") (term "1,1,0"))
+ (rule "greater_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "12") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,1,1,1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "21")) (ifInst "" (formula "22")) (ifInst "" (formula "43")))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,0,0,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,0,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaMod" (formula "13") (term "0"))
+ (rule "jmod_axiom" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "newSym_eq" (formula "13") (inst "l=l_3") (inst "newSymDef=mul(de.wiesler.BucketPointers::nextWriteOf(heap,
+ self,
+ bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "21") (term "0,0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "applyEq" (formula "45") (term "0,1") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "21") (term "0,1,1,0") (ifseqformula "14"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,0"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "14"))
+ (rule "polySimp_addComm1" (formula "7") (term "1"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_commuteGeq" (formula "9"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "45") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "14"))
+ (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0"))
+ (rule "elimGcdGeq" (formula "45") (term "0") (inst "elimGcdRightDiv=add(Z(neglit(7(0(6(8(8(3(8(#))))))))),
+ mul(l_3, Z(neglit(1(#)))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "sub_literals" (formula "45") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "45") (term "0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "45") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0"))
+ (rule "qeq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "elimGcdLeq" (formula "45") (term "1") (inst "elimGcdRightDiv=add(Z(8(0(6(8(8(3(8(#)))))))),
+ mul(l_3, Z(neglit(1(#)))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,1"))
+ (rule "sub_literals" (formula "45") (term "0,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "45") (term "0,0,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,1"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,1,0,1"))
+ (rule "add_literals" (formula "45") (term "1,1,0,1,0,1"))
+ (rule "times_zero_1" (formula "45") (term "1,0,1,0,1"))
+ (rule "add_zero_right" (formula "45") (term "0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0,0,1"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,0,1"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "45") (term "0,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,1,0,1"))
+ (rule "add_literals" (formula "45") (term "1,1,0,1,0,1"))
+ (rule "times_zero_1" (formula "45") (term "1,0,1,0,1"))
+ (rule "add_zero_right" (formula "45") (term "0,1,0,1"))
+ (rule "qeq_literals" (formula "45") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,0,1"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,1"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "45") (term "0,0,1"))
+ (rule "add_literals" (formula "45") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "45") (term "0,0,1"))
+ (rule "leq_literals" (formula "45") (term "0,1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "times_zero_1" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_3") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,0"))
+ (rule "castedGetAny" (formula "12") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "46")))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,1,1,1,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0"))
+ (rule "times_zero_2" (formula "12") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1"))
+ (rule "translateJavaCastInt" (formula "13") (term "0,1"))
+ (rule "castedGetAny" (formula "13") (term "0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "47")))
+ (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "9") (term "0,0,0,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "replace_known_left" (formula "9") (term "0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,1,1,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,1,1,1") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "9") (term "0,1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "translateJavaCastInt" (formula "10") (term "0,0"))
+ (rule "castedGetAny" (formula "10") (term "0,0"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "3") (term "0"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "3") (term "0,1,1,1,1,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "26")) (ifInst "" (formula "27")) (ifInst "" (formula "48")))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0,1,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,1,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEq" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "42"))
+ (rule "replace_known_left" (formula "3") (term "0,1,1,1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEq" (formula "3") (term "0,0,0,1,1,1") (ifseqformula "42"))
+ (rule "inEqSimp_commuteGeq" (formula "3") (term "0,0,1,1,1"))
+ (rule "replace_known_left" (formula "3") (term "0,1,1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "2") (term "0"))
+ (rule "translateJavaMulInt" (formula "2") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,2,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_commuteGeq" (formula "2"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "4") (term "1"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "49")))
+ (rule "translateJavaAddInt" (formula "4") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "4") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0"))
+ (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,1,1,1"))
+ (rule "replace_known_left" (formula "4") (term "1,1,1,1,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "times_zero_2" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "32"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "15")))
+ (rule "true_left" (formula "4"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "1"))
+ (rule "translateJavaCastInt" (formula "4") (term "0,1"))
+ (rule "castedGetAny" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "5") (term "0,1"))
+ (rule "translateJavaMulInt" (formula "5") (term "0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,2,0,1"))
+ (rule "applyEq" (formula "5") (term "0,1") (ifseqformula "20"))
+ (rule "eqSymm" (formula "5") (term "1"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "5") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "5") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "5") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_right" (formula "5") (term "0,1,0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "27")) (ifInst "" (formula "28")) (ifInst "" (formula "8")))
+ (rule "polySimp_addComm0" (formula "5") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "5") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0"))
+ (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1,1"))
+ (rule "applyEq" (formula "5") (term "1,0,1,1,1,1") (ifseqformula "43"))
+ (rule "replace_known_left" (formula "5") (term "0,1,1,1,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEq" (formula "5") (term "0,0,0,1,1,1") (ifseqformula "43"))
+ (rule "inEqSimp_commuteGeq" (formula "5") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0"))
+ (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "6") (term "0,0"))
+ (rule "translateJavaMulInt" (formula "6") (term "0,2,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,2,0,0"))
+ (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0"))
+ (rule "elimGcdGeq" (formula "6") (term "0") (inst "elimGcdRightDiv=add(l_3, l_2)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "sub_literals" (formula "6") (term "0,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "6") (term "0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "6") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0"))
+ (rule "qeq_literals" (formula "6") (term "0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "50")))
+ (rule "translateJavaAddInt" (formula "7") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "7") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "7") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "7") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0"))
+ (rule "replace_known_left" (formula "7") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "7") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "7") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "7") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "7") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "7") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "7") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,1,1,1"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "9") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "9") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "29")) (ifInst "" (formula "30")) (ifInst "" (formula "10")))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "replace_known_left" (formula "9") (term "0,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1"))
+ (rule "applyEq" (formula "9") (term "0,0,0,1,1,1") (ifseqformula "45"))
+ (rule "inEqSimp_commuteGeq" (formula "9") (term "0,0,1,1,1"))
+ (rule "applyEq" (formula "9") (term "1,0,1,1,1,1") (ifseqformula "45"))
+ (rule "replace_known_left" (formula "9") (term "0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0"))
+ (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "5")))
+ (rule "true_left" (formula "9"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaMod" (formula "9") (term "0"))
+ (rule "jmod_axiom" (formula "9") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "newSym_eq" (formula "9") (inst "l=l_4") (inst "newSymDef=mul(de.wiesler.BucketPointers::lastReadOf(heap,
+ self,
+ bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "9") (term "1,1"))
+ (rule "add_zero_right" (formula "9") (term "1"))
+ (rule "applyEq" (formula "10") (term "0,0") (ifseqformula "9"))
+ (rule "eqSymm" (formula "10"))
+ (rule "applyEq" (formula "28") (term "0,0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "applyEq" (formula "5") (term "0,0,0,1,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,1,1,1"))
+ (rule "applyEq" (formula "4") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "5") (term "0,1,0,0,0,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_commuteGeq" (formula "5") (term "1,0,0,0,1,1"))
+ (rule "applyEq" (formula "9") (term "0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "28") (term "1,1,0") (ifseqformula "10"))
+ (rule "polySimp_addComm0" (formula "28") (term "1,0"))
+ (rule "applyEq" (formula "5") (term "0,1,0,1,1,1") (ifseqformula "10"))
+ (rule "eqSymm" (formula "5") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "5") (term "0,1,0,0,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "elimGcdLeq" (formula "28") (term "0,0") (inst "elimGcdRightDiv=add(Z(neglit(1(#))), l_4)") (inst "elimGcdLeftDiv=l_3") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "28") (term "0,0,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "sub_literals" (formula "28") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,1,0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "28") (term "0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "28") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "elimGcdGeq" (formula "5") (term "0,0,1,1,1") (inst "elimGcdRightDiv=l_4") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0,0,0,1,1,1"))
+ (rule "sub_literals" (formula "5") (term "0,0,0,0,0,0,0,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "5") (term "0,0,0,0,0,1,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,1,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "5") (term "1,1,0,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "5") (term "1,0,1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "5") (term "0,1,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "5") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "5") (term "1,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "5") (term "0,0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "5") (term "0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "0"))
+ (rule "translateJavaCastInt" (formula "8") (term "0,0"))
+ (rule "castedGetAny" (formula "8") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")))
+ (rule "translateJavaAddInt" (formula "1") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "1") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "1") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,0,1,1,1,1") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,1,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,1,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "35"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "1") (term "0"))
+ (rule "translateJavaCastInt" (formula "1") (term "0,0"))
+ (rule "castedGetAny" (formula "1") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "1") (term "1"))
+ (rule "translateJavaCastInt" (formula "1") (term "0,1"))
+ (rule "castedGetAny" (formula "1") (term "0,1"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "commute_or" (formula "49") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "48") (term "0,0,0"))
+ (rule "jdiv_axiom" (formula "44") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "45"))
+ (rule "inEqSimp_subsumption6" (formula "44") (term "0,0") (ifseqformula "40"))
+ (rule "greater_literals" (formula "44") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "polyDiv_pullOut" (formula "44") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "polySimp_pullOutFactor0" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "0,0,0"))
+ (rule "div_literals" (formula "44") (term "0,0"))
+ (rule "add_zero_left" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "commute_or" (formula "48") (term "0,0,0,1,0"))
+ (rule "lenNonNegative" (formula "46") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "38"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "39"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "35"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "36") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "36") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "36") (term "0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "36"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "arrayLengthNotNegative" (formula "38") (term "0"))
+ (rule "seqGetAlphaCast" (formula "43") (term "0"))
+ (rule "castedGetAny" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "seqGetAlphaCast" (formula "48") (term "0"))
+ (rule "castedGetAny" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "jdiv_axiom" (formula "27") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "27"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "28"))
+ (rule "polyDiv_pullOut" (formula "27") (term "1,0") (inst "polyDivCoeff=l_1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,2,1,0"))
+ (rule "equal_literals" (formula "27") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "1,0,0,1,0"))
+ (rule "times_zero_1" (formula "27") (term "0,0,1,0"))
+ (rule "div_literals" (formula "27") (term "0,1,0"))
+ (rule "add_zero_left" (formula "27") (term "1,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_homoEq" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "27") (term "1"))
+ (rule "polyDiv_pullOut" (formula "27") (term "0,1") (inst "polyDivCoeff=mul(l_1, Z(neglit(1(#))))"))
+ (rule "equal_literals" (formula "27") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,0,1"))
+ (rule "add_literals" (formula "27") (term "1,0,0,0,1"))
+ (rule "times_zero_1" (formula "27") (term "0,0,0,1"))
+ (rule "div_literals" (formula "27") (term "0,0,1"))
+ (rule "add_zero_left" (formula "27") (term "0,1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "25") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "25") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "25") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "25") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaMod" (formula "24") (term "0"))
+ (rule "jmod_axiom" (formula "24") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0"))
+ (rule "applyEqRigid" (formula "24") (term "0,1,0") (ifseqformula "45"))
+ (rule "polySimp_pullOutFactor0" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "1,0"))
+ (rule "times_zero_1" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "19") (term "0"))
+ (rule "replace_known_right" (formula "19") (term "0,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "19")) (ifInst "" (formula "20")))
+ (rule "andLeft" (formula "3"))
+ (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "16"))
+ (rule "replace_known_left" (formula "6") (term "0,0,0,0,1,1") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "23")) (ifInst "" (formula "23")) (ifInst "" (formula "4")) (ifInst "" (formula "24")))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "4")) (ifInst "" (formula "17")))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "replace_known_left" (formula "10") (term "0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "17")))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=mul(l_3, Z(neglit(1(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "64") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0"))
+ (rule "qeq_literals" (formula "64") (term "0,0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "19"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "7"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_4") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "6"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_3") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "28") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "6"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_4") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "10") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "38") (term "0"))
+ (rule "translateJavaAddInt" (formula "38") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "38") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,2,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "36")) (ifInst "" (formula "69")) (ifInst "" (formula "33")) (ifInst "" (formula "24")))
+ (rule "translateJavaAddInt" (formula "30") (term "1,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "30") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "30") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "30") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "30") (term "1,1,1,0,1,1"))
+ (rule "add_literals" (formula "30") (term "0,1,1,1,0,1,1"))
+ (rule "polySimp_addComm1" (formula "30") (term "1,0,1,1,1,1"))
+ (rule "add_literals" (formula "30") (term "0,1,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "30") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,1,1,1"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,1,1"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1"))
+ (rule "replace_known_left" (formula "30") (term "1,0,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0"))
+ (rule "replace_known_left" (formula "30") (term "1,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,1"))
+ (rule "replace_known_left" (formula "30") (term "0,1") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "30") (term "1,0,1,1") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "times_zero_2" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "30") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "30") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "30") (term "0,1,1") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "30") (term "0,1") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0"))
+ (rule "mul_literals" (formula "30") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (term "0") (ifseqformula "50"))
+ (rule "leq_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "31") (term "0"))
+ (rule "translateJavaCastInt" (formula "31") (term "0,0"))
+ (rule "castedGetAny" (formula "31") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "37")) (ifInst "" (formula "70")) (ifInst "" (formula "25")) (ifInst "" (formula "24")))
+ (rule "translateJavaAddInt" (formula "28") (term "1,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "28") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "28") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "28") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0"))
+ (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "28") (term "1,0,1,1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1"))
+ (rule "replace_known_left" (formula "28") (term "1,0,1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1"))
+ (rule "replace_known_left" (formula "28") (term "0,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "28") (term "1,0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,1,0"))
+ (rule "qeq_literals" (formula "28") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "26")))
+ (rule "true_left" (formula "28"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "28") (term "0"))
+ (rule "translateJavaCastInt" (formula "28") (term "0,0"))
+ (rule "castedGetAny" (formula "28") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "28"))
+ (rule "times_zero_1" (formula "27") (term "0,0"))
+ (rule "add_zero_left" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "21"))
+ (rule "times_zero_1" (formula "27") (term "1,1,0"))
+ (rule "greater_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "jdiv_axiom" (formula "40") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEqRigid" (formula "40") (term "1") (ifseqformula "41"))
+ (rule "inEqSimp_subsumption6" (formula "40") (term "0,0") (ifseqformula "20"))
+ (rule "mul_literals" (formula "40") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "40") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "leq_literals" (formula "40") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "polyDiv_pullOut" (formula "40") (term "0") (inst "polyDivCoeff=l_2"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "polySimp_homoEq" (formula "40"))
+ (rule "polySimp_pullOutFactor0" (formula "40") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "40") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "40") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "40") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "40") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,0"))
+ (rule "times_zero_1" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "35") (term "1,0"))
+ (rule "neg_literal" (formula "35") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "35") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaSubInt" (formula "27") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "27") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,1,1"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "27") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "translateJavaUnaryMinusInt" (formula "28") (term "1,0"))
+ (rule "neg_literal" (formula "28") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "28") (term "0,0,0"))
+ (rule "translateJavaSubInt" (formula "28") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "38")) (ifInst "" (formula "71")) (ifInst "" (formula "26")) (ifInst "" (formula "25")))
+ (rule "translateJavaSubInt" (formula "3") (term "1,0,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "3") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,1"))
+ (rule "replace_known_left" (formula "3") (term "0,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,1") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "1,0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,1,0"))
+ (rule "qeq_literals" (formula "3") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "27")))
+ (rule "true_left" (formula "3"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "3") (term "0"))
+ (rule "translateJavaCastInt" (formula "3") (term "0,0"))
+ (rule "castedGetAny" (formula "3") (term "0,0"))
+ (rule "jdiv_axiom" (formula "39") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "39"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "40"))
+ (rule "inEqSimp_subsumption6" (formula "39") (term "0,0") (ifseqformula "21"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "39") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "leq_literals" (formula "39") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "polyDiv_pullOut" (formula "39") (term "0") (inst "polyDivCoeff=l_3"))
+ (rule "equal_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "39"))
+ (rule "polySimp_pullOutFactor0" (formula "39") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "39") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "39") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "39") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "39") (term "0"))
+ (rule "add_literals" (formula "39") (term "1,0"))
+ (rule "times_zero_1" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "translateJavaSubInt" (formula "8") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "8") (term "1,0"))
+ (rule "neg_literal" (formula "8") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "0,1"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "38")) (ifInst "" (formula "71")) (ifInst "" (formula "26")) (ifInst "" (formula "25")))
+ (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,1"))
+ (rule "replace_known_left" (formula "13") (term "0,0,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,1"))
+ (rule "replace_known_left" (formula "13") (term "0,1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1"))
+ (rule "replace_known_left" (formula "13") (term "1,0,1") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0"))
+ (rule "qeq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "13") (term "1,0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,1,0"))
+ (rule "qeq_literals" (formula "13") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "27")))
+ (rule "true_left" (formula "13"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "0,1"))
+ (rule "translateJavaCastInt" (formula "13") (term "0,0,1"))
+ (rule "castedGetAny" (formula "13") (term "0,0,1"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "19") (term "0"))
+ (rule "translateJavaAddInt" (formula "19") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "19") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "19") (term "1,0,0,0") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "38")) (ifInst "" (formula "49")) (ifInst "" (formula "71")) (ifInst "" (formula "38")) (ifInst "" (formula "39")))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "19") (term "0,0,0,0,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0"))
+ (rule "replace_known_left" (formula "19") (term "0,0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1"))
+ (rule "replace_known_left" (formula "19") (term "1,0,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,1"))
+ (rule "applyEq" (formula "19") (term "0,0,1,1,1,1") (ifseqformula "20"))
+ (rule "applyEq" (formula "19") (term "0,1,0,1,1") (ifseqformula "20"))
+ (rule "eqSymm" (formula "19") (term "1,0,1,1"))
+ (rule "applyEq" (formula "19") (term "1,0,0,1,1") (ifseqformula "20"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1") (ifseqformula "20"))
+ (rule "inEqSimp_commuteGeq" (formula "19") (term "0,0,1"))
+ (rule "replace_known_left" (formula "19") (term "0,0,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "applyEq" (formula "19") (term "1,0,1,1,1") (ifseqformula "65"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,1") (ifseqformula "65"))
+ (rule "applyEq" (formula "19") (term "0,0,1") (ifseqformula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1"))
+ (rule "replace_known_left" (formula "19") (term "0,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0"))
+ (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "elimGcdGeq" (formula "19") (term "0") (inst "elimGcdRightDiv=l_4") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0"))
+ (rule "sub_literals" (formula "19") (term "0,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "19") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "0,0,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "12")))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "26"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "19") (ifseqformula "63"))
+ (rule "greater_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "21") (term "0"))
+ (rule "translateJavaMulInt" (formula "21") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,2,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "44"))
+ (rule "polySimp_homoEq" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "21"))
+ (rule "applyEqRigid" (formula "3") (term "1,1") (ifseqformula "21"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "1,1,1"))
+ (rule "times_zero_1" (formula "3") (term "1,1"))
+ (rule "add_zero_right" (formula "3") (term "1"))
+ (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "21"))
+ (rule "polySimp_addAssoc" (formula "44") (term "1"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "1"))
+ (rule "add_literals" (formula "44") (term "1,1,1"))
+ (rule "times_zero_1" (formula "44") (term "1,1"))
+ (rule "add_zero_right" (formula "44") (term "1"))
+ (rule "applyEq" (formula "13") (term "1,1,1") (ifseqformula "21"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "1,1"))
+ (rule "add_literals" (formula "13") (term "1,1,1,1"))
+ (rule "times_zero_1" (formula "13") (term "1,1,1"))
+ (rule "add_zero_right" (formula "13") (term "1,1"))
+ (rule "elimGcdEq" (formula "21") (inst "elimGcdRightDiv=add(l_4, mul(l_3, Z(neglit(1(#)))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,1,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "21") (term "0,1,0"))
+ (rule "add_literals" (formula "21") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "21") (term "0,1,0"))
+ (rule "qeq_literals" (formula "21") (term "1,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "0,0"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0"))
+ (rule "add_zero_right" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor0" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,0"))
+ (rule "times_zero_1" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEqRigid" (formula "13") (term "1,1,0") (ifseqformula "21"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "1,0"))
+ (rule "add_literals" (formula "13") (term "1,1,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,1,0"))
+ (rule "add_zero_right" (formula "13") (term "1,0"))
+ (rule "applyEqRigid" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "applyEqRigid" (formula "43") (term "1") (ifseqformula "21"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "replace_known_left" (formula "48") (term "0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "eqSymm" (formula "48"))
+ (rule "applyEqRigid" (formula "47") (term "0,0") (ifseqformula "48"))
+ (rule "applyEqRigid" (formula "47") (term "0") (ifseqformula "43"))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEqRigid" (formula "48") (term "0,0") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0"))
+ (rule "add_zero_right" (formula "48") (term "0"))
+ (rule "polySimp_pullOutFactor0" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,0"))
+ (rule "times_zero_1" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "eval_order_array_access1" (formula "13") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_1"))
+ (rule "assignment_read_attribute_this_final" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignment_to_primitive_array_component" (formula "13"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallReturn" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallEmpty" (formula "13") (term "1"))
+ (rule "tryEmpty" (formula "13") (term "1"))
+ (rule "emptyModality" (formula "13") (term "1"))
+ (rule "andRight" (formula "13"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "11") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "7")) (ifInst "" (formula "3")) (ifInst "" (formula "11")) (ifInst "" (formula "7")) (ifInst "" (formula "10")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "13"))
+ (rule "add_zero_right" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "13") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "false_right" (formula "13"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "12"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "13"))
+ (rule "greater_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "0,0"))
+ (rule "add_zero_left" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "25"))
+ (rule "notRight" (formula "25"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "15") (term "0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_exactShadow2" (formula "14") (ifseqformula "15"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "15"))
+ (rule "greater_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "24") (ifseqformula "1"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "closeTrue" (formula "13"))
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "12") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "0,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "12")) (ifInst "" (formula "11")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "14"))
+ (rule "add_zero_right" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "14") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "false_right" (formula "14"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "12") (ifseqformula "3"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but read_pos Out of Bounds!)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "1") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "13") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "8")) (ifInst "" (formula "11")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "15"))
+ (rule "add_zero_right" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "15") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "false_right" (formula "15"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "12"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "10"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "22") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but read_pos Out of Bounds!)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "1") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "13") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "8")) (ifInst "" (formula "11")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "15"))
+ (rule "add_zero_right" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "15") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "false_right" (formula "15"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "12"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "3"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_literals" (formula "10") (term "0"))
+ (rule "leq_literals" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__hasRemainingRead(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__hasRemainingRead(int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..d6ee9cb
--- /dev/null
+++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__hasRemainingRead(int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,1746 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 14:38:40 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 14:38:40 CEST 2022
+contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:hasRemainingRead(int)].JML normal_behavior operation contract.0
+name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:hasRemainingRead(int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "1419")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "assignment" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "methodBodyExpand" (formula "12") (term "1") (newnames "heapBefore_hasRemainingRead,savedHeapBefore_hasRemainingRead"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "variableDeclarationFinalAssign" (formula "12") (term "1"))
+(rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "read_pos"))
+(rule "assignmentMultiplicationInt" (formula "12") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,1"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_leqRight" (formula "12"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "8") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "expand_inInt" (formula "8") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "translateJavaAddInt" (formula "14") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaMulInt" (formula "8") (term "1"))
+ (rule "translateJavaMulInt" (formula "9") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "0"))
+ (rule "castedGetAny" (formula "11") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "9"))
+ (rule "greater_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMod" (formula "16") (term "0"))
+ (rule "jmod_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "newSym_eq" (formula "16") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "17"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "17"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "21") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "lenNonNegative" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "10"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "1"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1"))
+ (rule "mul_literals" (formula "7") (term "1,1,0"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaMulInt" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "12") (term "1"))
+ (rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "write_pos"))
+ (rule "compound_addition_1" (formula "12") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "12") (term "1"))
+ (rule "variableDeclaration" (formula "12") (term "1") (newnames "x"))
+ (rule "assignmentMultiplicationInt" (formula "12") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "12") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_leqRight" (formula "12"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "translateJavaAddInt" (formula "15") (term "1"))
+ (rule "translateJavaCastInt" (formula "16") (term "0"))
+ (rule "translateJavaMulInt" (formula "9") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1"))
+ (rule "castedGetAny" (formula "16") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMod" (formula "16") (term "0"))
+ (rule "jmod_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "newSym_eq" (formula "16") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "17"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17"))
+ (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,0"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "lenNonNegative" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "10"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "1"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1"))
+ (rule "mul_literals" (formula "7") (term "1,1,0"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaMulInt" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "assignmentAdditionInt" (formula "12") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1"))
+ (rule "add_literals" (formula "12") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "1,1"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "12") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_leqRight" (formula "12"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "translateJavaAddInt" (formula "15") (term "1"))
+ (rule "translateJavaCastInt" (formula "16") (term "0"))
+ (rule "translateJavaMulInt" (formula "9") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1"))
+ (rule "castedGetAny" (formula "16") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "times_zero_1" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMod" (formula "16") (term "0"))
+ (rule "jmod_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "newSym_eq" (formula "16") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "17"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "17"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or" (formula "20") (term "1,0,0,0"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "lenNonNegative" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "10"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "1"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "12") (term "1"))
+ (rule "variableDeclaration" (formula "12") (term "1") (newnames "read"))
+ (rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "12") (term "1"))
+ (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr"))
+ (rule "assignment_read_attribute_this_final" (formula "12"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "assignment_array2" (formula "12"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "variableDeclarationFinalAssign" (formula "12") (term "1"))
+ (rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "write"))
+ (rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "12") (term "1"))
+ (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr_1"))
+ (rule "assignment_read_attribute_this_final" (formula "12"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "assignment_array2" (formula "12"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "returnUnfold" (formula "12") (term "1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "12") (term "1"))
+ (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_1"))
+ (rule "greater_than_comparison_simple" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "methodCallReturn" (formula "12") (term "1"))
+ (rule "assignment" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "methodCallEmpty" (formula "12") (term "1"))
+ (rule "tryEmpty" (formula "12") (term "1"))
+ (rule "emptyModality" (formula "12") (term "1"))
+ (rule "andRight" (formula "12"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "12"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "closeTrue" (formula "12"))
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "11"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12"))
+ (rule "greater_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "0,0"))
+ (rule "add_zero_left" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "22") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but write_pos Out of Bounds!)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9"))
+ (rule "times_zero_1" (formula "1") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "translateJavaCastInt" (formula "16") (term "0"))
+ (rule "translateJavaAddInt" (formula "15") (term "1"))
+ (rule "translateJavaMulInt" (formula "9") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1"))
+ (rule "castedGetAny" (formula "16") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "10"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "8") (ifseqformula "1"))
+ (rule "andLeft" (formula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "1,1,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0"))
+ (rule "add_literals" (formula "8") (term "0"))
+ (rule "leq_literals" (formula "8"))
+ (rule "closeFalse" (formula "8"))
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "22") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but read_pos Out of Bounds!)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "8"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "1"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0"))
+ (rule "add_literals" (formula "9") (term "0"))
+ (rule "leq_literals" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__increment_write(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__increment_write(int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..1d56f95
--- /dev/null
+++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__increment_write(int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,8181 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 14:40:22 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 14:40:22 CEST 2022
+contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:increment_write(int)].JML normal_behavior operation contract.0
+name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:increment_write(int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "107625")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "translateJavaAddInt" (formula "10") (term "1"))
+(rule "polySimp_addComm0" (formula "10") (term "1"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+(rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_increment_write,savedHeapBefore_increment_write"))
+ (builtin "One Step Simplification" (formula "13"))
+(rule "variableDeclarationFinalAssign" (formula "13") (term "1"))
+(rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "read_pos"))
+(rule "assignmentMultiplicationInt" (formula "13") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "7"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,1"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_leqRight" (formula "12"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "9") (term "0"))
+ (rule "translateJavaSubInt" (formula "9") (term "0"))
+ (rule "polySimp_elimSub" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "20") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "20") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "20") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "20") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaMod" (formula "17") (term "0"))
+ (rule "jmod_axiom" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "newSym_eq" (formula "17") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "17") (term "1,1"))
+ (rule "add_zero_right" (formula "17") (term "1"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17"))
+ (rule "eqSymm" (formula "18"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "18"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18"))
+ (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "15") (ifseqformula "14"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "greater_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "9") (term "1,0,1"))
+ (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "26")))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "1,1"))
+ (rule "translateJavaCastInt" (formula "11") (term "0,1,1"))
+ (rule "castedGetAny" (formula "11") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1"))
+ (rule "mul_literals" (formula "11") (term "0,0,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "9") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaMod" (formula "9") (term "0,1,1"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "9") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,1"))
+ (rule "commute_or_2" (formula "24") (term "0,0"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27")))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11")))
+ (rule "true_left" (formula "10"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "10") (term "0,1,1,1,1,1"))
+ (rule "castedGetAny" (formula "10") (term "0,1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "replace_known_right" (formula "10") (term "0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "17") (term "1,0"))
+ (rule "neg_literal" (formula "17") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "17") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "9") (term "0,0,1"))
+ (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "replace_known_right" (formula "10") (term "0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "replace_known_left" (formula "9") (term "0,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "newSym_eq" (formula "11") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketSize(self, bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "11") (term "1,1"))
+ (rule "add_zero_right" (formula "11") (term "1"))
+ (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "11"))
+ (rule "eqSymm" (formula "12"))
+ (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "9") (term "0,0,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "20") (term "0,1,0,1") (ifseqformula "12"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "commute_or_2" (formula "32") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "36")) (ifInst "" (formula "17")))
+ (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "16") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "16") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0"))
+ (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "16") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "16") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "16") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,1"))
+ (rule "add_literals" (formula "16") (term "1,0,1,0,1"))
+ (rule "times_zero_1" (formula "16") (term "0,1,0,1"))
+ (rule "qeq_literals" (formula "16") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "17") (term "0"))
+ (rule "translateJavaCastInt" (formula "17") (term "0,0"))
+ (rule "castedGetAny" (formula "17") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "18") (term "0,0"))
+ (rule "translateJavaCastInt" (formula "18") (term "0,0,0"))
+ (rule "castedGetAny" (formula "18") (term "0,0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "1"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "37")))
+ (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0,1"))
+ (rule "replace_known_left" (formula "15") (term "1,0,0,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1"))
+ (rule "replace_known_left" (formula "15") (term "1,0,1,1,1") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,1"))
+ (rule "replace_known_left" (formula "15") (term "0,0,1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "15") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "0,0"))
+ (rule "castedGetAny" (formula "13") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "16") (term "0"))
+ (rule "translateJavaCastInt" (formula "16") (term "0,0"))
+ (rule "castedGetAny" (formula "16") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "16") (term "1"))
+ (rule "translateJavaCastInt" (formula "16") (term "0,1"))
+ (rule "castedGetAny" (formula "16") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "20")))
+ (rule "translateJavaSubInt" (formula "23") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "21") (term "1"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "41")))
+ (rule "translateJavaSubInt" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,1,1"))
+ (rule "replace_known_left" (formula "21") (term "1,0,1,1,1") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "21") (term "0,0,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "21") (term "0,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "21") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "42")))
+ (rule "translateJavaAddInt" (formula "22") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "22") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "22") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "22") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "22") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "22") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "22") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "22") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0"))
+ (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,1,1,1"))
+ (rule "replace_known_left" (formula "22") (term "1,1,1,1,1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0"))
+ (rule "times_zero_2" (formula "22") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "22") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "23") (term "0"))
+ (rule "translateJavaCastInt" (formula "23") (term "0,0"))
+ (rule "castedGetAny" (formula "23") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "23") (term "1"))
+ (rule "translateJavaCastInt" (formula "23") (term "0,1"))
+ (rule "castedGetAny" (formula "23") (term "0,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaSubInt" (formula "26") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "26") (term "1,0"))
+ (rule "neg_literal" (formula "26") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "43")))
+ (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "14") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "14") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "14") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "14") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0,0"))
+ (rule "castedGetAny" (formula "15") (term "0,0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "27") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "27") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "27") (term "1,0,1,0,1,1"))
+ (rule "replace_known_right" (formula "27") (term "0,1,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "27") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "27") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "28") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1"))
+ (rule "translateJavaMulInt" (formula "28") (term "0,0,2,1,1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,2,1,1"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1"))
+ (rule "shift_paren_or" (formula "41") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "40") (term "0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "0"))
+ (rule "replace_known_right" (formula "9") (term "0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "12") (term "0"))
+ (rule "replace_known_right" (formula "12") (term "0,1,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "applyEq" (formula "12") (term "0,0,1") (ifseqformula "13"))
+ (rule "applyEq" (formula "12") (term "0,0,1,1") (ifseqformula "13"))
+ (rule "replace_known_left" (formula "12") (term "1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "10"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,1"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "12") (term "0"))
+ (rule "translateJavaSubInt" (formula "12") (term "0"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "applyEq" (formula "22") (term "0,0,0,1,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "14") (term "0,0,1,1,1") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,1,1"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,1,1"))
+ (rule "applyEq" (formula "27") (term "1,1,0,0,1,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "22") (term "1,1,1,1,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "27") (term "1,1,0,1,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "22") (term "1,1,0,0,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "22") (term "0,0,0,0,1") (ifseqformula "12"))
+ (rule "inEqSimp_invertInEq0" (formula "14") (term "0,1,1,1"))
+ (rule "times_zero_2" (formula "14") (term "1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,1"))
+ (rule "inEqSimp_subsumption6" (formula "14") (term "0,1,1,1") (ifseqformula "10"))
+ (rule "greater_literals" (formula "14") (term "0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "21")))
+ (rule "true_left" (formula "14"))
+ (rule "jdiv_axiom" (formula "35") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "35"))
+ (rule "applyEq" (formula "35") (term "1") (ifseqformula "36"))
+ (rule "inEqSimp_subsumption6" (formula "35") (term "0,0") (ifseqformula "31"))
+ (rule "greater_literals" (formula "35") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "35") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "polyDiv_pullOut" (formula "35") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "polySimp_pullOutFactor0" (formula "35") (term "0,0,0"))
+ (rule "add_literals" (formula "35") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "35") (term "0,0,0"))
+ (rule "div_literals" (formula "35") (term "0,0"))
+ (rule "add_zero_left" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "17") (term "1,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "17") (term "0,1,1,1,1,1"))
+ (rule "castedGetAny" (formula "17") (term "0,1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "17") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "43")))
+ (rule "translateJavaAddInt" (formula "17") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "17") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "17") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "17") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "17") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "17") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "17") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "17") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "17") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "17") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "17") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "17") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "17") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "18") (term "0,0,1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0,0,0,1"))
+ (rule "castedGetAny" (formula "18") (term "0,0,0,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaMod" (formula "18") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "18") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "18") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "19") (term "1,0"))
+ (rule "neg_literal" (formula "19") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "translateJavaMod" (formula "20") (term "0"))
+ (rule "jmod_axiom" (formula "20") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "newSym_eq" (formula "20") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(int::seqGet(Seq::final(self,
+ de.wiesler.BucketPointers::$bucket_starts),
+ bucket)),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "20") (term "1,1"))
+ (rule "add_zero_right" (formula "20") (term "1"))
+ (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "20"))
+ (rule "eqSymm" (formula "21"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "21"))
+ (rule "applyEq" (formula "26") (term "0,0,1") (ifseqformula "21"))
+ (rule "inEqSimp_commuteGeq" (formula "26") (term "0,1"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "21"))
+ (rule "applyEq" (formula "26") (term "0,1,1") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,1,1"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "21"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,1"))
+ (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "commute_or" (formula "41") (term "0,0,0,1,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0,0,0,1,1"))
+ (rule "castedGetAny" (formula "14") (term "0,0,0,0,1,1"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,1") (ifseqformula "21"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "1,1,1,1"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "45")))
+ (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "14") (term "0,1,0,1,1,1") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "14") (term "1,1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,1,0,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "14") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_invertInEq0" (formula "14") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1"))
+ (rule "times_zero_2" (formula "14") (term "1,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "14") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "14") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "14") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_subsumption6" (formula "14") (term "0,1,1,1") (ifseqformula "10"))
+ (rule "greater_literals" (formula "14") (term "0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "0,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "23")))
+ (rule "true_left" (formula "14"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0,0,1"))
+ (rule "castedGetAny" (formula "14") (term "0,0,0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,1,1,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0,1,1,1"))
+ (rule "castedGetAny" (formula "14") (term "0,0,1,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14") (term "0"))
+ (rule "replace_known_right" (formula "14") (term "0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "14"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "18") (ifseqformula "17"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "greater_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "18") (term "1,0"))
+ (rule "neg_literal" (formula "18") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "18") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "21"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "18") (ifseqformula "17"))
+ (rule "greater_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "27") (term "0"))
+ (rule "translateJavaCastInt" (formula "27") (term "0,0"))
+ (rule "castedGetAny" (formula "27") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "1"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "32"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1"))
+ (rule "mul_literals" (formula "7") (term "1,1,0"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaMulInt" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "13") (term "1"))
+ (rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "write_pos"))
+ (rule "compound_addition_1" (formula "13") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x"))
+ (rule "assignmentMultiplicationInt" (formula "13") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "7"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,1"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_leqRight" (formula "12"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "9") (term "0"))
+ (rule "translateJavaSubInt" (formula "9") (term "0"))
+ (rule "polySimp_elimSub" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "20") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "20") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "20") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "20") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaMod" (formula "17") (term "0"))
+ (rule "jmod_axiom" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "newSym_eq" (formula "17") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "17") (term "1,1"))
+ (rule "add_zero_right" (formula "17") (term "1"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17"))
+ (rule "eqSymm" (formula "18"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "18"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "18"))
+ (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "15") (ifseqformula "14"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "greater_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "9") (term "1,1"))
+ (rule "translateJavaCastInt" (formula "9") (term "0,1,1"))
+ (rule "castedGetAny" (formula "9") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1"))
+ (rule "mul_literals" (formula "9") (term "0,0,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaSubInt" (formula "9") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "9") (term "1,0"))
+ (rule "neg_literal" (formula "9") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "9") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "9") (term "0,1,0,1"))
+ (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "10") (term "1,1"))
+ (rule "translateJavaMulInt" (formula "10") (term "0,0,2,1,1"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,2,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "10") (term "0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "10") (term "0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "10") (term "1,0,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "0"))
+ (rule "replace_known_right" (formula "9") (term "0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "commute_or_2" (formula "24") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "27")))
+ (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "11") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "11") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "28")))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0"))
+ (rule "times_zero_2" (formula "12") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "12") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1,0,0,1"))
+ (rule "translateJavaCastInt" (formula "13") (term "0,1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "castedGetAny" (formula "13") (term "0,1,1"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "9") (term "0"))
+ (rule "translateJavaAddInt" (formula "9") (term "1,0,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "0"))
+ (rule "polySimp_elimSub" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1"))
+ (rule "replace_known_left" (formula "11") (term "0,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "replace_known_left" (formula "12") (term "1,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "10") (term "0,0"))
+ (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11")))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "10") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaMod" (formula "11") (term "0"))
+ (rule "jmod_axiom" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "newSym_eq" (formula "11") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketSize(self, bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "11") (term "1,1"))
+ (rule "add_zero_right" (formula "11") (term "1"))
+ (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "11"))
+ (rule "eqSymm" (formula "12"))
+ (rule "applyEq" (formula "10") (term "0,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "12"))
+ (rule "elimGcdGeq" (formula "10") (term "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1"))
+ (rule "sub_literals" (formula "10") (term "0,0,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "0,0,0,1,0,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "10") (term "0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1"))
+ (rule "qeq_literals" (formula "10") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_pullOutFactor0" (formula "10") (term "0,0,1"))
+ (rule "add_literals" (formula "10") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "0,0,1"))
+ (rule "leq_literals" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "commute_or_2" (formula "27") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "27") (term "0,0,0"))
+ (rule "commute_or" (formula "28") (term "1,0,0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0,1,0,0,1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0,0,1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "1"))
+ (rule "castedGetAny" (formula "15") (term "0,0,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "31")))
+ (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "9") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,1,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,1,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0"))
+ (rule "times_zero_2" (formula "9") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "15")))
+ (rule "true_left" (formula "9"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "9") (term "0"))
+ (rule "translateJavaCastInt" (formula "9") (term "0,0"))
+ (rule "castedGetAny" (formula "9") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "9") (term "1"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "31")))
+ (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "9") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "9") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1"))
+ (rule "translateJavaCastInt" (formula "10") (term "0,1"))
+ (rule "castedGetAny" (formula "10") (term "0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,1,0,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0,1,0,1"))
+ (rule "castedGetAny" (formula "14") (term "0,0,1,0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "0,1,0,0,1"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "32")))
+ (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0"))
+ (rule "replace_known_left" (formula "14") (term "0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "14") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "14") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0,0"))
+ (rule "qeq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "14") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "14") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "14") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0,1,0,0,1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0,0,1,0,0,1"))
+ (rule "castedGetAny" (formula "15") (term "0,0,1,0,0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "0,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "33")))
+ (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "15") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "15") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "9")))
+ (rule "true_left" (formula "15"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0,0,0,0,1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0,0,0,0,0,1"))
+ (rule "castedGetAny" (formula "15") (term "0,0,0,0,0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "33")))
+ (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "15") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "15") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "9")))
+ (rule "true_left" (formula "15"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "translateJavaMod" (formula "15") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "15") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "16") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "33")))
+ (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "16") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "16") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0"))
+ (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "16") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "16") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "16") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "16") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "16") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "16") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMod" (formula "16") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "16") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "16") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,1"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "13") (term "0"))
+ (rule "replace_known_right" (formula "13") (term "0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0"))
+ (rule "applyEq" (formula "13") (term "0,0,1,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "13") (term "0,0,1") (ifseqformula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "13") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "13") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "13") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "elimGcdGeq" (formula "13") (term "0,1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0,0,1"))
+ (rule "sub_literals" (formula "13") (term "0,0,0,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "0,0,0,1,0,0,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,1"))
+ (rule "qeq_literals" (formula "13") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_pullOutFactor0" (formula "13") (term "0,0,0,1"))
+ (rule "add_literals" (formula "13") (term "1,0,0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "0,0,0,1"))
+ (rule "leq_literals" (formula "13") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "14") (term "0"))
+ (rule "translateJavaSubInt" (formula "14") (term "0"))
+ (rule "translateJavaAddInt" (formula "14") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "applyEq" (formula "17") (term "0,0,0,0,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "17") (term "1,1,1,1,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "9") (term "0,0,1,1,1") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,1,1"))
+ (rule "applyEq" (formula "17") (term "0,0,0,0,1,1") (ifseqformula "14"))
+ (rule "eqSymm" (formula "17") (term "0,1,1"))
+ (rule "applyEq" (formula "17") (term "1,1,0,0,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "17") (term "0,0,1,1") (ifseqformula "14"))
+ (rule "eqSymm" (formula "17") (term "0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,1"))
+ (rule "inEqSimp_invertInEq0" (formula "9") (term "0,1,1,1"))
+ (rule "times_zero_2" (formula "9") (term "1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,1,1"))
+ (rule "elimGcdGeq" (formula "9") (term "0,1,1,1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "0,0,0,1,0,0,1,1,1"))
+ (rule "sub_literals" (formula "9") (term "0,0,0,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,0,1,1,1"))
+ (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "9") (term "0,1,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "1,0,1,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "0,1,0,0,1,1,1"))
+ (rule "leq_literals" (formula "9") (term "1,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "9") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (term "0"))
+ (rule "replace_known_right" (formula "11") (term "0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "replace_known_left" (formula "9") (term "0,1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_left" (formula "13") (term "0,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "18") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaUnaryMinusInt" (formula "18") (term "1,1,0,1"))
+ (rule "neg_literal" (formula "18") (term "1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "18") (term "0,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,1,0,1"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,0,1"))
+ (rule "polySimp_addLiterals" (formula "18") (term "0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "18") (term "1"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "1,1,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0"))
+ (rule "add_zero_right" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "jdiv_axiom" (formula "26") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "26"))
+ (rule "applyEq" (formula "26") (term "1") (ifseqformula "27"))
+ (rule "inEqSimp_subsumption6" (formula "26") (term "0,0") (ifseqformula "22"))
+ (rule "greater_literals" (formula "26") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "polyDiv_pullOut" (formula "26") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "polySimp_pullOutFactor0" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "0,0,0"))
+ (rule "div_literals" (formula "26") (term "0,0"))
+ (rule "add_zero_left" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "translateJavaUnaryMinusInt" (formula "10") (term "1,0"))
+ (rule "neg_literal" (formula "10") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,0,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "commute_or_2" (formula "30") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "31") (term "0,0,0"))
+ (rule "commute_or" (formula "30") (term "0,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "1"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "19"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaMulInt" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0"))
+ (rule "assignmentAdditionInt" (formula "13") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1"))
+ (rule "add_literals" (formula "13") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "1,1"))
+ (rule "inEqSimp_subsumption6" (formula "13") (term "1") (ifseqformula "8"))
+ (rule "greater_literals" (formula "13") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "times_zero_1" (formula "13") (term "1,0,1"))
+ (rule "leq_literals" (formula "13") (term "0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_leqRight" (formula "13"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "9") (term "0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "3")) (ifInst "" (formula "24")))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "translateJavaSubInt" (formula "10") (term "0"))
+ (rule "polySimp_elimSub" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "21") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "21") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "21") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "21") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaMod" (formula "18") (term "0"))
+ (rule "jmod_axiom" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "newSym_eq" (formula "18") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "18") (term "1,1"))
+ (rule "add_zero_right" (formula "18") (term "1"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "18"))
+ (rule "eqSymm" (formula "19"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "19"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "19"))
+ (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "16") (ifseqformula "15"))
+ (rule "greater_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "1,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1,1,1"))
+ (rule "translateJavaAddInt" (formula "9") (term "1,1,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "9") (term "0,1,0,1,0,0,0,1,1"))
+ (rule "translateJavaMulInt" (formula "9") (term "0,1,0,0,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "9") (term "0,0,1,0,1,1"))
+ (rule "translateJavaMulInt" (formula "9") (term "1,0,0,0,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "9") (term "1,1,0,0,1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0,0,0,1,1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0,1,1") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "castedGetAny" (formula "9") (term "0,1,0,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,0,1,0,0,1,1") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "castedGetAny" (formula "9") (term "0,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "9") (term "0,1,0,1,1") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "castedGetAny" (formula "9") (term "1,1,0,1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,0,0,1,1"))
+ (rule "applyEq" (formula "9") (term "0,0,1,1,0,0,1,1") (ifseqformula "19"))
+ (rule "applyEq" (formula "9") (term "0,0,0,1,0,0,1,1") (ifseqformula "19"))
+ (rule "applyEq" (formula "9") (term "1,1,0,1,0,0,1,1") (ifseqformula "19"))
+ (rule "replace_known_left" (formula "9") (term "1,0,1,0,0,1,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,1,0,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption6" (formula "9") (term "0,1,0,0,1,1") (ifseqformula "14"))
+ (rule "times_zero_1" (formula "9") (term "1,1,0,0,1,0,0,1,1"))
+ (rule "greater_literals" (formula "9") (term "0,0,0,1,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "leq_literals" (formula "9") (term "0,0,1,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption6" (formula "9") (term "0,0,0,1,1") (ifseqformula "12"))
+ (rule "times_zero_1" (formula "9") (term "1,1,0,0,0,0,1,1"))
+ (rule "greater_literals" (formula "9") (term "0,0,0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "leq_literals" (formula "9") (term "0,0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "nnf_imp2or" (formula "9") (term "0,1,1,1"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,1,1,1"))
+ (rule "nnf_notAnd" (formula "9") (term "1,0,0,1,1,1"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,1,0,0,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,1,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,1,1,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,1,0,0,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,1,1,0,0,1,1,1"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,1,0,0,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0,1,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,1,0,0,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,0,1,0,0,1,1,1"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,0,1,1,1"))
+ (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,1,1,1"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "9") (term "1,1,1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "26")))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "1,1"))
+ (rule "translateJavaCastInt" (formula "11") (term "0,1,1"))
+ (rule "castedGetAny" (formula "11") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1"))
+ (rule "mul_literals" (formula "11") (term "0,0,1"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "commute_or_2" (formula "24") (term "0,0"))
+ (rule "commute_or_2" (formula "23") (term "0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "0,1"))
+ (rule "replace_known_right" (formula "9") (term "0,0,1") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27")))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11")))
+ (rule "true_left" (formula "10"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27")))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11")))
+ (rule "true_left" (formula "10"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27")))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "0,1,1,1,0,1,1,1"))
+ (rule "add_zero_left" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "0,1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,1,1,1"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0"))
+ (rule "times_zero_2" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "1,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "11") (term "0,1,1,1,1,1"))
+ (rule "castedGetAny" (formula "11") (term "0,1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "28")))
+ (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "11") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "11") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "11") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0"))
+ (rule "replace_known_left" (formula "11") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0"))
+ (rule "times_zero_2" (formula "11") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "11") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "times_zero_2" (formula "11") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,0,0,0,1,1"))
+ (rule "castedGetAny" (formula "12") (term "0,0,0,0,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0,0,1,1,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "castedGetAny" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "1,0,1,1,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,1,1"))
+ (rule "castedGetAny" (formula "12") (term "0,1,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "1,1,0,0,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,1,1,0,0,1"))
+ (rule "castedGetAny" (formula "12") (term "0,1,1,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "12") (term "1,0,0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "0,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "29")))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,1,1,1,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "30")))
+ (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "13") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "13") (term "0,0,0"))
+ (rule "add_literals" (formula "13") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "0,0,0"))
+ (rule "qeq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "13") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "13") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "13") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "13") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "13") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "13") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "13") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,1,0,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0,1,0,1"))
+ (rule "castedGetAny" (formula "14") (term "0,0,1,0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,0,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0,0,0,0,1"))
+ (rule "castedGetAny" (formula "14") (term "0,0,0,0,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14") (term "0"))
+ (rule "replace_known_right" (formula "14") (term "0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "replace_known_left" (formula "13") (term "0,0,1") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1"))
+ (rule "mul_literals" (formula "21") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1"))
+ (rule "replace_known_left" (formula "10") (term "1,0,0,1") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "18")))
+ (rule "translateJavaSubInt" (formula "23") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "24") (term "1,0"))
+ (rule "neg_literal" (formula "24") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "9") (term "0,1,1") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1,1"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1,0,1,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1,0,1,1"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1,0,1,1"))
+ (rule "translateJavaCastInt" (formula "9") (term "0,1,0,1,0,1,1"))
+ (rule "translateJavaCastInt" (formula "9") (term "1,1,0,1,0,1,1"))
+ (rule "castedGetAny" (formula "9") (term "0,1,0,1,0,1,1"))
+ (rule "castedGetAny" (formula "9") (term "1,1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0,0,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0,1,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,0,1,1"))
+ (rule "applyEq" (formula "9") (term "0,1,0,0,1,0,0,0,1,0,1,1") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0,0,1,0,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0,0,1,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,0,1,0,1,1"))
+ (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,0,1,0,1,1"))
+ (rule "applyEq" (formula "9") (term "0,1,0,0,1,0,0,0,1,1") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0,0,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,0,1,1"))
+ (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,1,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,1,1"))
+ (rule "commute_or" (formula "36") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "37") (term "0,0,0"))
+ (rule "commute_or" (formula "36") (term "0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "32") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "32"))
+ (rule "applyEq" (formula "32") (term "1") (ifseqformula "33"))
+ (rule "inEqSimp_subsumption6" (formula "32") (term "0,0") (ifseqformula "28"))
+ (rule "greater_literals" (formula "32") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "polyDiv_pullOut" (formula "32") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_pullOutFactor0" (formula "32") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "32") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "32") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "32") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "32") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "1,0"))
+ (rule "times_zero_1" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "lenNonNegative" (formula "34") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "mul_literals" (formula "34") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "26"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "7") (term "0"))
+ (rule "expand_inShort" (formula "7"))
+ (rule "replace_short_MAX" (formula "7") (term "1,0"))
+ (rule "replace_short_MIN" (formula "7") (term "0,1"))
+ (rule "andLeft" (formula "7"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "27"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "7"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "8") (ifseqformula "1"))
+ (rule "mul_literals" (formula "8") (term "1,1,0"))
+ (rule "greater_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeFalse" (formula "8"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "13") (term "1"))
+ (rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "write"))
+ (rule "eval_order_array_access4" (formula "13") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr"))
+ (rule "assignment_read_attribute_this_final" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignment_array2" (formula "13"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "compound_assignment_op_plus_array" (formula "13") (term "1") (inst "#v0=x_arr") (inst "#v1=x"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_1"))
+ (rule "assignment_read_attribute_this_final" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "eval_order_array_access3" (formula "13") (term "1") (inst "#v0=x_arr_2") (inst "#v2=x_2") (inst "#v1=x_3"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_2"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_3"))
+ (rule "compound_int_cast_expression" (formula "13") (term "1") (inst "#v=x_4"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_4"))
+ (rule "remove_parentheses_right" (formula "13") (term "1"))
+ (rule "compound_addition_1" (formula "13") (term "1") (inst "#v=x_5"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_5"))
+ (rule "assignment_array2" (formula "13"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignmentAdditionInt" (formula "13") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (userinteraction))
+ (rule "andRight" (formula "13") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "13") (term "1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "13"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "13"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "0,0"))
+ (rule "add_zero_left" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "translateJavaSubInt" (formula "10") (term "0"))
+ (rule "polySimp_elimSub" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "21") (term "1,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "21") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "21") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "21") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaMod" (formula "18") (term "0"))
+ (rule "jmod_axiom" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "newSym_eq" (formula "18") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "18") (term "1,1"))
+ (rule "add_zero_right" (formula "18") (term "1"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "18"))
+ (rule "eqSymm" (formula "19"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "19"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "19"))
+ (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "16") (ifseqformula "15"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "greater_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "26")))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,1,1,1,1") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "11") (term "1,0,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "1,0,1"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,0,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "11") (term "1"))
+ (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,1"))
+ (rule "add_literals" (formula "11") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,1"))
+ (rule "add_zero_right" (formula "11") (term "0,1"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "11") (term "0"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_right" (formula "11") (term "0,1,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0"))
+ (rule "replace_known_left" (formula "11") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0"))
+ (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "11") (term "1,0,0,1,1") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,1,0,0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,0,1,1"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0,1,1"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "12") (term "0"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "12") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,2,0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "12"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "commute_or_2" (formula "26") (term "0,0"))
+ (rule "commute_or_2" (formula "25") (term "0,0"))
+ (rule "commute_or_2" (formula "25") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "0,1,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "11") (term "0,0,1,1,1,1,1"))
+ (rule "castedGetAny" (formula "11") (term "0,0,1,1,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "29")))
+ (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0"))
+ (rule "replace_known_left" (formula "11") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "11") (term "0,0,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "1,0,1,1,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "11") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1,1,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "30")))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "11")))
+ (rule "true_left" (formula "12"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0,0,0,0,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,0,0,0,0,1"))
+ (rule "castedGetAny" (formula "12") (term "0,0,0,0,0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "30")))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "11")))
+ (rule "true_left" (formula "12"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "0,1,0,0,1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "30")))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "12") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "12") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "12") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "12") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "12") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "12") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "12") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "12") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "1,1,0,0,1"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "31")))
+ (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "13") (term "0,0,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "13") (term "1,0,1,1,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "13") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "13") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "13") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "11")))
+ (rule "true_left" (formula "13"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "0,1,0,0,1"))
+ (rule "translateJavaCastInt" (formula "13") (term "0,0,1,0,0,1"))
+ (rule "castedGetAny" (formula "13") (term "0,0,1,0,0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1,1,0,0,1"))
+ (rule "translateJavaCastInt" (formula "13") (term "0,1,1,0,0,1"))
+ (rule "castedGetAny" (formula "13") (term "0,1,1,0,0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "31")))
+ (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "13") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "13") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "13") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "13") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "13") (term "1,0,1,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0"))
+ (rule "replace_known_left" (formula "13") (term "1,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0"))
+ (rule "times_zero_2" (formula "13") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "13") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,1,1,1,1"))
+ (rule "times_zero_2" (formula "13") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "13") (term "0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (term "0,0") (ifseqformula "8"))
+ (rule "leq_literals" (formula "13") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "13") (term "0,0,0,1") (ifseqformula "1"))
+ (rule "leq_literals" (formula "13") (term "0,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14") (term "0"))
+ (rule "replace_known_right" (formula "14") (term "0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "18"))
+ (rule "replace_known_left" (formula "11") (term "0,1,1") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "16")) (ifInst "" (formula "18")))
+ (rule "replace_known_left" (formula "13") (term "1,0,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "18")))
+ (rule "replace_known_left" (formula "12") (term "1,0,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "21") (term "1,1"))
+ (rule "translateJavaCastInt" (formula "21") (term "0,1,1"))
+ (rule "castedGetAny" (formula "21") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "lenNonNegative" (formula "31") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "23"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "1"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "22"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "9") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "20") (term "0"))
+ (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "21")))
+ (rule "andLeft" (formula "11"))
+ (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "24")))
+ (rule "andLeft" (formula "14"))
+ (rule "replace_known_left" (formula "13") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "closeFalse" (formula "27"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "13"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11"))
+ (rule "greater_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "10") (term "0"))
+ (rule "replace_known_left" (formula "10") (term "1,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "3")) (ifInst "" (formula "25")))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0"))
+ (rule "replace_known_left" (formula "10") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "11") (term "0"))
+ (rule "translateJavaSubInt" (formula "11") (term "0"))
+ (rule "polySimp_elimSub" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "22") (term "1,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "22") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "22") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaMod" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "newSym_eq" (formula "19") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "19") (term "1,1"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19"))
+ (rule "eqSymm" (formula "20"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "20"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "20"))
+ (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "elimGcdLeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "16"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "replace_known_right" (formula "10") (term "0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1,1"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "10")) (ifInst "" (formula "28")))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "19") (term "1,0,1"))
+ (rule "replace_known_right" (formula "19") (term "0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "10")))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0"))
+ (rule "replace_known_left" (formula "19") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0"))
+ (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "21") (term "1,0,1"))
+ (rule "translateJavaSubInt" (formula "21") (term "1,0,1"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,0,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "1"))
+ (rule "polySimp_pullOutFactor2b" (formula "21") (term "0,1"))
+ (rule "add_literals" (formula "21") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,1"))
+ (rule "add_zero_right" (formula "21") (term "0,1"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "21") (term "0"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_left" (formula "21") (term "1,0,0,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "37")) (ifInst "" (formula "10")) (ifInst "" (formula "11")))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "21") (term "0,0,0,0,1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0"))
+ (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "20"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "25") (term "0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "25") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,0"))
+ (rule "commute_or_2" (formula "38") (term "0,0"))
+ (rule "commute_or_2" (formula "37") (term "0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "16") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "13") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "31"))
+ (rule "times_zero_1" (formula "11") (term "1,1,0"))
+ (rule "greater_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "32"))
+ (rule "greater_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "commute_or_2" (formula "38") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "42")) (ifInst "" (formula "16")))
+ (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0"))
+ (rule "replace_known_left" (formula "15") (term "0,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,1,0,1"))
+ (rule "add_literals" (formula "15") (term "1,0,1,0,1"))
+ (rule "times_zero_1" (formula "15") (term "0,1,0,1"))
+ (rule "qeq_literals" (formula "15") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "15") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "15") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "16") (term "0"))
+ (rule "translateJavaCastInt" (formula "16") (term "0,0"))
+ (rule "castedGetAny" (formula "16") (term "0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaMod" (formula "17") (term "0"))
+ (rule "jmod_axiom" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "newSym_eq" (formula "17") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(self,
+ bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "17") (term "1,1"))
+ (rule "add_zero_right" (formula "17") (term "1"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17"))
+ (rule "eqSymm" (formula "18"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "18"))
+ (rule "applyEq" (formula "23") (term "1,1") (ifseqformula "18"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "19") (term "1,1") (ifseqformula "18"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "18"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "18"))
+ (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(6(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "23") (ifseqformula "22"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "greater_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0"))
+ (rule "castedGetAny" (formula "14") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "16"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "23"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "19") (term "0,1"))
+ (rule "translateJavaCastInt" (formula "19") (term "0,0,1"))
+ (rule "castedGetAny" (formula "19") (term "0,0,1"))
+ (rule "lenNonNegative" (formula "38") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "30"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "31") (term "1"))
+ (rule "expand_inShort" (formula "31"))
+ (rule "replace_short_MAX" (formula "31") (term "1,0"))
+ (rule "replace_short_MIN" (formula "31") (term "0,1"))
+ (rule "andLeft" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "29"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "8") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaMod" (formula "21") (term "0"))
+ (rule "jmod_axiom" (formula "21") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "newSym_eq" (formula "21") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketSize(self, bucket),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "21") (term "1,1"))
+ (rule "add_zero_right" (formula "21") (term "1"))
+ (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "21"))
+ (rule "eqSymm" (formula "22"))
+ (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+ (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "29") (term "1,1"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "46")))
+ (rule "translateJavaSubInt" (formula "29") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "29") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "29") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "29") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "29") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "29") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "29") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "29") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "29") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,0,1"))
+ (rule "replace_known_left" (formula "29") (term "1,0,0,1") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "29") (term "1,0,1,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,0"))
+ (rule "replace_known_left" (formula "29") (term "1,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0"))
+ (rule "times_zero_2" (formula "29") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0"))
+ (rule "applyEq" (formula "29") (term "1,1,1,1,1,1") (ifseqformula "18"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "29") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,1,1,1"))
+ (rule "times_zero_2" (formula "29") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "29") (term "0,1,1,1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "29") (term "0,0") (ifseqformula "6"))
+ (rule "leq_literals" (formula "29") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "29") (term "1,1,1,1") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,1,1,1,1"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "29") (term "0,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "29") (term "0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "30") (term "1,1"))
+ (rule "translateJavaCastInt" (formula "30") (term "0,1,1"))
+ (rule "castedGetAny" (formula "30") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "mul_literals" (formula "30") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "seqGetAlphaCast" (formula "42") (term "0"))
+ (rule "castedGetAny" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "seqGetAlphaCast" (formula "38") (term "0"))
+ (rule "castedGetAny" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "28") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "28") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "28") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "28") (term "1,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "3")) (ifInst "" (formula "47")) (ifInst "" (formula "29")))
+ (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "28") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0"))
+ (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "28") (term "1,0,1,1") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "applyEq" (formula "28") (term "1,1,0,0,1,1") (ifseqformula "18"))
+ (rule "replace_known_left" (formula "28") (term "1,0,0,1,1") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "applyEq" (formula "28") (term "0,0,0,1,1") (ifseqformula "18"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,0,0"))
+ (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_subsumption6" (formula "28") (term "0,0,1,1") (ifseqformula "13"))
+ (rule "greater_literals" (formula "28") (term "0,0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1"))
+ (rule "leq_literals" (formula "28") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "29") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "29") (term "0,2,0,0"))
+ (rule "translateJavaMulInt" (formula "29") (term "0,0,2,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,2,0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,2,0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "27") (term "0"))
+ (rule "translateJavaCastInt" (formula "27") (term "0,0"))
+ (rule "castedGetAny" (formula "27") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "27") (term "1"))
+ (rule "translateJavaCastInt" (formula "27") (term "0,1"))
+ (rule "castedGetAny" (formula "27") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "1"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "25") (term "0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "25") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "1"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "25") (ifseqformula "13"))
+ (rule "times_zero_1" (formula "25") (term "1,1,0"))
+ (rule "greater_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "qeq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "closeFalse" (formula "25"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignment_to_primitive_array_component" (formula "13"))
+ (branch "Normal Execution (x_arr_2 != null)"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "returnUnfold" (formula "13") (term "1") (inst "#v0=i"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "i"))
+ (rule "instanceCreationAssignmentUnfoldArguments" (formula "13") (term "1"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "var"))
+ (rule "compound_greater_than_comparison_1" (formula "13") (term "1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_6"))
+ (rule "eval_order_array_access4" (formula "13") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "13") (term "1"))
+ (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_3"))
+ (rule "assignment_read_attribute_this_final" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignment_array2" (formula "13"))
+ (branch "Normal Execution (x_arr_3 != null)"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "pullOutSelect" (formula "13") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "greater_than_comparison_simple" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "variableDeclarationAssign" (formula "14") (term "1"))
+ (rule "variableDeclaration" (formula "14") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (builtin "Use Operation Contract" (formula "14") (newnames "heapBefore_Increment,self_51,exc_51,heapAfter_Increment,anon_heap_Increment") (contract "de.wiesler.Increment[de.wiesler.Increment::Increment(boolean,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (Increment)"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "15") (term "1,1,0,0,1,0") (ifseqformula "14"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "17"))
+ (rule "eqSymm" (formula "18"))
+ (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "blockEmpty" (formula "25") (term "1"))
+ (rule "applyEq" (formula "1") (term "1,1,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "17") (term "1,0,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "14") (term "1,3,0,0") (ifseqformula "18"))
+ (rule "methodCallReturn" (formula "25") (term "1"))
+ (rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "methodCallEmpty" (formula "25") (term "1"))
+ (rule "tryEmpty" (formula "25") (term "1"))
+ (rule "emptyModality" (formula "25") (term "1"))
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "equal_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "17") (term "0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_gtToGeq" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Increment" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Increment" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "21"))
+ (rule "notRight" (formula "21"))
+ (rule "close" (formula "18") (ifseqformula "1"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "23")))
+ (rule "closeTrue" (formula "25"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "closeTrue" (formula "25"))
+ )
+ )
+ (branch "Exceptional Post (Increment)"
+ (builtin "One Step Simplification" (formula "14"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "14"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "15") (term "1,0,0") (ifseqformula "14"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "15") (term "1,1,0,0,1,0") (ifseqformula "14"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "15"))
+ (rule "close" (formula "20") (ifseqformula "19"))
+ )
+ (branch "Pre (Increment)"
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andRight" (formula "14") (userinteraction))
+ (branch "Case 1"
+ (rule "wellFormedStorePrimitiveArray" (formula "14"))
+ (rule "close" (formula "14") (ifseqformula "2"))
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "14") (userinteraction))
+ (rule "andRight" (formula "14") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "14") (term "1"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "equal_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "13"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "13"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "0,0"))
+ (rule "add_zero_left" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "translateJavaSubInt" (formula "10") (term "0"))
+ (rule "polySimp_elimSub" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "21") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "21") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "21") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "21") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaMod" (formula "18") (term "0"))
+ (rule "jmod_axiom" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "newSym_eq" (formula "18") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "18") (term "1,1"))
+ (rule "add_zero_right" (formula "18") (term "1"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "18"))
+ (rule "eqSymm" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "19"))
+ (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "16") (ifseqformula "15"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "greater_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "10") (term "0"))
+ (rule "translateJavaAddInt" (formula "10") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,0,1,1"))
+ (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,0"))
+ (rule "replace_known_left" (formula "10") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "11") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,2,0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "11"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "12") (term "1,0,1"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,0,1"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,0,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "1"))
+ (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,1"))
+ (rule "add_zero_right" (formula "12") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "1,1,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,1,1,0,0,1,1"))
+ (rule "castedGetAny" (formula "12") (term "0,1,1,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "12") (term "1,1,1,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1,1,1,1,1"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,1,1,1,1"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "translateJavaMulInt" (formula "12") (term "1,0,0,0,0,0,1,1,1,1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0,1,0,0,0,0,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "1,1,0,0,1,0,0,0,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,0,0,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,0,0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0,0,0,1,1,1,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0,1,1,1,1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "castedGetAny" (formula "12") (term "1,1,0,0,1,0,0,1,1,1,1"))
+ (rule "castedGetAny" (formula "12") (term "0,0,1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "0,1,0,1,1,1,1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "castedGetAny" (formula "12") (term "0,1,0,1,0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,0,1,0,0,1,1,1,1") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0,0,1,1,1,1"))
+ (rule "applyEq" (formula "12") (term "0,0,0,1,0,0,1,1,1,1") (ifseqformula "22"))
+ (rule "applyEq" (formula "12") (term "0,0,1,1,0,0,1,1,1,1") (ifseqformula "22"))
+ (rule "applyEq" (formula "12") (term "1,1,0,1,0,0,1,1,1,1") (ifseqformula "22"))
+ (rule "replace_known_left" (formula "12") (term "1,0,1,0,0,1,1,1,1") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "0,1,0,0,1,1,1,1") (ifseqformula "17"))
+ (rule "greater_literals" (formula "12") (term "0,0,0,1,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,1,1,1,1"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "0,0,0,1,1,1,1") (ifseqformula "15"))
+ (rule "greater_literals" (formula "12") (term "0,0,0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,1,1,1"))
+ (rule "leq_literals" (formula "12") (term "0,0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,1,1,1"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,1,1,1"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,1,1,1,1,1"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,1,1,1,1"))
+ (rule "replace_known_left" (formula "12") (term "1,1,1,1,1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "1") (term "0"))
+ (rule "translateJavaCastInt" (formula "1") (term "0,0"))
+ (rule "castedGetAny" (formula "1") (term "0,0"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "1") (term "0,1,1"))
+ (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "2") (term "0,1,1"))
+ (rule "translateJavaAddInt" (formula "2") (term "1,0,0,1,1"))
+ (rule "translateJavaSubInt" (formula "2") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "1"))
+ (rule "commute_or_2" (formula "27") (term "0,0"))
+ (rule "commute_or_2" (formula "26") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "1,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,1,1"))
+ (rule "castedGetAny" (formula "14") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "30")))
+ (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "3") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "3") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "3") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "3") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "3") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0"))
+ (rule "times_zero_2" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "3") (term "0,1,1,1,1"))
+ (rule "times_zero_2" (formula "3") (term "1,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "3") (term "0,1,1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0,0,1") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "0"))
+ (rule "translateJavaCastInt" (formula "4") (term "0,0"))
+ (rule "castedGetAny" (formula "4") (term "0,0"))
+ (rule "commute_or_2" (formula "27") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "1,1,0,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,1,1,0,0,0,1,1"))
+ (rule "castedGetAny" (formula "14") (term "0,1,1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14") (term "1,0,0,0,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,0,0,0,0,0,1,1"))
+ (rule "castedGetAny" (formula "14") (term "0,0,0,0,0,0,1,1"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "14") (term "1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0,0,1,1"))
+ (rule "translateJavaMulInt" (formula "14") (term "0,0,2,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,2,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,0,1,1") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,0,1,1"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,1,1"))
+ (rule "qeq_literals" (formula "14") (term "0,1,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "translateJavaSubInt" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1,1,1"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "2") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "3") (term "1,0"))
+ (rule "neg_literal" (formula "3") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "1") (term "0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "1") (term "1,0,0,0,1,1"))
+ (rule "translateJavaSubInt" (formula "1") (term "0,0,1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,0,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "1") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "17") (term "1,0"))
+ (rule "neg_literal" (formula "17") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "17") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "5") (term "0,1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "33")))
+ (rule "translateJavaAddInt" (formula "5") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "5") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "5") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "5") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "5") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "5") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "5") (term "0,1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "times_zero_2" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (term "0,0,1,1,1,1") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "5") (term "0,0,0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "6") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "translateJavaMod" (formula "6") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "6") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "6") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "translateJavaSubInt" (formula "7") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "7") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "1,1,1"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "7") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "translateJavaSubInt" (formula "8") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "8") (term "1,0"))
+ (rule "neg_literal" (formula "8") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "jdiv_axiom" (formula "27") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "27"))
+ (rule "applyEqRigid" (formula "27") (term "1") (ifseqformula "28"))
+ (rule "inEqSimp_subsumption6" (formula "27") (term "0,0") (ifseqformula "23"))
+ (rule "greater_literals" (formula "27") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "27") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polyDiv_pullOut" (formula "27") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "0,0,0"))
+ (rule "div_literals" (formula "27") (term "0,0"))
+ (rule "add_zero_left" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "shift_paren_or" (formula "32") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "31") (term "0,0,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "18") (term "0,0,0,1,1,1"))
+ (rule "translateJavaAddInt" (formula "18") (term "0,2,0,0,0,1,1,1"))
+ (rule "translateJavaMulInt" (formula "18") (term "0,0,2,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,2,0,0,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,2,0,0,0,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "18") (term "0,1,0,1,1"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "35")))
+ (rule "translateJavaAddInt" (formula "18") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "18") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "18") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "18") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "18") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0"))
+ (rule "replace_known_left" (formula "18") (term "0,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "18") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "18") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "18") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "18") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "18") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "18") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "18") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "18") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "19") (term "0,1,0,1,1"))
+ (rule "translateJavaCastInt" (formula "19") (term "0,0,1,0,1,1"))
+ (rule "castedGetAny" (formula "19") (term "0,0,1,0,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "19") (term "0,1,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,0,1,0,0,1,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "19") (term "1,0,1,0,0,1,1"))
+ (rule "neg_literal" (formula "19") (term "1,0,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,0,0,1,0,0,1,1"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,0,1,0,0,1,1"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,0,0,1,1"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,1,0,0,1,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "3") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,1,1"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "3") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "3") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,0,0,0,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "3") (term "1,0,0,0,1"))
+ (rule "neg_literal" (formula "3") (term "1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,0,0,0,0,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,0,0,0,1"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0,1"))
+ (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "4") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "36")))
+ (rule "translateJavaAddInt" (formula "4") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "4") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "4") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "4") (term "1,0,1,1,1,1") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0"))
+ (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "4") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,1,1,1"))
+ (rule "times_zero_2" (formula "4") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "4") (term "0,1,1,1,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "16"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "5") (term "1,0,1"))
+ (rule "translateJavaCastInt" (formula "5") (term "0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "5") (term "1"))
+ (rule "castedGetAny" (formula "5") (term "0,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "2") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "37")))
+ (rule "translateJavaAddInt" (formula "2") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "2") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "2") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "2") (term "0,0,1,1,1") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "1,0,1,1,1,1") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "2") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "3") (term "1,0,0"))
+ (rule "translateJavaCastInt" (formula "3") (term "0,1,0,0"))
+ (rule "castedGetAny" (formula "3") (term "0,1,0,0"))
+ (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "1") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "castedGetAny" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "2") (term "0"))
+ (rule "translateJavaAddInt" (formula "2") (term "1,0,0"))
+ (rule "translateJavaSubInt" (formula "2") (term "0"))
+ (rule "polySimp_elimSub" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1"))
+ (rule "replace_known_left" (formula "9") (term "1,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_left" (formula "6") (term "1,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_left" (formula "3") (term "0,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "commute_or" (formula "35") (term "0,0,0,1,0"))
+ (rule "seqGetAlphaCast" (formula "29") (term "0"))
+ (rule "castedGetAny" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "lenNonNegative" (formula "33") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "25"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "seqGetAlphaCast" (formula "34") (term "0"))
+ (rule "castedGetAny" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "19"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "8") (term "1,1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "40")))
+ (rule "translateJavaAddInt" (formula "8") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "8") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "8") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "8") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "8") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "8") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "8") (term "0,1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "times_zero_2" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "0,0,1,1,1,1") (ifseqformula "18"))
+ (rule "leq_literals" (formula "8") (term "0,0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "0,0,0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "8") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "9")))
+ (rule "true_left" (formula "8"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "1,1,0,1,1,1"))
+ (rule "translateJavaCastInt" (formula "8") (term "0,1,1,0,1,1,1"))
+ (rule "castedGetAny" (formula "8") (term "0,1,1,0,1,1,1"))
+ (rule "inEqSimp_commuteGeq" (formula "8") (term "1,0,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "8") (term "0,1,0,0,1"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "40")))
+ (rule "translateJavaAddInt" (formula "8") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "8") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "8") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "8") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "8") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "8") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0"))
+ (rule "replace_known_left" (formula "8") (term "0,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "8") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "8") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "8") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "8") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "8") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "8") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "8") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "8") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "0,1,0,0,1"))
+ (rule "translateJavaCastInt" (formula "8") (term "0,0,1,0,0,1"))
+ (rule "castedGetAny" (formula "8") (term "0,0,1,0,0,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "8") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "translateJavaMod" (formula "8") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "8") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "8") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "10") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "translateJavaSubInt" (formula "10") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "10") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "translateJavaSubInt" (formula "10") (term "0,0,0,0,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "10") (term "1,0,0,0,1"))
+ (rule "neg_literal" (formula "10") (term "1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,0,0,0,0,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "0,0,0,0,1"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,1"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0,0,1"))
+ (rule "commute_or_2" (formula "37") (term "0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "21") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "40")))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "21") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "21") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "21") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "21") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "21") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "21") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "21") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "21") (term "0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "40")))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "21") (term "0,1,1,1,0,1,1,1"))
+ (rule "add_zero_left" (formula "21") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "21") (term "0,1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,1,1,1"))
+ (rule "add_zero_left" (formula "21") (term "0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "21") (term "1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "21") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "21") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0"))
+ (rule "times_zero_2" (formula "21") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "21") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,1,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "21") (term "1,1,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "21") (term "1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "22") (term "1,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "41")))
+ (rule "translateJavaAddInt" (formula "22") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "22") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "22") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "22") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "22") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "22") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0"))
+ (rule "replace_known_left" (formula "22") (term "0,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "22") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "22") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "22") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "0,0,0"))
+ (rule "qeq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "22") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "22") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "22") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "22") (term "1,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "22") (term "0,1,1,1,1,1"))
+ (rule "castedGetAny" (formula "22") (term "0,1,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "22") (term "0,1,0,1"))
+ (rule "translateJavaCastInt" (formula "22") (term "0,0,1,0,1"))
+ (rule "castedGetAny" (formula "22") (term "0,0,1,0,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "22") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "translateJavaMod" (formula "22") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "22") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "22") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23") (term "0"))
+ (rule "replace_known_right" (formula "23") (term "0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "28"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "3"))
+ (rule "replace_known_left" (formula "10") (term "0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "5")))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "replace_known_left" (formula "16") (term "0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "11")) (ifInst "" (formula "5")) (ifInst "" (formula "13")))
+ (rule "replace_known_left" (formula "28") (term "1,0,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33")))
+ (rule "replace_known_left" (formula "15") (term "1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "5")) (ifInst "" (formula "13")))
+ (rule "newSym_eq" (formula "31") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(self,
+ int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "31") (term "1,1"))
+ (rule "add_zero_right" (formula "31") (term "1"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "31"))
+ (rule "eqSymm" (formula "32"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "32"))
+ (rule "inEqSimp_commuteGeq" (formula "11"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "32"))
+ (rule "inEqSimp_commuteGeq" (formula "4"))
+ (rule "applyEq" (formula "28") (term "1,1,0,1") (ifseqformula "32"))
+ (rule "applyEq" (formula "28") (term "1,0,1,1,1") (ifseqformula "32"))
+ (rule "elimGcdLeq_antec" (formula "5") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "5") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "elimGcdGeq_antec" (formula "29") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "newSym_eq" (formula "16") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(self,
+ add(Z(1(#)),
+ bucket)),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "38") (term "1") (ifseqformula "17"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "17"))
+ (rule "inEqSimp_commuteGeq" (formula "2"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "13") (term "1,1") (ifseqformula "17"))
+ (rule "applyEq" (formula "14") (term "0,1,0,1") (ifseqformula "17"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=l_2") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "37"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "32"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "39") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "39") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "11"))
+ (rule "times_zero_1" (formula "3") (term "1,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "32"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "14"))
+ (rule "times_zero_1" (formula "37") (term "0,0"))
+ (rule "add_zero_left" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "commute_or_2" (formula "58") (term "0,0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "9") (term "0,1,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaSubInt" (formula "9") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "9") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,1,1"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "9") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "10") (term "0,1,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "translateJavaSubInt" (formula "10") (term "0,0,1,1,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "10") (term "1,0,1,1,1"))
+ (rule "neg_literal" (formula "10") (term "1,0,1,1,1"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "10") (term "0,0,1,1,1"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,1,1"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,1,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "16") (term "1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,1,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "16") (term "1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaUnaryMinusInt" (formula "16") (term "1,1,1"))
+ (rule "neg_literal" (formula "16") (term "1,1,1"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,1"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,0,1,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,1"))
+ (rule "polySimp_addLiterals" (formula "16") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,1,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0"))
+ (rule "add_zero_right" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_contradInEq3" (formula "16") (ifseqformula "41"))
+ (rule "greater_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeFalse" (formula "16"))
+ )
+ (branch "Case 2"
+ (rule "pullOutSelect" (formula "14") (term "1") (inst "selectSK=arr_1") (userinteraction))
+ (rule "cut" (inst "cutFormula=leq(Z(0(#)), arr_1<>)<>") (userinteraction))
+ (branch "CUT: 0 <= arr_1<> TRUE"
+ (rule "replace_int_MIN" (formula "16") (term "0"))
+ (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "2"))
+ (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "CUT: 0 <= arr_1<> FALSE"
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "12") (term "1,1") (userinteraction))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "12") (term "0,1,1") (userinteraction))
+ (rule "replace_int_MIN" (formula "17") (term "0"))
+ (rule "applyEqReverse" (formula "15") (term "1") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "11") (term "0,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "10")) (ifInst "" (formula "8")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "15")) (ifInst "" (formula "13")))
+ (rule "polySimp_elimSub" (formula "12") (term "1,1"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "equal_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "14"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0"))
+ (rule "replace_known_left" (formula "12") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1"))
+ (rule "mul_literals" (formula "17") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "1,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0"))
+ (rule "add_zero_right" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "18") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "translateJavaCastInt" (formula "25") (term "0"))
+ (rule "translateJavaAddInt" (formula "24") (term "1"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "translateJavaMulInt" (formula "19") (term "0"))
+ (rule "translateJavaCastInt" (formula "22") (term "0"))
+ (rule "translateJavaCastInt" (formula "21") (term "1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "1"))
+ (rule "castedGetAny" (formula "25") (term "0"))
+ (rule "castedGetAny" (formula "22") (term "0"))
+ (rule "castedGetAny" (formula "21") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "18") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "19"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "inEqSimp_exactShadow2" (formula "19") (ifseqformula "20"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "times_zero_1" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "nnf_imp2or" (formula "30") (term "0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "0,0,2,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,2,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,2,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "32")))
+ (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "14") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "14") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "14") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1"))
+ (rule "replace_known_left" (formula "14") (term "1,0,0,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "14") (term "1,0,1,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,1,1,1"))
+ (rule "replace_known_left" (formula "14") (term "1,1,1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0"))
+ (rule "replace_known_left" (formula "14") (term "1,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0"))
+ (rule "times_zero_2" (formula "14") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "7"))
+ (rule "leq_literals" (formula "14") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "15") (term "0"))
+ (rule "translateJavaAddInt" (formula "15") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "15") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0,1"))
+ (rule "castedGetAny" (formula "15") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "0"))
+ (rule "translateJavaCastInt" (formula "10") (term "0,0"))
+ (rule "castedGetAny" (formula "10") (term "0,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "13") (term "0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "13") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "1"))
+ (rule "translateJavaCastInt" (formula "14") (term "0,1"))
+ (rule "castedGetAny" (formula "14") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_3 = null)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "11") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_3 != null, but read_pos Out of Bounds!)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9"))
+ (rule "times_zero_1" (formula "1") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12"))
+ (rule "greater_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "0,0"))
+ (rule "add_zero_left" (formula "11") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (x_arr_2 = null)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12"))
+ (rule "greater_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "0,0"))
+ (rule "add_zero_left" (formula "11") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "23") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_2 != null, but x_2 Out of Bounds!)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12"))
+ (rule "greater_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "0,0"))
+ (rule "add_zero_left" (formula "11") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "23") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but x_1 Out of Bounds!)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "11") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but write_pos Out of Bounds!)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaAddInt" (formula "17") (term "1"))
+ (rule "translateJavaCastInt" (formula "18") (term "0"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "castedGetAny" (formula "18") (term "0"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "0,0"))
+ (rule "add_zero_left" (formula "11") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "1"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0"))
+ (rule "add_literals" (formula "9") (term "0"))
+ (rule "leq_literals" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__write(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__write(int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..46a832b
--- /dev/null
+++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__write(int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,1054 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 14:41:09 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 14:41:09 CEST 2022
+contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:write(int)].JML normal_behavior operation contract.0
+name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:write(int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "1546")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "assignment" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "methodBodyExpand" (formula "12") (term "1") (newnames "heapBefore_write,savedHeapBefore_write"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "variableDeclarationFinalAssign" (formula "12") (term "1"))
+(rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "write_pos"))
+(rule "compound_addition_1" (formula "12") (term "1") (inst "#v=x"))
+(rule "variableDeclarationAssign" (formula "12") (term "1"))
+(rule "variableDeclaration" (formula "12") (term "1") (newnames "x"))
+(rule "assignmentMultiplicationInt" (formula "12") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "12") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "12") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_leqRight" (formula "12"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "8") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "expand_inInt" (formula "8") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "translateJavaAddInt" (formula "14") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaMulInt" (formula "8") (term "1"))
+ (rule "translateJavaMulInt" (formula "9") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "0"))
+ (rule "castedGetAny" (formula "11") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "9"))
+ (rule "greater_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMod" (formula "16") (term "0"))
+ (rule "jmod_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "newSym_eq" (formula "16") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "17"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "17"))
+ (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "21") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "commute_or" (formula "20") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEqRigid" (formula "16") (term "1") (ifseqformula "17"))
+ (rule "inEqSimp_subsumption6" (formula "16") (term "0,0") (ifseqformula "12"))
+ (rule "greater_literals" (formula "16") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polyDiv_pullOut" (formula "16") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_pullOutFactor0" (formula "16") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "16") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "16") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "16") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,0"))
+ (rule "times_zero_1" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "all_pull_out3" (formula "20") (term "0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "9") (term "0"))
+ (rule "expand_inShort" (formula "9"))
+ (rule "replace_short_MAX" (formula "9") (term "1,0"))
+ (rule "replace_short_MIN" (formula "9") (term "0,1"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaMulInt" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "assignmentAdditionInt" (formula "12") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1"))
+ (rule "add_literals" (formula "12") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption6" (formula "11") (term "1") (ifseqformula "7"))
+ (rule "greater_literals" (formula "11") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,1"))
+ (rule "leq_literals" (formula "11") (term "0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_leqRight" (formula "11"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "8") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "expand_inInt" (formula "8") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "translateJavaAddInt" (formula "14") (term "1"))
+ (rule "translateJavaCastInt" (formula "15") (term "0"))
+ (rule "translateJavaMulInt" (formula "8") (term "1"))
+ (rule "translateJavaMulInt" (formula "9") (term "0"))
+ (rule "translateJavaCastInt" (formula "12") (term "0"))
+ (rule "translateJavaCastInt" (formula "11") (term "1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1"))
+ (rule "castedGetAny" (formula "15") (term "0"))
+ (rule "castedGetAny" (formula "12") (term "0"))
+ (rule "castedGetAny" (formula "11") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "9"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "times_zero_1" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "10"))
+ (rule "greater_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "19") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMod" (formula "16") (term "0"))
+ (rule "jmod_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "newSym_eq" (formula "16") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "17"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "17"))
+ (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or_2" (formula "20") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,0"))
+ (rule "commute_or" (formula "21") (term "1,0,0,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "commute_or" (formula "20") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEqRigid" (formula "16") (term "1") (ifseqformula "17"))
+ (rule "inEqSimp_subsumption6" (formula "16") (term "0,0") (ifseqformula "12"))
+ (rule "times_zero_1" (formula "16") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "16") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polyDiv_pullOut" (formula "16") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "0,0,0"))
+ (rule "div_literals" (formula "16") (term "0,0"))
+ (rule "add_zero_left" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "all_pull_out3" (formula "20") (term "0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "9") (term "0"))
+ (rule "expand_inShort" (formula "9"))
+ (rule "replace_short_MIN" (formula "9") (term "0,1"))
+ (rule "replace_short_MAX" (formula "9") (term "1,0"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,1,0"))
+ (rule "returnUnfold" (formula "12") (term "1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "12") (term "1"))
+ (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_1"))
+ (rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "12") (term "1"))
+ (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr"))
+ (rule "assignment_read_attribute_this_final" (formula "12"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "assignment_array2" (formula "12"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "methodCallReturn" (formula "12") (term "1"))
+ (rule "assignment" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "methodCallEmpty" (formula "12") (term "1"))
+ (rule "tryEmpty" (formula "12") (term "1"))
+ (rule "emptyModality" (formula "12") (term "1"))
+ (rule "andRight" (formula "12"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "12"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "closeTrue" (formula "12"))
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "10") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but write_pos Out of Bounds!)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9"))
+ (rule "times_zero_1" (formula "1") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "translateJavaCastInt" (formula "17") (term "0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0"))
+ (rule "translateJavaCastInt" (formula "14") (term "0"))
+ (rule "translateJavaCastInt" (formula "13") (term "1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "castedGetAny" (formula "17") (term "0"))
+ (rule "castedGetAny" (formula "14") (term "0"))
+ (rule "castedGetAny" (formula "13") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self,
+ de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "11"))
+ (rule "greater_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..fb5b905
--- /dev/null
+++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,108 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:07:55 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:07:55 CEST 2022
+contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:Buffers([I,[I,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:Buffers([I,[I,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "16")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "9"))
+(rule "eqSymm" (formula "11"))
+(rule "translateJavaMulInt" (formula "7") (term "1"))
+(rule "mul_literals" (formula "7") (term "1"))
+(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "3"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "9"))
+(rule "assignment" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+(rule "variableDeclarationAssign" (formula "14") (term "1"))
+(rule "variableDeclaration" (formula "14") (term "1") (newnames "self_25"))
+(rule "arrayLengthIsAShort" (formula "7") (term "0"))
+(rule "expand_inShort" (formula "7"))
+(rule "replace_short_MIN" (formula "7") (term "0,1"))
+(rule "replace_short_MAX" (formula "7") (term "1,0"))
+(rule "andLeft" (formula "7"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "applyEq" (formula "7") (term "0") (ifseqformula "9"))
+(rule "leq_literals" (formula "7"))
+(rule "closeFalse" (formula "7"))
+)
+}
diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__distribute(int,(I,int,int,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__distribute(int,(I,int,int,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..e92e06e
--- /dev/null
+++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__distribute(int,(I,int,int,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,2191 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:21:54 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:21:54 CEST 2022
+contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:distribute(int,[I,int,int,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:distribute(int,[I,int,int,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "2411")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "7"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "12"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "7"))
+(rule "notLeft" (formula "2"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "24"))
+(rule "andLeft" (formula "4"))
+(rule "translateJavaAddInt" (formula "24") (term "0"))
+(rule "translateJavaAddInt" (formula "23") (term "1"))
+(rule "eqSymm" (formula "28"))
+(rule "translateJavaAddInt" (formula "27") (term "0"))
+(rule "translateJavaAddInt" (formula "29") (term "0,2,0"))
+(rule "translateJavaSubInt" (formula "29") (term "2,1"))
+(rule "translateJavaAddInt" (formula "26") (term "1"))
+(rule "translateJavaAddInt" (formula "28") (term "1"))
+(rule "translateJavaSubInt" (formula "29") (term "2,0"))
+(rule "translateJavaAddInt" (formula "29") (term "0,2,1"))
+(rule "replace_known_right" (formula "6") (term "0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "polySimp_elimSub" (formula "29") (term "2,0"))
+(rule "mul_literals" (formula "29") (term "1,2,0"))
+(rule "polySimp_elimSub" (formula "29") (term "2,1"))
+(rule "mul_literals" (formula "29") (term "1,2,1"))
+(rule "polySimp_addComm0" (formula "24") (term "0"))
+(rule "polySimp_addComm0" (formula "23") (term "1"))
+(rule "polySimp_addComm0" (formula "27") (term "0"))
+(rule "polySimp_addComm0" (formula "26") (term "1"))
+(rule "polySimp_addComm0" (formula "29") (term "0,2,0"))
+(rule "polySimp_addComm0" (formula "29") (term "0,2,1"))
+(rule "polySimp_addComm1" (formula "29") (term "2,0"))
+(rule "polySimp_addComm1" (formula "29") (term "2,1"))
+(rule "polySimp_addComm0" (formula "29") (term "0,2,0"))
+(rule "polySimp_addComm0" (formula "29") (term "0,2,1"))
+(rule "disjointDefinition" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+(rule "notLeft" (formula "21"))
+(rule "eqSymm" (formula "30"))
+(rule "disjointDefinition" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "notLeft" (formula "19"))
+(rule "eqSymm" (formula "29"))
+(rule "disjointDefinition" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "notLeft" (formula "19"))
+(rule "eqSymm" (formula "28"))
+(rule "disjointDefinition" (formula "26"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "disjointArrayRanges" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "inEqSimp_commuteLeq" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "19"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "22"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "21"))
+(rule "inEqSimp_commuteLeq" (formula "24"))
+(rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1"))
+(rule "assignment" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "commute_and" (formula "27") (term "1,1"))
+(rule "cnf_rightDist" (formula "27") (term "1"))
+(rule "commute_or" (formula "27") (term "0,1"))
+(rule "cnf_rightDist" (formula "27") (term "1,1"))
+(rule "commute_or" (formula "27") (term "1,1,1"))
+(rule "cnf_rightDist" (formula "27") (term "0,1"))
+(rule "commute_or" (formula "27") (term "1,0,1"))
+(rule "shift_paren_and" (formula "27") (term "1"))
+(rule "shift_paren_and" (formula "27"))
+(rule "shift_paren_and" (formula "27") (term "0"))
+(rule "shift_paren_and" (formula "27") (term "0,0"))
+(rule "methodBodyExpand" (formula "33") (term "1") (newnames "heapBefore_distribute,savedHeapBefore_distribute"))
+ (builtin "One Step Simplification" (formula "33"))
+ (builtin "Block Contract (Internal)" (formula "33") (newnames "exc_103,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+(branch "Validity"
+ (builtin "One Step Simplification" (formula "34"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "15")) (ifInst "" (formula "1")) (ifInst "" (formula "32")) (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (rule "true_left" (formula "27"))
+ (rule "eqSymm" (formula "33") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "33") (term "1"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "exc_103_1"))
+ (rule "assignment" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "emptyStatement" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "emptyStatement" (formula "33") (term "1"))
+ (rule "tryEmpty" (formula "33") (term "1"))
+ (rule "blockEmptyLabel" (formula "33") (term "1"))
+ (rule "blockEmpty" (formula "33") (term "1"))
+ (rule "methodCallEmpty" (formula "33") (term "1"))
+ (rule "emptyModality" (formula "33") (term "1"))
+ (rule "andRight" (formula "33"))
+ (branch
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "closeTrue" (formula "33"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "closeTrue" (formula "33"))
+ )
+)
+(branch "Precondition"
+ (rule "andRight" (formula "33"))
+ (branch
+ (rule "andRight" (formula "33"))
+ (branch
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "33"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "33"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "33"))
+ (branch
+ (rule "andRight" (formula "33"))
+ (branch
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "33"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "2")))
+ (rule "closeTrue" (formula "33"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "33"))
+ )
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "34"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "translateJavaAddInt" (formula "29") (term "0"))
+ (rule "eqSymm" (formula "29"))
+ (rule "replace_known_left" (formula "28") (term "0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "elim_double_block_2" (formula "35") (term "1"))
+ (rule "ifUnfold" (formula "35") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "replace_known_left" (formula "35") (term "0,0,1,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "ifSplit" (formula "35"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "36"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "36"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "35") (term "1"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "offset"))
+ (rule "assignmentMultiplicationInt" (formula "35") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "1,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0"))
+ (rule "add_zero_right" (formula "23") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption6" (formula "30") (term "1") (ifseqformula "12"))
+ (rule "times_zero_1" (formula "30") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "30") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "leq_literals" (formula "30") (term "0,1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_leqRight" (formula "30"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_or_tautInEq0" (formula "24") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,1,1,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,1,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "24") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "20") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "12"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "19") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "19"))
+ (rule "translateJavaMulInt" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "eqSymm" (formula "26"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "closeFalse" (formula "12"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "Block Contract (Internal)" (formula "35") (newnames "exc_104,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "15")) (ifInst "" (formula "1")) (ifInst "" (formula "34")) (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "29"))
+ (rule "eqSymm" (formula "35") (term "0,0,1,0,1"))
+ (rule "translateJavaMulInt" (formula "35") (term "0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "exc_104_1"))
+ (rule "assignment" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "emptyStatement" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "emptyStatement" (formula "35") (term "1"))
+ (rule "tryEmpty" (formula "35") (term "1"))
+ (rule "blockEmptyLabel" (formula "35") (term "1"))
+ (rule "blockEmpty" (formula "35") (term "1"))
+ (rule "methodCallEmpty" (formula "35") (term "1"))
+ (rule "emptyModality" (formula "35") (term "1"))
+ (rule "andRight" (formula "35"))
+ (branch
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "closeTrue" (formula "35"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "closeTrue" (formula "35"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "35"))
+ (branch
+ (rule "andRight" (formula "35"))
+ (branch
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "35"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "35"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "35"))
+ (branch
+ (rule "andRight" (formula "35"))
+ (branch
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "35"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "2")))
+ (rule "closeTrue" (formula "35"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "35"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "36"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "translateJavaMulInt" (formula "38") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "31") (term "0,4,0"))
+ (rule "translateJavaAddInt" (formula "31") (term "3,0"))
+ (rule "translateJavaMulInt" (formula "31") (term "2,0"))
+ (rule "translateJavaAddInt" (formula "31") (term "4,0"))
+ (rule "translateJavaMulInt" (formula "31") (term "0,3,0"))
+ (rule "translateJavaMulInt" (formula "31") (term "0,0,4,0"))
+ (rule "replace_known_left" (formula "30") (term "0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "elim_double_block_2" (formula "37") (term "1"))
+ (rule "ifUnfold" (formula "37") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "37") (term "1") (newnames "x_1"))
+ (rule "inequality_comparison_simple" (formula "37") (term "1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "replace_known_left" (formula "37") (term "0,0,1,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "22") (term "0"))
+ (rule "expand_inShort" (formula "22"))
+ (rule "replace_short_MIN" (formula "22") (term "0,1"))
+ (rule "replace_short_MAX" (formula "22") (term "1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "ifSplit" (formula "40"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "40") (term "1"))
+ (rule "methodCallUnfoldArguments" (formula "40") (term "1"))
+ (rule "variableDeclarationAssign" (formula "40") (term "1"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "var"))
+ (rule "assignment_read_attribute_this_final" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "variableDeclarationAssign" (formula "40") (term "1"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "variableDeclarationAssign" (formula "40") (term "1"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_2"))
+ (rule "assignment" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "variableDeclarationAssign" (formula "40") (term "1"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "variableDeclarationAssign" (formula "40") (term "1"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_4"))
+ (rule "assignment" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "Use Operation Contract" (formula "40") (newnames "heapBefore_copy_nonoverlapping,exc_105,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "35") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "translateJavaAddInt" (formula "35") (term "0,2,1,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0"))
+ (rule "eqSymm" (formula "37") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "3,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "2,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "3,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "blockEmpty" (formula "45") (term "1"))
+ (rule "commute_and" (formula "37") (term "0,0"))
+ (rule "commute_and" (formula "36") (term "0,0,0"))
+ (rule "commute_and" (formula "36") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "36") (term "0,0"))
+ (rule "commute_and_2" (formula "36") (term "0,0,0"))
+ (rule "methodCallUnfoldArguments" (formula "45") (term "1"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_5"))
+ (rule "assignment_read_attribute_this_final" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_6"))
+ (rule "assignmentAdditionInt" (formula "45") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_zero_right" (formula "26") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "1"))
+ (rule "mul_literals" (formula "45") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1"))
+ (rule "mul_literals" (formula "45") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "19"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "25"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22"))
+ (rule "times_zero_1" (formula "20") (term "0,0"))
+ (rule "add_zero_left" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "20"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "17"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "13"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_or_tautInEq0" (formula "35") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,1,1,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,1,1,0"))
+ (rule "add_zero_right" (formula "35") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "35") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "24") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "translateJavaMulInt" (formula "24") (term "1"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "eqSymm" (formula "38"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "nnf_imp2or" (formula "28") (term "0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "32") (term "0") (inst "element=element"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "0,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,0,0"))
+ (rule "eqSymm" (formula "32") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "32") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "32") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "32") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "23") (term "0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,0,0"))
+ (rule "commute_and" (formula "45"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "0,1,0") (inst "i=i"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "1,1,0") (inst "i=i"))
+ (rule "commute_or" (formula "39") (term "1,0"))
+ (rule "commute_or" (formula "39") (term "1,0,0"))
+ (rule "commute_or" (formula "34") (term "0,0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "1,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "1,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,0,1,1,0") (inst "i=i"))
+ (rule "commute_or_2" (formula "27") (term "0,0"))
+ (rule "commute_or" (formula "31") (term "0,0"))
+ (rule "commute_or_2" (formula "34") (term "0,0"))
+ (rule "commute_or" (formula "27") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "27") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "27") (term "0"))
+ (rule "distr_forallAnd" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "commute_or" (formula "28") (term "0"))
+ (rule "commute_or" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "27") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "27") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "commute_or" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "28") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "commute_and_2" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "26"))
+ (rule "qeq_literals" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23"))
+ (rule "closeFalse" (formula "23"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "translateJavaAddInt" (formula "45") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_7"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_8"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_9"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "42") (term "0") (ifseqformula "1") (ifseqformula "2"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "42") (term "0") (ifseqformula "2") (ifseqformula "3"))
+ (builtin "Use Operation Contract" (formula "47") (newnames "heapBefore_copy_nonoverlapping_0,exc_106,heapAfter_copy_nonoverlapping_0,anon_heap_copy_nonoverlapping_0") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "49"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "42") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "42") (term "2,1,0"))
+ (rule "eqSymm" (formula "44") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,1,0"))
+ (rule "translateJavaAddInt" (formula "44") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "44") (term "3,1,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "2,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "3,1,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "commute_and" (formula "44") (term "0,0"))
+ (rule "commute_and" (formula "43") (term "0,0,0"))
+ (rule "commute_and" (formula "43") (term "1,0,0"))
+ (rule "methodCallEmpty" (formula "52") (term "1"))
+ (rule "shift_paren_and" (formula "43") (term "0,0"))
+ (rule "commute_and_2" (formula "43") (term "0,0,0"))
+ (rule "tryEmpty" (formula "52") (term "1"))
+ (rule "emptyModality" (formula "52") (term "1"))
+ (rule "andRight" (formula "52"))
+ (branch
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0"))
+ (rule "add_zero_right" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0"))
+ (rule "add_zero_right" (formula "22") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "19"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "21"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "22"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "24"))
+ (rule "times_zero_1" (formula "22") (term "0,0"))
+ (rule "add_zero_left" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "22"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "19"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "15"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_or_tautInEq0" (formula "42") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "42") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,1,1,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,1,1,0"))
+ (rule "add_literals" (formula "42") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "42") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_and_subsumption3" (formula "39") (term "0,0,0"))
+ (rule "leq_literals" (formula "39") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0"))
+ (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "11"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "30") (term "0") (inst "element=element"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "30") (term "0,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,0,0"))
+ (rule "eqSymm" (formula "30") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "30") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "30") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "30") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "30") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "25") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "48"))
+ (rule "replace_known_right" (formula "48") (term "0,1") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "40")))
+ (rule "closeTrue" (formula "48"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "closeTrue" (formula "52"))
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "andLeft" (formula "42"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0") (ifseqformula "42"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,1,0") (ifseqformula "37"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "close" (formula "45") (ifseqformula "44"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "46")) (ifInst "" (formula "46")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "1,0,0,1") (ifseqformula "37"))
+ (rule "wellFormedAnonEQ" (formula "47") (term "0,0,0,0,0,1") (ifseqformula "37"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "1,1,0,0,0,0,1") (ifseqformula "37"))
+ (rule "expand_inInt" (formula "47") (term "1,0,1"))
+ (rule "expand_inInt" (formula "47") (term "1,1"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,1"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,0,1"))
+ (rule "replace_known_left" (formula "47") (term "0,1,0,0,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "3")) (ifInst "" (formula "36")) (ifInst "" (formula "13")) (ifInst "" (formula "15")))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0,1"))
+ (rule "replace_known_left" (formula "47") (term "1,0,1") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1"))
+ (rule "replace_known_left" (formula "47") (term "1,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0"))
+ (rule "add_zero_right" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0"))
+ (rule "add_zero_right" (formula "22") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,1"))
+ (rule "mul_literals" (formula "47") (term "1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "28"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "16"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "23"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "20"))
+ (rule "times_zero_1" (formula "16") (term "0,0"))
+ (rule "add_zero_left" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "16"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "24"))
+ (rule "times_zero_1" (formula "22") (term "0,0"))
+ (rule "add_zero_left" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "22"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_or_tautInEq0" (formula "37") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "37") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,1,1,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,1,1,0"))
+ (rule "add_literals" (formula "37") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "37") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0"))
+ (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,0,0,0"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "11")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "42")) (ifInst "" (formula "11")) (ifInst "" (formula "28")))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0"))
+ (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "applyEq" (formula "26") (term "0,0,1") (ifseqformula "27"))
+ (rule "applyEq" (formula "26") (term "0,1,1") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0"))
+ (rule "replace_known_left" (formula "26") (term "0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "27"))
+ (rule "times_zero_1" (formula "23") (term "0,0"))
+ (rule "add_zero_left" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "23"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "20"))
+ (rule "polySimp_mulAssoc" (formula "26") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "15"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "29") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "translateJavaMulInt" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "eqSymm" (formula "43"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "13"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "37") (term "0") (inst "element=element"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "37") (term "0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "37") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "37") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_right" (formula "50") (term "0,0,1") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "42")) (ifInst "" (formula "1")))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "27") (term "0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "39") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "39") (term "1,0"))
+ (rule "commute_or" (formula "43") (term "1,0"))
+ (rule "commute_or" (formula "43") (term "1,0,0"))
+ (rule "commute_or" (formula "38") (term "0,0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "1,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "35") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "35") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,1,0"))
+ (rule "commute_and" (formula "49"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "39") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "39") (term "1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "1,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "35") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "35") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0"))
+ (rule "commute_or" (formula "35") (term "0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "0,0,1,1,0") (inst "i=i"))
+ (rule "commute_or_2" (formula "31") (term "0,0"))
+ (rule "commute_or_2" (formula "38") (term "0,0"))
+ (rule "commute_or" (formula "31") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "31") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "31") (term "0"))
+ (rule "distr_forallAnd" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "commute_or" (formula "32") (term "0"))
+ (rule "commute_or" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "31") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "31") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "commute_or" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "32") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "cut_direct" (formula "44") (term "1,0,0,0"))
+ (branch "CUT: tail_len >= 1 TRUE"
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "1"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "26"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "1"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "commute_and_2" (formula "44"))
+ (rule "arrayLengthNotNegative" (formula "28") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthIsAShort" (formula "28") (term "0"))
+ (rule "expand_inShort" (formula "28"))
+ (rule "replace_short_MAX" (formula "28") (term "1,0"))
+ (rule "replace_short_MIN" (formula "28") (term "0,1"))
+ (rule "andLeft" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27"))
+ (rule "closeFalse" (formula "27"))
+ )
+ (branch "CUT: tail_len >= 1 FALSE"
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "false_right" (formula "45"))
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_antiSymm" (formula "22") (ifseqformula "1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "22") (term "0,1,1") (ifseqformula "21"))
+ (rule "times_zero_2" (formula "22") (term "1,1"))
+ (rule "add_zero_right" (formula "22") (term "1"))
+ (rule "applyEq" (formula "35") (term "1,1,0,1,0") (ifseqformula "21"))
+ (rule "add_zero_right" (formula "35") (term "1,0,1,0"))
+ (rule "bsum_lower_equals_upper" (formula "35") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "35") (term "1,0"))
+ (rule "times_zero_2" (formula "35") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "35") (term "0,1,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "times_zero_2" (formula "25") (term "1,0"))
+ (rule "add_zero_right" (formula "25") (term "0"))
+ (rule "applyEq" (formula "35") (term "1,1,1,0,1,0") (ifseqformula "21"))
+ (rule "add_zero_right" (formula "35") (term "1,1,0,1,0"))
+ (rule "polySimp_pullOutFactor2" (formula "35") (term "0,1,0"))
+ (rule "add_literals" (formula "35") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "35") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "applyEq" (formula "23") (term "0,1") (ifseqformula "21"))
+ (rule "add_zero_left" (formula "23") (term "1"))
+ (rule "applyEq" (formula "33") (term "1,1") (ifseqformula "21"))
+ (rule "add_zero_right" (formula "33") (term "1"))
+ (rule "inEqSimp_invertInEq0" (formula "24"))
+ (rule "times_zero_2" (formula "24") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "22"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "26"))
+ (rule "leq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "23"))
+ (rule "closeFalse" (formula "23"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "1,0") (ifseqformula "35"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "close" (formula "38") (ifseqformula "37"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "39")) (ifInst "" (formula "1")) (ifInst "" (formula "39")) (ifInst "" (formula "6")))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "40") (term "1,1"))
+ (rule "expand_inInt" (formula "40") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "40") (term "0,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "7")))
+ (rule "inEqSimp_ltToLeq" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1"))
+ (rule "replace_known_left" (formula "40") (term "1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1"))
+ (rule "replace_known_left" (formula "40") (term "1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_zero_right" (formula "26") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "19"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption6" (formula "34") (term "1,1,1") (ifseqformula "12"))
+ (rule "greater_literals" (formula "34") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "times_zero_1" (formula "34") (term "1,0,1,1,1"))
+ (rule "leq_literals" (formula "34") (term "0,1,1,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "elimGcdLeq" (formula "34") (term "1,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "sub_literals" (formula "34") (term "0,0,0,0,0,0,0,1,1"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,0,1,0,1,1"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,1,1"))
+ (rule "polySimp_addLiterals" (formula "34") (term "0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,1,1"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,1,0,1,1"))
+ (rule "add_literals" (formula "34") (term "1,1,0,1,0,1,1"))
+ (rule "times_zero_1" (formula "34") (term "1,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "34") (term "0,1,0,1,1"))
+ (rule "qeq_literals" (formula "34") (term "1,0,1,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "polySimp_pullOutFactor0" (formula "34") (term "0,0,1,1"))
+ (rule "add_literals" (formula "34") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "34") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "34") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22"))
+ (rule "times_zero_1" (formula "20") (term "0,0"))
+ (rule "add_zero_left" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "20"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "17"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "13"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_or_tautInEq0" (formula "30") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "30") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,1,1,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,1,1,0"))
+ (rule "add_zero_right" (formula "30") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "30") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "24") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "24") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "translateJavaMulInt" (formula "24") (term "1"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "eqSymm" (formula "33"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "40") (term "1,1") (ifseqformula "11"))
+ (rule "leq_literals" (formula "40") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "nnf_imp2or" (formula "28") (term "0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "replace_known_right" (formula "40") (term "0,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "33")))
+ (rule "Contract_axiom_for_countElementSplit_in_Functions" (formula "31") (term "0"))
+ (rule "replace_known_left" (formula "31") (term "1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "34")) (ifInst "" (formula "32")))
+ (rule "true_left" (formula "31"))
+ (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "31") (term "0") (inst "element=element"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "0,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,0,0"))
+ (rule "eqSymm" (formula "31") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "31") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "31") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "31") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0"))
+ (rule "commute_or" (formula "34") (term "1,0"))
+ (rule "commute_or" (formula "34") (term "1,0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,0,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "31") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "commute_or_2" (formula "27") (term "0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0"))
+ (rule "commute_or" (formula "31") (term "0,0"))
+ (rule "shift_paren_or" (formula "27") (term "0,0,0"))
+ (rule "commute_or_2" (formula "27") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "27") (term "0"))
+ (rule "distr_forallAnd" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "commute_or" (formula "28") (term "0"))
+ (rule "commute_or" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "27") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "27") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "commute_or" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "28") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "commute_and_2" (formula "35"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "26"))
+ (rule "leq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "23"))
+ (rule "closeFalse" (formula "23"))
+ )
+ )
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__flush(int,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__flush(int,(I,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..0d4e608
--- /dev/null
+++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__flush(int,(I,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,1229 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:22:14 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:22:14 CEST 2022
+contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:flush(int,[I,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:flush(int,[I,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "846")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "notLeft" (formula "7"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "12"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "19"))
+(rule "notLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "19"))
+(rule "translateJavaSubInt" (formula "22") (term "0"))
+(rule "replace_known_right" (formula "6") (term "0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "polySimp_elimSub" (formula "22") (term "0"))
+(rule "disjointDefinition" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+(rule "notLeft" (formula "17"))
+(rule "eqSymm" (formula "23"))
+(rule "disjointDefinition" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+(rule "notLeft" (formula "15"))
+(rule "eqSymm" (formula "22"))
+(rule "disjointDefinition" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+(rule "notLeft" (formula "15"))
+(rule "eqSymm" (formula "21"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "18"))
+(rule "inEqSimp_commuteLeq" (formula "16"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_flush,savedHeapBefore_flush"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "variableDeclarationAssign" (formula "26") (term "1"))
+(rule "variableDeclaration" (formula "26") (term "1") (newnames "buffer_offset"))
+(rule "assignmentMultiplicationInt" (formula "26") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_subsumption6" (formula "26") (term "1") (ifseqformula "13"))
+ (rule "times_zero_1" (formula "26") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "26") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "leq_literals" (formula "26") (term "0,1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_leqRight" (formula "26"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "14"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "16"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "14"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "10")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "22")) (ifInst "" (formula "10")) (ifInst "" (formula "18")))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1"))
+ (rule "applyEq" (formula "12") (term "0,0,1") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "11") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "16") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "16"))
+ (rule "translateJavaMulInt" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "eqSymm" (formula "21"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaMulInt" (formula "26") (term "0,1,0"))
+ (rule "methodCallUnfoldArguments" (formula "26") (term "1"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "var"))
+ (rule "assignment_read_attribute_this_final" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_2"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_4"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "Use Operation Contract" (formula "26") (newnames "heapBefore_copy_nonoverlapping,exc_129,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "22"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "22") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaSubInt" (formula "22") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,1,0"))
+ (rule "eqSymm" (formula "24") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "2,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "22") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "3,1,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "blockEmpty" (formula "31") (term "1"))
+ (rule "eval_order_array_access1" (formula "31") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "31") (term "1"))
+ (rule "variableDeclaration" (formula "31") (term "1") (newnames "x_arr"))
+ (rule "assignment_read_attribute_this_final" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "assignment_to_primitive_array_component" (formula "31"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "31"))
+ (builtin "Block Contract (Internal)" (formula "31") (newnames "exc_130,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "32"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "11")) (ifInst "" (formula "3")) (ifInst "" (formula "30")))
+ (rule "andLeft" (formula "26"))
+ (rule "eqSymm" (formula "33") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "27") (ifseqformula "22"))
+ (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "variableDeclarationAssign" (formula "32") (term "1"))
+ (rule "variableDeclaration" (formula "32") (term "1") (newnames "exc_130_1"))
+ (rule "assignment" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "emptyStatement" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "emptyStatement" (formula "32") (term "1"))
+ (rule "commute_and" (formula "24") (term "0,0"))
+ (rule "commute_and" (formula "23") (term "0,0,0"))
+ (rule "commute_and" (formula "23") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "23") (term "0,0"))
+ (rule "commute_and_2" (formula "23") (term "0,0,0"))
+ (rule "tryEmpty" (formula "32") (term "1"))
+ (rule "blockEmptyLabel" (formula "32") (term "1"))
+ (rule "blockEmpty" (formula "32") (term "1"))
+ (rule "methodCallEmpty" (formula "32") (term "1"))
+ (rule "emptyModality" (formula "32") (term "1"))
+ (rule "andRight" (formula "32"))
+ (branch
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "closeTrue" (formula "32"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "closeTrue" (formula "32"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "31"))
+ (branch
+ (rule "andRight" (formula "31"))
+ (branch
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "31"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "wellFormedStorePrimitiveArray" (formula "31"))
+ (rule "wellFormedAnonEQ" (formula "31") (ifseqformula "22"))
+ (rule "replace_known_left" (formula "31") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "31"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "31"))
+ (branch
+ (rule "andRight" (formula "31"))
+ (branch
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "31"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "31") (ifseqformula "22"))
+ (rule "orRight" (formula "31"))
+ (rule "close" (formula "31") (ifseqformula "2"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "31"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "32"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "0,0,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,0,0,1"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "eqSymm" (formula "28") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "28") (term "3,0,1,0"))
+ (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "polySimp_addComm0" (formula "27") (term "3,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0"))
+ (rule "commute_and" (formula "24") (term "0,0"))
+ (rule "commute_and" (formula "23") (term "0,0,0"))
+ (rule "commute_and" (formula "23") (term "1,0,0"))
+ (rule "commute_and" (formula "27") (term "0,0"))
+ (rule "shift_paren_and" (formula "23") (term "0,0"))
+ (rule "commute_and_2" (formula "23") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "33") (term "1"))
+ (rule "ifUnfold" (formula "33") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "replace_known_left" (formula "33") (term "0,0,1,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "ifSplit" (formula "36"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "36") (term "1"))
+ (rule "emptyStatement" (formula "36") (term "1"))
+ (rule "methodCallEmpty" (formula "36") (term "1"))
+ (rule "tryEmpty" (formula "36") (term "1"))
+ (rule "emptyModality" (formula "36") (term "1"))
+ (rule "andRight" (formula "36"))
+ (branch
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "17"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "18"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "13"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "32"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "8")) (ifInst "" (formula "1")) (ifInst "" (formula "2")) (ifInst "" (formula "31")) (ifInst "" (formula "8")) (ifInst "" (formula "20")))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0"))
+ (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEq" (formula "11") (term "0,0,1") (ifseqformula "12"))
+ (rule "qeq_literals" (formula "11") (term "0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "12"))
+ (rule "leq_literals" (formula "11") (term "1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "11") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8"))
+ (rule "close" (formula "32") (ifseqformula "8"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "closeTrue" (formula "36"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "false_right" (formula "32"))
+ (rule "inEqSimp_ltToLeq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "27"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "28"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "mul_literals" (formula "20") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "14"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "17"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "18") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "eqSymm" (formula "28"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "22") (term "1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "28"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "12"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "9")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "31")) (ifInst "" (formula "9")))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,1"))
+ (rule "applyEq" (formula "13") (term "0,1,0,1") (ifseqformula "14"))
+ (rule "leq_literals" (formula "13") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "applyEq" (formula "13") (term "0,0,1") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "13") (term "0,1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0"))
+ (rule "replace_known_left" (formula "13") (term "0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "10"))
+ (rule "close" (formula "29") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but _bucket Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "false_right" (formula "32"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "mul_literals" (formula "20") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "17"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "13"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "17"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "18") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "eqSymm" (formula "28"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "22"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "22"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "1,0") (ifseqformula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "close" (formula "25") (ifseqformula "24"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "25")) (ifInst "" (formula "1")) (ifInst "" (formula "25")) (ifInst "" (formula "6")))
+ (rule "expand_inInt" (formula "26") (term "1,0,1"))
+ (rule "expand_inInt" (formula "26") (term "1,1"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1"))
+ (rule "leq_literals" (formula "26") (term "1,1,1"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "7")))
+ (rule "leq_literals" (formula "26") (term "1,1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1"))
+ (rule "replace_known_left" (formula "26") (term "1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_subsumption6" (formula "26") (term "1,1,1") (ifseqformula "13"))
+ (rule "greater_literals" (formula "26") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,1,1,1"))
+ (rule "leq_literals" (formula "26") (term "0,1,1,1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "elimGcdLeq" (formula "23") (term "1,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "sub_literals" (formula "23") (term "0,0,0,0,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "23") (term "0,0,0,0,1,0,1,1"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,1,1"))
+ (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1"))
+ (rule "add_zero_left" (formula "23") (term "0,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,1,0,1,1"))
+ (rule "add_literals" (formula "23") (term "1,1,0,1,0,1,1"))
+ (rule "times_zero_1" (formula "23") (term "1,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "23") (term "0,1,0,1,1"))
+ (rule "qeq_literals" (formula "23") (term "1,0,1,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "polySimp_pullOutFactor0" (formula "23") (term "0,0,1,1"))
+ (rule "add_literals" (formula "23") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "23") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "23") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "16"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "14"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "9")) (ifInst "" (formula "1")) (ifInst "" (formula "2")) (ifInst "" (formula "22")) (ifInst "" (formula "9")) (ifInst "" (formula "18")))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1"))
+ (rule "applyEq" (formula "12") (term "0,1,1") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "17") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "17"))
+ (rule "translateJavaMulInt" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "eqSymm" (formula "22"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption0" (formula "27") (term "1,1") (ifseqformula "10"))
+ (rule "leq_literals" (formula "27") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "replace_known_right" (formula "28") (term "0,1") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "21")))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "11") (term "0"))
+ (rule "commute_or_2" (formula "20") (term "0,0"))
+ (rule "commute_or" (formula "20") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "20") (term "0"))
+ (rule "distr_forallAnd" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "commute_or" (formula "21") (term "0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "21") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "16"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__len(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__len(int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..a3d71ee
--- /dev/null
+++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__len(int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,276 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:22:34 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:22:34 CEST 2022
+contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:len(int)].JML normal_behavior operation contract.0
+name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:len(int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "100")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "assignment" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "methodBodyExpand" (formula "12") (term "1") (newnames "heapBefore_len,savedHeapBefore_len"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "returnUnfold" (formula "12") (term "1") (inst "#v0=x"))
+(rule "variableDeclarationAssign" (formula "12") (term "1"))
+(rule "variableDeclaration" (formula "12") (term "1") (newnames "x"))
+(rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr"))
+(rule "variableDeclarationAssign" (formula "12") (term "1"))
+(rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr"))
+(rule "assignment_read_attribute_this_final" (formula "12"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "assignment_array2" (formula "12"))
+(branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "methodCallReturn" (formula "12") (term "1"))
+ (rule "assignment" (formula "12") (term "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "methodCallEmpty" (formula "12") (term "1"))
+ (rule "tryEmpty" (formula "12") (term "1"))
+ (rule "emptyModality" (formula "12") (term "1"))
+ (rule "andRight" (formula "12"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "12"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "closeTrue" (formula "12"))
+ )
+)
+(branch "Null Reference (x_arr = null)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "applyEq" (formula "14") (term "1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "14") (term "1,0,1,1,0") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "15") (ifseqformula "1"))
+)
+(branch "Index Out of Bounds (x_arr != null, but _bucket Out of Bounds!)"
+ (rule "false_right" (formula "13"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+)
+)
+}
diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__push(int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__push(int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..bc1c832
--- /dev/null
+++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__push(int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,1590 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 14:42:03 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 14:42:03 CEST 2022
+contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:push(int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:push(int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "2299")
+
+(branch "dummy ID"
+(rule "eqSymm" (formula "1") (term "1,0,0,1,0,1,1"))
+(rule "assignment" (formula "1") (term "1,1"))
+(rule "methodBodyExpand" (formula "1") (term "1,1,1") (newnames "heapBefore_push,savedHeapBefore_push,_valueBefore_push,_valueBefore_push_0"))
+(rule "assignment" (formula "1") (term "1,1,1,1"))
+(rule "blockEmpty" (formula "1") (term "1,1,1,1,1"))
+(rule "variableDeclarationAssign" (formula "1") (term "1,1,1,1,1"))
+(rule "variableDeclaration" (formula "1") (term "1,1,1,1,1") (newnames "buffer_offset"))
+(rule "assignmentMultiplicationInt" (formula "1") (term "1,1,1,1,1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "expand_inInt" (formula "1") (term "1"))
+ (rule "expand_inInt" (formula "1") (term "0,1,0,0,0"))
+ (rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "1") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "1") (term "0,1,1"))
+ (rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+ (rule "impRight" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "4"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "12"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "2"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "7"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "15") (term "1") (ifseqformula "10"))
+ (rule "times_zero_1" (formula "15") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "15") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_leqRight" (formula "15"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+)
+(branch "Usage"
+ (rule "translateJavaMulInt" (formula "1") (term "0,0,1,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1,1,1,1"))
+ (rule "variableDeclarationAssign" (formula "1") (term "1,1,1,1,1,1"))
+ (rule "variableDeclaration" (formula "1") (term "1,1,1,1,1,1") (newnames "index_1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "expand_inInt" (formula "1") (term "0,1,0,0,0"))
+ (rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+ (rule "impRight" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "4"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "12"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "7"))
+ (rule "eval_order_array_access4" (formula "15") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr"))
+ (rule "assignment_read_attribute_this_final" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "assignment_array2" (formula "15"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "eval_order_array_access1" (formula "15") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_1"))
+ (rule "assignment_read_attribute_this_final" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "eval_order_array_access2" (formula "15") (term "1") (inst "#v0=x") (inst "#ar1=x_arr_2"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_2"))
+ (rule "assignment" (formula "15") (term "1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x"))
+ (rule "assignmentAdditionInt" (formula "15") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1"))
+ (rule "mul_literals" (formula "15") (term "0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "9")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "13")) (ifInst "" (formula "9")) (ifInst "" (formula "12")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "15"))
+ (rule "add_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "15") (ifseqformula "2"))
+ (rule "mul_literals" (formula "15") (term "1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "false_right" (formula "15"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "13") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "translateJavaMulInt" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "eqSymm" (formula "18"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "12"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "4")) (ifInst "" (formula "5")) (ifInst "" (formula "21")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "0,0,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption0" (formula "1") (term "0,1,1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "1") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "2") (term "0"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")) (ifInst "" (formula "6")) (ifInst "" (formula "22")))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "1,0,1,1") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0,1,0,1,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "4") (term "0"))
+ (rule "commute_and" (formula "23"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "1") (term "1,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15")) (ifInst "" (formula "17")))
+ (rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1"))
+ (rule "translateJavaMulInt" (formula "1") (term "1,1,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0,1,1"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,1,1") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "0,1,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,1,1"))
+ (rule "nnf_imp2or" (formula "1") (term "0,1,1"))
+ (rule "nnf_notAnd" (formula "1") (term "0,0,1,1"))
+ (rule "nnf_notAnd" (formula "1") (term "1,0,0,1,1"))
+ (rule "inEqSimp_notLeq" (formula "1") (term "0,1,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,1,0,0,1,1"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1,0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,1,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,0,1,0,0,1,1"))
+ (rule "inEqSimp_notGeq" (formula "1") (term "1,1,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,1,1,0,0,1,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1,1,0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,1,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1,0,0,1,1"))
+ (rule "nnf_notAnd" (formula "1") (term "0,0,0,1,1"))
+ (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,1,1"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1,0,0,0,1,1"))
+ (rule "add_zero_left" (formula "1") (term "0,0,1,0,0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0,1,1"))
+ (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,1") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "commute_or_2" (formula "17") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "2") (term "0"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "18")))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "3"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "notLeft" (formula "2"))
+ (rule "notLeft" (formula "2"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "3") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "15")) (ifInst "" (formula "17")))
+ (rule "expand_inInt" (formula "3") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "3") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "3") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "notLeft" (formula "3"))
+ (rule "translateJavaMulInt" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "eqSymm" (formula "20"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "2") (term "0"))
+ (rule "commute_or" (formula "17") (term "1,0,0,0"))
+ (rule "commute_or_2" (formula "2") (term "0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "17") (term "0"))
+ (rule "distr_forallAnd" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "commute_or" (formula "18") (term "0"))
+ (rule "shift_paren_or" (formula "2") (term "0,0,0"))
+ (rule "commute_or_2" (formula "2") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "2") (term "0"))
+ (rule "distr_forallAnd" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "commute_or" (formula "2") (term "0"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "commute_or" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "17") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "arrayLengthNotNegative" (formula "13") (term "0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "arrayLengthIsAShort" (formula "13") (term "0"))
+ (rule "expand_inShort" (formula "13"))
+ (rule "replace_short_MAX" (formula "13") (term "1,0"))
+ (rule "replace_short_MIN" (formula "13") (term "0,1"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "12") (term "0"))
+ (rule "expand_inShort" (formula "12"))
+ (rule "replace_short_MAX" (formula "12") (term "1,0"))
+ (rule "replace_short_MIN" (formula "12") (term "0,1"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12"))
+ (rule "closeFalse" (formula "12"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "translateJavaAddInt" (formula "15") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "15"))
+ (branch "Normal Execution (x_arr_2 != null)"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "eval_order_array_access1" (formula "15") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_3"))
+ (rule "assignment_read_attribute_this_final" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "eval_order_array_access3" (formula "15") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr_4"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_4"))
+ (rule "assignment" (formula "15") (term "1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "15") (term "1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "variableDeclarationAssign" (formula "15") (term "1"))
+ (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_1"))
+ (rule "assignmentAdditionInt" (formula "15") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1"))
+ (rule "add_literals" (formula "15") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "18")) (ifInst "" (formula "8")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "21"))
+ (rule "add_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "21") (ifseqformula "2"))
+ (rule "mul_literals" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "false_right" (formula "21"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "commute_and" (formula "22"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "3") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "14")) (ifInst "" (formula "16")))
+ (rule "expand_inInt" (formula "3") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "3") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "3") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "notLeft" (formula "3"))
+ (rule "translateJavaMulInt" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "eqSymm" (formula "19"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "4")) (ifInst "" (formula "5")) (ifInst "" (formula "21")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "0,0,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption0" (formula "1") (term "0,1,1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "1") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "22") (term "0") (ifseqformula "2"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_leqRight" (formula "22"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")) (ifInst "" (formula "6")) (ifInst "" (formula "22")))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "1,0,1,1") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0,1,0,1,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "4") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "translateJavaAddInt" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "15"))
+ (branch "Normal Execution (x_arr_4 != null)"
+ (builtin "One Step Simplification" (formula "15"))
+ (builtin "Block Contract (Internal)" (formula "15") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "14")))
+ (rule "andLeft" (formula "13"))
+ (rule "eqSymm" (formula "17") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "14") (term "0"))
+ (rule "dismissNonSelectedField" (formula "14") (term "0"))
+ (rule "variableDeclarationAssign" (formula "16") (term "1"))
+ (rule "variableDeclaration" (formula "16") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "emptyStatement" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "emptyStatement" (formula "16") (term "1"))
+ (rule "tryEmpty" (formula "16") (term "1"))
+ (rule "blockEmptyLabel" (formula "16") (term "1"))
+ (rule "blockEmpty" (formula "16") (term "1"))
+ (rule "methodCallEmpty" (formula "16") (term "1"))
+ (rule "emptyModality" (formula "16") (term "1"))
+ (rule "andRight" (formula "16"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeTrue" (formula "16"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeTrue" (formula "16"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "15"))
+ (branch "Case 1"
+ (rule "andRight" (formula "15"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "8")))
+ (rule "closeTrue" (formula "15"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "wellFormedStorePrimitiveArray" (formula "15"))
+ (rule "wellFormedStorePrimitiveArray" (formula "15"))
+ (rule "close" (formula "15") (ifseqformula "1"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "15"))
+ (branch "Case 1"
+ (rule "andRight" (formula "15"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "15"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "dismissNonSelectedField" (formula "15") (term "0"))
+ (rule "dismissNonSelectedField" (formula "15") (term "0"))
+ (rule "close" (formula "15") (ifseqformula "2"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "15"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "translateJavaMulInt" (formula "15") (term "2,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "0,4,0"))
+ (rule "translateJavaMulInt" (formula "15") (term "0,3,0"))
+ (rule "translateJavaMulInt" (formula "15") (term "0,0,4,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "4,0"))
+ (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "polySimp_addComm1" (formula "14") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,4,0"))
+ (rule "elim_double_block_2" (formula "17") (term "1"))
+ (rule "ifUnfold" (formula "17") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "replace_known_left" (formula "17") (term "0,0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "ifSplit" (formula "17"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "17") (term "1"))
+ (rule "emptyStatement" (formula "17") (term "1"))
+ (rule "methodCallEmpty" (formula "17") (term "1"))
+ (rule "tryEmpty" (formula "17") (term "1"))
+ (rule "emptyModality" (formula "17") (term "1"))
+ (rule "andRight" (formula "17"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0"))
+ (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "13") (term "0") (inst "element=element"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,0,0"))
+ (rule "eqSymm" (formula "13") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "eqSymm" (formula "18"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "21"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "7"))
+ (rule "close" (formula "21") (ifseqformula "7"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "closeTrue" (formula "17"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_4 = null)"
+ (rule "false_right" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "12") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "translateJavaMulInt" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "17"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "16") (term "1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "16") (term "1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "17"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "17") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_4 != null, but x_2 Out of Bounds!)"
+ (rule "false_right" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "11"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "9"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeFalse" (formula "8"))
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_2 = null)"
+ (rule "false_right" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "14") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "13") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_2 != null, but x Out of Bounds!)"
+ (rule "false_right" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "12") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "translateJavaMulInt" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "17"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "applyEq" (formula "1") (term "1,1,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "commute_or" (formula "1"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "15") (term "0"))
+ (rule "distr_forallAnd" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "commute_or" (formula "16") (term "0"))
+ (rule "commute_or" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "allLeft" (formula "15") (inst "t=bucket"))
+ (rule "inEqSimp_commuteGeq" (formula "15") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "1,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq0" (formula "15") (term "0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "allLeft" (formula "17") (inst "t=bucket"))
+ (rule "inEqSimp_commuteGeq" (formula "17") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "17") (term "1,0,0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "17") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0"))
+ (rule "leq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_strengthen0" (formula "17") (ifseqformula "23"))
+ (rule "add_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "23") (ifseqformula "17"))
+ (rule "mul_literals" (formula "23") (term "1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "false_right" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "12") (term "0"))
+ (rule "expand_inShort" (formula "12"))
+ (rule "replace_short_MIN" (formula "12") (term "0,1"))
+ (rule "replace_short_MAX" (formula "12") (term "1,0"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "13"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (rule "false_right" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "14")) (ifInst "" (formula "10")) (ifInst "" (formula "13")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "16"))
+ (rule "add_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "16") (ifseqformula "2"))
+ (rule "mul_literals" (formula "16") (term "1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "false_right" (formula "16"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "close" (formula "14") (ifseqformula "3"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but _bucket Out of Bounds!)"
+ (rule "false_right" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "15")) (ifInst "" (formula "10")) (ifInst "" (formula "13")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "17"))
+ (rule "add_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "17") (ifseqformula "2"))
+ (rule "mul_literals" (formula "17") (term "1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "false_right" (formula "17"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "13") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "translateJavaMulInt" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "eqSymm" (formula "18"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "3"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..564a83e
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,4783 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 13:09:06 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:onHeap
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 13:09:06 CEST 2023
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "59596")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "12"))
+(rule "translateJavaSubInt" (formula "13") (term "0,2,1"))
+(rule "translateJavaSubInt" (formula "13") (term "0,2,0"))
+(rule "eqSymm" (formula "13"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "3"))
+(rule "polySimp_elimSub" (formula "13") (term "0,2,1"))
+(rule "mul_literals" (formula "13") (term "1,0,2,1"))
+(rule "polySimp_elimSub" (formula "13") (term "0,2,0"))
+(rule "mul_literals" (formula "13") (term "1,0,2,0"))
+(rule "polySimp_addComm0" (formula "13") (term "0,2,1"))
+(rule "polySimp_addComm0" (formula "13") (term "0,2,0"))
+(rule "inEqSimp_commuteLeq" (formula "7"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "9"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "assignment" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+(rule "variableDeclarationAssign" (formula "17") (term "1"))
+(rule "variableDeclaration" (formula "17") (term "1") (newnames "self_51"))
+(rule "arrayLengthIsAShort" (formula "10") (term "0"))
+(rule "expand_inShort" (formula "10"))
+(rule "replace_short_MIN" (formula "10") (term "0,1"))
+(rule "replace_short_MAX" (formula "10") (term "1,0"))
+(rule "andLeft" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "arrayLengthNotNegative" (formula "12") (term "0"))
+(rule "arrayLengthNotNegative" (formula "15") (term "0"))
+(rule "arrayLengthIsAShort" (formula "16") (term "0"))
+(rule "expand_inShort" (formula "16"))
+(rule "replace_short_MAX" (formula "16") (term "1,0"))
+(rule "replace_short_MIN" (formula "16") (term "0,1"))
+(rule "andLeft" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "23") (term "1") (inst "#v0=c"))
+(rule "variableDeclaration" (formula "23") (term "1") (newnames "c_1"))
+(rule "methodBodyExpand" (formula "23") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "23"))
+(rule "variableDeclaration" (formula "23") (term "1") (newnames "__NEW__"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "23") (term "1") (inst "#v0=c_2"))
+(rule "variableDeclaration" (formula "23") (term "1") (newnames "c_2"))
+(rule "allocateInstance" (formula "23"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "blockEmpty" (formula "26") (term "1"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "assignment_write_attribute_this" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallWithinClass" (formula "26") (term "1"))
+(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallSuper" (formula "26") (term "1"))
+(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallEmpty" (formula "26") (term "1"))
+(rule "blockEmpty" (formula "26") (term "1"))
+(rule "assignment_write_attribute_this" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "assignment_write_attribute_this" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "assignment_write_attribute_this" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "assignment_write_attribute_this" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallEmpty" (formula "26") (term "1"))
+(rule "blockEmpty" (formula "26") (term "1"))
+(rule "methodCallReturnIgnoreResult" (formula "26") (term "1"))
+(rule "methodCallReturn" (formula "26") (term "1"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallEmpty" (formula "26") (term "1"))
+(rule "blockEmpty" (formula "26") (term "1"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "blockEmpty" (formula "26") (term "1"))
+(rule "variableDeclarationAssign" (formula "26") (term "1"))
+(rule "variableDeclaration" (formula "26") (term "1") (newnames "var"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "variableDeclarationAssign" (formula "26") (term "1"))
+(rule "variableDeclaration" (formula "26") (term "1") (newnames "var_1"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "variableDeclarationAssign" (formula "26") (term "1"))
+(rule "variableDeclaration" (formula "26") (term "1") (newnames "var_2"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "variableDeclarationAssign" (formula "26") (term "1"))
+(rule "variableDeclaration" (formula "26") (term "1") (newnames "var_3"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_,num_bucketsBefore_,var_3Before_"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallSuper" (formula "26") (term "1"))
+(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallEmpty" (formula "26") (term "1"))
+(rule "blockEmpty" (formula "26") (term "1"))
+(rule "variableDeclarationAssign" (formula "26") (term "1"))
+(rule "variableDeclaration" (formula "26") (term "1") (newnames "num_buckets"))
+(rule "assignmentShiftLeftInt" (formula "26") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "mod_lessDenom" (formula "26") (term "1,1,0") (userinteraction))
+ (rule "ifthenelse_split" (formula "1") (term "1,1") (userinteraction))
+ (branch "32 >= 0 TRUE"
+ (rule "impLeft" (formula "2") (userinteraction))
+ (branch "Case 1"
+ (rule "expand_inInt" (formula "28"))
+ (rule "equal_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeTrue" (formula "22"))
+ )
+ (branch "Case 2"
+ (rule "eqTermCut" (formula "28") (term "0,1,1,0") (inst "s=mod(log_buckets, Z(2(3(#))))") (userinteraction))
+ (branch "Assume log_buckets = log_buckets % 32"
+ (rule "applyEqReverse" (formula "29") (term "1,1,0") (ifseqformula "1") (userinteraction))
+ (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), log_buckets), pow(Z(2(#)), Z(8(#))))<>") (userinteraction))
+ (branch "CUT: pow(2, log_buckets) <= pow(2, 8) TRUE"
+ (rule "powPositive" (formula "1") (term "0") (userinteraction))
+ (rule "qeq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "pow_literals" (formula "2") (term "1"))
+ (rule "greater_literals" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "expand_inInt" (formula "30"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "23") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "14") (term "0"))
+ (rule "eqSymm" (formula "3"))
+ (rule "translateJavaShiftLeftInt" (formula "18") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "24") (term "1,0,2,0"))
+ (rule "translateJavaShiftLeftInt" (formula "24") (term "1,0,2,1"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1"))
+ (rule "applyEq" (formula "4") (term "1,0") (ifseqformula "3"))
+ (rule "mod_axiom" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "30") (term "0") (ifseqformula "2"))
+ (rule "leq_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_geqRight" (formula "30"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "5"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "12"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "12"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0") (ifseqformula "10"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "CUT: pow(2, log_buckets) <= pow(2, 8) FALSE"
+ (rule "powMonoConcrete" (formula "24") (userinteraction))
+ (rule "expand_inInt" (formula "30"))
+ (rule "greater_literals" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "translateJavaShiftLeftInt" (formula "12") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "21") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "22") (term "1,0,2,0"))
+ (rule "translateJavaShiftLeftInt" (formula "22") (term "1,0,2,1"))
+ (rule "polySimp_elimOneLeft0" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_commuteGeq" (formula "23") (term "1"))
+ (rule "replace_known_left" (formula "23") (term "1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_geqRight" (formula "23"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1"))
+ (rule "applyEq" (formula "3") (term "1,0") (ifseqformula "2"))
+ (rule "mod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "11"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ )
+ (branch "Assume log_buckets != log_buckets % 32"
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "expand_inInt" (formula "28"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0"))
+ (rule "notLeft" (formula "1"))
+ (rule "translateJavaShiftLeftInt" (formula "21") (term "1,0,2,0"))
+ (rule "translateJavaShiftLeftInt" (formula "21") (term "1,0,2,1"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "11") (term "0"))
+ (rule "eqSymm" (formula "22"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1"))
+ (rule "mod_axiom" (formula "22") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "0,0"))
+ (rule "add_zero_left" (formula "22") (term "0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "10"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "elimGcdEq" (formula "18") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(log_buckets, Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "add_zero_left" (formula "18") (term "0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,1"))
+ (rule "add_zero_left" (formula "18") (term "0,1,0"))
+ (rule "add_literals" (formula "18") (term "1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "leq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "3,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "9") (term "0"))
+ (rule "mod_axiom" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "shiftLeftDef" (formula "13") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,3,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,3,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "16"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "9") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,0,2,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,0,2,0"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "17"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12"))
+ (rule "times_zero_1" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16"))
+ (rule "times_zero_1" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "expand_moduloInteger" (formula "13") (term "3,0"))
+ (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,3,0"))
+ (rule "replace_int_RANGE" (formula "13") (term "1,1,3,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,3,0"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "expand_moduloInteger" (formula "16") (term "0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "16") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "expand_moduloInteger" (formula "9") (term "0"))
+ (rule "replace_int_RANGE" (formula "9") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "9") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "9") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "expand_moduloInteger" (formula "17") (term "1,0,2,0"))
+ (rule "replace_int_RANGE" (formula "17") (term "1,1,1,0,2,0"))
+ (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,1,0,2,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,2,0"))
+ (rule "add_literals" (formula "17") (term "0,0,2,0"))
+ (rule "expand_moduloInteger" (formula "17") (term "1,0,2,1"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,0,2,1"))
+ (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,1,0,2,1"))
+ (rule "replace_int_RANGE" (formula "17") (term "1,1,1,0,2,1"))
+ (rule "eqSymm" (formula "17"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,2,0"))
+ (rule "add_literals" (formula "17") (term "0,0,2,0"))
+ (rule "commute_and" (formula "24"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "div_axiom" (formula "1") (term "0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "1") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "27") (term "0,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,0,0"))
+ (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0,0,0,1,0,1,0,2,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "27") (term "0,1,1,0,1") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,0,1"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "4") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "applyEq" (formula "11") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "11") (term "0,1,1,1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "11") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,0,1,0,2,1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,1,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,1,0,2,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,1,0,2,1"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,1,0,1,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,1,0,2,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,1,1,1,0,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,1,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mod_axiom" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "11") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "11") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "mod_axiom" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "18") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "mod_axiom" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,1,0,2,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "leq_literals" (formula "19") (term "0,0,1,0,1,0,2,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "eqSymm" (formula "19"))
+ (rule "mod_axiom" (formula "19") (term "1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,2,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,2,1"))
+ (rule "add_literals" (formula "19") (term "0,0,0,2,1"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,1,0,2,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "leq_literals" (formula "19") (term "0,0,1,0,1,0,2,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mod_axiom" (formula "19") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,2,0"))
+ (rule "eqSymm" (formula "19"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,2,1"))
+ (rule "eqSymm" (formula "19"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,2,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,2,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mod_axiom" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "3"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_strengthen1" (formula "9") (ifseqformula "21"))
+ (rule "add_zero_right" (formula "9") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "21") (ifseqformula "9"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "false_right" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "11"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "10"))
+ (rule "mul_literals" (formula "2") (term "1,1,0"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ (branch "32 >= 0 FALSE"
+ (rule "equal_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "closeTrue" (formula "22"))
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "Block Contract (Internal)" (formula "26") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "7")) (ifInst "" (formula "23")) (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "21"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,1"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,0"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "14") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "10") (term "0"))
+ (rule "eqSymm" (formula "28") (term "0,0,1,0,1"))
+ (rule "translateJavaShiftLeftInt" (formula "28") (term "0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "variableDeclarationAssign" (formula "28") (term "1"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyStatement" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyStatement" (formula "28") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "3,0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "1"))
+ (rule "mod_axiom" (formula "11") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "8") (term "0"))
+ (rule "mod_axiom" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,3,0"))
+ (rule "shiftLeftDef" (formula "11") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "11"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "8") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "8") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "8") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "21")))
+ (rule "castDel" (formula "18") (term "0"))
+ (rule "applyEqReverse" (formula "19") (term "0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "11"))
+ (rule "times_zero_1" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "15"))
+ (rule "times_zero_1" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "expand_moduloInteger" (formula "12") (term "3,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,3,0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,3,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,3,0"))
+ (rule "expand_moduloInteger" (formula "11") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "11") (term "1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "expand_moduloInteger" (formula "8") (term "0"))
+ (rule "replace_int_RANGE" (formula "8") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "8") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "8") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "15"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "11"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "expand_moduloInteger" (formula "16") (term "1,0,2,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,0,2,1"))
+ (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,1,0,2,1"))
+ (rule "replace_int_RANGE" (formula "16") (term "1,1,1,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,2,0"))
+ (rule "add_literals" (formula "16") (term "0,0,2,0"))
+ (rule "expand_moduloInteger" (formula "16") (term "1,0,2,1"))
+ (rule "replace_int_RANGE" (formula "16") (term "1,1,1,0,2,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,0,2,1"))
+ (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,2,1"))
+ (rule "add_literals" (formula "16") (term "0,0,2,1"))
+ (rule "tryEmpty" (formula "23") (term "1"))
+ (rule "blockEmptyLabel" (formula "23") (term "1"))
+ (rule "blockEmpty" (formula "23") (term "1"))
+ (rule "arrayLengthNotNegative" (formula "10") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "10") (term "0"))
+ (rule "expand_inShort" (formula "10"))
+ (rule "replace_short_MIN" (formula "10") (term "0,1"))
+ (rule "replace_short_MAX" (formula "10") (term "1,0"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "13") (term "0"))
+ (rule "expand_inShort" (formula "13"))
+ (rule "replace_short_MIN" (formula "13") (term "0,1"))
+ (rule "replace_short_MAX" (formula "13") (term "1,0"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "14"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "methodCallEmpty" (formula "23") (term "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "emptyModality" (formula "23") (term "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "closeTrue" (formula "23"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "7")) (ifInst "" (formula "22")) (ifInst "" (formula "1")))
+ (rule "wellFormedStorePrimitive" (formula "26") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,1"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,0"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "14") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "wellFormedStoreObject" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "wellFormedStorePrimitive" (formula "22") (term "0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "3,0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "1"))
+ (rule "mod_axiom" (formula "11") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "8") (term "0"))
+ (rule "mod_axiom" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0"))
+ (rule "wellFormedStoreObject" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "wellFormedStorePrimitive" (formula "22") (term "0"))
+ (rule "wellFormedCreate" (formula "22") (term "0"))
+ (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,3,0"))
+ (rule "shiftLeftDef" (formula "11") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "11"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "8") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "8") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "8") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0"))
+ (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "23") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "closeTrue" (formula "23"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,1"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,0"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "14") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "10") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "30") (term "0,1,0"))
+ (rule "translateJavaShiftLeftInt" (formula "23") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "24") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "24") (term "1"))
+ (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "20"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "1"))
+ (rule "mod_axiom" (formula "14") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "3,0"))
+ (rule "mod_axiom" (formula "11") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "10") (term "1"))
+ (rule "mod_axiom" (formula "10") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,2,0"))
+ (rule "shiftLeftDef" (formula "14") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "11") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,3,0"))
+ (rule "shiftLeftDef" (formula "10") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "10"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0"))
+ (rule "javaShiftLeftIntConstantDef" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0"))
+ (rule "div_literals" (formula "18") (term "0,1,1,0,0"))
+ (rule "times_zero_2" (formula "18") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_commuteGeq" (formula "18"))
+ (rule "shiftLeftDef" (formula "17") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,2,0"))
+ (rule "shiftLeftDef" (formula "18") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "13"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "expand_moduloInteger" (formula "10") (term "3,0"))
+ (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,3,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,3,0"))
+ (rule "replace_int_RANGE" (formula "10") (term "1,1,3,0"))
+ (rule "expand_moduloInteger" (formula "9") (term "0"))
+ (rule "replace_int_MIN" (formula "9") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "9") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "9") (term "1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "expand_moduloInteger" (formula "25") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "25") (term "1,1,0,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "expand_moduloInteger" (formula "19") (term "1"))
+ (rule "replace_int_RANGE" (formula "19") (term "1,1,1"))
+ (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,1"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1"))
+ (rule "add_literals" (formula "19") (term "0,1,1"))
+ (rule "mod_axiom" (formula "19") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1"))
+ (rule "div_literals" (formula "19") (term "0,1,1,1"))
+ (rule "times_zero_2" (formula "19") (term "1,1,1"))
+ (rule "add_zero_right" (formula "19") (term "1,1"))
+ (rule "add_literals" (formula "19") (term "1"))
+ (rule "expand_moduloInteger" (formula "18") (term "0"))
+ (rule "replace_int_RANGE" (formula "18") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "12"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "9"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "expand_moduloInteger" (formula "13") (term "1,0,2,1"))
+ (rule "replace_int_RANGE" (formula "13") (term "1,1,1,0,2,1"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,0,2,1"))
+ (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1,0,2,1"))
+ (rule "eqSymm" (formula "13"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,2,0"))
+ (rule "add_literals" (formula "13") (term "0,0,2,0"))
+ (rule "expand_moduloInteger" (formula "19") (term "0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "19") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "add_literals" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,0"))
+ (rule "div_literals" (formula "15") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "15") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0"))
+ (rule "add_literals" (formula "15") (term "0"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "expand_moduloInteger" (formula "13") (term "1,0,2,1"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,0,2,1"))
+ (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1,0,2,1"))
+ (rule "replace_int_RANGE" (formula "13") (term "1,1,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,2,1"))
+ (rule "add_literals" (formula "13") (term "0,0,2,1"))
+ (rule "elim_double_block_2" (formula "24") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "8") (term "0"))
+ (rule "expand_inShort" (formula "8"))
+ (rule "replace_short_MAX" (formula "8") (term "1,0"))
+ (rule "replace_short_MIN" (formula "8") (term "0,1"))
+ (rule "andLeft" (formula "8"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "arrayLengthNotNegative" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "17"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "17"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthNotNegative" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "div_axiom" (formula "12") (term "0,0,0,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "12") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "equal_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "polySimp_addComm1" (formula "14") (term "1"))
+ (rule "add_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "applyEq" (formula "10") (term "0,1,1,2,1,0,1,3,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,2,1,0,1,3,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,0,2,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "9") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "21") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "10") (term "0,0,0,1,0,1,3,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,1,0,1,3,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "21") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "20") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "10") (term "0,1,1,1,1,1,0,1,3,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,1,1,0,1,3,0"))
+ (rule "applyEq" (formula "21") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "9") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "9") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,0,2,1") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,1,0,2,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,1,0,2,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,1,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,1,0,1,3,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,1,0,2,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "16"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mod_axiom" (formula "20") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "mul_literals" (formula "20") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "21") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mod_axiom" (formula "21") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (term "0,1,0,1,3,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,0,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1,0,1,3,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0,0,1,0,1,3,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,1,0,1,3,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,3,0"))
+ (rule "leq_literals" (formula "10") (term "0,0,1,0,1,3,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mod_axiom" (formula "10") (term "1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "3,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,3,0"))
+ (rule "add_literals" (formula "10") (term "0,0,3,0"))
+ (rule "add_zero_left" (formula "10") (term "0,3,0"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,0,1,0,2,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "eqSymm" (formula "16"))
+ (rule "mod_axiom" (formula "16") (term "1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,2,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,2,1"))
+ (rule "add_literals" (formula "16") (term "0,0,0,2,1"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "mod_axiom" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0,2,0"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,0,1,0,2,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mod_axiom" (formula "16") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,2,0"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,2,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,2,0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "14"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "6") (term "0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_subsumption5" (formula "16") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "greater_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "8"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "14") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_antiSymm" (formula "6") (ifseqformula "14"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "16") (term "0,1,1") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "16") (term "1,1"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "applyEqRigid" (formula "15") (term "0,1") (ifseqformula "6"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "applyEqRigid" (formula "14") (term "0") (ifseqformula "6"))
+ (rule "leq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEq" (formula "10") (term "0,0,1,1,0,0,1,1") (ifseqformula "6"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0,0,1,1"))
+ (rule "add_zero_left" (formula "10") (term "1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "16") (term "0,0,1,1,0,0,1,1") (ifseqformula "6"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,1"))
+ (rule "add_zero_left" (formula "16") (term "1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "applyEq" (formula "22") (term "0,0,1,1,1") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "22") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "22") (term "1,1,1"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "6"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "17") (term "1,1,0,0,1,0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,2,1"))
+ (rule "applyEqRigid" (formula "11") (term "0,0,1,1,0,0,1,3,0") (ifseqformula "6"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,1,3,0"))
+ (rule "add_zero_left" (formula "11") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "3,0"))
+ (rule "applyEqRigid" (formula "21") (term "0,0,1,1,0,0,0") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "applyEqRigid" (formula "22") (term "0,0,1,1,0,0,0") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "17") (term "0,1,1,0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "17") (term "1,1,0,0,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEqRigid" (formula "10") (term "0,0,1,1,1") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "10") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "10") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "1"))
+ (rule "applyEq" (formula "11") (term "0,0,1,1,3,0") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "11") (term "0,1,1,3,0"))
+ (rule "add_zero_left" (formula "11") (term "1,1,3,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "3,0"))
+ (rule "applyEqRigid" (formula "21") (term "0,0,1,1,0") (ifseqformula "6"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0"))
+ (rule "add_zero_left" (formula "21") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "applyEq" (formula "16") (term "0,0,1,1,1") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "16") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "16") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0,1,1,0,2,0") (ifseqformula "6"))
+ (rule "times_zero_2" (formula "17") (term "0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "17") (term "1,1,0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,2,1"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,1,0,2,0") (ifseqformula "6"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "17") (term "1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "8"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "7"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "ifUnfold" (formula "26") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "replace_known_left" (formula "26") (term "0,0,1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "div_axiom" (formula "20") (term "0,0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "20") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "equal_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,1"))
+ (rule "add_literals" (formula "22") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "22") (term "1"))
+ (rule "add_literals" (formula "22") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,1,1") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,1,0,2,0") (ifseqformula "20"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,2,1"))
+ (rule "applyEq" (formula "10") (term "0,1,1") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "10") (term "1"))
+ (rule "applyEq" (formula "11") (term "0,1,3,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "11") (term "3,0"))
+ (rule "applyEq" (formula "15") (term "0,1,0,2,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,2,0"))
+ (rule "eqSymm" (formula "15"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "ifSplit" (formula "27"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "27") (term "1"))
+ (rule "variableDeclarationAssign" (formula "27") (term "1"))
+ (rule "variableDeclaration" (formula "27") (term "1") (newnames "num_splitters"))
+ (rule "assignmentSubtractionInt" (formula "27") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "expand_inInt" (formula "27"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "1,1"))
+ (rule "mul_literals" (formula "27") (term "1,1,1"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "1,1"))
+ (rule "add_literals" (formula "27") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,1"))
+ (rule "add_literals" (formula "27") (term "0,0,1"))
+ (rule "mod_axiom" (formula "27") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,1,0,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "27") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "27") (term "0,1,1,1,1,1,0,0,1,0,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "27") (term "1,1,1,1,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "27") (term "0,1,1,2,1,0,0,1,0,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "27") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "1,2,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "27") (term "0,0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,1,0,1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0,1"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,1,0,1") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "27") (term "1,0,0,1,0,1,0,1"))
+ (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0,1"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,0,1"))
+ (rule "applyEq" (formula "27") (term "0,1,1,2,1,0,1,0,1") (ifseqformula "13"))
+ (rule "mul_literals" (formula "27") (term "1,1,2,1,0,1,0,1"))
+ (rule "add_zero_right" (formula "27") (term "1,2,1,0,1,0,1"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,0,1"))
+ (rule "applyEq" (formula "27") (term "0,1,1,1,1,1,0,1,0,1") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "27") (term "1,1,1,1,1,0,1,0,1"))
+ (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (term "0,1,0,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "27") (term "0,0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "mod_axiom" (formula "27") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (term "0,1,0,0,1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "27") (term "0,0,1,0,0,1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "mod_axiom" (formula "27") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "27") (term "1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1"))
+ (rule "mul_literals" (formula "27") (term "0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1"))
+ (rule "applyEq" (formula "27") (term "0,1,0,1") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "27") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0"))
+ (rule "qeq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_geqRight" (formula "27"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "Block Contract (Internal)" (formula "27") (newnames "exc_1,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "5")) (ifInst "" (formula "24")) (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "22"))
+ (rule "eqSymm" (formula "29") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "variableDeclarationAssign" (formula "29") (term "1"))
+ (rule "variableDeclaration" (formula "29") (term "1") (newnames "exc_1_1"))
+ (rule "assignment" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "emptyStatement" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "emptyStatement" (formula "29") (term "1"))
+ (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "26")))
+ (rule "castDel" (formula "23") (term "0"))
+ (rule "applyEqReverse" (formula "24") (term "0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "tryEmpty" (formula "28") (term "1"))
+ (rule "blockEmptyLabel" (formula "28") (term "1"))
+ (rule "blockEmpty" (formula "28") (term "1"))
+ (rule "methodCallEmpty" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyModality" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeTrue" (formula "28"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "5")) (ifInst "" (formula "23")) (ifInst "" (formula "1")))
+ (rule "wellFormedStorePrimitive" (formula "27") (term "0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "wellFormedStoreObject" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "wellFormedStorePrimitive" (formula "27") (term "0"))
+ (rule "wellFormedStoreObject" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "wellFormedStorePrimitive" (formula "27") (term "0"))
+ (rule "wellFormedCreate" (formula "27") (term "0"))
+ (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeTrue" (formula "28"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "22"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "translateJavaSubInt" (formula "30") (term "0,1,0"))
+ (rule "eqSymm" (formula "24"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,2,1"))
+ (rule "mul_literals" (formula "23") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,2,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,2,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,2,0"))
+ (rule "polySimp_addLiterals" (formula "23") (term "0,2,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,2,1"))
+ (rule "add_literals" (formula "23") (term "0,0,2,1"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,2,0"))
+ (rule "add_literals" (formula "23") (term "0,0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "1"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "1"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "1"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "1"))
+ (rule "dismissNonSelectedField" (formula "23") (term "0"))
+ (rule "dismissNonSelectedField" (formula "23") (term "1"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "applyEq" (formula "23") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "23") (term "1,1,2,1,0,1,0,2,1"))
+ (rule "add_zero_right" (formula "23") (term "1,2,1,0,1,0,2,1"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "23") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "23") (term "1,1,1,1,1,0,1,0,2,1"))
+ (rule "add_zero_right" (formula "23") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "mod_axiom" (formula "23") (term "0,0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,1,0,2,1") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "23") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "add_zero_right" (formula "23") (term "0,0,1,0,1,0,2,1"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "23") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "23") (term "1,1,1,1,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "23") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "mod_axiom" (formula "23") (term "0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "23") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "23") (term "1,1,2,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "23") (term "1,2,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,0,2,1"))
+ (rule "eqSymm" (formula "23"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,0,1,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,0,2,1"))
+ (rule "eqSymm" (formula "23"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,0,1,0,1,0,2,0"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0,1,0,1,0,2,1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "23") (term "0,0,1,0,1,0,2,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mod_axiom" (formula "23") (term "1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,2,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,2,1"))
+ (rule "add_literals" (formula "23") (term "0,0,0,2,1"))
+ (rule "applyEq" (formula "23") (term "0,1,0,2,1") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,2,1"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0,1,0,1,0,2,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "23") (term "0,0,1,0,1,0,2,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mod_axiom" (formula "23") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,2,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,2,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "23") (term "0,1,0,2,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "pullOutSelect" (formula "23") (term "1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfCreate" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "26")))
+ (rule "simplifySelectOfCreate" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "26")))
+ (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "eqSymm" (formula "23"))
+ (rule "elim_double_block_2" (formula "28") (term "1"))
+ (rule "ifUnfold" (formula "28") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_1"))
+ (rule "inequality_comparison_simple" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "replace_known_left" (formula "28") (term "0,0,1,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "ifSplit" (formula "28"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "28") (term "1"))
+ (rule "eval_order_access4_this" (formula "28") (term "1") (inst "#v1=t"))
+ (rule "variableDeclarationAssign" (formula "28") (term "1"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "t"))
+ (builtin "Use Operation Contract" (formula "28") (newnames "heapBefore_Tree,self_0,exc_2,heapAfter_Tree,anon_heap_Tree") (contract "de.wiesler.Tree[de.wiesler.Tree::Tree([I,[I,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (Tree)"
+ (builtin "One Step Simplification" (formula "24"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "24"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "25") (term "1,1,0,0,1,0") (ifseqformula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "25"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "25"))
+ (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "dismissNonSelectedField" (formula "33") (term "0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "0"))
+ (rule "dismissNonSelectedField" (formula "33") (term "0"))
+ (rule "assignment" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "assignment_write_attribute_this" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "Block Contract (Internal)" (formula "40") (newnames "exc_3,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "41"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "5")) (ifInst "" (formula "37")) (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "33"))
+ (rule "eqSymm" (formula "42") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "24"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "exc_3_1"))
+ (rule "assignment" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "emptyStatement" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "emptyStatement" (formula "42") (term "1"))
+ (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "37")))
+ (rule "eqSymm" (formula "28"))
+ (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "28"))
+ (rule "hideAuxiliaryEq" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "40")))
+ (rule "ifthenelse_negated" (formula "27") (term "0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "28") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "37")))
+ (rule "eqSymm" (formula "29"))
+ (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "28") (term "0,0,0"))
+ (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "40")))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "28") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "29") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "37")))
+ (rule "eqSymm" (formula "30"))
+ (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "30"))
+ (rule "hideAuxiliaryEq" (formula "30"))
+ (rule "sortsDisjointModuloNull" (formula "29") (term "0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "40")))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "34") (term "0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "39")))
+ (rule "castDel" (formula "34") (term "0"))
+ (rule "applyEqReverse" (formula "35") (term "0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "hideAuxiliaryEq" (formula "34"))
+ (rule "tryEmpty" (formula "41") (term "1"))
+ (rule "blockEmptyLabel" (formula "41") (term "1"))
+ (rule "blockEmpty" (formula "41") (term "1"))
+ (rule "methodCallEmpty" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "emptyModality" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "5")) (ifInst "" (formula "36")) (ifInst "" (formula "1")))
+ (rule "dismissNonSelectedField" (formula "40") (term "0,1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1") (ifseqformula "24"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0,0,1"))
+ (rule "wellFormedStoreObject" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "34")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0") (ifseqformula "24"))
+ (rule "wellFormedAnonEQ" (formula "40") (term "0,0") (ifseqformula "24"))
+ (rule "wellFormedStorePrimitive" (formula "40") (term "0,0,0"))
+ (rule "replace_known_left" (formula "40") (term "1,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "23")))
+ (rule "wellFormedStoreObject" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "wellFormedStorePrimitive" (formula "40") (term "0"))
+ (rule "wellFormedStoreObject" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "wellFormedStorePrimitive" (formula "40") (term "0"))
+ (rule "wellFormedCreate" (formula "40") (term "0"))
+ (rule "replace_known_left" (formula "40") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "orRight" (formula "40"))
+ (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "35")))
+ (rule "eqSymm" (formula "28"))
+ (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "28"))
+ (rule "hideAuxiliaryEq" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,0,0"))
+ (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "38")))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "28") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "35")))
+ (rule "eqSymm" (formula "29"))
+ (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "sortsDisjointModuloNull" (formula "28") (term "0,0,0"))
+ (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "38")))
+ (rule "ifthenelse_negated" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0"))
+ (rule "replace_known_right" (formula "28") (term "0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "29") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "35")))
+ (rule "eqSymm" (formula "30"))
+ (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "30"))
+ (rule "hideAuxiliaryEq" (formula "30"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,1,0,0"))
+ (rule "sortsDisjointModuloNull" (formula "29") (term "0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "38")))
+ (rule "ifthenelse_negated" (formula "29") (term "0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "pullOutSelect" (formula "33") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")))
+ (rule "applyEqReverse" (formula "34") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "41") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "33"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "37")))
+ (rule "eqSymm" (formula "28"))
+ (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "28"))
+ (rule "hideAuxiliaryEq" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "40")))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "28") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "37")))
+ (rule "eqSymm" (formula "29"))
+ (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "28") (term "0,0,0"))
+ (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "40")))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "28") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "29") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "37")))
+ (rule "eqSymm" (formula "30"))
+ (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "30"))
+ (rule "hideAuxiliaryEq" (formula "30"))
+ (rule "sortsDisjointModuloNull" (formula "29") (term "0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "1,0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "36")))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "34") (term "1,0") (inst "selectSK=de_wiesler_Classifier_tree_0"))
+ (rule "simplifySelectOfStore" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "castDel" (formula "34") (term "0"))
+ (rule "applyEqReverse" (formula "35") (term "1,0") (ifseqformula "34"))
+ (rule "replaceKnownSelect_taclet20121121_3" (formula "35") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "hideAuxiliaryEq" (formula "34"))
+ (rule "elim_double_block_2" (formula "41") (term "1"))
+ (rule "ifUnfold" (formula "41") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "41") (term "1") (newnames "x_2"))
+ (rule "inequality_comparison_simple" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "replace_known_left" (formula "41") (term "0,0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "ifSplit" (formula "41"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "41") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "41") (newnames "exc_4,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "5")) (ifInst "" (formula "38")) (ifInst "" (formula "1")))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "34"))
+ (rule "eqSymm" (formula "43") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (ifseqformula "24"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "43") (term "1"))
+ (rule "variableDeclaration" (formula "43") (term "1") (newnames "exc_4_1"))
+ (rule "assignment" (formula "43") (term "1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "emptyStatement" (formula "43") (term "1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "emptyStatement" (formula "43") (term "1"))
+ (rule "pullOutSelect" (formula "35") (term "0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "40")))
+ (rule "castDel" (formula "35") (term "0"))
+ (rule "applyEqReverse" (formula "36") (term "0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "tryEmpty" (formula "42") (term "1"))
+ (rule "blockEmptyLabel" (formula "42") (term "1"))
+ (rule "blockEmpty" (formula "42") (term "1"))
+ (rule "methodCallEmpty" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "emptyModality" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "closeTrue" (formula "42"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "5")) (ifInst "" (formula "37")) (ifInst "" (formula "1")))
+ (rule "dismissNonSelectedField" (formula "41") (term "0,1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "1") (ifseqformula "24"))
+ (rule "dismissNonSelectedField" (formula "41") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "41") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "41") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "41") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "41") (term "0,0,1"))
+ (rule "wellFormedStoreObject" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "35")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "1,0") (ifseqformula "24"))
+ (rule "wellFormedAnonEQ" (formula "41") (term "0,0") (ifseqformula "24"))
+ (rule "wellFormedStorePrimitive" (formula "41") (term "0,0,0"))
+ (rule "replace_known_left" (formula "41") (term "1,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "23")))
+ (rule "wellFormedStoreObject" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "wellFormedStorePrimitive" (formula "41") (term "0"))
+ (rule "wellFormedStoreObject" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "wellFormedStorePrimitive" (formula "41") (term "0"))
+ (rule "wellFormedCreate" (formula "41") (term "0"))
+ (rule "replace_known_left" (formula "41") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "orRight" (formula "41"))
+ (rule "pullOutSelect" (formula "41") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "42") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "closeTrue" (formula "42"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "eqSymm" (formula "36"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,0"))
+ (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,2,0"))
+ (rule "add_literals" (formula "35") (term "0,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "1"))
+ (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "35") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "13"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,1,1,0,1,0,2,1"))
+ (rule "add_zero_right" (formula "35") (term "1,1,1,1,0,1,0,2,1"))
+ (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "35") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "13"))
+ (rule "mul_literals" (formula "35") (term "1,1,2,1,0,1,0,2,1"))
+ (rule "add_zero_right" (formula "35") (term "1,2,1,0,1,0,2,1"))
+ (rule "mod_axiom" (formula "35") (term "0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,0,2,1"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,1,0,2,1") (ifseqformula "13"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,0,1,0,2,1"))
+ (rule "add_zero_right" (formula "35") (term "0,0,1,0,1,0,2,1"))
+ (rule "mod_axiom" (formula "35") (term "0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "35") (term "1,0,0,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "35") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,1,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "35") (term "1,1,1,1,0,1,0,2,0"))
+ (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,0,2,0"))
+ (rule "applyEq" (formula "35") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "35") (term "1,1,2,1,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "35") (term "1,2,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,1,0,1,0,2,1"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0,1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,1,0,1,0,2,1"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,1,0,2,0"))
+ (rule "inEqSimp_contradInEq1" (formula "35") (term "0,1,0,1,0,2,1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "35") (term "0,0,1,0,1,0,2,1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "mod_axiom" (formula "35") (term "1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,2,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,1"))
+ (rule "add_literals" (formula "35") (term "0,0,0,2,1"))
+ (rule "applyEq" (formula "35") (term "0,1,0,2,1") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,2,1"))
+ (rule "inEqSimp_contradInEq1" (formula "35") (term "0,1,0,1,0,2,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "35") (term "0,0,1,0,1,0,2,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "mod_axiom" (formula "35") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,2,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "35") (term "0,1,0,2,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "pullOutSelect" (formula "35") (term "1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "35") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43")))
+ (rule "simplifySelectOfAnonEQ" (formula "36") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "43")))
+ (rule "eqSymm" (formula "35") (term "0,0,0"))
+ (rule "eqSymm" (formula "36") (term "0,0,0"))
+ (rule "replace_known_right" (formula "36") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "dismissNonSelectedField" (formula "36") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "2,0"))
+ (rule "replaceKnownSelect_taclet21121_0" (formula "36") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21121_2" (formula "36") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "2,0"))
+ (rule "replaceKnownSelect_taclet21121_1" (formula "35") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21121_2" (formula "35") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "36") (term "0"))
+ (rule "ifthenelse_negated" (formula "35") (term "0"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "15"))
+ (rule "pullOutSelect" (formula "36") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "applyEq" (formula "35") (term "0,0,0") (ifseqformula "36"))
+ (rule "simplifySelectOfCreate" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "41")))
+ (rule "castDel" (formula "36") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "36") (term "0,0"))
+ (rule "replace_known_right" (formula "36") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "44")))
+ (rule "applyEqReverse" (formula "37") (term "0,0,0") (ifseqformula "36"))
+ (rule "applyEqReverse" (formula "35") (term "0,0,0") (ifseqformula "36"))
+ (rule "hideAuxiliaryEq" (formula "36"))
+ (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "3")))
+ (rule "true_left" (formula "36"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "elim_double_block_2" (formula "42") (term "1"))
+ (rule "ifUnfold" (formula "42") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "replace_known_left" (formula "42") (term "0,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "ifSplit" (formula "42"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "43"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "43"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "42") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "Block Contract (Internal)" (formula "42") (newnames "anonOut_heap,exc_5,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "43"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "5")) (ifInst "" (formula "39")) (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "35") (term "1,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "36"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "38") (ifseqformula "24"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "38") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "add_zero_left" (formula "37") (term "0"))
+ (rule "variableDeclarationAssign" (formula "46") (term "1"))
+ (rule "variableDeclaration" (formula "46") (term "1") (newnames "exc_5_1"))
+ (rule "assignment" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "eval_order_access4_this" (formula "46") (term "1") (inst "#v1=x"))
+ (rule "variableDeclarationAssign" (formula "46") (term "1"))
+ (rule "variableDeclaration" (formula "46") (term "1") (newnames "x_4"))
+ (rule "mod_axiom" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0,1,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "36") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "applyEq" (formula "36") (term "0,1,1,1,1,1,0,0,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0"))
+ (rule "applyEq" (formula "36") (term "0,1,1,2,1,0,0,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "36") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "36") (term "1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "37") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1,0,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,1,1,0,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,1,1,1,0,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,1,1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "1,1,1,1,0,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,2,1,0,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,1,2,1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "37") (term "0,1,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "37") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mod_axiom" (formula "37") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0"))
+ (rule "applyEq" (formula "37") (term "0,1,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "36") (term "0,1,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "36") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "mod_axiom" (formula "36") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0"))
+ (rule "applyEq" (formula "36") (term "0,1,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption0" (formula "36") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "pullOutSelect" (formula "36") (term "0,0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "41")))
+ (rule "castDel" (formula "36") (term "0"))
+ (rule "applyEqReverse" (formula "37") (term "0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "hideAuxiliaryEq" (formula "36"))
+ (rule "condition" (formula "43") (term "1"))
+ (rule "onlyCreatedObjectsAreReferenced" (formula "28") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "28") (term "1,0,1") (ifseqformula "29"))
+ (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "29"))
+ (rule "replace_known_right" (formula "28") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "onlyCreatedObjectsAreReferenced" (formula "30") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "30") (term "1,0,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "31"))
+ (rule "replace_known_right" (formula "30") (term "0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "ifElseSplit" (formula "45"))
+ (branch "if var_3 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "assignmentMultiplicationInt" (formula "46") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1"))
+ (rule "mul_literals" (formula "46") (term "0,1,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "1"))
+ (rule "mul_literals" (formula "46") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,1"))
+ (rule "add_literals" (formula "46") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0"))
+ (rule "mod_axiom" (formula "46") (term "0,0,1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,0,1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,1,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,1,0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,1,0,1"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,1,0,1") (ifseqformula "14"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0,1,0,1"))
+ (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,1,0,1"))
+ (rule "mod_axiom" (formula "46") (term "0,1,1,1,1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,1,1,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,1,1,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,1,1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,1,1,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,1,1,0,0,1,0,1"))
+ (rule "applyEq" (formula "46") (term "0,1,1,1,1,1,0,0,1,0,1") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "46") (term "1,1,1,1,1,0,0,1,0,1"))
+ (rule "add_zero_right" (formula "46") (term "1,1,1,1,0,0,1,0,1"))
+ (rule "mod_axiom" (formula "46") (term "1,2,1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,2,1,0,0,1,0,1"))
+ (rule "applyEq" (formula "46") (term "0,1,1,2,1,0,0,1,0,1") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "46") (term "1,1,2,1,0,0,1,0,1"))
+ (rule "add_zero_right" (formula "46") (term "1,2,1,0,0,1,0,1"))
+ (rule "mod_axiom" (formula "46") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "46") (term "0,1,1,2,1,0,0,1,0,0") (ifseqformula "14"))
+ (rule "mul_literals" (formula "46") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "1,2,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "46") (term "0,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,1,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "46") (term "0,1,1,1,1,1,0,0,1,0,0") (ifseqformula "14"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,1,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "46") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,1,0,0") (ifseqformula "14"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0,1,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0,1,0,0,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1"))
+ (rule "mul_literals" (formula "46") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "46") (term "0,1,0,0,0,1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "46") (term "0,0,1,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "mod_axiom" (formula "46") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0,1"))
+ (rule "mul_literals" (formula "46") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "46") (term "1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1"))
+ (rule "applyEq" (formula "46") (term "0,1,0,1") (ifseqformula "21"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "46") (term "0,1,0,0,0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "46") (term "0,0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "mod_axiom" (formula "46") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0"))
+ (rule "inEqSimp_subsumption6" (formula "46") (term "1") (ifseqformula "20"))
+ (rule "greater_literals" (formula "46") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,0,1"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0,1"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1"))
+ (rule "add_literals" (formula "46") (term "0,0,1"))
+ (rule "qeq_literals" (formula "46") (term "0,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_leqRight" (formula "46"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "23"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "translateJavaMulInt" (formula "46") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0"))
+ (rule "blockEmpty" (formula "46") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "tryEmpty" (formula "46") (term "1"))
+ (rule "blockEmptyLabel" (formula "46") (term "1"))
+ (rule "blockEmpty" (formula "46") (term "1"))
+ (rule "methodCallEmpty" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "emptyModality" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "closeTrue" (formula "46"))
+ )
+ )
+ (branch "if var_3 false"
+ (builtin "One Step Simplification" (formula "46"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "assignment" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "blockEmpty" (formula "46") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "tryEmpty" (formula "46") (term "1"))
+ (rule "blockEmptyLabel" (formula "46") (term "1"))
+ (rule "blockEmpty" (formula "46") (term "1"))
+ (rule "methodCallEmpty" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "emptyModality" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "closeTrue" (formula "46"))
+ )
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "5")) (ifInst "" (formula "38")) (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "42") (term "1,0"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1") (ifseqformula "24"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "1,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,1,1,0"))
+ (rule "add_zero_left" (formula "42") (term "0,1,1,0"))
+ (rule "mod_axiom" (formula "42") (term "0,0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,0,0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,1,0,0,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,1,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "42") (term "0,1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,1,1,1,1,0,0,1,0,0,1,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "42") (term "1,1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "1,1,1,1,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "42") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,1,2,1,0,0,1,0,0,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "42") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "42") (term "1,2,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,2,1,0,0,1,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,1,2,1,0,0,1,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "42") (term "1,1,2,1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "42") (term "1,2,1,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "42") (term "0,1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,1,1,0,0,1,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,1,1,1,1,0,0,1,1,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "42") (term "1,1,1,1,1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "42") (term "1,1,1,1,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "42") (term "0,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,1,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,1,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "42") (term "0,1,0,0,1,1,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "42") (term "0,0,1,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "mod_axiom" (formula "42") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,0,1,1,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "42") (term "1,1,0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0,1,1,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,1,1,0"))
+ (rule "qeq_literals" (formula "42") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_contradInEq1" (formula "42") (term "0,1,0,0,1,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "42") (term "0,0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "mod_axiom" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,0,1,0") (ifseqformula "20"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "inEqSimp_subsumption0" (formula "42") (term "1,0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,1,0"))
+ (rule "qeq_literals" (formula "42") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "wellFormedStoreObject" (formula "42") (term "0"))
+ (rule "typeEqDerived2" (formula "42") (term "0,1,1,1,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "41")))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,1,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1,0") (ifseqformula "24"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0"))
+ (rule "replaceKnownSelect_taclet2120121121_15" (formula "42") (term "0,0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2120121121_16" (formula "42") (term "0,0,1,0"))
+ (rule "replace_known_left" (formula "42") (term "0,1,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "wellFormedStoreObject" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "36")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1,0") (ifseqformula "24"))
+ (rule "wellFormedAnonEQ" (formula "42") (term "0,0") (ifseqformula "24"))
+ (rule "wellFormedStorePrimitive" (formula "42") (term "0,0,0"))
+ (rule "replace_known_left" (formula "42") (term "1,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "23")))
+ (rule "wellFormedStoreObject" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "wellFormedStorePrimitive" (formula "42") (term "0"))
+ (rule "wellFormedStoreObject" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "wellFormedStorePrimitive" (formula "42") (term "0"))
+ (rule "wellFormedCreate" (formula "42") (term "0"))
+ (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "orRight" (formula "42"))
+ (rule "pullOutSelect" (formula "42") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "43") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "closeTrue" (formula "43"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "43"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaMulInt" (formula "38") (term "1,1"))
+ (rule "eqSymm" (formula "38"))
+ (rule "replace_known_left" (formula "37") (term "0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,1,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,1,2,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,2,1,0,1,2,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,1,2,1,0,1,2,0"))
+ (rule "add_zero_right" (formula "37") (term "1,2,1,0,1,2,0"))
+ (rule "mod_axiom" (formula "37") (term "0,0,1,0,1,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,1,2,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1,0,1,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,1,2,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,1,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,1,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,1,2,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,1,2,0"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,1,2,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,0,1,2,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1,0,1,2,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,1,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,1,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,1,2,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,1,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,1,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,1,1,0,1,2,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,1,1,1,0,1,2,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,1,1,0,1,2,0"))
+ (rule "add_zero_right" (formula "37") (term "1,1,1,1,0,1,2,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,1,1,0,0,1,1,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,1,1,1,0,0,1,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,1,1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "37") (term "1,1,1,1,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,1,0"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0,1,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,1,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,2,1,0,0,1,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,1,2,1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "37") (term "1,2,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37") (term "0,1,0,1,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,1,2,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,1,2,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "37") (term "0,1,0,1,2,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "37") (term "0,0,1,0,1,2,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mod_axiom" (formula "37") (term "1,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "2,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,2,0"))
+ (rule "add_literals" (formula "37") (term "0,0,2,0"))
+ (rule "add_zero_left" (formula "37") (term "0,2,0"))
+ (rule "applyEq" (formula "37") (term "0,1,2,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "37") (term "2,0"))
+ (rule "inEqSimp_contradInEq1" (formula "37") (term "0,1,0,0,1,1,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "37") (term "0,0,1,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "37") (term "0,1,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "37") (term "1,0"))
+ (rule "pullOutSelect" (formula "37") (term "1") (inst "selectSK=de_wiesler_Classifier_num_buckets_0"))
+ (rule "simplifySelectOfAnon" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "42")))
+ (rule "dismissNonSelectedField" (formula "37") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "37") (term "2,0"))
+ (rule "elementOfSingleton" (formula "37") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "applyEqReverse" (formula "38") (term "1") (ifseqformula "37"))
+ (rule "hideAuxiliaryEq" (formula "37"))
+ (rule "ifUnfold" (formula "45") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "replace_known_left" (formula "45") (term "0,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "onlyCreatedObjectsAreReferenced" (formula "28") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "28") (term "1,0,1") (ifseqformula "29"))
+ (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "29"))
+ (rule "replace_known_right" (formula "28") (term "0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "onlyCreatedObjectsAreReferenced" (formula "30") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "31"))
+ (rule "replace_known_right" (formula "30") (term "0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "31"))
+ (rule "ifSplit" (formula "47"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "48"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "48"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "47") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "methodCallEmpty" (formula "47") (term "1"))
+ (rule "blockEmpty" (formula "47") (term "1"))
+ (rule "assignment_write_attribute" (formula "47"))
+ (branch "Normal Execution (self_51 != null)"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "tryEmpty" (formula "47") (term "1"))
+ (rule "emptyModality" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "32") (inst "i_0=i_0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "replaceKnownSelect_taclet20121121_5" (formula "32") (term "1,0,1,0,1"))
+ (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "1,1,1,0,1"))
+ (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "1,0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_6" (formula "32") (term "1,0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "1,1,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "1,0,1,0,0"))
+ (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,1,0,1,0,1,0"))
+ (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,0,1,1,0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,1,0,1,0,1,0"))
+ (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,0,0,2,1,1,0,1"))
+ (rule "replaceKnownSelect_taclet20121121_5" (formula "32") (term "0,1,1,1,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,0,1,1,0,1,0"))
+ (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,1,1,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "0,1,1,0,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,0,0,2,1,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_6" (formula "32") (term "0,1,1,1,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,1,1,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "0,0,0,0,0,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet20121121_5" (formula "32") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "0,1,1,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "0,0,0,0,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_6" (formula "32") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "39") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "37") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "33") (term "1"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "3,0"))
+ (rule "mul_literals" (formula "37") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "apply_eq_monomials" (formula "38") (term "1,0,0,1,0,0,0") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "apply_eq_monomials" (formula "37") (term "1,0,0,1,1,0") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "37") (term "1,0,0,1,1,0"))
+ (rule "add_literals" (formula "37") (term "1,1,1,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,1,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "37") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,1,0"))
+ (rule "apply_eq_monomials" (formula "37") (term "1,0,0,1,0,0,0") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "32") (term "1"))
+ (rule "mod_axiom" (formula "32") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1"))
+ (rule "applyEq" (formula "32") (term "0,1,1,0,1") (ifseqformula "13"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,1"))
+ (rule "add_zero_right" (formula "32") (term "1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "38") (term "0,1,1,0,1,1,1,0,0,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "38") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,0,1,1,1,1,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "37") (term "1,1,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "37") (term "1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "37") (term "0,1,1,0,1,1,1,0,0,0") (ifseqformula "13"))
+ (rule "times_zero_2" (formula "37") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "32") (term "0,1"))
+ (rule "eqSymm" (formula "32"))
+ (rule "polySimp_elimNeg" (formula "32") (term "1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "32") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "32") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "32") (term "0,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "32") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "eqSymm" (formula "32"))
+ (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "38") (term "0,0,1,1,1,0,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "38") (term "0,0,0,1,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "shiftLeftDef" (formula "37") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "37") (term "0,0,1,1,1,1,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "37") (term "0,0,0,1,1,1,1,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=de_wiesler_Tree_num_buckets_0"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "37") (term "1,3,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "simplifySelectOfAnonEQ" (formula "35") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "47")))
+ (rule "eqSymm" (formula "32"))
+ (rule "applyEqReverse" (formula "33") (term "0") (ifseqformula "32"))
+ (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "32"))
+ (rule "applyEqReverse" (formula "37") (term "1,3,0") (ifseqformula "32"))
+ (rule "applyEqReverse" (formula "34") (term "0") (ifseqformula "32"))
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "32"))
+ (rule "hideAuxiliaryEq" (formula "32"))
+ (rule "dismissNonSelectedField" (formula "34") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "34") (term "0,0,0"))
+ (rule "replace_known_right" (formula "34") (term "0,0,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "50")))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0"))
+ (rule "replaceKnownSelect_taclet20121121_9" (formula "34") (term "0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_10" (formula "34") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "34") (term "0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "shiftLeftDef" (formula "37") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "37") (term "0,0,1,1,1,0,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "37") (term "0,0,0,1,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "53"))
+ (rule "dismissNonSelectedField" (formula "53") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "53") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "53") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "53") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "53") (term "0,0,1") (inst "selectSK=de_wiesler_Classifier_sorted_splitters_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "50")))
+ (rule "elementOfSingleton" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "ifthenelse_negated" (formula "1") (term "0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0") (ifseqformula "25"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "pullOutSelect" (formula "54") (term "0,0,0") (inst "selectSK=de_wiesler_Classifier_tree_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "51")))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "replaceKnownSelect_taclet20121121_11" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20121121_12" (formula "1") (term "2,0"))
+ (rule "elementOfSingleton" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "ifthenelse_negated" (formula "1") (term "0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0") (ifseqformula "26"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "pullOutSelect" (formula "2") (term "1,0") (inst "selectSK=de_wiesler_Classifier_sorted_splitters_1"))
+ (rule "simplifySelectOfStore" (formula "2"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "castDel" (formula "2") (term "0"))
+ (rule "applyEqReverse" (formula "3") (term "1,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "pullOutSelect" (formula "2") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "applyEq" (formula "1") (term "0,0,0,0") (ifseqformula "2"))
+ (rule "simplifySelectOfCreate" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")))
+ (rule "castDel" (formula "2") (term "0"))
+ (rule "applyEqReverse" (formula "3") (term "0,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "0,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "56") (term "0,0,1") (ifseqformula "3"))
+ (rule "applyEqReverse" (formula "56") (term "0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_right" (formula "53") (term "0,1") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "47")))
+ (rule "closeTrue" (formula "53"))
+ )
+ (branch "Null Reference (self_51 = null)"
+ (rule "false_right" (formula "48"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (Tree)"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "25") (term "1,0,0") (ifseqformula "24"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "25") (term "1,1,0,0,1,0") (ifseqformula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "25"))
+ (rule "close" (formula "30") (ifseqformula "29"))
+ )
+ (branch "Pre (Tree)"
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27")) (ifInst "" (formula "26")) (ifInst "" (formula "27")) (ifInst "" (formula "26")))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0,0"))
+ (rule "expand_inInt" (formula "28") (term "1"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "28") (term "0,1") (ifseqformula "8"))
+ (rule "leq_literals" (formula "28") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "28") (term "1") (ifseqformula "7"))
+ (rule "leq_literals" (formula "28") (term "0,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "wellFormedStoreObject" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedStoreObject" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedCreate" (formula "28") (term "0,0"))
+ (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "pullOutSelect" (formula "28") (term "0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")))
+ (rule "applyEqReverse" (formula "29") (term "0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "28") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")))
+ (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "29") (ifseqformula "5"))
+ )
+ )
+ )
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__calculate_bucket_starts((I,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__calculate_bucket_starts((I,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..df3469a
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__calculate_bucket_starts((I,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,11518 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Sep 05 21:17:13 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Sep 05 21:17:13 CEST 2022
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:calculate_bucket_starts([I,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:calculate_bucket_starts([I,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "47502")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "10"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "notLeft" (formula "12"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "13"))
+(rule "notLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "25"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "26"))
+(rule "andLeft" (formula "28"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "translateJavaAddInt" (formula "16") (term "1"))
+(rule "eqSymm" (formula "35"))
+(rule "translateJavaSubInt" (formula "39") (term "0,0"))
+(rule "replace_known_right" (formula "12") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "11"))
+(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "4"))
+(rule "polySimp_elimSub" (formula "39") (term "0,0"))
+(rule "polySimp_addComm0" (formula "16") (term "1"))
+(rule "polySimp_addComm0" (formula "39") (term "0,0"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "eqSymm" (formula "40"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "39"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "eqSymm" (formula "38"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "37"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "35"))
+(rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+(rule "notLeft" (formula "28"))
+(rule "eqSymm" (formula "34"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "eqSymm" (formula "33"))
+(rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "eqSymm" (formula "32"))
+(rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "notLeft" (formula "25"))
+(rule "eqSymm" (formula "31"))
+(rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "notLeft" (formula "24"))
+(rule "eqSymm" (formula "30"))
+(rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+(rule "notLeft" (formula "23"))
+(rule "eqSymm" (formula "29"))
+(rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+(rule "notLeft" (formula "22"))
+(rule "eqSymm" (formula "28"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "eqSymm" (formula "26"))
+(rule "inEqSimp_commuteLeq" (formula "19"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "18"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "22"))
+(rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+(rule "applyEq" (formula "16") (term "1,1") (ifseqformula "20"))
+(rule "methodBodyExpand" (formula "45") (term "1") (newnames "heapBefore_calculate_bucket_starts,savedHeapBefore_calculate_bucket_starts,_beginBefore_calculate_bucket_starts,_bucket_startsBefore_calculate_bucket_starts,_buffersBefore_calculate_bucket_starts,_endBefore_calculate_bucket_starts,_valuesBefore_calculate_bucket_starts,_writeBefore_calculate_bucket_starts"))
+ (builtin "One Step Simplification" (formula "45"))
+(rule "variableDeclarationAssign" (formula "45") (term "1"))
+(rule "variableDeclaration" (formula "45") (term "1") (newnames "sum_1"))
+(rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+(rule "for_to_while" (formula "45") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1"))
+(rule "variableDeclarationAssign" (formula "45") (term "1"))
+(rule "variableDeclaration" (formula "45") (term "1") (newnames "j"))
+(rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+(rule "elim_double_block_3" (formula "45") (term "1"))
+(rule "arrayLengthIsAShort" (formula "16") (term "0"))
+(rule "expand_inShort" (formula "16"))
+(rule "replace_short_MAX" (formula "16") (term "1,0"))
+(rule "replace_short_MIN" (formula "16") (term "0,1"))
+(rule "andLeft" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "arrayLengthNotNegative" (formula "18") (term "0"))
+(rule "loopScopeInvDia" (formula "48") (term "1") (newnames "j_0,sum_1_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1"))
+(branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "48"))
+)
+(branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0,0"))
+ (rule "impRight" (formula "49"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "7") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "0,1,0"))
+ (rule "eqSymm" (formula "4"))
+ (rule "translateJavaSubInt" (formula "3") (term "0,2,0,0,1"))
+ (rule "translateJavaAddInt" (formula "7") (term "0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "7") (term "0,2,2,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "4") (term "0"))
+ (rule "translateJavaAddInt" (formula "4") (term "2,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "0,2,0,0,1"))
+ (rule "mul_literals" (formula "3") (term "1,0,2,0,0,1"))
+ (rule "polySimp_elimSub" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,2,2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "6") (term "1,1,0,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "56") (term "2,1,0,1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "6") (term "2,1,0,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "56") (term "1,0,1,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "5") (term "2,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "7") (term "2,1,0,2,1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "3") (term "2,1,0,0,0,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "3") (term "2,1,0,0,1,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "7") (term "2,1,0,0,0,0,1,0") (ifseqformula "31"))
+ (rule "pullOutSelect" (formula "3") (term "0,0,1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "54")) (ifInst "" (formula "20")))
+ (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0"))
+ (rule "pullOutSelect" (formula "4") (term "0,1,1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "55")) (ifInst "" (formula "21")))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0"))
+ (rule "commute_and" (formula "5") (term "1"))
+ (rule "commute_and" (formula "9") (term "0,0,0"))
+ (rule "commute_and" (formula "9") (term "1,0,0"))
+ (rule "commute_and" (formula "8") (term "1,0,0"))
+ (rule "commute_and" (formula "8") (term "0,0,0"))
+ (rule "commute_and_2" (formula "8") (term "0,0"))
+ (rule "shift_paren_and" (formula "9") (term "0,0"))
+ (rule "commute_and_2" (formula "9") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "8") (term "0,0,0"))
+ (rule "ifElseUnfold" (formula "58") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "58") (term "1") (newnames "x_2"))
+ (rule "compound_less_than_comparison_2" (formula "58") (term "1") (inst "#v0=x_3") (inst "#v1=x_4"))
+ (rule "variableDeclarationAssign" (formula "58") (term "1"))
+ (rule "variableDeclaration" (formula "58") (term "1") (newnames "x_3"))
+ (rule "assignment" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "variableDeclarationAssign" (formula "58") (term "1"))
+ (rule "variableDeclaration" (formula "58") (term "1") (newnames "x_4"))
+ (rule "assignment_read_attribute_this_final" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "33"))
+ (rule "less_than_comparison_simple" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "ifElseSplit" (formula "61"))
+ (branch "if x_2 true"
+ (builtin "Block Contract (Internal)" (formula "62") (newnames "exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "24")) (ifInst "" (formula "14")) (ifInst "" (formula "59")) (ifInst "" (formula "13")))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "eqSymm" (formula "63") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "63") (term "1"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "exc_25_1"))
+ (rule "assignment" (formula "63") (term "1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "emptyStatement" (formula "63") (term "1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "emptyStatement" (formula "63") (term "1"))
+ (rule "tryEmpty" (formula "63") (term "1"))
+ (rule "blockEmptyLabel" (formula "63") (term "1"))
+ (rule "blockEmpty" (formula "63") (term "1"))
+ (rule "methodCallEmpty" (formula "63") (term "1"))
+ (rule "emptyModality" (formula "63") (term "1"))
+ (rule "andRight" (formula "63"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "closeTrue" (formula "63"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "closeTrue" (formula "63"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "24")))
+ (rule "closeTrue" (formula "62"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "wellFormedAnon" (formula "62"))
+ (rule "replace_known_left" (formula "62") (term "1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "62"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "62"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "62"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "62"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "replace_known_left" (formula "44") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "elim_double_block_2" (formula "64") (term "1"))
+ (rule "ifUnfold" (formula "64") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "replace_known_left" (formula "64") (term "0,0,1,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "ifSplit" (formula "64"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "65"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "65"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "64") (newnames "exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "24")) (ifInst "" (formula "14")) (ifInst "" (formula "61")) (ifInst "" (formula "13")))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "eqSymm" (formula "65") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "65") (term "1"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "emptyStatement" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "emptyStatement" (formula "65") (term "1"))
+ (rule "tryEmpty" (formula "65") (term "1"))
+ (rule "blockEmptyLabel" (formula "65") (term "1"))
+ (rule "blockEmpty" (formula "65") (term "1"))
+ (rule "methodCallEmpty" (formula "65") (term "1"))
+ (rule "emptyModality" (formula "65") (term "1"))
+ (rule "andRight" (formula "65"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "closeTrue" (formula "65"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "closeTrue" (formula "65"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "64"))
+ (branch "Case 1"
+ (rule "andRight" (formula "64"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "24")))
+ (rule "closeTrue" (formula "64"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "wellFormedAnon" (formula "64"))
+ (rule "replace_known_left" (formula "64") (term "0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "64"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "64"))
+ (branch "Case 1"
+ (rule "andRight" (formula "64"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "60")))
+ (rule "closeTrue" (formula "64"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "64"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "64"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "47"))
+ (rule "replace_known_left" (formula "46") (term "0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "pullOutSelect" (formula "46") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "46"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "65")) (ifInst "" (formula "22")))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEqReverse" (formula "46") (term "1") (ifseqformula "47"))
+ (rule "hideAuxiliaryEq" (formula "47"))
+ (rule "elementOfArrayRangeConcrete" (formula "46") (term "0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0"))
+ (rule "replace_known_left" (formula "46") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0"))
+ (rule "replace_known_left" (formula "46") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "elim_double_block_2" (formula "67") (term "1"))
+ (rule "ifUnfold" (formula "67") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "67") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "67") (term "1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "replace_known_left" (formula "67") (term "0,0,1,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "62") (term "1") (ifseqformula "12") (ifseqformula "13"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "62") (term "0,0") (ifseqformula "13") (ifseqformula "14"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "62") (term "1") (ifseqformula "14") (ifseqformula "25"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "15") (ifseqformula "26"))
+ (rule "ifSplit" (formula "71"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "72"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "72"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "71") (term "1"))
+ (rule "variableDeclarationAssign" (formula "71") (term "1"))
+ (rule "variableDeclaration" (formula "71") (term "1") (newnames "size"))
+ (rule "compound_addition_2" (formula "71") (term "1") (inst "#v0=x_2") (inst "#v1=x_3"))
+ (rule "variableDeclarationAssign" (formula "71") (term "1"))
+ (rule "variableDeclaration" (formula "71") (term "1") (newnames "x_7"))
+ (rule "assignment_array2" (formula "71"))
+ (branch "Normal Execution (_bucket_starts != null)"
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "replaceKnownSelect_taclet21201_2" (formula "71") (term "0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21201_3" (formula "71") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "71") (term "1"))
+ (rule "variableDeclaration" (formula "71") (term "1") (newnames "x_8"))
+ (builtin "Use Operation Contract" (formula "71") (newnames "heapBefore_len,result_21,exc_27") (contract "de.wiesler.Buffers[de.wiesler.Buffers::len(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (len)"
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "48")))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "expand_inInt" (formula "52") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "52"))
+ (rule "eqSymm" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "assignment" (formula "76") (term "1"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "51"))
+ (rule "applyEq" (formula "51") (term "1") (ifseqformula "54"))
+ (rule "assignmentAdditionInt" (formula "76") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "expand_inInt" (formula "76") (userinteraction))
+ (rule "andRight" (formula "76") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "76") (term "1"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "76"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "times_zero_2" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35"))
+ (rule "polySimp_addComm1" (formula "35") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "34"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "52") (term "0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "48") (term "1"))
+ (rule "replace_known_right" (formula "48") (term "0,1,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "28")) (ifInst "" (formula "76")) (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "28")) (ifInst "" (formula "45")))
+ (rule "true_left" (formula "48"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "13") (term "1,2,0") (inst "i=i"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "29") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "translateJavaMulInt" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "35"))
+ (rule "times_zero_1" (formula "30") (term "0,0"))
+ (rule "add_zero_left" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "30"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "56") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "29")) (ifInst "" (formula "32")))
+ (rule "expand_inInt" (formula "56") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "translateJavaMulInt" (formula "56") (term "1"))
+ (rule "mul_literals" (formula "56") (term "1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "52") (term "0"))
+ (rule "pullOutSelect" (formula "52") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "52"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "59")) (ifInst "" (formula "3")))
+ (rule "eqSymm" (formula "53"))
+ (rule "applyEqReverse" (formula "52") (term "1") (ifseqformula "53"))
+ (rule "hideAuxiliaryEq" (formula "53"))
+ (rule "elementOfArrayRangeConcrete" (formula "52") (term "0,0"))
+ (rule "replace_known_right" (formula "52") (term "0,0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "55")))
+ (rule "true_left" (formula "52"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "51") (term "1") (inst "i=i"))
+ (rule "eqSymm" (formula "51"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "12") (term "0,2,0"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "44") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "translateJavaSubInt" (formula "48") (term "1"))
+ (rule "polySimp_elimSub" (formula "48") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "43"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "27"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "translateJavaMod" (formula "50") (term "0"))
+ (rule "jmod_axiom" (formula "50") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "newSym_eq" (formula "50") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "50") (term "1,1,1"))
+ (rule "times_zero_1" (formula "50") (term "0,1,1"))
+ (rule "add_zero_right" (formula "50") (term "1,1"))
+ (rule "add_zero_right" (formula "50") (term "1"))
+ (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "50"))
+ (rule "polySimp_homoEq" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "12") (term "1,1,2,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "applyEq" (formula "43") (term "4,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0"))
+ (rule "add_zero_right" (formula "48") (term "0"))
+ (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "44") (term "4,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "50") (term "1,0,0") (ifseqformula "51"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "50") (term "0,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0"))
+ (rule "applyEq" (formula "55") (term "1,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "applyEq" (formula "14") (term "4,1,1,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "47") (term "0,1,1") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "1"))
+ (rule "applyEq" (formula "15") (term "4,1,0,1,1,0") (ifseqformula "51"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "times_zero_2" (formula "48") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "48") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "48") (term "0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "21"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "add_zero_left" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "41"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "50"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "49"))
+ (rule "mul_literals" (formula "21") (term "1,1,0"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "49"))
+ (rule "times_zero_1" (formula "35") (term "0,0"))
+ (rule "add_zero_left" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "translateJavaSubInt" (formula "58") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "58") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "55") (term "1,1"))
+ (rule "eqSymm" (formula "58"))
+ (rule "eqSymm" (formula "55"))
+ (rule "polySimp_elimSub" (formula "58") (term "0,2,1"))
+ (rule "mul_literals" (formula "58") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "58") (term "0,2,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "54") (term "1") (ifseqformula "42"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "32"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "52"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "nnf_imp2or" (formula "64") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "12") (term "0,0,2,1,2,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0"))
+ (rule "commute_and" (formula "11") (term "1"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "60") (term "0,0,2,0"))
+ (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "45") (term "0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "45") (term "0"))
+ (rule "ifthenelse_split" (formula "10") (term "0"))
+ (branch "j_0 >= 1 TRUE"
+ (rule "applyEqReverse" (formula "12") (term "1,0,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteGeq" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0"))
+ (rule "nnf_notAnd" (formula "64") (term "0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "41") (term "0") (inst "b_0=b_0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "andLeft" (formula "41"))
+ (rule "translateJavaSubInt" (formula "42") (term "1"))
+ (rule "translateJavaCastInt" (formula "42") (term "0"))
+ (rule "polySimp_elimSub" (formula "42") (term "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "1"))
+ (rule "add_literals" (formula "42") (term "1,1,1"))
+ (rule "times_zero_1" (formula "42") (term "1,1"))
+ (rule "add_zero_right" (formula "42") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0"))
+ (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "65") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "65") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "65") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "65") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "65") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "90")) (ifInst "" (formula "18")) (ifInst "" (formula "19")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "2") (term "0") (inst "i=i"))
+ (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "44") (term "0"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "44") (term "1,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "91")) (ifInst "" (formula "19")) (ifInst "" (formula "88")))
+ (rule "polySimp_elimSub" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "45") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0"))
+ (rule "translateJavaDivInt" (formula "45") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "45") (term "4,0,1,0"))
+ (rule "translateJavaAddInt" (formula "45") (term "3,0,1,0"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "45") (term "1,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "45") (term "1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "45") (term "0,1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "52"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "15") (term "1,1,0"))
+ (rule "replace_known_left" (formula "15") (term "1,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "92")) (ifInst "" (formula "20")) (ifInst "" (formula "89")) (ifInst "" (formula "1")))
+ (rule "true_left" (formula "15"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "15") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "15") (term "1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "60") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0"))
+ (rule "expand_inInt" (formula "60") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "68") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "66") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "62") (term "1"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "66") (term "3,0"))
+ (rule "mul_literals" (formula "66") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "57"))
+ (rule "inEqSimp_commuteGeq" (formula "65"))
+ (rule "applyEq" (formula "68") (term "1,0,1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "62"))
+ (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "62"))
+ (rule "applyEq" (formula "78") (term "0") (ifseqformula "57"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "59"))
+ (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "67") (term "0,1,0,0,1,0,0,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "68") (term "0,1,0,0,1,0,0,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "67") (term "0,1,0,0,1,1,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "62"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "59"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "3,0"))
+ (rule "mod_axiom" (formula "58") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "64") (term "1"))
+ (rule "mod_axiom" (formula "64") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "66") (term "1,3,0"))
+ (rule "mod_axiom" (formula "66") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "2,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "0,1,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "65") (term "0"))
+ (rule "mod_axiom" (formula "65") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "59"))
+ (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "68") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1"))
+ (rule "eqSymm" (formula "62"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "58") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "64") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1"))
+ (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "64"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,0"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "62"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "shiftLeftDef" (formula "66") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "63") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "56") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,2,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "65") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "62"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "59"))
+ (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "67") (term "1,1,1,0,0,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "68") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "68") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "68") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "68") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "68") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "68") (term "1,1,1,0,0,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "67") (term "1,1,1,1,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "65"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0"))
+ (rule "expand_moduloInteger" (formula "62") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "62") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "62") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "44") (term "1,0"))
+ (rule "replace_known_right" (formula "44") (term "0,0,1,0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "80")))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "46") (term "0,1,0"))
+ (rule "replace_known_right" (formula "46") (term "0,1,0,0,0,0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "99")) (ifInst "" (formula "1")))
+ (rule "true_left" (formula "46"))
+ (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "47") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,1,1,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "1") (term "1,1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")) (ifInst "" (formula "58")))
+ (rule "translateJavaSubInt" (formula "1") (term "0,2,0,1,0,1,1"))
+ (rule "translateJavaMulInt" (formula "1") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaSubInt" (formula "1") (term "0,2,1,1,0,1,1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,1,1"))
+ (rule "eqSymm" (formula "1") (term "1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "0,2,0,1,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,0,2,0,1,0,1,1"))
+ (rule "eqSymm" (formula "1") (term "1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "0,2,0,1,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,0,2,0,1,0,1,1"))
+ (rule "eqSymm" (formula "1") (term "1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,0,1,1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,1,1"))
+ (rule "applyEq" (formula "1") (term "0,1,0,1,1") (ifseqformula "56"))
+ (rule "eqSymm" (formula "1") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "1") (term "1,0,1,1") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEq" (formula "1") (term "0,0,0,1,1") (ifseqformula "41"))
+ (rule "replace_known_left" (formula "1") (term "0,0,1,1") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEq" (formula "1") (term "0,0,1,1") (ifseqformula "41"))
+ (rule "replace_known_left" (formula "1") (term "0,1,1") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "48") (term "2,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "42") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "42") (term "1,0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "46") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "15") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "2") (term "0,0,2,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "72"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "69") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "69") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "69") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "68") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "commute_or_2" (formula "30") (term "0,0"))
+ (rule "commute_or_2" (formula "76") (term "0,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0"))
+ (rule "commute_and" (formula "69") (term "1,0,0"))
+ (rule "commute_and" (formula "68") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "47") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "0,1,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,1,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "58") (term "0"))
+ (rule "replace_known_left" (formula "58") (term "0,1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "81")) (ifInst "" (formula "18")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "59") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "expand_inInt" (formula "59") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "59") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "68") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0,1,0"))
+ (rule "jdiv_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "52"))
+ (rule "applyEqRigid" (formula "52") (term "1") (ifseqformula "53"))
+ (rule "inEqSimp_subsumption6" (formula "52") (term "0,0") (ifseqformula "49"))
+ (rule "mul_literals" (formula "52") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "52") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "leq_literals" (formula "52") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polyDiv_pullOut" (formula "52") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_pullOutFactor0" (formula "52") (term "0,0,0"))
+ (rule "add_literals" (formula "52") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "52") (term "0,0,0"))
+ (rule "div_literals" (formula "52") (term "0,0"))
+ (rule "add_zero_left" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "nnf_notAnd" (formula "45") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "70") (term "0"))
+ (rule "nnf_imp2or" (formula "69") (term "0"))
+ (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "45") (term "0,1,0") (inst "bucket=bucket"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "41"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "55"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "arrayLengthIsAShort" (formula "54") (term "0"))
+ (rule "expand_inShort" (formula "54"))
+ (rule "replace_short_MIN" (formula "54") (term "0,1"))
+ (rule "replace_short_MAX" (formula "54") (term "1,0"))
+ (rule "andLeft" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "55"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "38"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27"))
+ (rule "closeFalse" (formula "27"))
+ )
+ (branch "j_0 >= 1 FALSE"
+ (rule "applyEqReverse" (formula "11") (term "1,0,1") (ifseqformula "10"))
+ (rule "hideAuxiliaryEq" (formula "10"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_geqRight" (formula "64"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "1") (term "0") (ifseqformula "9"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEqRigid" (formula "9") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "applyEqRigid" (formula "7") (term "1,1") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "7") (term "1"))
+ (rule "applyEqRigid" (formula "9") (term "1,0") (ifseqformula "8"))
+ (rule "bsum_lower_equals_upper" (formula "9") (term "0"))
+ (rule "eqSymm" (formula "9"))
+ (rule "applyEq" (formula "1") (term "5,0") (ifseqformula "8"))
+ (rule "applyEqRigid" (formula "11") (term "1,1,1,0,0") (ifseqformula "8"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "12") (term "1,1,0,0,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEq" (formula "10") (term "1,1,1,0,0,0,0") (ifseqformula "8"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0,0"))
+ (rule "applyEqRigid" (formula "60") (term "0,2,0") (ifseqformula "8"))
+ (rule "applyEqRigid" (formula "12") (term "1,0,1,0") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "12") (term "1,0,0,1,0"))
+ (rule "applyEqRigid" (formula "57") (term "0,2,1") (ifseqformula "8"))
+ (rule "applyEq" (formula "57") (term "1,0,2,0") (ifseqformula "8"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "48"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "48"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_or_tautInEq0" (formula "10") (term "0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "1,1,0,0,0"))
+ (rule "qeq_literals" (formula "10") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "37") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0"))
+ (rule "translateJavaMulInt" (formula "37") (term "0,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "37") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "58") (term "0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "35") (term "0") (inst "b_0=b_0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,0"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaSubInt" (formula "36") (term "1"))
+ (rule "translateJavaCastInt" (formula "36") (term "0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "1"))
+ (rule "add_literals" (formula "36") (term "1,1,1"))
+ (rule "times_zero_1" (formula "36") (term "1,1"))
+ (rule "add_zero_right" (formula "36") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "37") (term "0"))
+ (rule "translateJavaSubInt" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "37") (term "1,0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "84")) (ifInst "" (formula "12")) (ifInst "" (formula "81")))
+ (rule "polySimp_elimSub" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "38") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "0,1,4,0,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "38") (term "1,3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "38") (term "1,4,0,1,0"))
+ (rule "translateJavaDivInt" (formula "38") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0") (ifseqformula "45"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "9") (term "1,1,0"))
+ (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "85")) (ifInst "" (formula "12")) (ifInst "" (formula "13")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "10") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "10") (term "1,0"))
+ (rule "nnf_notAnd" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "61") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "61") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "61") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "61") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "54") (term "1,0,0"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "61") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "59") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "55") (term "1"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "3,0"))
+ (rule "mul_literals" (formula "59") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "61") (term "1,0,1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "51") (term "3,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "55"))
+ (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "50"))
+ (rule "inEqSimp_commuteGeq" (formula "58"))
+ (rule "applyEq" (formula "57") (term "1") (ifseqformula "55"))
+ (rule "applyEq" (formula "49") (term "0,1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "49") (term "2,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "59") (term "1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55"))
+ (rule "eqSymm" (formula "52"))
+ (rule "applyEq" (formula "59") (term "1,3,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "61") (term "0,1,0,0,1,0,0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "60") (term "0,1,0,0,1,0,0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "60") (term "0,1,0,0,1,1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "55"))
+ (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55"))
+ (rule "eqSymm" (formula "52"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "3,0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "57") (term "1"))
+ (rule "mod_axiom" (formula "57") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "49") (term "0,1,0"))
+ (rule "mod_axiom" (formula "49") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "49") (term "2,0"))
+ (rule "mod_axiom" (formula "49") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "1,3,0"))
+ (rule "mod_axiom" (formula "59") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "0"))
+ (rule "mod_axiom" (formula "58") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "52"))
+ (rule "mod_axiom" (formula "52") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "61") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "60") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "60") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "60") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "60") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1"))
+ (rule "eqSymm" (formula "55"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "51") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "51") (term "3,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "56") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "57") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "57") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "57") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "57") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "57") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "57"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,0"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "shiftLeftDef" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "49") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "49") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "49") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "49") (term "0,1,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "49") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "49") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "49") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "49") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "49") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "49") (term "2,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "59") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "59") (term "1,3,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "58") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "55"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "52") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "52"))
+ (rule "shiftLeftDef" (formula "61") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "61") (term "1,1,1,0,0,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "60") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "60") (term "1,1,1,0,0,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "60") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "60") (term "1,1,1,1,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "52") (term "0,1,0,2,0"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55"))
+ (rule "shiftLeftDef" (formula "52") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "52"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55"))
+ (rule "eqSymm" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "58"))
+ (rule "mul_literals" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "mul_literals" (formula "56") (term "1"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0"))
+ (rule "expand_moduloInteger" (formula "55") (term "0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "55") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8") (term "0,1"))
+ (rule "replace_known_right" (formula "8") (term "0,1,0,1") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "72")))
+ (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "38") (term "0,1,0") (inst "bucket=bucket"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "34"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "37") (term "0,1"))
+ (rule "replace_known_right" (formula "37") (term "0,1,0,1") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "72")))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "41") (term "2,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "40") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "39") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "35") (term "1,1,0"))
+ (rule "replace_known_left" (formula "35") (term "1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "95")) (ifInst "" (formula "11")) (ifInst "" (formula "92")))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "96")) (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "36")))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "36") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "36") (term "1,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "9") (term "0,0,2,0,1,0"))
+ (rule "nnf_imp2or" (formula "63") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "62") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "62") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "62") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "62") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "commute_or_2" (formula "41") (term "0,0"))
+ (rule "commute_or_2" (formula "70") (term "0,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "62") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "62") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "62") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "36") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0"))
+ (rule "commute_and" (formula "62") (term "1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0"))
+ (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "75")) (ifInst "" (formula "11")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "39") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0"))
+ (rule "nnf_imp2or" (formula "40") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "64") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "62") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "expand_inInt" (formula "62") (term "1,0,0"))
+ (rule "expand_inInt" (formula "62") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "46") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "46"))
+ (rule "applyEqRigid" (formula "46") (term "1") (ifseqformula "47"))
+ (rule "inEqSimp_subsumption6" (formula "46") (term "0,0") (ifseqformula "43"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "46") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "leq_literals" (formula "46") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "polyDiv_pullOut" (formula "46") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "46") (term "0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "46") (term "0,0,0"))
+ (rule "add_literals" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "0,0,0"))
+ (rule "div_literals" (formula "46") (term "0,0"))
+ (rule "add_zero_left" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "nnf_imp2or" (formula "63") (term "0"))
+ (rule "nnf_imp2or" (formula "53") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "76") (term "0"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "76"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35"))
+ (rule "polySimp_addComm1" (formula "35") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "times_zero_2" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "38"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "35"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "49") (term "1"))
+ (rule "replace_known_left" (formula "49") (term "1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "28")) (ifInst "" (formula "75")) (ifInst "" (formula "18")) (ifInst "" (formula "72")) (ifInst "" (formula "28")) (ifInst "" (formula "45")))
+ (rule "true_left" (formula "49"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "41") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "translateJavaSubInt" (formula "45") (term "1"))
+ (rule "polySimp_elimSub" (formula "45") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "51")) (ifInst "" (formula "78")) (ifInst "" (formula "51")) (ifInst "" (formula "59")) (ifInst "" (formula "26")))
+ (rule "wellFormedAnon" (formula "54") (term "1,0"))
+ (rule "replace_known_left" (formula "54") (term "1,1,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "18")))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "applyEq" (formula "54") (term "0,0,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "55"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "inEqSimp_subsumption0" (formula "57") (ifseqformula "55"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "54"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "56") (term "0"))
+ (rule "pullOutSelect" (formula "56") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "eqSymm" (formula "57"))
+ (rule "applyEqReverse" (formula "56") (term "1") (ifseqformula "57"))
+ (rule "hideAuxiliaryEq" (formula "57"))
+ (rule "elementOfArrayRangeConcrete" (formula "56") (term "0,0,0"))
+ (rule "replace_known_right" (formula "56") (term "0,0,0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "translateJavaMod" (formula "48") (term "0"))
+ (rule "jmod_axiom" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "newSym_eq" (formula "48") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "48") (term "0,1,1"))
+ (rule "times_zero_1" (formula "48") (term "1,1,1"))
+ (rule "add_zero_left" (formula "48") (term "1,1"))
+ (rule "add_zero_right" (formula "48") (term "1"))
+ (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "48"))
+ (rule "polySimp_homoEq" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1"))
+ (rule "applyEq" (formula "41") (term "4,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "42") (term "4,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "48") (term "1,0,0") (ifseqformula "49"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "1,1,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0"))
+ (rule "add_zero_right" (formula "46") (term "0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "13") (term "4,1,2,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "applyEq" (formula "45") (term "0,1,1") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "1"))
+ (rule "applyEq" (formula "54") (term "4,1") (ifseqformula "49"))
+ (rule "applyEq" (formula "15") (term "4,1,1,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "16") (term "4,1,0,1,1,0") (ifseqformula "49"))
+ (rule "inEqSimp_invertInEq0" (formula "46"))
+ (rule "times_zero_2" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "46") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "46") (term "0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "23") (ifseqformula "47"))
+ (rule "greater_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "times_zero_1" (formula "23") (term "1,0"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "46"))
+ (rule "times_zero_1" (formula "32") (term "0,0"))
+ (rule "add_zero_left" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "32") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "32") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,2,0"))
+ (rule "eqSymm" (formula "53"))
+ (rule "eqSymm" (formula "56"))
+ (rule "translateJavaMulInt" (formula "53") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,2,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "56"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,2,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0"))
+ (rule "eqSymm" (formula "56"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0"))
+ (rule "eqSymm" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "40"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "51"))
+ (rule "leq_literals" (formula "11") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "30"))
+ (rule "mul_literals" (formula "50") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "50"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "64") (term "0"))
+ (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "notLeft" (formula "58"))
+ (rule "notLeft" (formula "57"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "61") (term "0,0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "3")))
+ (rule "true_left" (formula "61"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "12") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "2,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "26") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "50")))
+ (rule "expand_inInt" (formula "26") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "translateJavaMulInt" (formula "26") (term "1"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "eqSymm" (formula "67"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "52"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "64") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "27")) (ifInst "" (formula "52")))
+ (rule "expand_inInt" (formula "64") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "64") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "64") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "translateJavaMulInt" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "eqSymm" (formula "67"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "51"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0"))
+ (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "44") (term "0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "44") (term "0"))
+ (rule "Contract_axiom_for_isClassifiedWith_in_Buffers" (formula "42") (term "0"))
+ (rule "replace_known_left" (formula "42") (term "0,1,0,0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "86")) (ifInst "" (formula "17")) (ifInst "" (formula "24")) (ifInst "" (formula "88")))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "0,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b_0=b_0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaSubInt" (formula "41") (term "1"))
+ (rule "translateJavaCastInt" (formula "41") (term "0"))
+ (rule "polySimp_elimSub" (formula "41") (term "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "1"))
+ (rule "add_literals" (formula "41") (term "1,1,1"))
+ (rule "times_zero_1" (formula "41") (term "1,1"))
+ (rule "add_zero_right" (formula "41") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "42") (term "0"))
+ (rule "translateJavaSubInt" (formula "42") (term "0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "42") (term "1,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "91")) (ifInst "" (formula "17")) (ifInst "" (formula "88")))
+ (rule "polySimp_elimSub" (formula "42") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0,0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "43") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "0,1,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "1,3,0,1,0"))
+ (rule "translateJavaDivInt" (formula "43") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "51"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "28") (term "0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i"))
+ (rule "ifthenelse_split" (formula "10") (term "0"))
+ (branch "j_0 >= 1 TRUE"
+ (rule "applyEqReverse" (formula "12") (term "1,1,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteGeq" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "63") (term "1") (inst "i=i"))
+ (rule "eqSymm" (formula "63"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "63"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "14") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "14") (term "1,0"))
+ (rule "nnf_imp2or" (formula "67") (term "0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "60") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0"))
+ (rule "expand_inInt" (formula "60") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "68") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "66") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "62") (term "1"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "66") (term "3,0"))
+ (rule "mul_literals" (formula "66") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "62"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "62"))
+ (rule "applyEq" (formula "65") (term "1") (ifseqformula "62"))
+ (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "68") (term "1,0,1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "59"))
+ (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "57"))
+ (rule "inEqSimp_commuteGeq" (formula "65"))
+ (rule "applyEq" (formula "78") (term "0") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "67") (term "0,1,0,0,1,0,0,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "67") (term "0,1,0,0,1,1,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "68") (term "0,1,0,0,1,0,0,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "59"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "64") (term "1"))
+ (rule "mod_axiom" (formula "64") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "2,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "3,0"))
+ (rule "mod_axiom" (formula "58") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "66") (term "1,3,0"))
+ (rule "mod_axiom" (formula "66") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "65") (term "0"))
+ (rule "mod_axiom" (formula "65") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "0,1,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "68") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1"))
+ (rule "eqSymm" (formula "62"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "63") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "64") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1"))
+ (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "64"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,0"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "62"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "shiftLeftDef" (formula "56") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,2,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "58") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "66") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "65") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "67") (term "1,1,1,0,0,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "67") (term "1,1,1,1,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "68") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "68") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "68") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "68") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "68") (term "1,1,1,0,0,0") (ifseqformula "62"))
+ (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "65"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0"))
+ (rule "nnf_notAnd" (formula "76") (term "0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "expand_moduloInteger" (formula "62") (term "0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "62") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "62") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "47") (term "2,0"))
+ (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "46") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,1,1,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "14") (term "0,0,2,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "44") (term "0,0"))
+ (rule "replace_known_right" (formula "44") (term "0,0,0,0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "82")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "42") (term "1,0"))
+ (rule "replace_known_right" (formula "42") (term "0,0,1,0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "82")))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "45") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "15") (term "0,0,1,1,0"))
+ (rule "replace_known_left" (formula "15") (term "1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "102")) (ifInst "" (formula "18")) (ifInst "" (formula "99")))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "12") (term "0,2,0"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "103")) (ifInst "" (formula "20")) (ifInst "" (formula "100")) (ifInst "" (formula "16")))
+ (rule "true_left" (formula "12"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "12") (term "0,2,0") (inst "i=i"))
+ (rule "polySimp_addComm0" (formula "12") (term "2,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "41") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "41") (term "1,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "73") (term "0,0,2,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "70") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "70") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "70") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "70") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "70") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "70") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "70") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "70") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "69") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "69") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "69") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "69") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "69") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "69") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "69") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "77") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "77") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "77") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "77") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "77") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "77") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0"))
+ (rule "commute_and" (formula "70") (term "1,0,0"))
+ (rule "commute_and" (formula "69") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "47") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "0,1,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,1,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "59") (term "0"))
+ (rule "replace_known_right" (formula "59") (term "0,0,0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "18")) (ifInst "" (formula "60")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "60") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "expand_inInt" (formula "60") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "60") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "69") (term "0"))
+ (rule "replace_known_left" (formula "69") (term "0,1") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "85")) (ifInst "" (formula "18")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "70") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "expand_inInt" (formula "70") (term "1,0,0"))
+ (rule "expand_inInt" (formula "70") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0,1,0"))
+ (rule "jdiv_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "52"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "53"))
+ (rule "inEqSimp_subsumption6" (formula "52") (term "0,0") (ifseqformula "49"))
+ (rule "mul_literals" (formula "52") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "52") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "leq_literals" (formula "52") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polyDiv_pullOut" (formula "52") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_homoEq" (formula "52"))
+ (rule "polySimp_pullOutFactor0" (formula "52") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "52") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "52") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "52") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "52") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,0"))
+ (rule "times_zero_1" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "Contract_axiom_for_isClassifiedBlock_in_Classifier" (formula "44") (term "0,1,0"))
+ (rule "replace_known_left" (formula "44") (term "1,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "105")) (ifInst "" (formula "19")) (ifInst "" (formula "102")) (ifInst "" (formula "15")))
+ (rule "true_left" (formula "44"))
+ (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "44") (term "0,1,0") (inst "bucket=bucket"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "40"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "27"))
+ (rule "closeFalse" (formula "27"))
+ )
+ (branch "j_0 >= 1 FALSE"
+ (rule "applyEqReverse" (formula "11") (term "1,1,1") (ifseqformula "10"))
+ (rule "hideAuxiliaryEq" (formula "10"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_geqRight" (formula "67"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "9"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEqRigid" (formula "61") (term "0,2,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "applyEq" (formula "9") (term "1,0") (ifseqformula "8"))
+ (rule "bsum_lower_equals_upper" (formula "9") (term "0"))
+ (rule "eqSymm" (formula "9"))
+ (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "11") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "63") (term "0,2,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEqRigid" (formula "10") (term "1,1,1,0,0,0,0") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "10") (term "1,1,0,0,0,0"))
+ (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "7") (term "1"))
+ (rule "applyEq" (formula "12") (term "1,0,1,0") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "8"))
+ (rule "add_zero_right" (formula "12") (term "1,0,0,1,0"))
+ (rule "applyEq" (formula "60") (term "5,1") (ifseqformula "8"))
+ (rule "applyEq" (formula "1") (term "1,0,2,0") (ifseqformula "8"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "50"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "50"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_or_subsumption3" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_or_tautInEq0" (formula "10") (term "0,0"))
+ (rule "add_zero_right" (formula "10") (term "1,1,0,0"))
+ (rule "qeq_literals" (formula "10") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "9") (term "1,1,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "86")) (ifInst "" (formula "12")) (ifInst "" (formula "83")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "10") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "10") (term "1,0"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "55") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "56"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "63") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "57") (term "1"))
+ (rule "translateJavaSubInt" (formula "63") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "3,0"))
+ (rule "mul_literals" (formula "61") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57"))
+ (rule "eqSymm" (formula "54"))
+ (rule "applyEq" (formula "51") (term "2,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "57"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "60") (term "1") (ifseqformula "57"))
+ (rule "applyEq" (formula "59") (term "1") (ifseqformula "57"))
+ (rule "applyEq" (formula "51") (term "0,1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "60") (term "0,0") (ifseqformula "52"))
+ (rule "inEqSimp_commuteGeq" (formula "60"))
+ (rule "applyEq" (formula "53") (term "3,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "63") (term "1,0,1,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "61") (term "1,3,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,1,1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,1,0,0,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57"))
+ (rule "eqSymm" (formula "54"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "57") (term "1"))
+ (rule "mod_axiom" (formula "57") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "2,0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "0"))
+ (rule "mod_axiom" (formula "58") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "1"))
+ (rule "mod_axiom" (formula "59") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0,1,0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "60") (term "0"))
+ (rule "mod_axiom" (formula "60") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "3,0"))
+ (rule "mod_axiom" (formula "53") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "61") (term "1,3,0"))
+ (rule "mod_axiom" (formula "61") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "54"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "57") (term "0,1"))
+ (rule "eqSymm" (formula "57"))
+ (rule "polySimp_elimNeg" (formula "57") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "57") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "57") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "57") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "51") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "51") (term "2,0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "58") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "59") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "59"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "51") (term "0,1,0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "60") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,0"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "53") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "53") (term "3,0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "61") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "61") (term "1,3,0") (ifseqformula "57"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "54"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "62") (term "1,1,1,1,0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "62") (term "1,1,1,0,0,0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "63") (term "1,1,1,0,0,0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "54"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "54"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "60"))
+ (rule "mul_literals" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "mul_literals" (formula "58") (term "1"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "nnf_notAnd" (formula "71") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0"))
+ (rule "expand_moduloInteger" (formula "57") (term "0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "57") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "57") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "37") (term "0,1"))
+ (rule "replace_known_right" (formula "37") (term "0,0,0,1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "77")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39") (term "0,0"))
+ (rule "replace_known_right" (formula "39") (term "0,1,0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "76")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "67") (term "1") (inst "i=i"))
+ (rule "eqSymm" (formula "67"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "67"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "10") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "42") (term "2,0"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "40") (term "0,1,0"))
+ (rule "replace_known_left" (formula "40") (term "1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "75")) (ifInst "" (formula "12")) (ifInst "" (formula "94")) (ifInst "" (formula "9")))
+ (rule "true_left" (formula "40"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "35") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "35") (term "1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9") (term "0,1"))
+ (rule "replace_known_right" (formula "9") (term "0,0,0,1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "77")))
+ (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "41") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,1,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "40") (term "1,4,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "64") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "64") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "64") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "64") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "64") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "64") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "64") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "63") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "63") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "63") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "63") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "10") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "63") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "63") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "63") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "63") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "nnf_notAnd" (formula "70") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "70") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "70") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "70") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "70") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "70") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "70") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "70") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "70") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "70") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "70") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "70") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "commute_and" (formula "63") (term "1,0,0"))
+ (rule "commute_and" (formula "62") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "40") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "0,1,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,1,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0"))
+ (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "77")) (ifInst "" (formula "11")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "62") (term "0"))
+ (rule "replace_known_right" (formula "62") (term "0,0,0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "11")) (ifInst "" (formula "63")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "63") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "expand_inInt" (formula "63") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "63") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "45") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "45"))
+ (rule "applyEq" (formula "45") (term "1") (ifseqformula "46"))
+ (rule "inEqSimp_subsumption6" (formula "45") (term "0,0") (ifseqformula "42"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "45") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "leq_literals" (formula "45") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "polyDiv_pullOut" (formula "45") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "polySimp_homoEq" (formula "45"))
+ (rule "polySimp_pullOutFactor0" (formula "45") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "45") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "45") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "45") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,0"))
+ (rule "times_zero_1" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_isClassifiedBlock_in_Classifier" (formula "37") (term "0,1,0"))
+ (rule "replace_known_left" (formula "37") (term "1,0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "98")) (ifInst "" (formula "12")) (ifInst "" (formula "95")))
+ (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "38") (term "0,1,0") (inst "bucket=bucket"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "33"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "1,1"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "49"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "48") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "translateJavaAddInt" (formula "76") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "76"))
+ (branch "Normal Execution (_bucket_starts != null)"
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "compound_assignment_op_plus" (formula "76") (term "1"))
+ (rule "compound_int_cast_expression" (formula "76") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "76") (term "1"))
+ (rule "variableDeclaration" (formula "76") (term "1") (newnames "x_9"))
+ (rule "remove_parentheses_right" (formula "76") (term "1"))
+ (rule "compound_addition_2" (formula "76") (term "1") (inst "#v0=x_10") (inst "#v1=x_11"))
+ (rule "variableDeclarationAssign" (formula "76") (term "1"))
+ (rule "variableDeclaration" (formula "76") (term "1") (newnames "x_10"))
+ (rule "assignment" (formula "76") (term "1"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "variableDeclarationAssign" (formula "76") (term "1"))
+ (rule "variableDeclaration" (formula "76") (term "1") (newnames "x_11"))
+ (rule "remove_parentheses_right" (formula "76") (term "1"))
+ (rule "assignment" (formula "76") (term "1"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "assignmentAdditionInt" (formula "76") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "expand_inInt" (formula "76") (userinteraction))
+ (rule "andRight" (formula "76") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "76") (term "1"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "76"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "times_zero_2" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35"))
+ (rule "polySimp_addComm1" (formula "35") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "34"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "13") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "2,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "49") (term "1") (inst "i=i"))
+ (rule "eqSymm" (formula "49"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "18")) (ifInst "" (formula "26")) (ifInst "" (formula "75")) (ifInst "" (formula "29")))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0"))
+ (rule "replace_known_left" (formula "52") (term "0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,1,1"))
+ (rule "applyEq" (formula "52") (term "0,1,1,1") (ifseqformula "53"))
+ (rule "applyEq" (formula "52") (term "0,0,1,1") (ifseqformula "53"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0,0"))
+ (rule "replace_known_left" (formula "52") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaSubInt" (formula "44") (term "1"))
+ (rule "polySimp_elimSub" (formula "44") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "50") (term "1,1"))
+ (rule "eqSymm" (formula "53"))
+ (rule "eqSymm" (formula "50"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,2,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "53"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,2,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "50") (term "1") (ifseqformula "39"))
+ (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "48"))
+ (rule "leq_literals" (formula "11") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "30"))
+ (rule "mul_literals" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "add_literals" (formula "47") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "47"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "86")) (ifInst "" (formula "63")) (ifInst "" (formula "25")))
+ (rule "wellFormedAnon" (formula "57") (term "1,0"))
+ (rule "replace_known_left" (formula "57") (term "1,1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "17")))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0"))
+ (rule "replace_known_left" (formula "57") (term "0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,1"))
+ (rule "applyEq" (formula "57") (term "0,0,1,1") (ifseqformula "58"))
+ (rule "applyEq" (formula "57") (term "0,1,1,1") (ifseqformula "58"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0,0,0"))
+ (rule "replace_known_left" (formula "57") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "63") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "48")))
+ (rule "expand_inInt" (formula "63") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "translateJavaMulInt" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "eqSymm" (formula "68"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "47"))
+ (rule "leq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "27") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "64")) (ifInst "" (formula "48")))
+ (rule "expand_inInt" (formula "27") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "translateJavaMulInt" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "eqSymm" (formula "68"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "48"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "translateJavaMod" (formula "45") (term "0"))
+ (rule "jmod_axiom" (formula "45") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "newSym_eq" (formula "45") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "45") (term "1,1,1"))
+ (rule "times_zero_1" (formula "45") (term "0,1,1"))
+ (rule "add_zero_right" (formula "45") (term "1,1"))
+ (rule "add_zero_right" (formula "45") (term "1"))
+ (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "45"))
+ (rule "polySimp_homoEq" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "45") (term "1,0,0") (ifseqformula "46"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "applyEq" (formula "39") (term "4,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq1" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,1,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0"))
+ (rule "add_zero_right" (formula "43") (term "0"))
+ (rule "applyEq" (formula "38") (term "4,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "14") (term "4,1,1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "1"))
+ (rule "applyEq" (formula "12") (term "4,0,2,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "15") (term "4,1,0,1,1,0") (ifseqformula "46"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "22") (ifseqformula "44"))
+ (rule "times_zero_1" (formula "22") (term "1,1,0"))
+ (rule "greater_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "35"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "44"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "43"))
+ (rule "times_zero_1" (formula "29") (term "0,0"))
+ (rule "add_zero_left" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "29") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "29") (term "0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "64") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "60") (term "0"))
+ (rule "pullOutSelect" (formula "60") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "60"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "72")) (ifInst "" (formula "3")))
+ (rule "eqSymm" (formula "61"))
+ (rule "applyEqReverse" (formula "60") (term "1") (ifseqformula "61"))
+ (rule "hideAuxiliaryEq" (formula "61"))
+ (rule "elementOfArrayRangeConcrete" (formula "60") (term "0,0"))
+ (rule "replace_known_right" (formula "60") (term "0,0,0,0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "64")))
+ (rule "true_left" (formula "60"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "nnf_imp2or" (formula "66") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "58") (term "0,0,2,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "62") (term "0"))
+ (rule "replace_known_right" (formula "62") (term "0,1,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "71")))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "63"))
+ (rule "replace_known_left" (formula "59") (term "0,1,1") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "64")))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "62"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_subsumption0" (formula "59") (ifseqformula "62"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "commute_or" (formula "15") (term "0,0,0"))
+ (rule "Contract_axiom_for_count_in_Buffers" (formula "42") (term "0"))
+ (rule "replace_known_left" (formula "42") (term "1,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "60")) (ifInst "" (formula "17")) (ifInst "" (formula "89")) (ifInst "" (formula "60")))
+ (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "43") (term "0"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "40") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "40") (term "0,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "40") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "40") (term "4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "56") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "64") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "58") (term "1"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "3,0"))
+ (rule "mul_literals" (formula "62") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "64") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "64") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "applyEq" (formula "60") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "61") (term "0,0") (ifseqformula "53"))
+ (rule "inEqSimp_commuteGeq" (formula "61"))
+ (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "58"))
+ (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "77") (term "0") (ifseqformula "53"))
+ (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "64") (term "1,0,1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "eqSymm" (formula "55"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,1,1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "64") (term "0,1,0,0,1,0,0,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "58"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "eqSymm" (formula "55"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "1"))
+ (rule "mod_axiom" (formula "58") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "60") (term "1"))
+ (rule "mod_axiom" (formula "60") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "3,0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "0"))
+ (rule "mod_axiom" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "2,0"))
+ (rule "mod_axiom" (formula "52") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1,3,0"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "0,1,0"))
+ (rule "mod_axiom" (formula "52") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "61") (term "0"))
+ (rule "mod_axiom" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "55"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "64") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "64") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "58") (term "0,1"))
+ (rule "eqSymm" (formula "58"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "60") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "60") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "60"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,0"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "shiftLeftDef" (formula "54") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,3,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "59") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "52") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "52") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "61") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,0"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "58"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "55"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "63") (term "1,1,1,0,0,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "63") (term "1,1,1,1,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "64") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "64") (term "1,1,1,0,0,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "55"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "55"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "61"))
+ (rule "mul_literals" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_notAnd" (formula "75") (term "0,0"))
+ (rule "expand_moduloInteger" (formula "58") (term "0"))
+ (rule "replace_int_RANGE" (formula "58") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "58") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "58") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "14") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "14") (term "1,0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "15") (term "0,0,1,1,0"))
+ (rule "replace_known_right" (formula "15") (term "0,1,0,0,0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "98")))
+ (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "40") (term "0"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "40") (term "1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "102")) (ifInst "" (formula "18")) (ifInst "" (formula "99")))
+ (rule "polySimp_elimSub" (formula "40") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "71"))
+ (rule "andLeft" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "102")) (ifInst "" (formula "20")) (ifInst "" (formula "99")) (ifInst "" (formula "16")))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "41") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "41") (term "1,4,0,1,0"))
+ (rule "translateJavaAddInt" (formula "41") (term "3,0,1,0"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "41") (term "0,1,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "41") (term "1,3,0,1,0"))
+ (rule "translateJavaDivInt" (formula "41") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "41") (term "4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0"))
+ (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "49"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "43") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,1,1,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,0,1,1,0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "12") (term "0,2,0"))
+ (rule "replace_known_left" (formula "12") (term "1,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "102")) (ifInst "" (formula "20")) (ifInst "" (formula "99")) (ifInst "" (formula "16")))
+ (rule "true_left" (formula "12"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "12") (term "0,2,0") (inst "i=i"))
+ (rule "polySimp_addComm0" (formula "12") (term "2,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "45") (term "2,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "39") (term "0") (inst "b=b") (inst "b_0=b_0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "translateJavaSubInt" (formula "40") (term "1"))
+ (rule "translateJavaCastInt" (formula "40") (term "0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "40") (term "1"))
+ (rule "add_literals" (formula "40") (term "1,1,1"))
+ (rule "times_zero_1" (formula "40") (term "1,1"))
+ (rule "add_zero_right" (formula "40") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "applyEq" (formula "40") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "45") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "76")) (ifInst "" (formula "54")))
+ (rule "expand_inInt" (formula "45") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "translateJavaMulInt" (formula "45") (term "1"))
+ (rule "mul_literals" (formula "45") (term "1"))
+ (rule "eqSymm" (formula "80"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "54"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "67") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,0"))
+ (rule "commute_and" (formula "11") (term "1"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "43") (term "0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "77") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "77") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "77") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "77") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "77") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,1,1,0,0"))
+ (rule "commute_and" (formula "68") (term "1,0,0"))
+ (rule "commute_and" (formula "67") (term "1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "nnf_notAnd" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "nnf_imp2or" (formula "44") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,1,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "66") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "jdiv_axiom" (formula "50") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "50"))
+ (rule "applyEq" (formula "50") (term "1") (ifseqformula "51"))
+ (rule "inEqSimp_subsumption6" (formula "50") (term "0,0") (ifseqformula "47"))
+ (rule "mul_literals" (formula "50") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "50") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "leq_literals" (formula "50") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "polyDiv_pullOut" (formula "50") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "50") (term "0,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "polySimp_pullOutFactor0" (formula "50") (term "0,0,0"))
+ (rule "add_literals" (formula "50") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "50") (term "0,0,0"))
+ (rule "div_literals" (formula "50") (term "0,0"))
+ (rule "add_zero_left" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "ifthenelse_split" (formula "10") (term "0"))
+ (branch "j_0 >= 1 TRUE"
+ (rule "applyEqReverse" (formula "12") (term "1,0,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteGeq" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "43") (term "1,4,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "29") (term "1,1"))
+ (rule "expand_inShort" (formula "29"))
+ (rule "replace_short_MAX" (formula "29") (term "1,0"))
+ (rule "replace_short_MIN" (formula "29") (term "0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthNotNegative" (formula "29") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "36"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthNotNegative" (formula "75") (term "0"))
+ (rule "applyEq" (formula "75") (term "0") (ifseqformula "76"))
+ (rule "qeq_literals" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "arrayLengthIsAShort" (formula "75") (term "0"))
+ (rule "expand_inShort" (formula "75"))
+ (rule "replace_short_MAX" (formula "75") (term "1,0"))
+ (rule "replace_short_MIN" (formula "75") (term "0,1"))
+ (rule "andLeft" (formula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "77"))
+ (rule "qeq_literals" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "applyEq" (formula "75") (term "0") (ifseqformula "76"))
+ (rule "leq_literals" (formula "75"))
+ (rule "closeFalse" (formula "75"))
+ )
+ (branch "j_0 >= 1 FALSE"
+ (rule "applyEqReverse" (formula "11") (term "1,0,1") (ifseqformula "10"))
+ (rule "hideAuxiliaryEq" (formula "10"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_geqRight" (formula "77"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1"))
+ (rule "applyEq" (formula "12") (term "1,1,1,0,0,0") (ifseqformula "9"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "8") (term "1,1") (ifseqformula "9"))
+ (rule "add_zero_right" (formula "8") (term "1"))
+ (rule "applyEqRigid" (formula "7") (term "1,1") (ifseqformula "9"))
+ (rule "add_zero_right" (formula "7") (term "1"))
+ (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "9"))
+ (rule "add_zero_right" (formula "13") (term "1,1,0,0"))
+ (rule "applyEq" (formula "15") (term "1,1,0,0") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "11") (term "1,0") (ifseqformula "9"))
+ (rule "bsum_lower_equals_upper" (formula "11") (term "0"))
+ (rule "eqSymm" (formula "11"))
+ (rule "applyEqRigid" (formula "73") (term "0,2,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "9"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "9"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "add_zero_right" (formula "1") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "1,1,1,1,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "1") (term "1,0,2,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "68") (term "0,2,1") (ifseqformula "8"))
+ (rule "applyEqRigid" (formula "68") (term "1,0,2,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "13") (term "1,1,0,1,1,1,0") (ifseqformula "8"))
+ (rule "add_literals" (formula "13") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "50"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "48"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "37") (term "1,4,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "29") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "69") (term "0"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "70"))
+ (rule "qeq_literals" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "1,1"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "47"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "47"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "28") (term "0"))
+ (rule "expand_inShort" (formula "28"))
+ (rule "replace_short_MIN" (formula "28") (term "0,1"))
+ (rule "replace_short_MAX" (formula "28") (term "1,0"))
+ (rule "andLeft" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "30"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthIsAShort" (formula "70") (term "0"))
+ (rule "expand_inShort" (formula "70"))
+ (rule "replace_short_MIN" (formula "70") (term "0,1"))
+ (rule "replace_short_MAX" (formula "70") (term "1,0"))
+ (rule "andLeft" (formula "70"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "72"))
+ (rule "qeq_literals" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "71"))
+ (rule "leq_literals" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "arrayLengthIsAShort" (formula "69") (term "0"))
+ (rule "expand_inShort" (formula "69"))
+ (rule "replace_short_MIN" (formula "69") (term "0,1"))
+ (rule "replace_short_MAX" (formula "69") (term "1,0"))
+ (rule "andLeft" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "70"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "71"))
+ (rule "leq_literals" (formula "69"))
+ (rule "closeFalse" (formula "69"))
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "76") (term "0"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "1"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "76"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35"))
+ (rule "polySimp_addComm1" (formula "35") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "times_zero_2" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "42"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "42"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "35"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "48") (term "1"))
+ (rule "replace_known_right" (formula "48") (term "0,1,0,0,0,0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "73")) (ifInst "" (formula "44")))
+ (rule "true_left" (formula "48"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "53") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "translateJavaMulInt" (formula "53") (term "1"))
+ (rule "mul_literals" (formula "53") (term "1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "30"))
+ (rule "times_zero_1" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "54"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "44")) (ifInst "" (formula "78")) (ifInst "" (formula "44")) (ifInst "" (formula "25")))
+ (rule "wellFormedAnon" (formula "47") (term "1,0"))
+ (rule "replace_known_left" (formula "47") (term "1,1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "17")))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0"))
+ (rule "replace_known_left" (formula "47") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,1"))
+ (rule "applyEq" (formula "47") (term "0,0,0,1") (ifseqformula "48"))
+ (rule "applyEq" (formula "47") (term "0,1,0,1") (ifseqformula "48"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0"))
+ (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "47"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "48"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "12") (term "1,2,0") (inst "i=i"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "50") (term "0"))
+ (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "eqSymm" (formula "51"))
+ (rule "applyEqReverse" (formula "50") (term "1") (ifseqformula "51"))
+ (rule "hideAuxiliaryEq" (formula "51"))
+ (rule "elementOfArrayRangeConcrete" (formula "50") (term "0,0,0"))
+ (rule "replace_known_right" (formula "50") (term "0,0,0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "38") (term "0"))
+ (rule "translateJavaSubInt" (formula "38") (term "0,0,0,1,1,1,0,0,0,0"))
+ (rule "eqSymm" (formula "38") (term "0,1,1,0,0,0,0"))
+ (rule "replace_known_right" (formula "38") (term "0,1,1,1,1,1,1,1,0,0,0,0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "37")) (ifInst "" (formula "80")) (ifInst "" (formula "78")) (ifInst "" (formula "17")) (ifInst "" (formula "18")) (ifInst "" (formula "77")) (ifInst "" (formula "43")))
+ (rule "polySimp_elimSub" (formula "38") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "38") (term "0,1,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "38") (term "0,1,0"))
+ (rule "applyEq" (formula "38") (term "0,0,1,0") (ifseqformula "37"))
+ (rule "inEqSimp_subsumption0" (formula "38") (term "0,1,0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0"))
+ (rule "qeq_literals" (formula "38") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "translateJavaMod" (formula "42") (term "0"))
+ (rule "jmod_axiom" (formula "42") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "newSym_eq" (formula "42") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "42") (term "0,1,1"))
+ (rule "times_zero_1" (formula "42") (term "1,1,1"))
+ (rule "add_literals" (formula "42") (term "1,1"))
+ (rule "add_zero_right" (formula "42") (term "1"))
+ (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "42"))
+ (rule "polySimp_homoEq" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1"))
+ (rule "polySimp_rightDist" (formula "43") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "12") (term "1,1,2,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "39") (term "4,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,1,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0"))
+ (rule "add_zero_right" (formula "40") (term "0"))
+ (rule "applyEq" (formula "42") (term "1,0,0") (ifseqformula "43"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0"))
+ (rule "applyEq" (formula "48") (term "4,1") (ifseqformula "43"))
+ (rule "applyEq" (formula "14") (term "4,1,1,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "15") (term "4,1,0,1,1,0") (ifseqformula "43"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "40") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "35"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "40"))
+ (rule "mul_literals" (formula "21") (term "1,1,0"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "40"))
+ (rule "times_zero_1" (formula "29") (term "0,0"))
+ (rule "add_zero_left" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "leq_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "17")) (ifInst "" (formula "24")) (ifInst "" (formula "82")) (ifInst "" (formula "26")))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0"))
+ (rule "replace_known_left" (formula "54") (term "0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55"))
+ (rule "replace_known_left" (formula "54") (term "0,1,1") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "55"))
+ (rule "replace_known_left" (formula "54") (term "1,1") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0,0"))
+ (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "12") (term "0,2,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "48"))
+ (rule "notLeft" (formula "47"))
+ (rule "replace_known_right" (formula "52") (term "0,0,0,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_left" (formula "52") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "47") (term "1,1"))
+ (rule "eqSymm" (formula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,2,1"))
+ (rule "mul_literals" (formula "50") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,2,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "46") (term "1") (ifseqformula "37"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "45"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "28"))
+ (rule "mul_literals" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45"))
+ (rule "mul_literals" (formula "45") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "45"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "26") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "61")) (ifInst "" (formula "62")))
+ (rule "expand_inInt" (formula "26") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "translateJavaMulInt" (formula "26") (term "1"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "eqSymm" (formula "66"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "47"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "59") (term "0"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0"))
+ (rule "commute_and" (formula "11") (term "1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "57") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "60")) (ifInst "" (formula "61")))
+ (rule "expand_inInt" (formula "57") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "translateJavaMulInt" (formula "57") (term "1"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "eqSymm" (formula "65"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "46"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "12") (term "0,0,2,1,2,0"))
+ (rule "ifthenelse_split" (formula "10") (term "0"))
+ (branch "j_0 >= 1 TRUE"
+ (rule "applyEqReverse" (formula "12") (term "1,0,1") (ifseqformula "11"))
+ (rule "hideAuxiliaryEq" (formula "11"))
+ (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteGeq" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "38") (term "1"))
+ (rule "replace_known_right" (formula "38") (term "0,1,1") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "67")))
+ (rule "true_left" (formula "38"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i"))
+ (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "38") (term "0"))
+ (rule "translateJavaSubInt" (formula "38") (term "0,0,0,1,1,1,0,0,0,0"))
+ (rule "eqSymm" (formula "38") (term "0,1,1,0,0,0,0"))
+ (rule "replace_known_left" (formula "38") (term "1,0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "37")) (ifInst "" (formula "86")) (ifInst "" (formula "84")) (ifInst "" (formula "85")) (ifInst "" (formula "18")) (ifInst "" (formula "83")))
+ (rule "polySimp_elimSub" (formula "38") (term "0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "38") (term "0,1,0"))
+ (rule "applyEq" (formula "38") (term "0,0,1,0") (ifseqformula "37"))
+ (rule "inEqSimp_subsumption0" (formula "38") (term "0,1,0") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0"))
+ (rule "qeq_literals" (formula "38") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "39") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "translateJavaSubInt" (formula "43") (term "1"))
+ (rule "polySimp_elimSub" (formula "43") (term "1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "43") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "58") (term "1") (inst "i=i"))
+ (rule "eqSymm" (formula "58"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "58"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "14") (term "1,1,0"))
+ (rule "replace_known_right" (formula "14") (term "0,1,0,0,0,0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "88")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "15") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "15") (term "1,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0"))
+ (rule "nnf_notAnd" (formula "67") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "67") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "67") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "67") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "67") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "67") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "67") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "nnf_notAnd" (formula "62") (term "0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "56") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "57"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "64") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "58") (term "1"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "3,0"))
+ (rule "mul_literals" (formula "62") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "64") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "64") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "applyEq" (formula "60") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "64") (term "1,0,1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "61") (term "0,0") (ifseqformula "53"))
+ (rule "inEqSimp_commuteGeq" (formula "61"))
+ (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "58"))
+ (rule "applyEq" (formula "77") (term "0") (ifseqformula "53"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "eqSymm" (formula "55"))
+ (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "64") (term "0,1,0,0,1,0,0,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,1,1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "58"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "eqSymm" (formula "55"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "1"))
+ (rule "mod_axiom" (formula "58") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "60") (term "1"))
+ (rule "mod_axiom" (formula "60") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "2,0"))
+ (rule "mod_axiom" (formula "52") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "0,1,0"))
+ (rule "mod_axiom" (formula "52") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "0"))
+ (rule "mod_axiom" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "3,0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1,3,0"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "61") (term "0"))
+ (rule "mod_axiom" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "64") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "64") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "58") (term "0,1"))
+ (rule "eqSymm" (formula "58"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "60") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "60") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "60"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,0"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "shiftLeftDef" (formula "52") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "52") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "59") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "54") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "61") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,0"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "55"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "64") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "64") (term "1,1,1,0,0,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "63") (term "1,1,1,1,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "63") (term "1,1,1,0,0,0") (ifseqformula "58"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "55"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "61"))
+ (rule "mul_literals" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "nnf_notAnd" (formula "43") (term "0,0"))
+ (rule "nnf_notAnd" (formula "71") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "71") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "71") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "71") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "71") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "71") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "71") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "71") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "71") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "71") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "71") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "71") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "71") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "71") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1,0,0,0"))
+ (rule "expand_moduloInteger" (formula "58") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "58") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "58") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "58") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "Contract_axiom_for_count_in_Buffers" (formula "44") (term "0"))
+ (rule "replace_known_right" (formula "44") (term "0,1,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "18")) (ifInst "" (formula "25")))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "43") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "69") (term "0,0,2,0"))
+ (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "41") (term "0"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "41") (term "1,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "102")) (ifInst "" (formula "19")) (ifInst "" (formula "99")))
+ (rule "polySimp_elimSub" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "14") (term "0,1"))
+ (rule "replace_known_right" (formula "14") (term "0,1,0,1") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "83")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "42") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "4,0,1,0"))
+ (rule "translateJavaDivInt" (formula "42") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "translateJavaSubInt" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "42") (term "1,3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "42") (term "1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39") (term "0,1"))
+ (rule "replace_known_right" (formula "39") (term "0,1,0,1") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "83")))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "15") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "43") (term "0,4,0,1,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "46") (term "0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "46") (term "0"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b=b") (inst "b_0=b_0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaCastInt" (formula "41") (term "0"))
+ (rule "translateJavaSubInt" (formula "41") (term "1"))
+ (rule "polySimp_elimSub" (formula "41") (term "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "1"))
+ (rule "add_literals" (formula "41") (term "1,1,1"))
+ (rule "times_zero_1" (formula "41") (term "1,1"))
+ (rule "add_zero_right" (formula "41") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "68") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "67") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "commute_or_2" (formula "78") (term "0,0"))
+ (rule "commute_or_2" (formula "27") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "45") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "commute_and" (formula "68") (term "1,0,0"))
+ (rule "commute_and" (formula "67") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "66") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "jdiv_axiom" (formula "51") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "51"))
+ (rule "applyEq" (formula "51") (term "1") (ifseqformula "52"))
+ (rule "inEqSimp_subsumption6" (formula "51") (term "0,0") (ifseqformula "48"))
+ (rule "times_zero_1" (formula "51") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "51") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "leq_literals" (formula "51") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "polyDiv_pullOut" (formula "51") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "51") (term "0,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "polySimp_pullOutFactor0" (formula "51") (term "0,0,0"))
+ (rule "add_literals" (formula "51") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "51") (term "0,0,0"))
+ (rule "div_literals" (formula "51") (term "0,0"))
+ (rule "add_zero_left" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "arrayLengthNotNegative" (formula "76") (term "0"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "77"))
+ (rule "qeq_literals" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "arrayLengthIsAShort" (formula "6") (term "0"))
+ (rule "expand_inShort" (formula "6"))
+ (rule "replace_short_MIN" (formula "6") (term "0,1"))
+ (rule "replace_short_MAX" (formula "6") (term "1,0"))
+ (rule "andLeft" (formula "6"))
+ (rule "inEqSimp_commuteLeq" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "54"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "arrayLengthIsAShort" (formula "75") (term "0"))
+ (rule "expand_inShort" (formula "75"))
+ (rule "replace_short_MIN" (formula "75") (term "0,1"))
+ (rule "replace_short_MAX" (formula "75") (term "1,0"))
+ (rule "andLeft" (formula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "76"))
+ (rule "applyEq" (formula "75") (term "0") (ifseqformula "77"))
+ (rule "leq_literals" (formula "75"))
+ (rule "closeFalse" (formula "75"))
+ )
+ (branch "j_0 >= 1 FALSE"
+ (rule "applyEqReverse" (formula "11") (term "1,0,1") (ifseqformula "10"))
+ (rule "hideAuxiliaryEq" (formula "10"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_geqRight" (formula "62"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1"))
+ (rule "applyEq" (formula "12") (term "1,1,1,0,0,0,0") (ifseqformula "9"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "applyEqRigid" (formula "12") (term "1,1,1,0,0") (ifseqformula "9"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "2") (term "5,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "9"))
+ (rule "add_zero_right" (formula "7") (term "1"))
+ (rule "applyEqRigid" (formula "56") (term "0,2,0") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "8") (term "1,1") (ifseqformula "9"))
+ (rule "add_zero_right" (formula "8") (term "1"))
+ (rule "applyEq" (formula "10") (term "1,0") (ifseqformula "9"))
+ (rule "bsum_lower_equals_upper" (formula "10") (term "0"))
+ (rule "eqSymm" (formula "10"))
+ (rule "applyEqRigid" (formula "1") (term "0") (ifseqformula "9"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEqRigid" (formula "51") (term "0,2,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "12") (term "1,0,1,0") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "1") (term "0,1,1") (ifseqformula "9"))
+ (rule "times_zero_2" (formula "1") (term "1,1"))
+ (rule "add_zero_right" (formula "1") (term "1"))
+ (rule "applyEq" (formula "51") (term "5,1") (ifseqformula "8"))
+ (rule "applyEqRigid" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "8"))
+ (rule "add_literals" (formula "12") (term "1,0,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "43"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "41"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_or_subsumption3" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_or_tautInEq0" (formula "10") (term "0,0"))
+ (rule "add_zero_right" (formula "10") (term "1,1,0,0"))
+ (rule "qeq_literals" (formula "10") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "32") (term "1"))
+ (rule "replace_known_right" (formula "32") (term "0,1,1") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "61")))
+ (rule "true_left" (formula "32"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_notAnd" (formula "55") (term "0,0"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "32") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "translateJavaSubInt" (formula "36") (term "1"))
+ (rule "polySimp_elimSub" (formula "36") (term "1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "36") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "31"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "54") (term "0"))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "9") (term "1,1,0"))
+ (rule "replace_known_right" (formula "9") (term "0,1,0,0,0,0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "81")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "10") (term "1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "10") (term "1,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "60") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "60") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "60") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "60") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "60") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "60") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,0"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "nnf_notAnd" (formula "55") (term "0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "48") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "expand_inInt" (formula "48") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "50"))
+ (rule "notLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "56") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "54") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "50") (term "1"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "3,0"))
+ (rule "mul_literals" (formula "54") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "50"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "50"))
+ (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "45"))
+ (rule "inEqSimp_commuteGeq" (formula "53"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "45"))
+ (rule "applyEq" (formula "56") (term "1,0,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "50") (term "1"))
+ (rule "mod_axiom" (formula "50") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "1"))
+ (rule "mod_axiom" (formula "52") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1,3,0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "2,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "46") (term "3,0"))
+ (rule "mod_axiom" (formula "46") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "50") (term "0,1"))
+ (rule "eqSymm" (formula "50"))
+ (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "52") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "44") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "46") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "55") (term "1,1,1,1,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "55") (term "1,1,1,0,0,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "56") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "56") (term "1,1,1,0,0,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "53"))
+ (rule "mul_literals" (formula "51") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "mul_literals" (formula "51") (term "1"))
+ (rule "nnf_notAnd" (formula "63") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "63") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "63") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "63") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "63") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0"))
+ (rule "expand_moduloInteger" (formula "50") (term "0"))
+ (rule "replace_int_RANGE" (formula "50") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "33") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "4,0,1,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "0,1,4,0,1,0"))
+ (rule "translateJavaDivInt" (formula "33") (term "1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "33") (term "1,3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "33") (term "1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "60") (term "1") (inst "i=i"))
+ (rule "eqSymm" (formula "60"))
+ (rule "Contract_axiom_for_allElementsCounted_in_Classifier" (formula "32") (term "0"))
+ (rule "replace_known_left" (formula "32") (term "1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "93")) (ifInst "" (formula "91")) (ifInst "" (formula "11")) (ifInst "" (formula "90")))
+ (rule "inEqSimp_commuteGeq" (formula "32") (term "0,0"))
+ (rule "applyEq" (formula "32") (term "0,0,0") (ifseqformula "31"))
+ (rule "inEqSimp_subsumption0" (formula "32") (term "0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "32") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "8")))
+ (rule "true_left" (formula "32"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "32") (term "0") (inst "b=b") (inst "b_0=b_0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "translateJavaSubInt" (formula "33") (term "1"))
+ (rule "translateJavaCastInt" (formula "33") (term "0"))
+ (rule "polySimp_elimSub" (formula "33") (term "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "1"))
+ (rule "add_literals" (formula "33") (term "1,1,1"))
+ (rule "times_zero_1" (formula "33") (term "1,1"))
+ (rule "add_zero_right" (formula "33") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+ (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "32") (term "0,1,0,0,1,0,0,0") (ifseqformula "31"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "9") (term "0,0,2,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8") (term "0,1"))
+ (rule "replace_known_right" (formula "8") (term "0,1,0,1") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "74")))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "36") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_count_in_Buffers" (formula "37") (term "0"))
+ (rule "replace_known_left" (formula "37") (term "1,0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "18")) (ifInst "" (formula "93")))
+ (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,1,0,0,0,0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "92")))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "2") (term "0") (inst "i=i"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "63"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "36") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0"))
+ (rule "translateJavaMulInt" (formula "36") (term "3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "36") (term "0,4,0,1,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "39") (term "0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "39") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "59") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "70") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "commute_or_2" (formula "10") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "59") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "59") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "59") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,0,1,1,1,0"))
+ (rule "commute_and" (formula "60") (term "1,0,0"))
+ (rule "commute_and" (formula "59") (term "1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "58") (term "0"))
+ (rule "replace_known_left" (formula "58") (term "1,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "76")) (ifInst "" (formula "59")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "59") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "expand_inInt" (formula "59") (term "1,0,0"))
+ (rule "expand_inInt" (formula "59") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "49") (term "0"))
+ (rule "replace_known_left" (formula "49") (term "0,1") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "77")) (ifInst "" (formula "12")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i") (inst "j=j_1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "43") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "43"))
+ (rule "applyEqRigid" (formula "43") (term "1") (ifseqformula "44"))
+ (rule "inEqSimp_subsumption6" (formula "43") (term "0,0") (ifseqformula "40"))
+ (rule "greater_literals" (formula "43") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "43") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "polyDiv_pullOut" (formula "43") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "polySimp_pullOutFactor0" (formula "43") (term "0,0,0"))
+ (rule "add_literals" (formula "43") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "43") (term "0,0,0"))
+ (rule "div_literals" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "45") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "46"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "69") (term "0"))
+ (rule "expand_inShort" (formula "69"))
+ (rule "replace_short_MAX" (formula "69") (term "1,0"))
+ (rule "replace_short_MIN" (formula "69") (term "0,1"))
+ (rule "andLeft" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "70"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "71"))
+ (rule "leq_literals" (formula "69"))
+ (rule "closeFalse" (formula "69"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "translateJavaAddInt" (formula "76") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0,1,0"))
+ (rule "widening_identity_cast_5" (formula "76") (term "1"))
+ (rule "assignment" (formula "76") (term "1"))
+ (builtin "One Step Simplification" (formula "76"))
+ (builtin "Block Contract (Internal)" (formula "76") (newnames "exc_28,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "28")) (ifInst "" (formula "18")) (ifInst "" (formula "73")))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "andLeft" (formula "57"))
+ (rule "eqSymm" (formula "78") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "17")))
+ (rule "true_left" (formula "58"))
+ (rule "variableDeclarationAssign" (formula "77") (term "1"))
+ (rule "variableDeclaration" (formula "77") (term "1") (newnames "exc_28_1"))
+ (rule "assignment" (formula "77") (term "1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "emptyStatement" (formula "77") (term "1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "emptyStatement" (formula "77") (term "1"))
+ (rule "tryEmpty" (formula "77") (term "1"))
+ (rule "blockEmptyLabel" (formula "77") (term "1"))
+ (rule "blockEmpty" (formula "77") (term "1"))
+ (rule "methodCallEmpty" (formula "77") (term "1"))
+ (rule "emptyModality" (formula "77") (term "1"))
+ (rule "andRight" (formula "77"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "closeTrue" (formula "77"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "closeTrue" (formula "77"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "76"))
+ (branch "Case 1"
+ (rule "andRight" (formula "76"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "76"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "wellFormedStorePrimitiveArray" (formula "76"))
+ (rule "wellFormedAnon" (formula "76"))
+ (rule "replace_known_left" (formula "76") (term "1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "76"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "76"))
+ (branch "Case 1"
+ (rule "andRight" (formula "76"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "72")))
+ (rule "closeTrue" (formula "76"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "76"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "18")))
+ (rule "closeTrue" (formula "76"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "77"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "elim_double_block_2" (formula "78") (term "1"))
+ (rule "ifUnfold" (formula "78") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "replace_known_left" (formula "78") (term "0,0,1,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "ifSplit" (formula "78"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "79"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "79"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "emptyStatement" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "preincrement" (formula "78") (term "1"))
+ (rule "compound_int_cast_expression" (formula "78") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_13"))
+ (rule "remove_parentheses_right" (formula "78") (term "1"))
+ (rule "assignmentAdditionInt" (formula "78") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "expand_inInt" (formula "78"))
+ (rule "replace_int_MIN" (formula "78") (term "0,1"))
+ (rule "replace_int_MAX" (formula "78") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,1"))
+ (rule "add_literals" (formula "78") (term "0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1"))
+ (rule "mul_literals" (formula "34") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "74") (term "1") (ifseqformula "6"))
+ (rule "leq_literals" (formula "74") (term "0,1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "inEqSimp_leqRight" (formula "74"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEqReverse" (formula "10") (term "1,1,1") (ifseqformula "8"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "inEqSimp_commuteGeq" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "applyEqRigid" (formula "8") (term "1") (ifseqformula "9"))
+ (rule "ifEqualsInteger" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "40"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "33"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "6") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "translateJavaAddInt" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "78") (term "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "lsContinue" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "precOfInt" (formula "78"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "78") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "78") (term "0,0,0,1"))
+ (rule "add_literals" (formula "78") (term "1,0,0,0,1"))
+ (rule "times_zero_1" (formula "78") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "78") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "times_zero_2" (formula "78") (term "1,0,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0"))
+ (rule "applyEq" (formula "78") (term "1,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "78") (term "1,0,1") (ifseqformula "41"))
+ (rule "polySimp_pullOutFactor2" (formula "78") (term "0,1"))
+ (rule "add_literals" (formula "78") (term "1,0,1"))
+ (rule "times_zero_1" (formula "78") (term "0,1"))
+ (rule "leq_literals" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_geqRight" (formula "78"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_bucket_starts = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_bucket_starts != null, but j Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74")))
+ (rule "false_right" (formula "77"))
+ (rule "polySimp_homoEq" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "times_zero_2" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35"))
+ (rule "polySimp_addComm1" (formula "35") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Exceptional Post (len)"
+ (builtin "One Step Simplification" (formula "72"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "48")))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "close" (formula "54") (ifseqformula "53"))
+ )
+ (branch "Pre (len)"
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "48")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "71") (term "0"))
+ (rule "expand_inInt" (formula "71") (term "1"))
+ (rule "replace_int_MIN" (formula "71") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "71") (term "1,0,1"))
+ (rule "replace_known_left" (formula "71") (term "1,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "16")))
+ (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "times_zero_2" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
+ (rule "mul_literals" (formula "34") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "70") (term "1") (ifseqformula "6"))
+ (rule "leq_literals" (formula "70") (term "0,1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "inEqSimp_leqRight" (formula "70"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "10") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "applyEq" (formula "9") (term "1") (ifseqformula "10"))
+ (rule "ifEqualsInteger" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "10") (term "1") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "inEqSimp_commuteGeq" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "40"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "6") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "Null reference (_buffers = null)"
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "69")))
+ (rule "closeTrue" (formula "71"))
+ )
+ )
+ (branch "Null Reference (_bucket_starts = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_bucket_starts != null, but j Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69")))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "polySimp_homoEq" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "35"))
+ (rule "polySimp_addComm1" (formula "35") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "times_zero_2" (formula "9") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "31") (term "0,0"))
+ (rule "add_zero_left" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "62"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockBreak" (formula "62") (term "1"))
+ (rule "lsBreak" (formula "62") (term "1"))
+ (rule "assignment" (formula "62") (term "1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "eval_order_array_access2" (formula "62") (term "1") (inst "#ar1=x_arr") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "62") (term "1"))
+ (rule "variableDeclaration" (formula "62") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "62") (term "1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "variableDeclarationAssign" (formula "62") (term "1"))
+ (rule "variableDeclaration" (formula "62") (term "1") (newnames "x"))
+ (rule "assignment_read_attribute_this_final" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "assignment_to_primitive_array_component" (formula "62"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "62"))
+ (builtin "Block Contract (Internal)" (formula "62") (newnames "exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "23")) (ifInst "" (formula "13")) (ifInst "" (formula "59")))
+ (rule "andLeft" (formula "42"))
+ (rule "eqSymm" (formula "64") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "12")))
+ (rule "true_left" (formula "43"))
+ (rule "variableDeclarationAssign" (formula "63") (term "1"))
+ (rule "variableDeclaration" (formula "63") (term "1") (newnames "exc_25_1"))
+ (rule "assignment" (formula "63") (term "1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "emptyStatement" (formula "63") (term "1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "emptyStatement" (formula "63") (term "1"))
+ (rule "applyEq" (formula "63") (term "0,2,0,1,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "42") (term "0,2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "63") (term "0,2,0,0,0,0") (ifseqformula "36"))
+ (rule "tryEmpty" (formula "63") (term "1"))
+ (rule "blockEmptyLabel" (formula "63") (term "1"))
+ (rule "blockEmpty" (formula "63") (term "1"))
+ (rule "methodCallEmpty" (formula "63") (term "1"))
+ (rule "emptyModality" (formula "63") (term "1"))
+ (rule "andRight" (formula "63"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "closeTrue" (formula "63"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "closeTrue" (formula "63"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "23")))
+ (rule "closeTrue" (formula "62"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "wellFormedStorePrimitiveArray" (formula "62"))
+ (rule "wellFormedAnon" (formula "62"))
+ (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "10")))
+ (rule "closeTrue" (formula "62"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (rule "andRight" (formula "62"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "62"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_homoEq" (formula "9") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "9") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,1,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "62"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "62"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "44"))
+ (rule "eqSymm" (formula "44"))
+ (rule "translateJavaAddInt" (formula "45") (term "3,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "0"))
+ (rule "replace_known_left" (formula "43") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "polySimp_elimSub" (formula "43") (term "0"))
+ (rule "eqSymm" (formula "43"))
+ (rule "polySimp_addComm0" (formula "44") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "1"))
+ (rule "applyEq" (formula "9") (term "1,1,0,1,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "5") (term "0,1,1") (ifseqformula "43"))
+ (rule "applyEq" (formula "65") (term "3,0,1,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "65") (term "0,2,0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "44") (term "0,2,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "44") (term "3,0,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "6") (term "1") (ifseqformula "43"))
+ (rule "elim_double_block_2" (formula "65") (term "1"))
+ (rule "ifUnfold" (formula "65") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "replace_known_left" (formula "65") (term "0,0,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "11") (ifseqformula "12"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "0,0") (ifseqformula "12") (ifseqformula "13"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "13") (ifseqformula "24"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "58") (term "1") (ifseqformula "14") (ifseqformula "25"))
+ (rule "ifSplit" (formula "69"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "70"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "70"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "69") (term "1"))
+ (rule "emptyStatement" (formula "69") (term "1"))
+ (rule "methodCallEmpty" (formula "69") (term "1"))
+ (rule "tryEmpty" (formula "69") (term "1"))
+ (rule "emptyModality" (formula "69") (term "1"))
+ (rule "andRight" (formula "69"))
+ (branch "Case 1"
+ (rule "impRight" (formula "69"))
+ (rule "andRight" (formula "70"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "70"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "polySimp_homoEq" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1"))
+ (rule "mul_literals" (formula "34") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "34"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_antiSymm" (formula "7") (ifseqformula "1"))
+ (rule "applyEq" (formula "67") (term "2,1,0,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "47") (term "2,1,0,0,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "14") (term "2,1,0,0,1,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "applyEq" (formula "15") (term "2,1,0,2,0,1,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "10") (term "0,0,0") (ifseqformula "7"))
+ (rule "replace_known_left" (formula "10") (term "0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "applyEqReverse" (formula "11") (term "0,0,1") (ifseqformula "10"))
+ (rule "hideAuxiliaryEq" (formula "10"))
+ (rule "applyEq" (formula "46") (term "0,2,0,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "13") (term "1,1,0,0,0,0,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "11") (term "2,1,0,0") (ifseqformula "6"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "leq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "64") (term "0,2,0") (ifseqformula "6"))
+ (rule "applyEq" (formula "36") (term "1") (ifseqformula "6"))
+ (rule "applyEq" (formula "12") (term "2,1,0,1,1,1,0") (ifseqformula "6"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "mul_literals" (formula "30") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "39"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "35"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "31"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0"))
+ (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "25") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "translateJavaMulInt" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "eqSymm" (formula "50"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "6"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "6"))
+ (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "27"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaSubInt" (formula "44") (term "1"))
+ (rule "polySimp_elimSub" (formula "44") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "9") (term "1,2,0") (inst "i=i"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,2,1"))
+ (rule "eqSymm" (formula "50"))
+ (rule "eqSymm" (formula "53"))
+ (rule "translateJavaMulInt" (formula "50") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,2,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "53"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,2,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0"))
+ (rule "eqSymm" (formula "53"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0"))
+ (rule "eqSymm" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "39"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "48"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "7") (term "0") (ifseqformula "47"))
+ (rule "leq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "48"))
+ (rule "leq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "8") (term "0,1") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "polySimp_addComm0" (formula "7") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "translateJavaMod" (formula "46") (term "0"))
+ (rule "jmod_axiom" (formula "46") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "39") (term "4,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,1,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0"))
+ (rule "add_zero_right" (formula "44") (term "0"))
+ (rule "applyEq" (formula "40") (term "4,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "applyEq" (formula "8") (term "1,1,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "43") (term "0,1,1") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "43") (term "1"))
+ (rule "applyEq" (formula "11") (term "4,1,0,1,1,0") (ifseqformula "47"))
+ (rule "inEqSimp_invertInEq0" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "44") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "36"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "44"))
+ (rule "times_zero_1" (formula "17") (term "1,1,0"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "44"))
+ (rule "times_zero_1" (formula "30") (term "0,0"))
+ (rule "add_zero_left" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "8") (term "0,2,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "56") (term "0"))
+ (rule "wellFormedStorePrimitiveArray" (formula "56") (term "1,0"))
+ (rule "wellFormedAnon" (formula "56") (term "1,0"))
+ (rule "replace_known_left" (formula "56") (term "0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "76")) (ifInst "" (formula "12")) (ifInst "" (formula "57")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "57") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "9") (term "0"))
+ (rule "wellFormedAnon" (formula "9") (term "1,0"))
+ (rule "replace_known_right" (formula "9") (term "0,0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "10")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "10") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "80"))
+ (rule "replace_known_right" (formula "80") (term "0,1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "60")))
+ (rule "closeTrue" (formula "80"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "closeTrue" (formula "70"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "69"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60")))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "false_right" (formula "63"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1"))
+ (rule "add_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "times_zero_2" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "2") (term "1,0,1") (ifseqformula "38"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (term "1,0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (term "0") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "30"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "31"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (term "0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "7") (term "0,0,1") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "2,1,0,2,0,1,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "10") (term "2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "applyEq" (formula "8") (term "2,1,0,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "4"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "8") (term "1,1,0,0,0,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "33") (term "1") (ifseqformula "3"))
+ (rule "applyEq" (formula "9") (term "2,1,0,1,1,1,0") (ifseqformula "3"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (term "0,0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "5") (term "1,1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_commuteGeq" (formula "4") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify(int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..d18bd99
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify(int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,16781 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 12:42:40 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 12:42:40 CEST 2023
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify(int)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify(int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "142098")
+
+(branch "dummy ID"
+(rule "eqSymm" (formula "1") (term "1,0,0,1,0,1,1") (newnames "heapAtPre,o,f"))
+(rule "assignment" (formula "1") (term "1,1"))
+(rule "methodBodyExpand" (formula "1") (term "1,1,1") (newnames "heapBefore_classify,savedHeapBefore_classify,_valueBefore_classify"))
+(rule "assignment" (formula "1") (term "1,1,1,1"))
+(rule "blockEmpty" (formula "1") (term "1,1,1,1,1"))
+(rule "variableDeclarationAssign" (formula "1") (term "1,1,1,1,1"))
+(rule "variableDeclaration" (formula "1") (term "1,1,1,1,1") (newnames "index_1"))
+ (builtin "One Step Simplification" (formula "1"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "0,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,0,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,0,1,1,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "methodCallWithAssignmentUnfoldTarget" (formula "10") (term "1") (inst "#v0=t"))
+(rule "variableDeclaration" (formula "10") (term "1") (newnames "t"))
+(rule "assignment_read_attribute_this_final" (formula "10"))
+ (builtin "One Step Simplification" (formula "10"))
+ (builtin "Use Operation Contract" (formula "10") (newnames "heapBefore_classify_0,result_0,exc_0") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0"))
+(branch "Post (classify)"
+ (builtin "One Step Simplification" (formula "9"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "9") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "15"))
+ (rule "translateJavaMulInt" (formula "13") (term "1"))
+ (rule "translateJavaSubInt" (formula "14") (term "3,0"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_elimSub" (formula "14") (term "3,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "variableDeclaration" (formula "19") (term "1") (newnames "bucket"))
+ (rule "ifElseUnfold" (formula "19") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "19") (term "1") (newnames "x"))
+ (rule "assignment_read_attribute_this_final" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "ifElseSplit" (formula "19"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "20"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "bucket_index"))
+ (rule "compound_subtraction_2" (formula "20") (term "1") (inst "#v1=x_1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "20") (term "1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_1"))
+ (rule "compound_division_1" (formula "20") (term "1") (inst "#v=x_3"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_3"))
+ (rule "assignment_read_attribute_this_final" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "assignmentDivisionInt" (formula "20"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "translateJavaDivInt" (formula "20") (term "0,1,0"))
+ (rule "assignmentSubtractionInt" (formula "20") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "1"))
+ (rule "mul_literals" (formula "20") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "14") (ifseqformula "13"))
+ (rule "greater_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "14"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "15") (term "0"))
+ (rule "replace_known_left" (formula "15") (term "1,0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "2")) (ifInst "" (formula "19")) (ifInst "" (formula "18")))
+ (rule "true_left" (formula "15"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "16") (inst "i_0=i_0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "17"))
+ (rule "notLeft" (formula "16"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "22") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "18") (term "1"))
+ (rule "eqSymm" (formula "24") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "3,0"))
+ (rule "mul_literals" (formula "22") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "applyEq" (formula "21") (term "1") (ifseqformula "18"))
+ (rule "applyEq" (formula "22") (term "1,3,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "14") (term "0,1,3,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "20") (term "1") (ifseqformula "18"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "24") (term "0,1,0,0,1,0,0,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "23") (term "0,1,0,0,1,1,0") (ifseqformula "18"))
+ (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,0,0") (ifseqformula "18"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "1"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1,3,0"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "0,1,3,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "0"))
+ (rule "mod_axiom" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "0,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "18") (term "0,1"))
+ (rule "eqSymm" (formula "18"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "21"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "22") (term "1,3,0") (ifseqformula "18"))
+ (rule "shiftLeftDef" (formula "14") (term "0,0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,3,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0,1,3,0"))
+ (rule "applyEq" (formula "14") (term "0,1,3,0") (ifseqformula "18"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "20"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "shiftLeftDef" (formula "11") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "18"))
+ (rule "shiftLeftDef" (formula "19") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "18"))
+ (rule "shiftLeftDef" (formula "13") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "18"))
+ (rule "shiftLeftDef" (formula "24") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "24") (term "1,1,1,0,0,0") (ifseqformula "18"))
+ (rule "shiftLeftDef" (formula "23") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "23") (term "1,1,1,1,0") (ifseqformula "18"))
+ (rule "shiftLeftDef" (formula "23") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "23") (term "1,1,1,0,0,0") (ifseqformula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow1" (formula "12") (ifseqformula "11"))
+ (rule "greater_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "expand_moduloInteger" (formula "17") (term "0"))
+ (rule "replace_int_RANGE" (formula "17") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "8"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "eqSymm" (formula "13"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,2,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,2,1"))
+ (rule "mul_literals" (formula "13") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,2,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "eqSymm" (formula "10"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "10"))
+ (rule "applyEq" (formula "30") (term "1,0,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "27") (term "0,0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteGeq" (formula "27"))
+ (rule "newSym_eq" (formula "10") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "10") (term "1,1"))
+ (rule "add_zero_right" (formula "10") (term "1"))
+ (rule "applyEq" (formula "20") (term "0,1,3,0") (ifseqformula "10"))
+ (rule "polySimp_addComm0" (formula "20") (term "3,0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "31") (term "1,1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "29") (term "1,3,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "30") (term "1,1,1,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "11"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "13") (term "3,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "14") (term "1,0,2,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "30") (term "1,1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "10"))
+ (rule "applyEq" (formula "14") (term "1,0,2,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "36") (term "0,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "36") (term "0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0"))
+ (rule "applyEq" (formula "36") (term "0,0,1") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "1"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,1"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "10"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1"))
+ (rule "mul_literals" (formula "36") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "inEqSimp_subsumption6" (formula "8") (ifseqformula "26"))
+ (rule "mul_literals" (formula "8") (term "1,1,0"))
+ (rule "greater_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "elimGcdLeq_antec" (formula "8") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "8") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "25"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "18"))
+ (rule "mul_literals" (formula "24") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "24") (ifseqformula "26"))
+ (rule "greater_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1,0"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "nnf_imp2or" (formula "30") (term "0"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0"))
+ (rule "nnf_notAnd" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "20") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "19") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1"))
+ (rule "applyEq" (formula "19") (term "1,1,0,1") (ifseqformula "10"))
+ (rule "applyEq" (formula "20") (term "1,0,1") (ifseqformula "10"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0") (ifseqformula "8"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "29") (term "0"))
+ (rule "replace_known_left" (formula "29") (term "1,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "34")) (ifInst "" (formula "30")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "30") (term "1,0,0"))
+ (rule "expand_inInt" (formula "30") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "13") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "33")) (ifInst "" (formula "23")))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "14") (term "1"))
+ (rule "eqSymm" (formula "20") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "3,0"))
+ (rule "mul_literals" (formula "18") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "13"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "8"))
+ (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "10"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "8"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "8"))
+ (rule "applyEq" (formula "13") (term "1") (ifseqformula "8"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0,1,0,0,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0,1,1,0") (ifseqformula "8"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "8") (term "0"))
+ (rule "mod_axiom" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "8") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "8") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "8") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "commute_and" (formula "40"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "expand_moduloInteger" (formula "8") (term "0"))
+ (rule "replace_int_RANGE" (formula "8") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "8") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "8") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "applyEq" (formula "8") (term "0,1,0") (ifseqformula "27"))
+ (rule "polySimp_pullOutFactor1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "1,0"))
+ (rule "times_zero_1" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "commute_or_2" (formula "33") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_imp2or" (formula "32") (term "0,1,0"))
+ (rule "commute_or_2" (formula "10") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "31") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "31") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "31") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "31") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "div_axiom" (formula "26") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "qeq_literals" (formula "26") (term "0,1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "polySimp_addComm1" (formula "28") (term "1"))
+ (rule "add_literals" (formula "28") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "applyEq" (formula "29") (term "0,0,0,1,0,0") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "29") (term "0,1,1,2,1,0,0") (ifseqformula "26"))
+ (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "29") (term "0,1,1,1,1,1,0,0") (ifseqformula "26"))
+ (rule "polySimp_addComm0" (formula "29") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "29") (term "0,1,0,0") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "29") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "29") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mod_axiom" (formula "29") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "newSym_eq" (formula "29") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "29") (term "1,1,1"))
+ (rule "times_zero_1" (formula "29") (term "0,1,1"))
+ (rule "add_zero_left" (formula "29") (term "1,1"))
+ (rule "add_zero_right" (formula "29") (term "1"))
+ (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "29"))
+ (rule "polySimp_homoEq" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1"))
+ (rule "applyEq" (formula "29") (term "1,0,0") (ifseqformula "30"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "29") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "polySimp_homoEq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "0,0"))
+ (rule "add_zero_left" (formula "29") (term "0"))
+ (rule "polySimp_invertEq" (formula "29"))
+ (rule "times_zero_2" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "28"))
+ (rule "mul_literals" (formula "24") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "26"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "neg_literal" (formula "28") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_antiSymm" (formula "24") (ifseqformula "28"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "24"))
+ (rule "leq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEqRigid" (formula "30") (term "0,1,1") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "30") (term "1,1"))
+ (rule "add_zero_right" (formula "30") (term "1"))
+ (rule "applyEq" (formula "29") (term "0,1") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "29") (term "1"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "24"))
+ (rule "applyEqRigid" (formula "31") (term "0,0,1,0") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "31") (term "0,1,0"))
+ (rule "add_zero_left" (formula "31") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "25"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "commute_or_2" (formula "10") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "34"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "34"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "15") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "15") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "15") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "14") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "14") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "14") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "14") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,1,0"))
+ (rule "commute_or" (formula "41") (term "1,0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "shift_paren_or" (formula "40") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "10") (term "0,0,0"))
+ (rule "cut_direct" (formula "20") (term "0"))
+ (branch "CUT: result_0 >= 1 + l_0 TRUE"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "33"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "cut_direct" (formula "21") (term "0"))
+ (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "20"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "29") (ifseqformula "31"))
+ (rule "mul_literals" (formula "29") (term "1,1,0"))
+ (rule "greater_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "18"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "jdiv_axiom" (formula "46") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "19"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEqRigid" (formula "47") (term "1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "47") (term "1,1,1") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "47") (term "1,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,2,1,1,1"))
+ (rule "equal_literals" (formula "47") (term "0,1,1,1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "polySimp_pullOutFactor0" (formula "47") (term "0,0,1,1,1"))
+ (rule "add_literals" (formula "47") (term "1,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "47") (term "0,0,1,1,1"))
+ (rule "div_literals" (formula "47") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "47") (term "1,1,1"))
+ (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,2,1"))
+ (rule "equal_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "0,0,1"))
+ (rule "div_literals" (formula "1") (term "0,1"))
+ (rule "add_zero_left" (formula "1") (term "1"))
+ (rule "polyDiv_pullOut" (formula "47") (term "1,1,0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "47") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "47") (term "0,0,1,1,0"))
+ (rule "add_literals" (formula "47") (term "1,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "47") (term "0,0,1,1,0"))
+ (rule "div_literals" (formula "47") (term "0,1,1,0"))
+ (rule "add_zero_left" (formula "47") (term "1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "47") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "qeq_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_leqRight" (formula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "1"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "19"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "47") (term "0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "applyEq" (formula "22") (term "1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,2,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,2,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,2,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,2,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,2,0"))
+ (rule "applyEq" (formula "47") (term "0,1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_pullOutFactor1" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,0"))
+ (rule "times_zero_1" (formula "19") (term "0"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "21") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1"))
+ (rule "mul_literals" (formula "45") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "18") (ifseqformula "30"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "greater_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption6" (formula "26") (ifseqformula "27"))
+ (rule "mul_literals" (formula "26") (term "1,1,0"))
+ (rule "greater_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0,1,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "div_axiom" (formula "24") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "24") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "equal_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,1"))
+ (rule "add_literals" (formula "26") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "26") (term "1"))
+ (rule "add_literals" (formula "26") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "24"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "25") (term "1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "applyEqRigid" (formula "24") (term "1") (ifseqformula "27"))
+ (rule "applyEq" (formula "26") (term "0,1,0,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "31"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "28"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "commute_or_2" (formula "37") (term "0,0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0,0"))
+ (rule "commute_or" (formula "36") (term "1,0,0,1,0"))
+ (rule "shift_paren_or" (formula "38") (term "0,0,0"))
+ (rule "commute_or" (formula "36") (term "0,0,0,1,0"))
+ (rule "commute_and" (formula "43"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "10") (term "1") (ifseqformula "3") (ifseqformula "4"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "22") (term "0,0") (ifseqformula "3") (ifseqformula "4"))
+ (rule "replace_known_right" (formula "22") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "commute_or_2" (formula "37") (term "0,0"))
+ (rule "commute_or" (formula "38") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,1,0"))
+ (rule "commute_or" (formula "16") (term "1,0,0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "cnf_rightDist" (formula "39") (term "0"))
+ (rule "distr_forallAnd" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "commute_or" (formula "40") (term "0"))
+ (rule "commute_or_2" (formula "17") (term "0,0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,1,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "12") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "commute_or" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "commute_or_2" (formula "37") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "36") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "37") (term "0,0,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,0"))
+ (rule "commute_or" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "commute_or" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "cnf_rightDist" (formula "16") (term "0"))
+ (rule "distr_forallAnd" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "commute_or" (formula "17") (term "0"))
+ (rule "commute_or" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "commute_or" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "37") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "37") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "commute_or" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "39")))
+ (rule "true_left" (formula "16"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "39")))
+ (rule "true_left" (formula "16"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "commute_or" (formula "36") (term "0,0,0,1,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,1,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "43") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "27"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEqRigid" (formula "44") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "44") (term "0,1") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "44") (term "0,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,2,0,1"))
+ (rule "equal_literals" (formula "44") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "polySimp_pullOutFactor0" (formula "44") (term "0,0,0,1"))
+ (rule "add_literals" (formula "44") (term "1,0,0,0,1"))
+ (rule "times_zero_1" (formula "44") (term "0,0,0,1"))
+ (rule "div_literals" (formula "44") (term "0,0,1"))
+ (rule "add_zero_left" (formula "44") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "1"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,1"))
+ (rule "add_literals" (formula "44") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "44") (term "1") (ifseqformula "27"))
+ (rule "leq_literals" (formula "44") (term "0,1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,1"))
+ (rule "equal_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1"))
+ (rule "div_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "polyDiv_pullOut" (formula "1") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0"))
+ (rule "div_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "30") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "closeFalse" (formula "30"))
+ )
+ )
+ (branch "CUT: result_0 >= 1 + l_0 FALSE"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_geqRight" (formula "41"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "19") (ifseqformula "1"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq1" (formula "46") (term "0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_pullOutFactor1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,0"))
+ (rule "times_zero_1" (formula "20") (term "0"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0,0"))
+ (rule "applyEq" (formula "20") (term "1,0,2,0,1") (ifseqformula "18"))
+ (rule "polySimp_pullOutFactor2" (formula "20") (term "0,2,0,1"))
+ (rule "add_literals" (formula "20") (term "1,0,2,0,1"))
+ (rule "times_zero_1" (formula "20") (term "0,2,0,1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "44") (term "0,1") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "1"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,1"))
+ (rule "applyEq" (formula "21") (term "1") (ifseqformula "18"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0"))
+ (rule "mul_literals" (formula "20") (term "1,0"))
+ (rule "replace_known_left" (formula "20") (term "0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "mul_literals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "30"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "27"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0,1,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "commute_or" (formula "10") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,1,0"))
+ (rule "div_axiom" (formula "24") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "qeq_literals" (formula "24") (term "0,1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,1"))
+ (rule "add_literals" (formula "26") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "26") (term "1"))
+ (rule "add_literals" (formula "26") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0"))
+ (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "27"))
+ (rule "eqSymm" (formula "24"))
+ (rule "applyEqRigid" (formula "25") (term "0,1,0,0") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "applyEqRigid" (formula "26") (term "0,1,0,0") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "29"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "30"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "commute_or_2" (formula "37") (term "0,0,0"))
+ (rule "commute_or_2" (formula "10") (term "0,0,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "38") (term "0,0,0"))
+ (rule "commute_and" (formula "43"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "22") (term "0,0") (ifseqformula "2") (ifseqformula "3"))
+ (rule "replace_known_right" (formula "22") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "9") (term "1") (ifseqformula "2") (ifseqformula "3"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "shift_paren_or" (formula "38") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0,1,0"))
+ (rule "commute_or" (formula "15") (term "1,0,0,0"))
+ (rule "cnf_rightDist" (formula "39") (term "0"))
+ (rule "distr_forallAnd" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "commute_or" (formula "40") (term "0"))
+ (rule "commute_or_2" (formula "38") (term "0,0,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,1,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "11") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "11") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "commute_or" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "commute_or" (formula "36") (term "1,0,0,0"))
+ (rule "commute_or" (formula "14") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0,0"))
+ (rule "commute_or" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "commute_or" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "commute_or" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "37") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "37") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "cnf_rightDist" (formula "15") (term "0"))
+ (rule "distr_forallAnd" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "commute_or" (formula "16") (term "0"))
+ (rule "shift_paren_or" (formula "37") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "14") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,1,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "39")))
+ (rule "true_left" (formula "15"))
+ (rule "commute_or" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "39")))
+ (rule "true_left" (formula "15"))
+ (rule "commute_or" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "35") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "35") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "14") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "commute_or" (formula "36") (term "0,0,0,1,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,1,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "43") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "28"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEq" (formula "44") (term "0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "44") (term "0,0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,2,0,0"))
+ (rule "equal_literals" (formula "44") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "polySimp_pullOutFactor0" (formula "44") (term "0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "0,0,0,0"))
+ (rule "div_literals" (formula "44") (term "0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "44") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_leqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1"))
+ (rule "div_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "polyDiv_pullOut" (formula "1") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0"))
+ (rule "div_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "equal_to_splitter"))
+ (rule "compound_assignment_2" (formula "20") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_4"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "20") (term "1"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "var"))
+ (rule "assignment" (formula "20") (term "1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "var_1"))
+ (rule "eval_order_array_access4" (formula "20") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_arr"))
+ (rule "assignment_read_attribute_this_final" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "assignment_array2" (formula "20"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "18") (term "1") (ifseqformula "2") (ifseqformula "3"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "21") (term "1,0,1,0") (ifseqformula "2") (ifseqformula "3"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=x_5"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_5"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "a"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "b"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "methodBodyExpand" (formula "22") (term "1") (newnames "heapBefore_cmp,savedHeapBefore_cmp"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "returnUnfold" (formula "22") (term "1") (inst "#v0=x_6"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_6"))
+ (rule "less_than_comparison_simple" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "methodCallReturn" (formula "22") (term "1"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "methodCallEmpty" (formula "22") (term "1"))
+ (rule "blockEmpty" (formula "22") (term "1"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "blockEmpty" (formula "22") (term "1"))
+ (rule "compound_assignment_1_new" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "compound_subtraction_2" (formula "22") (term "1") (inst "#v1=x_1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_7"))
+ (rule "compound_addition_2" (formula "22") (term "1") (inst "#v1=x_9") (inst "#v0=x_8"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_8"))
+ (rule "assignmentMultiplicationInt" (formula "22") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "elimGcdGeq" (formula "22") (term "1") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0,1,0,1"))
+ (rule "sub_literals" (formula "22") (term "0,0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,1"))
+ (rule "mul_literals" (formula "22") (term "0,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,1"))
+ (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,1"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "22") (term "0,1,0,1"))
+ (rule "add_literals" (formula "22") (term "1,0,1,0,1"))
+ (rule "times_zero_1" (formula "22") (term "0,1,0,1"))
+ (rule "leq_literals" (formula "22") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0,1"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "22") (term "0,0,1"))
+ (rule "qeq_literals" (formula "22") (term "0,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "elimGcdLeq" (formula "22") (term "0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,0,0"))
+ (rule "sub_literals" (formula "22") (term "0,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "22") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "polySimp_pullOutFactor0" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14"))
+ (rule "greater_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (term "1") (ifseqformula "14"))
+ (rule "leq_literals" (formula "22") (term "0,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_leqRight" (formula "22"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "17") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "17") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3")) (ifInst "" (formula "21")))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "eqSymm" (formula "16"))
+ (rule "eqSymm" (formula "13"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "13") (term "0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "21") (term "1,0,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "22") (term "1,0,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "13"))
+ (rule "newSym_eq" (formula "13") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "22") (term "0,1,0,2,0,1") (ifseqformula "13"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,2,0,1"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "23") (term "0,1,0,2,0,1") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,0,1"))
+ (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "14"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(4(6(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "21"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(3(1(9(0(7(8(6(3(5(#))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "15") (term "0"))
+ (rule "replace_known_left" (formula "15") (term "1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "16")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "28") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "expand_inInt" (formula "28") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "28") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "28"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "30") (term "1"))
+ (rule "eqSymm" (formula "36") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "3,0"))
+ (rule "mul_literals" (formula "34") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "32") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "36") (term "1,0,1,0") (ifseqformula "14"))
+ (rule "applyEq" (formula "34") (term "1,3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "33") (term "1") (ifseqformula "30"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_commuteGeq" (formula "33"))
+ (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "14"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "14"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "15") (term "0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "applyEq" (formula "30") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "1"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "11"))
+ (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "31") (term "0"))
+ (rule "replace_known_left" (formula "31") (term "1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "36")) (ifInst "" (formula "32")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "32") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "14") (term "0"))
+ (rule "replace_known_left" (formula "14") (term "1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "37")) (ifInst "" (formula "15")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0,1,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "commute_or_2" (formula "34") (term "0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "32") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "32") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "32") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "cut_direct" (formula "23") (term "0"))
+ (branch "CUT: result_0 >= 1 + l_0 TRUE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "22"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "1"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "cut_direct" (formula "24") (term "0"))
+ (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "2") (ifseqformula "1"))
+ (rule "mul_literals" (formula "2") (term "1,1,0"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0,1,0"))
+ (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "qeq_literals" (formula "11") (term "0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "add_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mod_axiom" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "14") (term "1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "0,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "polySimp_invertEq" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "32"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "14"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "32") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "inEqSimp_antiSymm" (formula "32") (ifseqformula "12"))
+ (rule "applyEqRigid" (formula "33") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "32"))
+ (rule "times_zero_2" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "32"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "31"))
+ (rule "times_zero_2" (formula "12") (term "1"))
+ (rule "applyEqRigid" (formula "15") (term "0,0,1,0") (ifseqformula "31"))
+ (rule "times_zero_2" (formula "15") (term "0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "1,0"))
+ (rule "applyEq" (formula "11") (term "1") (ifseqformula "31"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "32"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "32"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "33") (term "0"))
+ (rule "expand_inShort" (formula "33"))
+ (rule "replace_short_MAX" (formula "33") (term "1,0"))
+ (rule "replace_short_MIN" (formula "33") (term "0,1"))
+ (rule "andLeft" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_leqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "21"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "applyEq" (formula "25") (term "1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,2,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,2,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,2,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,2,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,2,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "1,1,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,0"))
+ (rule "times_zero_1" (formula "22") (term "0"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "2"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "2"))
+ (rule "mul_literals" (formula "3") (term "1,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "19"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0,1,0"))
+ (rule "div_axiom" (formula "11") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "equal_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "add_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mod_axiom" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "14") (term "1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "0,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "polySimp_invertEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "times_zero_2" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "28"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "14"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_antiSymm" (formula "28") (ifseqformula "12"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "28"))
+ (rule "times_zero_2" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "0,1") (ifseqformula "28"))
+ (rule "times_zero_2" (formula "13") (term "1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEqRigid" (formula "11") (term "1") (ifseqformula "27"))
+ (rule "applyEq" (formula "15") (term "0,0,1,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "15") (term "0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "29") (term "0"))
+ (rule "expand_inShort" (formula "29"))
+ (rule "replace_short_MAX" (formula "29") (term "1,0"))
+ (rule "replace_short_MIN" (formula "29") (term "0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "31"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_contradInEq1" (formula "30") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "closeFalse" (formula "30"))
+ )
+ )
+ (branch "CUT: result_0 >= 1 + l_0 FALSE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "22") (ifseqformula "1"))
+ (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0"))
+ (rule "applyEq" (formula "23") (term "1,0,2,0,1") (ifseqformula "20"))
+ (rule "polySimp_pullOutFactor2" (formula "23") (term "0,2,0,1"))
+ (rule "add_literals" (formula "23") (term "1,0,2,0,1"))
+ (rule "times_zero_1" (formula "23") (term "0,2,0,1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,0"))
+ (rule "times_zero_1" (formula "21") (term "0"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "20"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0"))
+ (rule "mul_literals" (formula "22") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,0,0"))
+ (rule "div_axiom" (formula "10") (term "0,0,0,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "10") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "equal_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "polySimp_addComm1" (formula "12") (term "1"))
+ (rule "add_literals" (formula "12") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "applyEq" (formula "13") (term "0,0,0,1,0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,1,1,0,0") (ifseqformula "10"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,0") (ifseqformula "10"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "13") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mod_axiom" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1"))
+ (rule "newSym_eq" (formula "13") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "13") (term "0,1,1"))
+ (rule "times_zero_1" (formula "13") (term "1,1,1"))
+ (rule "add_zero_left" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1"))
+ (rule "applyEq" (formula "13") (term "1,0,0") (ifseqformula "14"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "13") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "polySimp_invertEq" (formula "13"))
+ (rule "times_zero_2" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "12"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "29"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "neg_literal" (formula "11") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_antiSymm" (formula "28") (ifseqformula "11"))
+ (rule "applyEq" (formula "13") (term "0,1,1") (ifseqformula "28"))
+ (rule "mul_literals" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEqRigid" (formula "12") (term "0,1") (ifseqformula "28"))
+ (rule "times_zero_2" (formula "12") (term "1"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "28"))
+ (rule "leq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "applyEq" (formula "14") (term "0,0,1,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "14") (term "0,1,0"))
+ (rule "add_zero_left" (formula "14") (term "1,0"))
+ (rule "applyEqRigid" (formula "10") (term "1") (ifseqformula "27"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "28"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "28"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthNotNegative" (formula "29") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "30") (term "0"))
+ (rule "expand_inShort" (formula "30"))
+ (rule "replace_short_MIN" (formula "30") (term "0,1"))
+ (rule "replace_short_MAX" (formula "30") (term "1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "29"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeFalse" (formula "31"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "translateJavaMulInt" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_9"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=x_10"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_10"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "b_1"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "methodBodyExpand" (formula "22") (term "1") (newnames "heapBefore_toInt,savedHeapBefore_toInt"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "returnUnfold" (formula "22") (term "1") (inst "#v0=x_11"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_11"))
+ (rule "condition_simple" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "ifthenelse_negated" (formula "22") (term "0,1,0"))
+ (rule "methodCallReturn" (formula "22") (term "1"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "methodCallEmpty" (formula "22") (term "1"))
+ (rule "blockEmpty" (formula "22") (term "1"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "assignmentAdditionInt" (formula "22") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (userinteraction))
+ (rule "andRight" (formula "22") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "22") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "22"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15"))
+ (rule "greater_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3")) (ifInst "" (formula "20")))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "eqSymm" (formula "16"))
+ (rule "eqSymm" (formula "13"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "13") (term "0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "13"))
+ (rule "newSym_eq" (formula "13") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "23") (term "0,1,3,0") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "23") (term "3,0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "14"))
+ (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "11"))
+ (rule "mul_literals" (formula "21") (term "1,1,0"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "24") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "23") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1"))
+ (rule "applyEq" (formula "24") (term "1,0,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "23") (term "1,1,0,1") (ifseqformula "14"))
+ (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "26") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "32") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "28") (term "1"))
+ (rule "eqSymm" (formula "34") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "32") (term "3,0"))
+ (rule "mul_literals" (formula "32") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "applyEq" (formula "31") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "34") (term "1,0,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "32") (term "1,3,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "28"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "30") (term "1") (ifseqformula "28"))
+ (rule "applyEq" (formula "32") (term "1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "33") (term "0,1,0,0,1,1,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "32") (term "1,3,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "30") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "28") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "33") (term "0,1,0,0,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "29"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "javaShiftLeftIntDef" (formula "10") (term "0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "10") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "expand_moduloInteger" (formula "10") (term "0"))
+ (rule "replace_int_RANGE" (formula "10") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "29"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEq" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "0,0,1"))
+ (rule "div_literals" (formula "1") (term "0,1"))
+ (rule "add_zero_left" (formula "1") (term "1"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "32") (term "0"))
+ (rule "replace_known_left" (formula "32") (term "0,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "37")) (ifInst "" (formula "5")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "32") (term "0"))
+ (rule "replace_known_right" (formula "32") (term "0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "5")) (ifInst "" (formula "33")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "cut_direct" (formula "22") (term "0"))
+ (branch "CUT: result_0 >= 1 + l_0 TRUE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "21"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "commute_or" (formula "14") (term "1,0,0,0"))
+ (rule "cut_direct" (formula "23") (term "0"))
+ (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "20"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "23"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "18") (ifseqformula "21"))
+ (rule "mul_literals" (formula "18") (term "1,1,0"))
+ (rule "greater_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or_2" (formula "34") (term "0,0"))
+ (rule "div_axiom" (formula "11") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "equal_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "add_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mod_axiom" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "14") (term "0,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "polySimp_invertEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "times_zero_2" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "13"))
+ (rule "mul_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "31") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "polySimp_addLiterals" (formula "31") (term "0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "33"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_antiSymm" (formula "32") (ifseqformula "12"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "applyEqRigid" (formula "13") (term "0,1") (ifseqformula "32"))
+ (rule "times_zero_2" (formula "13") (term "1"))
+ (rule "applyEq" (formula "14") (term "0,1,1") (ifseqformula "32"))
+ (rule "mul_literals" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "32"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "15") (term "0,0,1,0") (ifseqformula "31"))
+ (rule "times_zero_2" (formula "15") (term "0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "1,0"))
+ (rule "applyEq" (formula "11") (term "1") (ifseqformula "31"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "32"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "32"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "commute_or_2" (formula "37") (term "0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "33") (term "0"))
+ (rule "expand_inShort" (formula "33"))
+ (rule "replace_short_MAX" (formula "33") (term "1,0"))
+ (rule "replace_short_MIN" (formula "33") (term "0,1"))
+ (rule "andLeft" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "35"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "35"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "commute_or" (formula "16") (term "0,0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "39") (term "0"))
+ (rule "replace_known_left" (formula "39") (term "1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "46")) (ifInst "" (formula "40")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "40") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0,1,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE"
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "times_zero_2" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "3"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "24"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "33"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE"
+ (rule "inEqSimp_geqRight" (formula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "3"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_antiSymm" (formula "25") (ifseqformula "1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_pullOutFactor1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "1,0"))
+ (rule "times_zero_1" (formula "25") (term "0"))
+ (rule "leq_literals" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "2") (ifseqformula "33"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "20"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,0"))
+ (rule "times_zero_1" (formula "21") (term "0"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "1,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,2,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,2,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,2,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,2,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,2,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,2,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,2,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,2,0"))
+ (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "27"))
+ (rule "greater_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(3(1(9(0(7(8(6(3(5(#))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(4(#))"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "3"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "elimGcdLeq_antec" (formula "18") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "neg_literal" (formula "18") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "18"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "commute_or_2" (formula "29") (term "0,0"))
+ (rule "div_axiom" (formula "12") (term "0,0,0,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "qeq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1,1,1"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "polySimp_addComm1" (formula "14") (term "1"))
+ (rule "add_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mod_axiom" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "15") (term "0,1,1"))
+ (rule "times_zero_1" (formula "15") (term "1,1,1"))
+ (rule "add_zero_left" (formula "15") (term "1,1"))
+ (rule "add_zero_right" (formula "15") (term "1"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1"))
+ (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "polySimp_invertEq" (formula "15"))
+ (rule "times_zero_2" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "14"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "28"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "13"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEqRigid" (formula "14") (term "0,1") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "14") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "26"))
+ (rule "times_zero_2" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEqRigid" (formula "16") (term "0,0,1,0") (ifseqformula "26"))
+ (rule "times_zero_2" (formula "16") (term "0,1,0"))
+ (rule "add_zero_left" (formula "16") (term "1,0"))
+ (rule "applyEqRigid" (formula "12") (term "1") (ifseqformula "26"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "28"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "commute_or_2" (formula "32") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "28") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "29") (term "0"))
+ (rule "expand_inShort" (formula "29"))
+ (rule "replace_short_MAX" (formula "29") (term "1,0"))
+ (rule "replace_short_MIN" (formula "29") (term "0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "CUT: result_0 >= 1 + l_0 FALSE"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "20") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "20"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_pullOutFactor1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,0"))
+ (rule "times_zero_1" (formula "20") (term "0"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "22") (term "1,0,2,0,1") (ifseqformula "19"))
+ (rule "polySimp_pullOutFactor2" (formula "22") (term "0,2,0,1"))
+ (rule "add_literals" (formula "22") (term "1,0,2,0,1"))
+ (rule "times_zero_1" (formula "22") (term "0,2,0,1"))
+ (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "2") (term "1,0,2,0,0,0") (ifseqformula "18"))
+ (rule "polySimp_pullOutFactor2" (formula "2") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "18"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "26"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "commute_or" (formula "14") (term "1,0,0,0"))
+ (rule "commute_or_2" (formula "30") (term "0,0"))
+ (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "equal_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "add_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mod_axiom" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "14") (term "1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "0,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "polySimp_invertEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "times_zero_2" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "13"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "28"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "12"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "13") (term "0,1") (ifseqformula "27"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "13") (term "0,1,1") (ifseqformula "26"))
+ (rule "times_zero_2" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0,1,0") (ifseqformula "26"))
+ (rule "times_zero_2" (formula "15") (term "0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "1,0"))
+ (rule "applyEq" (formula "11") (term "1") (ifseqformula "26"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "commute_or" (formula "33") (term "1,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "29") (term "0"))
+ (rule "expand_inShort" (formula "29"))
+ (rule "replace_short_MAX" (formula "29") (term "1,0"))
+ (rule "replace_short_MIN" (formula "29") (term "0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "31"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "commute_or" (formula "35") (term "0,0,0,1,0"))
+ (rule "commute_or" (formula "16") (term "0,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "35") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "39") (term "1,0,0,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0"))
+ (rule "shift_paren_or" (formula "38") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "nnf_imp2or" (formula "35") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "commute_or" (formula "37") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "15") (term "0") (ifseqformula "5") (ifseqformula "22"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "16"))
+ (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "16"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "self.sorted_splitters[0] >= 1 + value TRUE"
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "times_zero_2" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "30"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "self.sorted_splitters[0] >= 1 + value FALSE"
+ (rule "inEqSimp_geqRight" (formula "40"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "30"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "22") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "22"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15"))
+ (rule "greater_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "21") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "22"))
+ (rule "notLeft" (formula "21"))
+ (rule "eqSymm" (formula "29") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "27") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "23") (term "1"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "3,0"))
+ (rule "mul_literals" (formula "27") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "26") (term "1") (ifseqformula "23"))
+ (rule "applyEq" (formula "17") (term "0,1,3,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "27") (term "1,3,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "25") (term "1") (ifseqformula "23"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "28") (term "0,1,0,0,1,1,0") (ifseqformula "23"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "1"))
+ (rule "mod_axiom" (formula "23") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "26") (term "1"))
+ (rule "mod_axiom" (formula "26") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "0,1,3,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "1,3,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "1"))
+ (rule "mod_axiom" (formula "25") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "0,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "29") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "23") (term "0,1"))
+ (rule "eqSymm" (formula "23"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "14") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "23"))
+ (rule "shiftLeftDef" (formula "24") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "23"))
+ (rule "shiftLeftDef" (formula "26") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "26"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "shiftLeftDef" (formula "17") (term "0,0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,1,3,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,1,3,0"))
+ (rule "applyEq" (formula "17") (term "0,1,3,0") (ifseqformula "23"))
+ (rule "shiftLeftDef" (formula "27") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "27") (term "1,3,0") (ifseqformula "23"))
+ (rule "shiftLeftDef" (formula "25") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "25"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "shiftLeftDef" (formula "16") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "23"))
+ (rule "shiftLeftDef" (formula "29") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "29") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "29") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "29") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "29") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "29") (term "1,1,1,0,0,0") (ifseqformula "23"))
+ (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "28") (term "1,1,1,0,0,0") (ifseqformula "23"))
+ (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "28") (term "1,1,1,1,0") (ifseqformula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "14"))
+ (rule "mul_literals" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "24"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14"))
+ (rule "greater_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "24"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "expand_moduloInteger" (formula "22") (term "0"))
+ (rule "replace_int_RANGE" (formula "22") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "22") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3")))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "eqSymm" (formula "16"))
+ (rule "eqSymm" (formula "13"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "13") (term "0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "14"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEq" (formula "34") (term "1,0,1,0") (ifseqformula "14"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_commuteGeq" (formula "31"))
+ (rule "applyEq" (formula "32") (term "1,0") (ifseqformula "14"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "13"))
+ (rule "newSym_eq" (formula "13") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "34") (term "1,1,1,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "23") (term "0,1,3,0") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "23") (term "3,0"))
+ (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "33") (term "1,3,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "35") (term "1,1,1,0,0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "31") (term "1") (ifseqformula "13"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "applyEq" (formula "34") (term "1,1,1,0,0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "14"))
+ (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "14"))
+ (rule "applyEq" (formula "28") (term "1,1") (ifseqformula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "30"))
+ (rule "greater_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "elimGcdLeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "11") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "20"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "29"))
+ (rule "greater_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "30"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "22") (term "0"))
+ (rule "replace_known_left" (formula "22") (term "1,0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "16")) (ifInst "" (formula "16")))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_2" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0,1,0,1,0,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,0,0,0"))
+ (rule "replace_known_left" (formula "22") (term "0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0"))
+ (rule "replace_known_left" (formula "22") (term "0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "16") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "37")) (ifInst "" (formula "27")))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "16"))
+ (rule "eqSymm" (formula "23") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "1"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "3,0"))
+ (rule "mul_literals" (formula "21") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "16"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteGeq" (formula "19"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,1,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "0"))
+ (rule "mod_axiom" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "11") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "35") (term "0"))
+ (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "4")) (ifInst "" (formula "36")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "replace_known_right" (formula "26") (term "0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "38")))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "25") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1"))
+ (rule "applyEq" (formula "25") (term "1,0,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "24") (term "1,1,0,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "38") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "38") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "38") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "37") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "37") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "37") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "37") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "37") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "37") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "37") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,0,1,0,1,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "expand_moduloInteger" (formula "10") (term "0"))
+ (rule "replace_int_RANGE" (formula "10") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "applyEq" (formula "10") (term "0,1,0") (ifseqformula "30"))
+ (rule "polySimp_pullOutFactor1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,0"))
+ (rule "times_zero_1" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "commute_or_2" (formula "37") (term "0,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "div_axiom" (formula "29") (term "0,0,0,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "qeq_literals" (formula "29") (term "0,1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,1,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "polySimp_addComm1" (formula "31") (term "1"))
+ (rule "add_literals" (formula "31") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "applyEq" (formula "32") (term "0,1,1,1,1,1,0,0") (ifseqformula "29"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "32") (term "0,1,1,2,1,0,0") (ifseqformula "29"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "32") (term "0,0,0,1,0,0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq1" (formula "32") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "32") (term "0,1,0,0") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq1" (formula "32") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "mod_axiom" (formula "32") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "newSym_eq" (formula "32") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "32") (term "1,1,1"))
+ (rule "times_zero_1" (formula "32") (term "0,1,1"))
+ (rule "add_literals" (formula "32") (term "1,1"))
+ (rule "add_zero_right" (formula "32") (term "1"))
+ (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1"))
+ (rule "applyEq" (formula "32") (term "1,0,0") (ifseqformula "33"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "32") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "0,0"))
+ (rule "add_zero_left" (formula "32") (term "0"))
+ (rule "polySimp_invertEq" (formula "32"))
+ (rule "times_zero_2" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "31"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "31") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "31") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "polySimp_addLiterals" (formula "31") (term "0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "31"))
+ (rule "applyEq" (formula "33") (term "0,1") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "33") (term "1"))
+ (rule "applyEqRigid" (formula "34") (term "0,1,1") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "34") (term "1,1"))
+ (rule "add_zero_right" (formula "34") (term "1"))
+ (rule "applyEqRigid" (formula "28") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "applyEqRigid" (formula "30") (term "1") (ifseqformula "27"))
+ (rule "applyEqRigid" (formula "34") (term "0,0,1,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "34") (term "0,1,0"))
+ (rule "add_zero_left" (formula "34") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "28"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "29"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "35"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEqRigid" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "0,0,1"))
+ (rule "div_literals" (formula "1") (term "0,1"))
+ (rule "add_zero_left" (formula "1") (term "1"))
+ (rule "commute_or_2" (formula "13") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "39"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthNotNegative" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "39"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0,1,0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "shift_paren_or" (formula "44") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "43") (term "0,0,0"))
+ (rule "commute_or" (formula "13") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0"))
+ (rule "cut_direct" (formula "22") (term "0"))
+ (branch "CUT: result_0 >= 1 + l_0 TRUE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "39"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "cut_direct" (formula "23") (term "0"))
+ (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "22"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "32") (ifseqformula "34"))
+ (rule "mul_literals" (formula "32") (term "1,1,0"))
+ (rule "greater_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "20"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "nnf_notAnd" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "42") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,1,1,0,0,1,0"))
+ (rule "commute_or_2" (formula "17") (term "0,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,1,0"))
+ (rule "div_axiom" (formula "31") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "31") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "equal_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
+ (rule "add_literals" (formula "33") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "33") (term "1"))
+ (rule "add_literals" (formula "33") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "34"))
+ (rule "eqSymm" (formula "31"))
+ (rule "applyEq" (formula "32") (term "0,1,0,0") (ifseqformula "31"))
+ (rule "times_zero_2" (formula "32") (term "1,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0"))
+ (rule "applyEq" (formula "33") (term "0,1,0,0") (ifseqformula "31"))
+ (rule "times_zero_2" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "20"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "40"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE"
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "times_zero_2" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "qeq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "34"))
+ (rule "mul_literals" (formula "3") (term "1,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE"
+ (rule "inEqSimp_geqRight" (formula "46"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "35"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_leqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "21"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,0"))
+ (rule "times_zero_1" (formula "22") (term "0"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "23") (term "1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,2,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,2,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,2,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,2,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,2,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "3") (term "1,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,2,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,2,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,2,0,0,0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "20") (ifseqformula "36"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "greater_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "29") (ifseqformula "30"))
+ (rule "greater_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "29"))
+ (rule "mul_literals" (formula "3") (term "1,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "CUT: result_0 >= 1 + l_0 FALSE"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "21") (ifseqformula "1"))
+ (rule "applyEq" (formula "24") (term "1,0,2,0,1") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor2" (formula "24") (term "0,2,0,1"))
+ (rule "add_literals" (formula "24") (term "1,0,2,0,1"))
+ (rule "times_zero_1" (formula "24") (term "0,2,0,1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,0"))
+ (rule "times_zero_1" (formula "22") (term "0"))
+ (rule "leq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "3") (term "1,0,2,0,0,0") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor2" (formula "3") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,0"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0"))
+ (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "21"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "20"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0"))
+ (rule "mul_literals" (formula "22") (term "1,0"))
+ (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "31"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "35"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "nnf_notAnd" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0,1,0"))
+ (rule "commute_or_2" (formula "17") (term "0,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,1,0"))
+ (rule "div_axiom" (formula "27") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "27") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "equal_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,1"))
+ (rule "add_literals" (formula "29") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "29") (term "1"))
+ (rule "add_literals" (formula "29") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0"))
+ (rule "applyEqRigid" (formula "27") (term "0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "27"))
+ (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "applyEqRigid" (formula "28") (term "0,1,0,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "32"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "36"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "commute_or_2" (formula "39") (term "0,0"))
+ (rule "commute_or_2" (formula "41") (term "0,0,0"))
+ (rule "commute_or_2" (formula "40") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "13") (term "0,0,0"))
+ (rule "commute_or_2" (formula "38") (term "0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "44") (term "0") (ifseqformula "5") (ifseqformula "22"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "13") (term "0") (ifseqformula "6") (ifseqformula "23"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "14"))
+ (rule "replace_known_right" (formula "13") (term "0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "applyEq" (formula "13") (term "1,0") (ifseqformula "14"))
+ (rule "commute_or_2" (formula "40") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "18") (term "0,0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,1,0"))
+ (rule "cnf_rightDist" (formula "41") (term "0"))
+ (rule "distr_forallAnd" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "commute_or" (formula "42") (term "0"))
+ (rule "commute_or_2" (formula "18") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "39") (term "0,0,0"))
+ (rule "commute_or" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "42") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "42") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "commute_or_2" (formula "17") (term "0,0,0"))
+ (rule "commute_or_2" (formula "39") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "14") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "commute_or" (formula "38") (term "1,0,0,0"))
+ (rule "cnf_rightDist" (formula "17") (term "0"))
+ (rule "distr_forallAnd" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "commute_or" (formula "17") (term "0"))
+ (rule "commute_or" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "commute_or" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "commute_or" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "shift_paren_or" (formula "37") (term "0,0,0"))
+ (rule "commute_or" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "37") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "37") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "self.sorted_splitters[0] >= 1 + value TRUE"
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "times_zero_2" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq5" (formula "4") (ifseqformula "29"))
+ (rule "mul_literals" (formula "4") (term "1,1,0"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "self.sorted_splitters[0] >= 1 + value FALSE"
+ (rule "inEqSimp_geqRight" (formula "42"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "4") (ifseqformula "30"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_12"))
+ (rule "assignment_read_attribute_this_final" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "assignmentSubtractionInt" (formula "22") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (userinteraction))
+ (rule "andRight" (formula "22") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "22") (term "1"))
+ (rule "polySimp_elimSub" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "22"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15"))
+ (rule "greater_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "19") (inst "i_0=i_0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "19"))
+ (rule "eqSymm" (formula "27") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "21") (term "1"))
+ (rule "translateJavaSubInt" (formula "27") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "3,0"))
+ (rule "mul_literals" (formula "25") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "21"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "21"))
+ (rule "applyEq" (formula "25") (term "1,3,0") (ifseqformula "21"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "21"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "21"))
+ (rule "applyEq" (formula "26") (term "0,1,0,0,1,1,0") (ifseqformula "21"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,0") (ifseqformula "21"))
+ (rule "applyEq" (formula "26") (term "0,1,0,0,1,0,0,0") (ifseqformula "21"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "1"))
+ (rule "mod_axiom" (formula "23") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "1"))
+ (rule "mod_axiom" (formula "24") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "1,3,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "0"))
+ (rule "mod_axiom" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "0,1,3,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "26") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "26") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "26") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1"))
+ (rule "eqSymm" (formula "21"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "23") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "23"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "shiftLeftDef" (formula "24") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "shiftLeftDef" (formula "25") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "25") (term "1,3,0") (ifseqformula "21"))
+ (rule "shiftLeftDef" (formula "22") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "21"))
+ (rule "shiftLeftDef" (formula "13") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "21"))
+ (rule "shiftLeftDef" (formula "16") (term "0,0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,1,3,0"))
+ (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "21"))
+ (rule "shiftLeftDef" (formula "26") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "26") (term "1,1,1,1,0") (ifseqformula "21"))
+ (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "27") (term "1,1,1,0,0,0") (ifseqformula "21"))
+ (rule "shiftLeftDef" (formula "26") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "26") (term "1,1,1,0,0,0") (ifseqformula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "13"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow1" (formula "14") (ifseqformula "13"))
+ (rule "greater_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "expand_moduloInteger" (formula "20") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "20") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "20") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "3")))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "eqSymm" (formula "15"))
+ (rule "eqSymm" (formula "12"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "12") (term "0"))
+ (rule "polySimp_elimSub" (formula "15") (term "0,2,1"))
+ (rule "mul_literals" (formula "15") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "15") (term "0,2,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteGeq" (formula "30"))
+ (rule "applyEq" (formula "33") (term "1,0,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "31") (term "1,0") (ifseqformula "13"))
+ (rule "newSym_eq" (formula "12") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "12") (term "1,1"))
+ (rule "add_zero_right" (formula "12") (term "1"))
+ (rule "applyEq" (formula "15") (term "3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "22") (term "0,1,3,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "22") (term "3,0"))
+ (rule "applyEq" (formula "34") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEq" (formula "32") (term "1,3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "33") (term "1,1,1,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "30") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "13"))
+ (rule "applyEq" (formula "33") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "13"))
+ (rule "polySimp_addComm1" (formula "1") (term "1"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "applyEq" (formula "27") (term "1,1") (ifseqformula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "inEqSimp_subsumption6" (formula "10") (ifseqformula "29"))
+ (rule "mul_literals" (formula "10") (term "1,1,0"))
+ (rule "greater_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "10") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "29"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "19"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "26") (ifseqformula "28"))
+ (rule "mul_literals" (formula "26") (term "1,1,0"))
+ (rule "greater_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "31") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "nnf_imp2or" (formula "31") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "15") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "34")) (ifInst "" (formula "25")))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "22") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "20") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "1"))
+ (rule "translateJavaSubInt" (formula "22") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "3,0"))
+ (rule "mul_literals" (formula "20") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteGeq" (formula "17"))
+ (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "18") (term "1,3,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "15"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaSubInt" (formula "25") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "10"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "25") (term "1,0,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "24") (term "1,1,0,1") (ifseqformula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "37") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "37") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "37") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "37") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,0,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,0") (ifseqformula "30"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,0"))
+ (rule "times_zero_1" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "commute_or_2" (formula "36") (term "0,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0,1,0"))
+ (rule "div_axiom" (formula "29") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "29") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "equal_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,1,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "polySimp_addComm1" (formula "31") (term "1"))
+ (rule "add_literals" (formula "31") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "applyEq" (formula "32") (term "0,1,1,2,1,0,0") (ifseqformula "29"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "32") (term "0,1,1,1,1,1,0,0") (ifseqformula "29"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "32") (term "0,0,0,1,0,0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq1" (formula "32") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "32") (term "0,1,0,0") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq1" (formula "32") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "mod_axiom" (formula "32") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "newSym_eq" (formula "32") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "32") (term "0,1,1"))
+ (rule "times_zero_1" (formula "32") (term "1,1,1"))
+ (rule "add_zero_left" (formula "32") (term "1,1"))
+ (rule "add_zero_right" (formula "32") (term "1"))
+ (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1"))
+ (rule "applyEq" (formula "32") (term "1,0,0") (ifseqformula "33"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "32") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "0,0"))
+ (rule "add_zero_left" (formula "32") (term "0"))
+ (rule "polySimp_invertEq" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "times_zero_2" (formula "32") (term "1"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "31"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "31") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "31") (term "0,0,0,0"))
+ (rule "neg_literal" (formula "31") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "31"))
+ (rule "applyEq" (formula "33") (term "0,1") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "33") (term "1"))
+ (rule "applyEqRigid" (formula "34") (term "0,1,1") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "34") (term "1,1"))
+ (rule "add_zero_right" (formula "34") (term "1"))
+ (rule "applyEqRigid" (formula "32") (term "0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "34") (term "0,0,1,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "34") (term "0,1,0"))
+ (rule "add_zero_left" (formula "34") (term "1,0"))
+ (rule "applyEq" (formula "30") (term "1") (ifseqformula "27"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "28"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "29"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "35"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEqRigid" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "0,0,1"))
+ (rule "div_literals" (formula "1") (term "0,1"))
+ (rule "add_zero_left" (formula "1") (term "1"))
+ (rule "commute_or_2" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "36") (term "0"))
+ (rule "expand_inShort" (formula "36"))
+ (rule "replace_short_MIN" (formula "36") (term "0,1"))
+ (rule "replace_short_MAX" (formula "36") (term "1,0"))
+ (rule "andLeft" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "38"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "38"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "18") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "18") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "commute_or" (formula "42") (term "1,0,0,1,0"))
+ (rule "commute_or" (formula "44") (term "1,0,0,0"))
+ (rule "commute_or" (formula "43") (term "1,0,0,0"))
+ (rule "commute_or" (formula "42") (term "0,0,0,1,0"))
+ (rule "shift_paren_or" (formula "14") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,1,0"))
+ (rule "cut_direct" (formula "23") (term "0"))
+ (branch "CUT: result_0 >= 1 + l_0 TRUE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "cut_direct" (formula "24") (term "0"))
+ (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "23"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "33") (ifseqformula "35"))
+ (rule "greater_literals" (formula "33") (term "0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1,0"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "21"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0,1,0"))
+ (rule "commute_or" (formula "42") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "div_axiom" (formula "32") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "qeq_literals" (formula "32") (term "0,1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1"))
+ (rule "add_literals" (formula "34") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "34") (term "1"))
+ (rule "add_literals" (formula "34") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "32"))
+ (rule "applyEq" (formula "34") (term "0,1,0,0") (ifseqformula "32"))
+ (rule "times_zero_2" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "33") (term "0,1,0,0") (ifseqformula "32"))
+ (rule "times_zero_2" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34"))
+ (rule "mul_literals" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "39"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "21"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "commute_or_2" (formula "18") (term "0,0"))
+ (rule "commute_or_2" (formula "17") (term "0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE"
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "times_zero_2" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "37"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "3"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "36") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "closeFalse" (formula "36"))
+ )
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE"
+ (rule "inEqSimp_geqRight" (formula "46"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_antiSymm" (formula "25") (ifseqformula "1"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_pullOutFactor1" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,0"))
+ (rule "times_zero_1" (formula "26") (term "0"))
+ (rule "leq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "37"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "37"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_leqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "22"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "1,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,2,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,2,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,2,0,0,0"))
+ (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1"))
+ (rule "add_literals" (formula "4") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "1,1,1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "23"))
+ (rule "polySimp_pullOutFactor1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "1,0"))
+ (rule "times_zero_1" (formula "23") (term "0"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "applyEq" (formula "24") (term "1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,2,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,2,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,2,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,2,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,0,2,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "21") (ifseqformula "34"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption6" (formula "30") (ifseqformula "31"))
+ (rule "mul_literals" (formula "30") (term "1,1,0"))
+ (rule "greater_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "32"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "CUT: result_0 >= 1 + l_0 FALSE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "22") (ifseqformula "1"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "22"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,0"))
+ (rule "times_zero_1" (formula "22") (term "0"))
+ (rule "leq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0"))
+ (rule "applyEq" (formula "2") (term "1,0,2,0,0,0") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor2" (formula "2") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "2") (term "0,1,1") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "1,1,1"))
+ (rule "times_zero_1" (formula "2") (term "1,1"))
+ (rule "add_zero_right" (formula "2") (term "1"))
+ (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "23") (term "1,0,2,0,1") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor2" (formula "23") (term "0,2,0,1"))
+ (rule "add_literals" (formula "23") (term "1,0,2,0,1"))
+ (rule "times_zero_1" (formula "23") (term "0,2,0,1"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "21"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0"))
+ (rule "mul_literals" (formula "23") (term "1,0"))
+ (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "34"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "31"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "38") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0,1,0"))
+ (rule "div_axiom" (formula "28") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "28") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "equal_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,1"))
+ (rule "add_literals" (formula "30") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "30") (term "1"))
+ (rule "add_literals" (formula "30") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "31"))
+ (rule "eqSymm" (formula "28"))
+ (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "28"))
+ (rule "times_zero_2" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "applyEq" (formula "30") (term "0,1,0,0") (ifseqformula "28"))
+ (rule "times_zero_2" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "33"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "34"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "commute_or_2" (formula "18") (term "0,0"))
+ (rule "commute_or_2" (formula "17") (term "0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "41") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "40") (term "0,0,0"))
+ (rule "commute_or_2" (formula "39") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "42") (term "0") (ifseqformula "5") (ifseqformula "23"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "14") (term "0") (ifseqformula "6") (ifseqformula "24"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "15"))
+ (rule "replace_known_right" (formula "14") (term "0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "applyEq" (formula "14") (term "1,0") (ifseqformula "15"))
+ (rule "shift_paren_or" (formula "40") (term "0,0,0"))
+ (rule "commute_or_2" (formula "17") (term "0,0,1,0"))
+ (rule "cnf_rightDist" (formula "41") (term "0"))
+ (rule "distr_forallAnd" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "commute_or" (formula "42") (term "0"))
+ (rule "commute_or" (formula "19") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "18") (term "0,0,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "commute_or" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "43") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "43") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "commute_or_2" (formula "18") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "commute_or_2" (formula "17") (term "0,0,0"))
+ (rule "commute_or" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "commute_or" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "41") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "41") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "commute_or" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "42") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "42") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "cnf_rightDist" (formula "18") (term "0"))
+ (rule "distr_forallAnd" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "commute_or" (formula "19") (term "0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "commute_or" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "17") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "commute_or" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "18") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "42")))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "18") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "42")))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "18") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "42")))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or" (formula "38") (term "0,0,0,1,0"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "self.sorted_splitters[0] >= 1 + value TRUE"
+ (rule "qeq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "self.sorted_splitters[0] >= 1 + value FALSE"
+ (rule "qeq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "22") (term "0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1"))
+ (rule "polySimp_addComm1" (formula "22") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "22"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15"))
+ (rule "greater_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3")) (ifInst "" (formula "21")))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "eqSymm" (formula "16"))
+ (rule "eqSymm" (formula "13"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "13") (term "0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,2,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "13"))
+ (rule "newSym_eq" (formula "13") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "23") (term "0,1,3,0") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "23") (term "3,0"))
+ (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "17"))
+ (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "14"))
+ (rule "polySimp_addComm1" (formula "1") (term "1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "14"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(4(6(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "11"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "14") (term "0"))
+ (rule "replace_known_left" (formula "14") (term "1,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "28")) (ifInst "" (formula "15")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "24") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "23") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1"))
+ (rule "applyEq" (formula "23") (term "1,1,0,1") (ifseqformula "13"))
+ (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "24") (term "1,0,1") (ifseqformula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "27") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "expand_inInt" (formula "27") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "27") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "29") (term "1"))
+ (rule "eqSymm" (formula "35") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "3,0"))
+ (rule "mul_literals" (formula "33") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteGeq" (formula "32"))
+ (rule "applyEq" (formula "31") (term "1") (ifseqformula "29"))
+ (rule "applyEq" (formula "35") (term "1,0,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "33") (term "1,3,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "34") (term "0,1,0,0,1,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "31") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "33") (term "1,3,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "29") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "34") (term "0,1,0,0,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "30"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "javaShiftLeftIntDef" (formula "10") (term "0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "10") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "expand_moduloInteger" (formula "10") (term "0"))
+ (rule "replace_int_RANGE" (formula "10") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "32") (term "0"))
+ (rule "replace_known_left" (formula "32") (term "0,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "38")) (ifInst "" (formula "4")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,1,0"))
+ (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "30"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEq" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0"))
+ (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "0,0,1"))
+ (rule "div_literals" (formula "1") (term "0,1"))
+ (rule "add_zero_left" (formula "1") (term "1"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,2,0,1,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "commute_or" (formula "15") (term "1,0,0,0"))
+ (rule "commute_or" (formula "15") (term "0,0,0,1,0"))
+ (rule "cut_direct" (formula "23") (term "0"))
+ (branch "CUT: result_0 >= 1 + l_0 TRUE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "22"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "commute_or_2" (formula "34") (term "0,0"))
+ (rule "cut_direct" (formula "24") (term "0"))
+ (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "21"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "24"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "22"))
+ (rule "mul_literals" (formula "19") (term "1,1,0"))
+ (rule "greater_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "qeq_literals" (formula "11") (term "0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1,1,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "add_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mod_axiom" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "14") (term "0,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "polySimp_invertEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "times_zero_2" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "33"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "14"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "33") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "33") (term "0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "33") (term "0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_antiSymm" (formula "33") (ifseqformula "12"))
+ (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "33"))
+ (rule "mul_literals" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "0,1") (ifseqformula "33"))
+ (rule "times_zero_2" (formula "13") (term "1"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "33"))
+ (rule "qeq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "33"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEqRigid" (formula "15") (term "0,0,1,0") (ifseqformula "32"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "1,0"))
+ (rule "applyEqRigid" (formula "11") (term "1") (ifseqformula "32"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "34"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "32"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "commute_or_2" (formula "41") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "42") (term "0,0,0"))
+ (rule "commute_or_2" (formula "40") (term "0,0"))
+ (rule "commute_or" (formula "43") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE"
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "times_zero_2" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "24"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE"
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "24"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "andLeft" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "21"))
+ (rule "applyEq" (formula "25") (term "1,0,2,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,2,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,2,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,2,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,2,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,2,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,2,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1"))
+ (rule "add_literals" (formula "3") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "1,1,1"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "1,0,2,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,2,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,2,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,2,0,0,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_pullOutFactor1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,0"))
+ (rule "times_zero_1" (formula "21") (term "0"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "20") (ifseqformula "28"))
+ (rule "mul_literals" (formula "20") (term "1,1,0"))
+ (rule "greater_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "3"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "26"))
+ (rule "mul_literals" (formula "3") (term "1,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "CUT: result_0 >= 1 + l_0 FALSE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "21") (ifseqformula "1"))
+ (rule "applyEq" (formula "25") (term "1,0,2,0,1") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor2" (formula "25") (term "0,2,0,1"))
+ (rule "add_literals" (formula "25") (term "1,0,2,0,1"))
+ (rule "times_zero_1" (formula "25") (term "0,2,0,1"))
+ (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "2") (term "0,1,1") (ifseqformula "20"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "1,1,1"))
+ (rule "times_zero_1" (formula "2") (term "1,1"))
+ (rule "add_zero_right" (formula "2") (term "1"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_pullOutFactor1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,0"))
+ (rule "times_zero_1" (formula "20") (term "0"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "2") (term "1,0,2,0,0,0") (ifseqformula "19"))
+ (rule "polySimp_pullOutFactor2" (formula "2") (term "0,2,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,2,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "19"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0"))
+ (rule "mul_literals" (formula "22") (term "1,0"))
+ (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "27"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "commute_or_2" (formula "30") (term "0,0"))
+ (rule "div_axiom" (formula "11") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "equal_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "add_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mod_axiom" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "14") (term "0,1,1"))
+ (rule "times_zero_1" (formula "14") (term "1,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "polySimp_invertEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "times_zero_2" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "13"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "29"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_antiSymm" (formula "28") (ifseqformula "12"))
+ (rule "applyEq" (formula "13") (term "0,1") (ifseqformula "28"))
+ (rule "times_zero_2" (formula "13") (term "1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "13") (term "0,1,1") (ifseqformula "27"))
+ (rule "mul_literals" (formula "13") (term "1,1"))
+ (rule "add_zero_right" (formula "13") (term "1"))
+ (rule "applyEqRigid" (formula "28") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEqRigid" (formula "15") (term "0,0,1,0") (ifseqformula "27"))
+ (rule "times_zero_2" (formula "15") (term "0,1,0"))
+ (rule "add_zero_left" (formula "15") (term "1,0"))
+ (rule "applyEqRigid" (formula "11") (term "1") (ifseqformula "27"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "29"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "30") (term "0"))
+ (rule "expand_inShort" (formula "30"))
+ (rule "replace_short_MIN" (formula "30") (term "0,1"))
+ (rule "replace_short_MAX" (formula "30") (term "1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "32"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthNotNegative" (formula "33") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "commute_or_2" (formula "37") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "38") (term "0,0,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0"))
+ (rule "shift_paren_or" (formula "39") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "17") (term "0,0,0"))
+ (rule "commute_or_2" (formula "17") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "37") (term "0,0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "15") (term "0") (ifseqformula "5") (ifseqformula "23"))
+ (rule "applyEq" (formula "15") (term "1,0,1") (ifseqformula "16"))
+ (rule "replace_known_left" (formula "15") (term "1") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "self.sorted_splitters[0] >= 1 + value TRUE"
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "self.sorted_splitters[0] >= 1 + value FALSE"
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "translateJavaSubInt" (formula "22") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1,0"))
+ (rule "blockEmpty" (formula "22") (term "1"))
+ (rule "methodCallReturn" (formula "22") (term "1"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "methodCallEmpty" (formula "22") (term "1"))
+ (rule "tryEmpty" (formula "22") (term "1"))
+ (rule "emptyModality" (formula "22") (term "1"))
+ (rule "andRight" (formula "22"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "9")))
+ (rule "closeTrue" (formula "22"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeTrue" (formula "22"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (rule "false_right" (formula "21"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "15"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14"))
+ (rule "greater_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "16") (term "0"))
+ (rule "replace_known_left" (formula "16") (term "1,0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "3")) (ifInst "" (formula "19")))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0,0"))
+ (rule "times_zero_2" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,0"))
+ (rule "replace_known_left" (formula "16") (term "1,0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "18") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "17") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1"))
+ (rule "mul_literals" (formula "17") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "20") (inst "i_0=i_0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "eqSymm" (formula "28") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "22") (term "1"))
+ (rule "translateJavaSubInt" (formula "28") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "3,0"))
+ (rule "mul_literals" (formula "26") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "17") (term "0,1,0,2,0,1") (ifseqformula "22"))
+ (rule "applyEq" (formula "18") (term "0,1,0,2,0,1") (ifseqformula "22"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "22"))
+ (rule "applyEq" (formula "18") (term "0,0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "22"))
+ (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "22"))
+ (rule "applyEq" (formula "25") (term "1") (ifseqformula "22"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,1,0") (ifseqformula "22"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "0,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "0,1,0,2,0,1"))
+ (rule "mod_axiom" (formula "17") (term "1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "0,1,0,2,0,1"))
+ (rule "mod_axiom" (formula "18") (term "1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "0,0,0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "1"))
+ (rule "mod_axiom" (formula "24") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "26") (term "1,3,0"))
+ (rule "mod_axiom" (formula "26") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "1"))
+ (rule "mod_axiom" (formula "25") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1"))
+ (rule "eqSymm" (formula "22"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "17") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "17") (term "0,0,1,0,2,0,1"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0,1,0,2,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0,1,0,2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0,1,0,2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,1,0,2,0,1"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,1,0,2,0,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,1,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "applyEq" (formula "17") (term "0,1,0,2,0,1") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "18") (term "0,0,1,0,2,0,1"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0,1,0,2,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0,1,0,2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0,1,0,2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,1,0,2,0,1"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0,1,0,2,0,1"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,0,1,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "applyEq" (formula "18") (term "0,1,0,2,0,1") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "13") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "applyEq" (formula "18") (term "0,0,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "24") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "shiftLeftDef" (formula "26") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "23") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "25") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "25"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "27") (term "1,1,1,0,0,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "28") (term "1,1,1,0,0,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "27") (term "1,1,1,1,0") (ifseqformula "22"))
+ (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "13"))
+ (rule "greater_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "13"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "expand_moduloInteger" (formula "21") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "21") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "21") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "28") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but bucket_index Out of Bounds!)"
+ (rule "false_right" (formula "21"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "15"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14"))
+ (rule "greater_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "18") (inst "i_0=i_0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "eqSymm" (formula "26") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1"))
+ (rule "translateJavaSubInt" (formula "26") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "3,0"))
+ (rule "mul_literals" (formula "24") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "20"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "20"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "26") (term "0,1,0,0,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0,1,1,0") (ifseqformula "20"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "0,1,3,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "1"))
+ (rule "mod_axiom" (formula "23") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "1,3,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "26") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1"))
+ (rule "eqSymm" (formula "20"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "16") (term "0,0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,1,3,0"))
+ (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "20"))
+ (rule "shiftLeftDef" (formula "23") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "23"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "shiftLeftDef" (formula "21") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "20"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "22"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "shiftLeftDef" (formula "13") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "20"))
+ (rule "shiftLeftDef" (formula "24") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "20"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "20"))
+ (rule "shiftLeftDef" (formula "25") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "25") (term "1,1,1,0,0,0") (ifseqformula "20"))
+ (rule "shiftLeftDef" (formula "26") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "26") (term "1,1,1,0,0,0") (ifseqformula "20"))
+ (rule "shiftLeftDef" (formula "25") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "25") (term "1,1,1,1,0") (ifseqformula "20"))
+ (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "13"))
+ (rule "greater_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "13"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "expand_moduloInteger" (formula "19") (term "0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "19") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "2")))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_elimSub" (formula "15") (term "0,2,1"))
+ (rule "mul_literals" (formula "15") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "15") (term "0,2,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "29") (term "0,0") (ifseqformula "13"))
+ (rule "inEqSimp_commuteGeq" (formula "29"))
+ (rule "applyEq" (formula "32") (term "1,0,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "13"))
+ (rule "newSym_eq" (formula "12") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "12") (term "1,1"))
+ (rule "add_zero_right" (formula "12") (term "1"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "32") (term "1,1,1,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "29") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "33") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "31") (term "1,3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEq" (formula "32") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "13"))
+ (rule "applyEq" (formula "22") (term "0,1,3,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "22") (term "3,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,0,1") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1"))
+ (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEq" (formula "1") (term "0,0,1,1,0") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,0"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "13"))
+ (rule "applyEq" (formula "26") (term "1,1") (ifseqformula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1"))
+ (rule "inEqSimp_subsumption6" (formula "10") (ifseqformula "28"))
+ (rule "greater_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "10") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "25") (ifseqformula "27"))
+ (rule "mul_literals" (formula "25") (term "1,1,0"))
+ (rule "greater_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "28"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "30") (term "1,0,0"))
+ (rule "expand_inInt" (formula "30") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "30") (term "0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0"))
+ (rule "nnf_imp2or" (formula "30") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "15") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "33")) (ifInst "" (formula "24")))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "22") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "20") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "1"))
+ (rule "translateJavaSubInt" (formula "22") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "3,0"))
+ (rule "mul_literals" (formula "20") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "9"))
+ (rule "commute_or" (formula "1"))
+ (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "23") (term "0"))
+ (rule "replace_known_left" (formula "23") (term "1,0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "36")))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_2" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "23") (term "0,1,0,1,0,0,0") (ifseqformula "9"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,0,0,0"))
+ (rule "replace_known_left" (formula "23") (term "0,0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0"))
+ (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "25") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "9"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "24") (term "1,1,0,1") (ifseqformula "11"))
+ (rule "applyEq" (formula "25") (term "1,0,1") (ifseqformula "11"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,2,0,1,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,0") (ifseqformula "29"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "1,0"))
+ (rule "times_zero_1" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or_2" (formula "34") (term "0,0"))
+ (rule "commute_or_2" (formula "35") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "div_axiom" (formula "28") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "28") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "equal_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "polySimp_addComm1" (formula "30") (term "1"))
+ (rule "add_literals" (formula "30") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "applyEq" (formula "31") (term "0,0,0,1,0,0") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq1" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "31") (term "0,1,1,2,1,0,0") (ifseqformula "28"))
+ (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "31") (term "0,1,1,1,1,1,0,0") (ifseqformula "28"))
+ (rule "polySimp_addComm0" (formula "31") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "mul_literals" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1,0,0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "31") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "mod_axiom" (formula "31") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "newSym_eq" (formula "31") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "31") (term "0,1,1"))
+ (rule "times_zero_1" (formula "31") (term "1,1,1"))
+ (rule "add_literals" (formula "31") (term "1,1"))
+ (rule "add_zero_right" (formula "31") (term "1"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "31"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1"))
+ (rule "applyEq" (formula "31") (term "1,0,0") (ifseqformula "32"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "31") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "0,0"))
+ (rule "add_zero_left" (formula "31") (term "0"))
+ (rule "polySimp_invertEq" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "times_zero_2" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "30"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "28"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_antiSymm" (formula "26") (ifseqformula "30"))
+ (rule "applyEqRigid" (formula "27") (term "0") (ifseqformula "26"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "applyEqRigid" (formula "32") (term "0,1,1") (ifseqformula "26"))
+ (rule "times_zero_2" (formula "32") (term "1,1"))
+ (rule "add_literals" (formula "32") (term "1"))
+ (rule "applyEqRigid" (formula "30") (term "0") (ifseqformula "26"))
+ (rule "leq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "applyEq" (formula "30") (term "0,1") (ifseqformula "26"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "applyEqRigid" (formula "33") (term "0,0,1,0") (ifseqformula "26"))
+ (rule "times_zero_2" (formula "33") (term "0,1,0"))
+ (rule "add_zero_left" (formula "33") (term "1,0"))
+ (rule "applyEqRigid" (formula "29") (term "1") (ifseqformula "26"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "27"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "commute_or_2" (formula "12") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "35") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "36"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "38") (term "0"))
+ (rule "expand_inShort" (formula "38"))
+ (rule "replace_short_MIN" (formula "38") (term "0,1"))
+ (rule "replace_short_MAX" (formula "38") (term "1,0"))
+ (rule "andLeft" (formula "38"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "21") (term "1,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "15") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "15") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "15") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "15") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,2,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "jdiv_axiom" (formula "1") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "33"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEqRigid" (formula "2") (term "1,1,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "2") (term "0,0,1,1") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "0,0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,1,1"))
+ (rule "equal_literals" (formula "2") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,0,1,1"))
+ (rule "div_literals" (formula "2") (term "0,0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,0,1,1"))
+ (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,2,1"))
+ (rule "equal_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "0,0,1"))
+ (rule "div_literals" (formula "1") (term "0,1"))
+ (rule "add_zero_left" (formula "1") (term "1"))
+ (rule "polyDiv_pullOut" (formula "2") (term "1,1,0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,1,1,0"))
+ (rule "equal_literals" (formula "2") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,1,1,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1,1,0"))
+ (rule "div_literals" (formula "2") (term "0,1,1,0"))
+ (rule "add_zero_left" (formula "2") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_pullOutFactor0" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (ifseqformula "40"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0"))
+ (rule "add_zero_right" (formula "21") (term "0"))
+ (rule "leq_literals" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "equal_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "closeTrue" (formula "20"))
+ )
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "20"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "compound_subtraction_2" (formula "20") (term "1") (inst "#v1=x_1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "20") (term "1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "variableDeclarationAssign" (formula "20") (term "1"))
+ (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_1"))
+ (rule "assignment_read_attribute_this_final" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "assignmentSubtractionInt" (formula "20") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "1"))
+ (rule "mul_literals" (formula "20") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0"))
+ (rule "inEqSimp_exactShadow1" (formula "13") (ifseqformula "12"))
+ (rule "greater_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "13"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "translateJavaSubInt" (formula "14") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "15") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "14") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1"))
+ (rule "mul_literals" (formula "14") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "17") (inst "i_0=i_0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "17"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "23") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "1"))
+ (rule "eqSymm" (formula "25") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "3,0"))
+ (rule "mul_literals" (formula "23") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "19"))
+ (rule "applyEq" (formula "15") (term "0,1,0,2,0,1") (ifseqformula "19"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "15") (term "0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "21") (term "1") (ifseqformula "19"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "23") (term "1,3,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "14") (term "0,1,0,2,0,1") (ifseqformula "19"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "24") (term "0,1,0,0,1,1,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "24") (term "0,1,0,0,1,0,0,0") (ifseqformula "19"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0,1,0,2,0,1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "0"))
+ (rule "mod_axiom" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0,0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "0,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "1,3,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "0,1,0,2,0,1"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1"))
+ (rule "eqSymm" (formula "19"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "22"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0,1,0,2,0,1"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,1,0,2,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,1,0,2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,1,0,2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,1,0,2,0,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,1,0,2,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,1,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "applyEq" (formula "15") (term "0,1,0,2,0,1") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "11") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "21"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "shiftLeftDef" (formula "20") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "13") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "23") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "23") (term "1,3,0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "14") (term "0,0,1,0,2,0,1"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0,1,0,2,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0,1,0,2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0,1,0,2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0,2,0,1"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,1,0,2,0,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,1,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0,1,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0,1,0,2,0,1"))
+ (rule "applyEq" (formula "14") (term "0,1,0,2,0,1") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "14") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "24") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "24") (term "1,1,1,1,0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "25") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "25") (term "1,1,1,0,0,0") (ifseqformula "19"))
+ (rule "shiftLeftDef" (formula "24") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "24") (term "1,1,1,0,0,0") (ifseqformula "19"))
+ (rule "inEqSimp_exactShadow1" (formula "13") (ifseqformula "11"))
+ (rule "greater_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "11"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "20"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "expand_moduloInteger" (formula "18") (term "0"))
+ (rule "replace_int_RANGE" (formula "18") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "8"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "28")))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "eqSymm" (formula "13"))
+ (rule "eqSymm" (formula "10"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,2,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,2,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "13"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,2,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "13"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "13"))
+ (rule "applyEq" (formula "29") (term "1,3,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "20") (term "0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "1,0,1") (ifseqformula "11"))
+ (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteGeq" (formula "28"))
+ (rule "applyEq" (formula "12") (term "3,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "10"))
+ (rule "applyEq" (formula "30") (term "1,1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "20") (term "1,0,1") (ifseqformula "11"))
+ (rule "applyEq" (formula "20") (term "0,1,0,2,0,1") (ifseqformula "10"))
+ (rule "applyEq" (formula "31") (term "1,1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "0,1,0,2,0,1") (ifseqformula "10"))
+ (rule "applyEq" (formula "30") (term "1,1,1,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "10"))
+ (rule "applyEq" (formula "26") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "30") (term "1,0,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "10"))
+ (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "13"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_subsumption0" (formula "35") (term "1") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,1"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "35") (term "0,0,1"))
+ (rule "qeq_literals" (formula "35") (term "0,1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "20") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow1" (formula "18") (ifseqformula "10"))
+ (rule "mul_literals" (formula "18") (term "1,0,1"))
+ (rule "greater_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "9"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,1,0"))
+ (rule "blockEmpty" (formula "20") (term "1"))
+ (rule "methodCallReturn" (formula "20") (term "1"))
+ (rule "assignment" (formula "20") (term "1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "methodCallEmpty" (formula "20") (term "1"))
+ (rule "tryEmpty" (formula "20") (term "1"))
+ (rule "emptyModality" (formula "20") (term "1"))
+ (rule "andRight" (formula "20"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "20"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "closeTrue" (formula "20"))
+ )
+ )
+ )
+)
+(branch "Exceptional Post (classify)"
+ (builtin "One Step Simplification" (formula "11"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "12") (ifseqformula "11"))
+)
+(branch "Pre (classify)"
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "10") (term "1,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "10") (term "0,1,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1"))
+ (rule "replace_known_left" (formula "10") (term "1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "eqSymm" (formula "13"))
+ (rule "translateJavaMulInt" (formula "10") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,2,0"))
+ (rule "eqSymm" (formula "10"))
+ (rule "replace_known_left" (formula "16") (term "0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,2,1"))
+ (rule "mul_literals" (formula "13") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,2,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "13") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "eqSymm" (formula "21") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "1"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "3,0"))
+ (rule "mul_literals" (formula "19") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "15"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "15"))
+ (rule "applyEq" (formula "9") (term "2,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_commuteGeq" (formula "18"))
+ (rule "applyEq" (formula "9") (term "0,1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15"))
+ (rule "eqSymm" (formula "12"))
+ (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "11") (term "3,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "21") (term "1,0,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "10"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15"))
+ (rule "eqSymm" (formula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "9") (term "2,0"))
+ (rule "mod_axiom" (formula "9") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "9") (term "0,1,0"))
+ (rule "mod_axiom" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "3,0"))
+ (rule "mod_axiom" (formula "11") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1,3,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "12"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "17"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "shiftLeftDef" (formula "9") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "9") (term "2,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "18") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "9") (term "0,1,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "11") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "11") (term "3,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "16") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "12"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "20") (term "1,1,1,0,0,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "20") (term "1,1,1,1,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "12"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "12"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "18"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "commute_and" (formula "21") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "11") (term "0"))
+ (rule "replace_known_left" (formula "11") (term "1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "26")) (ifInst "" (formula "12")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "21") (term "0"))
+ (rule "replace_known_left" (formula "21") (term "0,1") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "27")) (ifInst "" (formula "1")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "24") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "24") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "24") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,2,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "1"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "17"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "17"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "ifthenelse_split" (formula "9") (term "0"))
+ (branch "self.equal_buckets = TRUE TRUE"
+ (rule "newSym_eq" (formula "10") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "10") (term "1,1"))
+ (rule "add_zero_right" (formula "10") (term "1"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "10"))
+ (rule "applyEq" (formula "14") (term "1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "21") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "26") (term "1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "11"))
+ (rule "applyEq" (formula "13") (term "3,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "27") (term "1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "25") (term "1,1,1,0,0,0,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "25") (term "1,1,1,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "15") (term "1,0,2,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEq" (formula "14") (term "1,1,0,0,0,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "15") (term "1,0,2,0") (ifseqformula "10"))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "10"))
+ (rule "applyEq" (formula "26") (term "0,1,0,0,1,1,1,0") (ifseqformula "10"))
+ (rule "inEqSimp_subsumption6" (formula "7") (ifseqformula "20"))
+ (rule "mul_literals" (formula "7") (term "1,1,0"))
+ (rule "greater_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "elimGcdLeq_antec" (formula "7") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "neg_literal" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "11") (term "0"))
+ (rule "replace_known_left" (formula "11") (term "0,1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "30")) (ifInst "" (formula "1")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0"))
+ (rule "commute_or_2" (formula "26") (term "0,0"))
+ (rule "commute_or_2" (formula "24") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "commute_or_2" (formula "25") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "24") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0"))
+ (rule "div_axiom" (formula "16") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "16") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "equal_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "polySimp_addComm1" (formula "18") (term "1"))
+ (rule "add_literals" (formula "18") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "19") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mod_axiom" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1"))
+ (rule "newSym_eq" (formula "19") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "19") (term "0,1,1"))
+ (rule "times_zero_1" (formula "19") (term "1,1,1"))
+ (rule "add_zero_left" (formula "19") (term "1,1"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19"))
+ (rule "polySimp_homoEq" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "19") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "polySimp_invertEq" (formula "19"))
+ (rule "times_zero_2" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "17") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "neg_literal" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "17") (term "0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "19"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_antiSymm" (formula "14") (ifseqformula "18"))
+ (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEq" (formula "20") (term "0,1,1") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "20") (term "1,1"))
+ (rule "add_zero_right" (formula "20") (term "1"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0,1") (ifseqformula "14"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "14"))
+ (rule "applyEq" (formula "21") (term "0,0,1,0") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "21") (term "0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or" (formula "29") (term "1,0,0,0"))
+ (rule "commute_or" (formula "27") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "12") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "28") (term "0,0,0"))
+ (rule "commute_or" (formula "26") (term "1,0,0,0"))
+ (rule "commute_or" (formula "11") (term "1,0,0,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,1,0"))
+ (rule "commute_or" (formula "27") (term "0,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "22") (term "0"))
+ (rule "expand_inShort" (formula "22"))
+ (rule "replace_short_MIN" (formula "22") (term "0,1"))
+ (rule "replace_short_MAX" (formula "22") (term "1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "20"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "arrayLengthIsAShort" (formula "25") (term "0"))
+ (rule "expand_inShort" (formula "25"))
+ (rule "replace_short_MIN" (formula "25") (term "0,1"))
+ (rule "replace_short_MAX" (formula "25") (term "1,0"))
+ (rule "andLeft" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "20"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "commute_or_2" (formula "12") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "30") (term "0"))
+ (rule "distr_forallAnd" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "commute_or" (formula "31") (term "0"))
+ (rule "shift_paren_or" (formula "32") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "29") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "28") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "11") (term "0,0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "29") (term "0,0,1,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "12") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "commute_or" (formula "30") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "30") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "30") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "commute_or" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "31") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "31") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "commute_or" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "32") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "commute_or" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "29") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "29") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "commute_or" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "28") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "commute_or" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "11") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "11") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "div_axiom" (formula "18") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "18") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "qeq_literals" (formula "18") (term "0,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,1"))
+ (rule "add_literals" (formula "20") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "1"))
+ (rule "add_literals" (formula "20") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "applyEqRigid" (formula "18") (term "0") (ifseqformula "21"))
+ (rule "eqSymm" (formula "18"))
+ (rule "applyEqRigid" (formula "19") (term "0,1,0,0") (ifseqformula "18"))
+ (rule "times_zero_2" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0") (ifseqformula "18"))
+ (rule "times_zero_2" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "commute_or" (formula "30") (term "0,0,0,0,1,0"))
+ (rule "all_pull_out3" (formula "12") (term "0"))
+ (rule "shift_paren_or" (formula "12") (term "0,0"))
+ (rule "shift_paren_or" (formula "12") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "12") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "12") (term "0,0,0,0,0"))
+ (rule "all_pull_out3" (formula "30") (term "0"))
+ (rule "shift_paren_or" (formula "30") (term "0,0"))
+ (rule "shift_paren_or" (formula "30") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "30") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "30") (term "0,0,0,0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "28") (term "0,0") (ifseqformula "1") (ifseqformula "2"))
+ (rule "replace_known_right" (formula "28") (term "0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "8") (term "0,0") (ifseqformula "1") (ifseqformula "2"))
+ (rule "replace_known_right" (formula "8") (term "1") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "37")))
+ (rule "closeFalse" (formula "8"))
+ )
+ (branch "self.equal_buckets = TRUE FALSE"
+ (rule "applyEq" (formula "23") (term "1,1,1,0,0,0,1,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "19") (term "1") (ifseqformula "9"))
+ (rule "applyEq" (formula "22") (term "1,3,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "9"))
+ (rule "eqSymm" (formula "13"))
+ (rule "applyEq" (formula "11") (term "3,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "9"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,0,1,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "23") (term "1,1,0,0,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "24") (term "1,1,0,0,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "9"))
+ (rule "eqSymm" (formula "13"))
+ (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "9"))
+ (rule "applyEq" (formula "23") (term "0,1,0,0,1,1,1,0") (ifseqformula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "8"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "commute_or" (formula "24") (term "1,0,0"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "8"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "div_axiom" (formula "16") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "16") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,1"))
+ (rule "equal_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "polySimp_addComm1" (formula "18") (term "1"))
+ (rule "add_literals" (formula "18") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "19") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mod_axiom" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1"))
+ (rule "newSym_eq" (formula "19") (inst "newSymDef=add(mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "19") (term "0,1,1"))
+ (rule "times_zero_1" (formula "19") (term "1,1,1"))
+ (rule "add_zero_right" (formula "19") (term "1,1"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19"))
+ (rule "polySimp_homoEq" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "19") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "polySimp_invertEq" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "times_zero_2" (formula "19") (term "1"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "17") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "17") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "19"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_antiSymm" (formula "14") (ifseqformula "18"))
+ (rule "applyEqRigid" (formula "20") (term "0,1") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "20") (term "1"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEqRigid" (formula "19") (term "0,1,1") (ifseqformula "14"))
+ (rule "mul_literals" (formula "19") (term "1,1"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "14"))
+ (rule "applyEqRigid" (formula "21") (term "0,0,1,0") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "21") (term "0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or" (formula "12") (term "1,0,0"))
+ (rule "commute_or" (formula "27") (term "1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "11") (term "0"))
+ (rule "replace_known_left" (formula "11") (term "1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "34")) (ifInst "" (formula "12")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "commute_or_2" (formula "29") (term "0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "commute_or" (formula "13") (term "1,0,0,1,0"))
+ (rule "commute_or_2" (formula "30") (term "0,0"))
+ (rule "commute_or_2" (formula "28") (term "0,0,1,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,1,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "36") (term "1,0") (ifseqformula "1") (ifseqformula "2"))
+ (rule "replace_known_right" (formula "1") (term "1") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (rule "closeFalse" (formula "1"))
+ )
+)
+(branch "Null reference (t = null)"
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "notRight" (formula "10"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "9"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "eqSymm" (formula "14"))
+ (rule "eqSymm" (formula "11"))
+ (rule "translateJavaSubInt" (formula "14") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "11") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,2,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "14"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,2,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,0"))
+ (rule "eqSymm" (formula "14"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,0"))
+ (rule "eqSymm" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "applyEq" (formula "14") (term "0,1,0,2,0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "11") (term "0,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "13") (term "0,3,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "14") (term "0,1,0,2,0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "14"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "close" (formula "16") (ifseqformula "1"))
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_all((I,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_all((I,int,int,(I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..3bcd54c
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_all((I,int,int,(I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,26539 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 12:44:37 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 12:44:37 CEST 2023
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_all([I,int,int,[I)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_all([I,int,int,[I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "4" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "248440")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "8"))
+(rule "notLeft" (formula "7"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "6"))
+(rule "notLeft" (formula "2"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "16"))
+(rule "eqSymm" (formula "15"))
+(rule "translateJavaSubInt" (formula "15") (term "1"))
+(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "4"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "polySimp_elimSub" (formula "15") (term "1"))
+(rule "polySimp_addComm0" (formula "15") (term "1"))
+(rule "disjointDefinition" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+(rule "notLeft" (formula "21"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "eqSymm" (formula "21"))
+(rule "disjointDefinition" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "notLeft" (formula "19"))
+(rule "eqSymm" (formula "20"))
+(rule "disjointDefinition" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+(rule "notLeft" (formula "18"))
+(rule "eqSymm" (formula "19"))
+(rule "disjointDefinition" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+(rule "notLeft" (formula "16"))
+(rule "disjointDefinition" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+(rule "notLeft" (formula "16"))
+(rule "eqSymm" (formula "17"))
+(rule "inEqSimp_commuteLeq" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_classify_all,savedHeapBefore_classify_all,_beginBefore_classify_all,_endBefore_classify_all,_indicesBefore_classify_all,_valuesBefore_classify_all"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "methodCallUnfoldTarget" (formula "26") (term "1") (inst "#v0=t"))
+(rule "variableDeclaration" (formula "26") (term "1") (newnames "t"))
+(rule "assignment_read_attribute_this_final" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "Use Operation Contract" (formula "26") (newnames "heapBefore_classify_all_0,exc_25,heapAfter_classify_all,anon_heap_classify_all") (contract "de.wiesler.Tree[de.wiesler.Tree::classify_all([I,int,int,[I)].JML normal_behavior operation contract.0"))
+(branch "Post (classify_all)"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "translateJavaMulInt" (formula "19") (term "1,1,1,0"))
+ (rule "eqSymm" (formula "20") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "20") (term "0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "applyEq" (formula "20") (term "1,1,0,0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "19") (term "1,1,0,0,0") (ifseqformula "15"))
+ (rule "commute_and" (formula "19") (term "1,0"))
+ (rule "commute_and" (formula "19") (term "1,0,0"))
+ (rule "commute_and" (formula "20") (term "1,0,0"))
+ (rule "commute_and" (formula "20") (term "0,0,0"))
+ (rule "commute_and" (formula "19") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "20") (term "0,0"))
+ (rule "commute_and_2" (formula "20") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "19") (term "0,0"))
+ (rule "commute_and_2" (formula "19") (term "0,0,0"))
+ (rule "ifElseUnfold" (formula "33") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "x"))
+ (rule "assignment_read_attribute_this_final" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "17"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "ifElseSplit" (formula "39"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "for_to_while" (formula "40") (term "1") (inst "#outerLabel=_label3") (inst "#innerLabel=_label2"))
+ (rule "variableDeclarationAssign" (formula "40") (term "1"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "i"))
+ (rule "assignment" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "loopScopeInvDia" (formula "40") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "40"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0"))
+ (rule "impRight" (formula "41"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "0,2,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "47") (term "1,0,1,1,0") (ifseqformula "29"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_commuteGeq" (formula "2"))
+ (rule "commute_and" (formula "4") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "commute_and" (formula "4") (term "0,0,0"))
+ (rule "commute_and_2" (formula "4") (term "0,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "4") (term "0,0,0"))
+ (rule "ifElseUnfold" (formula "47") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_2"))
+ (rule "compound_less_than_comparison_2" (formula "47") (term "1") (inst "#v1=x_4") (inst "#v0=x_3"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_3"))
+ (rule "assignment" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_4"))
+ (rule "assignment_read_length" (formula "47"))
+ (branch "Normal Execution (_indices != null)"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "applyEq" (formula "47") (term "0,1,0") (ifseqformula "29"))
+ (rule "less_than_comparison_simple" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "38") (term "0,0") (ifseqformula "9") (ifseqformula "10"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "43") (term "0") (ifseqformula "10") (ifseqformula "11"))
+ (rule "ifElseSplit" (formula "49"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "variableDeclarationFinalAssign" (formula "50") (term "1"))
+ (rule "variableDeclarationFinal" (formula "50") (term "1") (newnames "value"))
+ (rule "eval_order_array_access5" (formula "50") (term "1") (inst "#v1=x_2") (inst "#ar1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "50") (term "1"))
+ (rule "variableDeclaration" (formula "50") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "50") (term "1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "variableDeclarationAssign" (formula "50") (term "1"))
+ (rule "variableDeclaration" (formula "50") (term "1") (newnames "x_5"))
+ (rule "assignmentAdditionInt" (formula "50") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "50") (term "0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "50") (term "1"))
+ (rule "mul_literals" (formula "50") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "50") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1"))
+ (rule "mul_literals" (formula "49") (term "0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "22"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "4"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0"))
+ (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0"))
+ (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_imp2or" (formula "7") (term "0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "7") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "9") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "9"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0"))
+ (rule "expand_inInt" (formula "9") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "eqSymm" (formula "17") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "11") (term "1"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "3,0"))
+ (rule "mul_literals" (formula "15") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "applyEq" (formula "13") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "1"))
+ (rule "mod_axiom" (formula "11") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "1"))
+ (rule "mod_axiom" (formula "13") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "1"))
+ (rule "mod_axiom" (formula "14") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "11") (term "0,1"))
+ (rule "eqSymm" (formula "11"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "13") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "shiftLeftDef" (formula "14") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "shiftLeftDef" (formula "12") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "38") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,0"))
+ (rule "expand_moduloInteger" (formula "11") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "11") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "41") (inst "i_0=i_0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "44")) (ifInst "" (formula "43")) (ifInst "" (formula "10")))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "46") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "42") (term "1"))
+ (rule "eqSymm" (formula "48") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "3,0"))
+ (rule "mul_literals" (formula "46") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "41"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "41"))
+ (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "17") (term "1,1,1,0,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "13") (term "1") (ifseqformula "41"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "11") (term "1,1") (ifseqformula "41"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,1,0") (ifseqformula "41"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "41") (term "1"))
+ (rule "mod_axiom" (formula "41") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "1"))
+ (rule "mod_axiom" (formula "14") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "1,3,0"))
+ (rule "mod_axiom" (formula "42") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "1"))
+ (rule "mod_axiom" (formula "13") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "1,1"))
+ (rule "mod_axiom" (formula "11") (term "1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "41") (term "0,1"))
+ (rule "eqSymm" (formula "41"))
+ (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "38") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "14") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "shiftLeftDef" (formula "12") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "42") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0,0"))
+ (rule "applyEq" (formula "17") (term "1,1,1,0,0,0,0") (ifseqformula "41"))
+ (rule "shiftLeftDef" (formula "13") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "shiftLeftDef" (formula "11") (term "0,1,1"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,1,1"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "applyEq" (formula "11") (term "0,1,0,0") (ifseqformula "41"))
+ (rule "polySimp_sepPosMonomial" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "shiftLeftDef" (formula "43") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "43") (term "1,1,1,0,0,0") (ifseqformula "41"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "19")))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "eqSymm" (formula "39"))
+ (rule "translateJavaMulInt" (formula "36") (term "0"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,2,1"))
+ (rule "mul_literals" (formula "39") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,2,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "17") (term "1,0,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "37"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "47") (term "1,0,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "43") (term "1,1,0,1,0") (ifseqformula "36"))
+ (rule "newSym_eq" (formula "36") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "36") (term "1,1"))
+ (rule "add_zero_right" (formula "36") (term "1"))
+ (rule "applyEq" (formula "17") (term "1,1,1,0,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "48") (term "1,1,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "37"))
+ (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "39") (term "3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "13") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "44") (term "1,1,0,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "46") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "11") (term "1,1") (ifseqformula "36"))
+ (rule "inEqSimp_subsumption6" (formula "34") (ifseqformula "12"))
+ (rule "greater_literals" (formula "34") (term "0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "mul_literals" (formula "34") (term "1,0"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "elimGcdLeq_antec" (formula "34") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "leq_literals" (formula "34") (term "0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "neg_literal" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "34") (term "0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "expand_moduloInteger" (formula "44") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "44") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "44") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_pullOutFactor1" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,0"))
+ (rule "times_zero_1" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "39") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "47")) (ifInst "" (formula "10")))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "translateJavaSubInt" (formula "46") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "40") (term "1"))
+ (rule "eqSymm" (formula "46") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "3,0"))
+ (rule "mul_literals" (formula "44") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteGeq" (formula "42"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "34"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "44") (term "1,0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "34"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "34"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "41") (term "0,1,0,0,1,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "34") (term "0"))
+ (rule "mod_axiom" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "34") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "expand_moduloInteger" (formula "34") (term "0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "34") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_pullOutFactor1" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "1,0"))
+ (rule "times_zero_1" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "46") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "46") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "46") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "46") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,1,0,1,0"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "commute_and" (formula "60"))
+ (rule "commute_or" (formula "7") (term "0,0,0"))
+ (rule "commute_or" (formula "43") (term "0,0,0"))
+ (rule "commute_or" (formula "44") (term "0,0,0"))
+ (rule "commute_and" (formula "43") (term "1,0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "commute_or_2" (formula "17") (term "0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "commute_or" (formula "8") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "39") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "40") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "40") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "40") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,2,0,1,0"))
+ (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "equal_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "polySimp_addComm1" (formula "13") (term "1"))
+ (rule "add_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mod_axiom" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "14") (term "1,1,1"))
+ (rule "times_zero_1" (formula "14") (term "0,1,1"))
+ (rule "add_zero_left" (formula "14") (term "1,1"))
+ (rule "add_zero_right" (formula "14") (term "1"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "polySimp_invertEq" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "times_zero_2" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "10"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "neg_literal" (formula "12") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "14"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "polySimp_addLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "13"))
+ (rule "applyEq" (formula "15") (term "0,1") (ifseqformula "9"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "applyEq" (formula "16") (term "0,1,1") (ifseqformula "9"))
+ (rule "times_zero_2" (formula "16") (term "1,1"))
+ (rule "add_literals" (formula "16") (term "1"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "9"))
+ (rule "leq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "applyEqRigid" (formula "16") (term "0,0,1,0") (ifseqformula "9"))
+ (rule "times_zero_2" (formula "16") (term "0,1,0"))
+ (rule "add_zero_left" (formula "16") (term "1,0"))
+ (rule "applyEq" (formula "12") (term "1") (ifseqformula "9"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "10"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "11"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "nnf_notAnd" (formula "48") (term "0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "48") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "18") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "16") (term "0"))
+ (rule "expand_inShort" (formula "16"))
+ (rule "replace_short_MIN" (formula "16") (term "0,1"))
+ (rule "replace_short_MAX" (formula "16") (term "1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthIsAShort" (formula "41") (term "0"))
+ (rule "expand_inShort" (formula "41"))
+ (rule "replace_short_MAX" (formula "41") (term "1,0"))
+ (rule "replace_short_MIN" (formula "41") (term "0,1"))
+ (rule "andLeft" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq1" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "qeq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthNotNegative" (formula "41") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "qeq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthIsAShort" (formula "36") (term "0"))
+ (rule "expand_inShort" (formula "36"))
+ (rule "replace_short_MAX" (formula "36") (term "1,0"))
+ (rule "replace_short_MIN" (formula "36") (term "0,1"))
+ (rule "andLeft" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "arrayLengthNotNegative" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "commute_or_2" (formula "48") (term "0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "53") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "53") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "53") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "53") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "nnf_imp2or" (formula "47") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "7") (term "0,0"))
+ (rule "commute_or_2" (formula "51") (term "0,0"))
+ (rule "commute_or_2" (formula "52") (term "0,0"))
+ (rule "commute_or_2" (formula "8") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "25") (term "0,0,0"))
+ (rule "commute_or" (formula "54") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "24") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "44") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "53") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "53") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "53") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "47") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,1,0"))
+ (rule "cut_direct" (formula "68") (term "1"))
+ (branch "CUT: i_0 <= 2147483647 + begin * -1 TRUE"
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "inEqSimp_geqRight" (formula "69"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "7") (term "0,0"))
+ (rule "add_zero_left" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "37") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "closeFalse" (formula "37"))
+ )
+ (branch "CUT: i_0 <= 2147483647 + begin * -1 FALSE"
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "false_right" (formula "69"))
+ (rule "inEqSimp_leqRight" (formula "68"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "40"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "translateJavaAddInt" (formula "50") (term "0,1,0"))
+ (rule "assignment_array2" (formula "50"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "pullOutSelect" (formula "50") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")) (ifInst "" (formula "49")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")) (ifInst "" (formula "49")) (ifInst "" (formula "16")))
+ (rule "applyEqReverse" (formula "51") (term "0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (builtin "Block Contract (Internal)" (formula "50") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "51"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "21")) (ifInst "" (formula "14")) (ifInst "" (formula "48")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "0,1") (ifseqformula "35"))
+ (rule "andLeft" (formula "41"))
+ (rule "eqSymm" (formula "52") (term "0,0,1,0,1"))
+ (rule "replace_known_left" (formula "42") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "emptyStatement" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "emptyStatement" (formula "51") (term "1"))
+ (rule "tryEmpty" (formula "51") (term "1"))
+ (rule "blockEmptyLabel" (formula "51") (term "1"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (rule "methodCallEmpty" (formula "51") (term "1"))
+ (rule "emptyModality" (formula "51") (term "1"))
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "closeTrue" (formula "51"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "closeTrue" (formula "51"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "50"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "wellFormedAnon" (formula "50"))
+ (rule "wellFormedAnonEQ" (formula "50") (term "0") (ifseqformula "35"))
+ (rule "replace_known_left" (formula "50") (term "1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "12")) (ifInst "" (formula "34")))
+ (rule "closeTrue" (formula "50"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47")))
+ (rule "closeTrue" (formula "50"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0") (ifseqformula "35"))
+ (rule "orRight" (formula "50"))
+ (rule "orRight" (formula "50"))
+ (rule "close" (formula "50") (ifseqformula "13"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "50"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "51"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "0,1,1,0") (ifseqformula "35"))
+ (rule "expand_inInt" (formula "41") (term "1"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "43"))
+ (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "elim_double_block_2" (formula "53") (term "1"))
+ (rule "ifUnfold" (formula "53") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "replace_known_left" (formula "53") (term "0,0,1,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "ifSplit" (formula "53"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "53") (term "1"))
+ (rule "variableDeclarationFinalAssign" (formula "53") (term "1"))
+ (rule "variableDeclarationFinal" (formula "53") (term "1") (newnames "index_1"))
+ (rule "assignment_array2" (formula "53"))
+ (branch "Normal Execution (_indices != null)"
+ (builtin "One Step Simplification" (formula "53"))
+ (builtin "Block Contract (Internal)" (formula "53") (newnames "exc_1,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "21")) (ifInst "" (formula "14")) (ifInst "" (formula "51")))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1") (ifseqformula "35"))
+ (rule "andLeft" (formula "44"))
+ (rule "eqSymm" (formula "55") (term "0,0,1,0,1"))
+ (rule "translateJavaMulInt" (formula "55") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "45") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,1,0,0,1"))
+ (rule "variableDeclarationAssign" (formula "54") (term "1"))
+ (rule "variableDeclaration" (formula "54") (term "1") (newnames "exc_1_1"))
+ (rule "assignment" (formula "54") (term "1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "emptyStatement" (formula "54") (term "1"))
+ (rule "emptyStatement" (formula "54") (term "1"))
+ (rule "tryEmpty" (formula "54") (term "1"))
+ (rule "blockEmptyLabel" (formula "54") (term "1"))
+ (rule "blockEmpty" (formula "54") (term "1"))
+ (rule "methodCallEmpty" (formula "54") (term "1"))
+ (rule "emptyModality" (formula "54") (term "1"))
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "closeTrue" (formula "54"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "instAll" (formula "5") (term "0") (ifseqformula "7") (userinteraction))
+ (rule "impLeft" (formula "5") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_known_left" (formula "45") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "45") (term "1"))
+ (rule "polySimp_pullOutFactor1" (formula "45") (term "0,1"))
+ (rule "add_literals" (formula "45") (term "1,0,1"))
+ (rule "times_zero_1" (formula "45") (term "0,1"))
+ (rule "leq_literals" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "43") (term "0") (ifseqformula "4"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_leqRight" (formula "43"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "pullOutSelect" (formula "49") (term "0,0") (inst "selectSK=arr_1"))
+ (rule "applyEq" (formula "50") (term "0,1") (ifseqformula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "50") (term "0,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "50") (term "0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "26"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "21"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "1"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_literals" (formula "26") (term "0"))
+ (rule "leq_literals" (formula "26"))
+ (rule "closeFalse" (formula "26"))
+ )
+ (branch "Case 2"
+ (builtin "Evaluate Query" (formula "5") (term "0") (newnames "value_0,callee,queryResult,res_classify") (userinteraction))
+ (rule "replaceKnownQuery11000120100100_3" (formula "6") (term "0"))
+ (rule "replaceKnownSelect_taclet0100100_0" (formula "1") (term "0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0100100_2" (formula "1") (term "0,1,0,0"))
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "5"))
+ (rule "eqSymm" (formula "46") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0"))
+ (rule "variableDeclaration" (formula "46") (term "1") (newnames "queryResult"))
+ (rule "pullOutSelect" (formula "56") (term "0,1") (inst "selectSK=arr_1"))
+ (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "57") (term "0,1") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "57") (term "0,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "6") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_commuteGeq" (formula "56") (term "0"))
+ (rule "applyEq" (formula "56") (term "0,1") (ifseqformula "5"))
+ (rule "commute_and" (formula "56"))
+ (builtin "Use Operation Contract" (formula "46") (newnames "heapBefore_classify,result,exc_2") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify)"
+ (builtin "One Step Simplification" (formula "47"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "10")))
+ (rule "expand_inInt" (formula "46") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "51"))
+ (rule "translateJavaSubInt" (formula "50") (term "3,0"))
+ (rule "translateJavaMulInt" (formula "49") (term "1"))
+ (rule "eqSymm" (formula "51"))
+ (rule "polySimp_elimSub" (formula "50") (term "3,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "assignment" (formula "54") (term "1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "methodCallEmpty" (formula "54") (term "1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "emptyModality" (formula "54") (term "1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notRight" (formula "54"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "1"))
+ (rule "replace_known_left" (formula "64") (term "1") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "52") (term "0,3,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "51") (term "1,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1"))
+ (rule "mul_literals" (formula "3") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_contradInEq4" (formula "1") (ifseqformula "47"))
+ (rule "greater_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Exceptional Post (classify)"
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "10")))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,1,0") (ifseqformula "36"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "close" (formula "48") (ifseqformula "47"))
+ )
+ (branch "Pre (classify)"
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "10")) (ifInst "" (formula "45")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,0") (ifseqformula "36"))
+ (rule "expand_inInt" (formula "46") (term "1"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1"))
+ (rule "replace_known_left" (formula "46") (term "0,1") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1"))
+ (rule "replace_known_left" (formula "46") (term "1") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "orRight" (formula "46"))
+ (rule "orRight" (formula "46"))
+ (rule "replace_known_right" (formula "3") (term "1") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "applyEq" (formula "37") (term "0,0,1,0,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "58") (term "0,0,1") (ifseqformula "3"))
+ (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "58") (term "0,0,1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "37") (term "0,1,1,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "40") (term "1") (ifseqformula "3"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "52") (term "0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "3"))
+ (rule "applyEq" (formula "47") (term "1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "48") (term "1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "10") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "27"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "23"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "26"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "4"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0"))
+ (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "close" (formula "41") (ifseqformula "3"))
+ )
+ (branch "Null reference (callee = null)"
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notRight" (formula "46"))
+ (rule "replace_known_left" (formula "4") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "applyEq" (formula "55") (term "0,0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "37") (term "0,0,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "40") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "37") (term "0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "55") (term "0,0,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "26"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "27"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "4"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0"))
+ (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "close" (formula "41") (ifseqformula "1"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "closeTrue" (formula "54"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "53"))
+ (branch "Case 1"
+ (rule "andRight" (formula "53"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "53"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "wellFormedAnon" (formula "53"))
+ (rule "wellFormedAnonEQ" (formula "53") (term "0") (ifseqformula "35"))
+ (rule "replace_known_left" (formula "53") (term "1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "12")) (ifInst "" (formula "34")))
+ (rule "closeTrue" (formula "53"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "53"))
+ (branch "Case 1"
+ (rule "andRight" (formula "53"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "50")))
+ (rule "closeTrue" (formula "53"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "53") (term "0") (ifseqformula "35"))
+ (rule "orRight" (formula "53"))
+ (rule "orRight" (formula "53"))
+ (rule "close" (formula "53") (ifseqformula "13"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "53"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "44"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,1") (ifseqformula "35"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaMulInt" (formula "46") (term "1"))
+ (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "pullOutSelect" (formula "56") (term "0,1,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "57") (term "0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "elim_double_block_2" (formula "56") (term "1"))
+ (rule "ifUnfold" (formula "56") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "33"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "33"))
+ (rule "ifSplit" (formula "56"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "56") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "56") (newnames "exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "21")) (ifInst "" (formula "14")) (ifInst "" (formula "54")))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,1") (ifseqformula "35"))
+ (rule "andLeft" (formula "47"))
+ (rule "eqSymm" (formula "58") (term "0,0,1,0,1"))
+ (rule "replace_known_left" (formula "48") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "variableDeclarationAssign" (formula "57") (term "1"))
+ (rule "variableDeclaration" (formula "57") (term "1") (newnames "exc_2_1"))
+ (rule "assignment" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "emptyStatement" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "emptyStatement" (formula "57") (term "1"))
+ (rule "tryEmpty" (formula "57") (term "1"))
+ (rule "blockEmptyLabel" (formula "57") (term "1"))
+ (rule "blockEmpty" (formula "57") (term "1"))
+ (rule "methodCallEmpty" (formula "57") (term "1"))
+ (rule "emptyModality" (formula "57") (term "1"))
+ (rule "andRight" (formula "57"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "closeTrue" (formula "57"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "closeTrue" (formula "57"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "56"))
+ (branch "Case 1"
+ (rule "andRight" (formula "56"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "56"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedAnon" (formula "56"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "35"))
+ (rule "replace_known_left" (formula "56") (term "1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "12")) (ifInst "" (formula "34")))
+ (rule "closeTrue" (formula "56"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "56"))
+ (branch "Case 1"
+ (rule "andRight" (formula "56"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53")))
+ (rule "closeTrue" (formula "56"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "0") (ifseqformula "35"))
+ (rule "orRight" (formula "56"))
+ (rule "orRight" (formula "56"))
+ (rule "close" (formula "56") (ifseqformula "13"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "56"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "47"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0"))
+ (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,1,1,0") (ifseqformula "35"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "49"))
+ (rule "translateJavaSubInt" (formula "49") (term "1"))
+ (rule "translateJavaSubInt" (formula "50") (term "0"))
+ (rule "translateJavaDivInt" (formula "49") (term "1,1"))
+ (rule "translateJavaDivInt" (formula "50") (term "1,0"))
+ (rule "replace_known_left" (formula "48") (term "0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "polySimp_elimSub" (formula "48") (term "1"))
+ (rule "polySimp_elimSub" (formula "49") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "elim_double_block_2" (formula "59") (term "1"))
+ (rule "ifUnfold" (formula "59") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "replace_known_left" (formula "59") (term "0,0,1,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "ifSplit" (formula "59"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "59") (term "1"))
+ (rule "variableDeclarationFinalAssign" (formula "59") (term "1"))
+ (rule "variableDeclarationFinal" (formula "59") (term "1") (newnames "bucket"))
+ (rule "compound_subtraction_2" (formula "59") (term "1") (inst "#v1=x_3") (inst "#v0=x_2"))
+ (rule "variableDeclarationAssign" (formula "59") (term "1"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_9"))
+ (rule "assignment" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "variableDeclarationAssign" (formula "59") (term "1"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_10"))
+ (rule "compound_division_1" (formula "59") (term "1") (inst "#v=x_11"))
+ (rule "variableDeclarationAssign" (formula "59") (term "1"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_11"))
+ (rule "assignment_read_attribute_this_final" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "assignmentDivisionInt" (formula "59"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "translateJavaDivInt" (formula "59") (term "0,1,0"))
+ (rule "assignmentSubtractionInt" (formula "59") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "expand_inInt" (formula "59"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "times_zero_2" (formula "48") (term "1,0"))
+ (rule "add_zero_right" (formula "48") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "1"))
+ (rule "mul_literals" (formula "59") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "mul_literals" (formula "45") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1"))
+ (rule "mul_literals" (formula "58") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "58") (term "1") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "58") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0,1"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "58") (term "0,0,1"))
+ (rule "qeq_literals" (formula "58") (term "0,1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "inEqSimp_leqRight" (formula "58"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "qeq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "42"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "27"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "6") (term "0,0"))
+ (rule "add_zero_left" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "47"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "43"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "44"))
+ (rule "mul_literals" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "mul_literals" (formula "45") (term "0,1"))
+ (rule "inEqSimp_and_subsumption3" (formula "11") (term "0,0,0"))
+ (rule "leq_literals" (formula "11") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_and_subsumption3" (formula "36") (term "0,0,0"))
+ (rule "leq_literals" (formula "36") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0"))
+ (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "14") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "translateJavaSubInt" (formula "22") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "20") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "1"))
+ (rule "eqSymm" (formula "22") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "3,0"))
+ (rule "mul_literals" (formula "20") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "19") (term "1") (ifseqformula "16"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "16"))
+ (rule "applyEq" (formula "43") (term "0,1,1,0,1,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "16"))
+ (rule "applyEq" (formula "43") (term "1,1,1,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "56") (term "0,1,1") (ifseqformula "16"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,1,0") (ifseqformula "16"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "17"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1,3,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "1"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "2") (term "0,0"))
+ (rule "mod_axiom" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "0,1,1"))
+ (rule "mod_axiom" (formula "55") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "0"))
+ (rule "mod_axiom" (formula "52") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "17") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "19"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "shiftLeftDef" (formula "18") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "18"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "shiftLeftDef" (formula "43") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "43") (term "0,1,1,0,1,0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "2") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "2") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "2") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "54"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "shiftLeftDef" (formula "43") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "43") (term "1,1,1,0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "55") (term "0,0,1,1"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0,1,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0,1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0,1,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,1"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "55"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "mul_literals" (formula "55") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "mul_literals" (formula "55") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "shiftLeftDef" (formula "52") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "16"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "21") (term "1,1,1,1,0") (ifseqformula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "52"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "18"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow1" (formula "2") (ifseqformula "53"))
+ (rule "greater_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "expand_moduloInteger" (formula "16") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "16") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "24")))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "41"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "41") (term "0"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "42"))
+ (rule "inEqSimp_commuteGeq" (formula "19"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "48") (term "1,1,0,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "58") (term "1,1") (ifseqformula "41"))
+ (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "42"))
+ (rule "applyEq" (formula "22") (term "1,0,1,0") (ifseqformula "42"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "newSym_eq" (formula "41") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "41") (term "1,1"))
+ (rule "add_zero_right" (formula "41") (term "1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "41"))
+ (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "49") (term "1,1,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "21") (term "1,1,1,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "44") (term "3,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "45") (term "1,0,2,0") (ifseqformula "41"))
+ (rule "eqSymm" (formula "45"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "41"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "41"))
+ (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "41"))
+ (rule "eqSymm" (formula "42"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "1") (term "0,0,1,1") (ifseqformula "42"))
+ (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "42"))
+ (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "42"))
+ (rule "applyEq" (formula "16") (term "0,0,1,1") (ifseqformula "42"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "42"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "42"))
+ (rule "applyEq" (formula "49") (term "1,1,0,1,0") (ifseqformula "42"))
+ (rule "applyEq" (formula "45") (term "1,0,2,0") (ifseqformula "41"))
+ (rule "eqSymm" (formula "45"))
+ (rule "applyEq" (formula "61") (term "0,1,0,1") (ifseqformula "42"))
+ (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "41"))
+ (rule "applyEq" (formula "57") (term "0,1,0,0") (ifseqformula "42"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1"))
+ (rule "mul_literals" (formula "57") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,1"))
+ (rule "inEqSimp_subsumption6" (formula "39") (ifseqformula "17"))
+ (rule "greater_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1,0"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "39") (term "0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "17"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "59"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "57"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "59"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1"))
+ (rule "mul_literals" (formula "56") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0,1"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_imp2or" (formula "47") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "48") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "48") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "48") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "44") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "62")) (ifInst "" (formula "14")))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "51") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "49") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "45") (term "1"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "3,0"))
+ (rule "mul_literals" (formula "49") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "44"))
+ (rule "applyEq" (formula "47") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "41"))
+ (rule "applyEq" (formula "46") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "39"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "48") (term "1,0,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "47") (term "0,1,0,0,1,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "44"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "44") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "42") (term "0"))
+ (rule "replace_known_left" (formula "42") (term "1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "64")) (ifInst "" (formula "43")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "66")) (ifInst "" (formula "14")))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "58") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "54") (term "1"))
+ (rule "eqSymm" (formula "60") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "3,0"))
+ (rule "mul_literals" (formula "58") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "56") (term "1,3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "39"))
+ (rule "eqSymm" (formula "53"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "54") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "57") (term "1,0,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "67") (term "0") (ifseqformula "41"))
+ (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "22") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "22") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "22") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,2,0,1,0"))
+ (rule "nnf_imp2or" (formula "47") (term "0"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "expand_moduloInteger" (formula "45") (term "0"))
+ (rule "replace_int_RANGE" (formula "45") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "45") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "applyEq" (formula "45") (term "0,1,0") (ifseqformula "15"))
+ (rule "polySimp_pullOutFactor1" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,0"))
+ (rule "times_zero_1" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "commute_and" (formula "50") (term "1,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0"))
+ (rule "commute_or" (formula "51") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "nnf_imp2or" (formula "53") (term "0"))
+ (rule "commute_or" (formula "50") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "commute_or_2" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,1,0"))
+ (rule "jdiv_axiom" (formula "1") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "18"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEqRigid" (formula "60") (term "0,1,1") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "2") (term "0,1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "17") (term "0,1,1") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "3") (term "0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "64") (term "1,0,1") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "64") (term "1,0,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,2,1,0,1"))
+ (rule "equal_literals" (formula "64") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "polySimp_pullOutFactor0" (formula "64") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "64") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "64") (term "0,0,1,0,1"))
+ (rule "div_literals" (formula "64") (term "0,1,0,1"))
+ (rule "add_zero_left" (formula "64") (term "1,0,1"))
+ (rule "polyDiv_pullOut" (formula "3") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_pullOutFactor0" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,0"))
+ (rule "div_literals" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "3"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "polyDiv_pullOut" (formula "17") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "17") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "17") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "17") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "17") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "17") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "17") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "5") (term "1,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,2,1,1"))
+ (rule "equal_literals" (formula "5") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "polySimp_pullOutFactor0" (formula "5") (term "0,0,1,1"))
+ (rule "add_literals" (formula "5") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "5") (term "0,0,1,1"))
+ (rule "div_literals" (formula "5") (term "0,1,1"))
+ (rule "add_zero_left" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "60") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0"))
+ (rule "qeq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "polyDiv_pullOut" (formula "2") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "2") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "2") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "59") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "59") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "59") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "59") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "59") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "59") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "59") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "1"))
+ (rule "add_literals" (formula "59") (term "1,1,1"))
+ (rule "times_zero_1" (formula "59") (term "1,1"))
+ (rule "add_zero_right" (formula "59") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "4"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "0,0,1"))
+ (rule "div_literals" (formula "1") (term "0,1"))
+ (rule "add_zero_left" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "59"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "div_axiom" (formula "16") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "qeq_literals" (formula "16") (term "0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,1,1"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "polySimp_addComm1" (formula "18") (term "1"))
+ (rule "add_literals" (formula "18") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "19") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mod_axiom" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1"))
+ (rule "newSym_eq" (formula "19") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "19") (term "1,1,1"))
+ (rule "times_zero_1" (formula "19") (term "0,1,1"))
+ (rule "add_zero_left" (formula "19") (term "1,1"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19"))
+ (rule "polySimp_homoEq" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "19") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "polySimp_invertEq" (formula "19"))
+ (rule "times_zero_2" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "18"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "18") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_antiSymm" (formula "14") (ifseqformula "18"))
+ (rule "applyEqRigid" (formula "20") (term "0,1") (ifseqformula "14"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEqRigid" (formula "20") (term "0,1,1") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "20") (term "1,1"))
+ (rule "add_zero_right" (formula "20") (term "1"))
+ (rule "applyEqRigid" (formula "18") (term "0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "21") (term "0,0,1,0") (ifseqformula "14"))
+ (rule "times_zero_2" (formula "21") (term "0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "1,0"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "14"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "commute_or" (formula "13") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "48") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "expand_inInt" (formula "48") (term "1,0,0"))
+ (rule "expand_inInt" (formula "48") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "45") (term "0"))
+ (rule "replace_known_left" (formula "45") (term "0,1") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "66")) (ifInst "" (formula "28")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "46") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0"))
+ (rule "nnf_notAnd" (formula "57") (term "0,0"))
+ (rule "nnf_imp2or" (formula "47") (term "0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "39") (term "0"))
+ (rule "expand_inShort" (formula "39"))
+ (rule "replace_short_MIN" (formula "39") (term "0,1"))
+ (rule "replace_short_MAX" (formula "39") (term "1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "36"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "arrayLengthIsAShort" (formula "22") (term "0"))
+ (rule "expand_inShort" (formula "22"))
+ (rule "replace_short_MIN" (formula "22") (term "0,1"))
+ (rule "replace_short_MAX" (formula "22") (term "1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "4"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "59") (term "1"))
+ (rule "variableDeclarationFinal" (formula "59") (term "1") (newnames "equal_to_splitter"))
+ (rule "compound_assignment_2" (formula "59") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "59") (term "1"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_12"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "59") (term "1"))
+ (rule "variableDeclarationAssign" (formula "59") (term "1"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "var"))
+ (rule "assignment" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "variableDeclarationAssign" (formula "59") (term "1"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "var_1"))
+ (rule "eval_order_array_access4" (formula "59") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "59") (term "1"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_arr_1"))
+ (rule "assignment_read_attribute_this_final" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "assignment_array2" (formula "59"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "pullOutSelect" (formula "59") (term "0,1,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "55")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "36"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")))
+ (rule "arrayLengthNotNegative" (formula "28") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "29") (term "0"))
+ (rule "expand_inShort" (formula "29"))
+ (rule "replace_short_MIN" (formula "29") (term "0,1"))
+ (rule "replace_short_MAX" (formula "29") (term "1,0"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "arrayLengthIsAShort" (formula "51") (term "1"))
+ (rule "expand_inShort" (formula "51"))
+ (rule "replace_short_MIN" (formula "51") (term "0,1"))
+ (rule "replace_short_MAX" (formula "51") (term "1,0"))
+ (rule "andLeft" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "arrayLengthNotNegative" (formula "53") (term "1"))
+ (builtin "Use Dependency Contract" (formula "10") (ifInst "" (formula "64") (term "0,1,0,0,1")) (ifInst "" (formula "37")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "62")) (ifInst "" (formula "15")) (ifInst "" (formula "14")) (ifInst "" (formula "24")) (ifInst "" (formula "10")) (ifInst "" (formula "24")))
+ (rule "true_left" (formula "55"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "64") (term "1") (inst "#v0=x_13"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_13"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "a"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "b"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "methodBodyExpand" (formula "64") (term "1") (newnames "heapBefore_cmp,savedHeapBefore_cmp"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "returnUnfold" (formula "64") (term "1") (inst "#v0=x_14"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_14"))
+ (rule "less_than_comparison_simple" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "methodCallReturn" (formula "64") (term "1"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "methodCallEmpty" (formula "64") (term "1"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (rule "compound_assignment_1_new" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "eval_order_array_access3" (formula "64") (term "1") (inst "#v1=x_3") (inst "#v2=x_2") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_arr_2"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_15"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_16"))
+ (rule "compound_subtraction_2" (formula "64") (term "1") (inst "#v1=x_18") (inst "#v0=x_17"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_17"))
+ (rule "compound_addition_2" (formula "64") (term "1") (inst "#v1=x_20") (inst "#v0=x_19"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_19"))
+ (rule "assignmentMultiplicationInt" (formula "64") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "64") (userinteraction))
+ (rule "expand_inInt" (formula "64") (userinteraction))
+ (rule "andRight" (formula "64") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "64") (term "1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "times_zero_2" (formula "51") (term "1,0"))
+ (rule "add_zero_right" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "51"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "50"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "46"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(3(1(9(0(7(8(6(3(5(#))))))))))") (inst "elimGcdLeftDiv=int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "1"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "51"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1"))
+ (rule "mul_literals" (formula "49") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "50") (term "0,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "50"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "31"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "26"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "6"))
+ (rule "times_zero_1" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "9"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "46"))
+ (rule "greater_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "50") (term "0,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1"))
+ (rule "polySimp_rightDist" (formula "50") (term "1"))
+ (rule "mul_literals" (formula "50") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54"))
+ (rule "mul_literals" (formula "50") (term "1,0,1"))
+ (rule "greater_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "2"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_and_subsumption3" (formula "37") (term "0,0,0"))
+ (rule "leq_literals" (formula "37") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_and_subsumption3" (formula "38") (term "0,0,0"))
+ (rule "leq_literals" (formula "38") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_and_subsumption3" (formula "13") (term "0,0,0"))
+ (rule "leq_literals" (formula "13") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "18")))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "36") (term "1"))
+ (rule "eqSymm" (formula "39"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,2,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "39"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,2,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,2,0"))
+ (rule "eqSymm" (formula "39"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,2,0"))
+ (rule "eqSymm" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "53") (term "1,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_homoInEq1" (formula "56"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "applyEq" (formula "43") (term "1,1,0,1,0") (ifseqformula "36"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "newSym_eq" (formula "36") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "36") (term "1,1"))
+ (rule "add_zero_right" (formula "36") (term "1"))
+ (rule "applyEq" (formula "39") (term "3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "37"))
+ (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_homoInEq0" (formula "52"))
+ (rule "polySimp_addComm1" (formula "52") (term "0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "3") (term "0,0,1,1") (ifseqformula "37"))
+ (rule "applyEq" (formula "56") (term "0,0,1,1") (ifseqformula "37"))
+ (rule "applyEq" (formula "44") (term "1,1,0,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "59") (term "0,1") (ifseqformula "37"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "57") (term "1,1") (ifseqformula "37"))
+ (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "54") (term "1,1") (ifseqformula "37"))
+ (rule "applyEq" (formula "5") (term "0,0,0,0,2,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "5") (term "0,0,0,0,2,2,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "6") (term "0,0,0,0,2,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "61") (term "0,1,0,1") (ifseqformula "37"))
+ (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "52") (term "0,1,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1"))
+ (rule "mul_literals" (formula "52") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0,1"))
+ (rule "inEqSimp_contradInEq5" (formula "35") (ifseqformula "1"))
+ (rule "mul_literals" (formula "35") (term "1,1,0"))
+ (rule "greater_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "closeFalse" (formula "35"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "times_zero_2" (formula "51") (term "1,0"))
+ (rule "add_zero_right" (formula "51") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "50"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "elimGcdLeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(neglit(5(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "1") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "29"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "45") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "closeFalse" (formula "45"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaMulInt" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_20"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "64") (term "1") (inst "#v0=x_21"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_21"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "b_1"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "methodBodyExpand" (formula "64") (term "1") (newnames "heapBefore_toInt,savedHeapBefore_toInt"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "returnUnfold" (formula "64") (term "1") (inst "#v0=x_22"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_22"))
+ (rule "condition_simple" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "ifthenelse_negated" (formula "64") (term "0,1,0"))
+ (rule "methodCallReturn" (formula "64") (term "1"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "methodCallEmpty" (formula "64") (term "1"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "assignmentAdditionInt" (formula "64") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "expand_inInt" (formula "64") (userinteraction))
+ (rule "andRight" (formula "64") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "64") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "times_zero_2" (formula "51") (term "1,0"))
+ (rule "add_zero_right" (formula "51") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "53"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "7") (term "0,0"))
+ (rule "add_zero_left" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "28"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "52"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "49"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "43"))
+ (rule "greater_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "mul_literals" (formula "49") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "mul_literals" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54"))
+ (rule "mul_literals" (formula "50") (term "1,0,1"))
+ (rule "greater_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "44"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0"))
+ (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0"))
+ (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "27"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "12")))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "translateJavaSubInt" (formula "32") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "32") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "29") (term "1"))
+ (rule "eqSymm" (formula "32"))
+ (rule "polySimp_elimSub" (formula "32") (term "0,2,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "32"))
+ (rule "polySimp_elimSub" (formula "32") (term "0,2,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "eqSymm" (formula "29"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,2,0"))
+ (rule "eqSymm" (formula "32"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,2,0"))
+ (rule "eqSymm" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "36") (term "1,1,0,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq1" (formula "53"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "applyEq" (formula "50") (term "1,1") (ifseqformula "29"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1"))
+ (rule "mul_literals" (formula "53") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1"))
+ (rule "newSym_eq" (formula "29") (inst "l=l_0") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "29") (term "1,1"))
+ (rule "add_zero_right" (formula "29") (term "1"))
+ (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "50") (term "1") (ifseqformula "29"))
+ (rule "applyEq" (formula "37") (term "1,1,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "29"))
+ (rule "eqSymm" (formula "30"))
+ (rule "applyEq" (formula "48") (term "0,0,1,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "51") (term "1,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "53") (term "0,0,1,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq0" (formula "54"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "37") (term "1,1,0,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "56") (term "0,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "30"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1"))
+ (rule "mul_literals" (formula "46") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "49"))
+ (rule "mul_literals" (formula "27") (term "1,1,0"))
+ (rule "greater_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "elimGcdLeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(4(6(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "neg_literal" (formula "27") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow1" (formula "52") (ifseqformula "56"))
+ (rule "greater_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,0"))
+ (rule "mul_literals" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "46"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "56"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,0"))
+ (rule "mul_literals" (formula "47") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "add_literals" (formula "47") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "50"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0"))
+ (rule "add_literals" (formula "49") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "50"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "53"))
+ (rule "mul_literals" (formula "46") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "46") (ifseqformula "49"))
+ (rule "mul_literals" (formula "46") (term "1,1,0"))
+ (rule "greater_literals" (formula "46") (term "0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "mul_literals" (formula "44") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "49"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "18") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "3,0"))
+ (rule "mul_literals" (formula "16") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "35"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "37"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "12"))
+ (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "13"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "47") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "66")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "47") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "54") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "52") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "48") (term "1"))
+ (rule "translateJavaSubInt" (formula "54") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "3,0"))
+ (rule "mul_literals" (formula "52") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "47"))
+ (rule "applyEq" (formula "53") (term "1,0,1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "51") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "50") (term "0,1,0,0,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "51") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "50") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "0"))
+ (rule "mod_axiom" (formula "47") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "47") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "41") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "67")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "46") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "42") (term "1"))
+ (rule "eqSymm" (formula "48") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "3,0"))
+ (rule "mul_literals" (formula "46") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "41"))
+ (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "44"))
+ (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "45") (term "1,3,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "41"))
+ (rule "applyEq" (formula "47") (term "1,0,1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "41"))
+ (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,1,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "41"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "36") (term "0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "36") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "commute_and" (formula "45") (term "1,0"))
+ (rule "commute_or" (formula "8") (term "0,0,0"))
+ (rule "commute_or" (formula "46") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "commute_or" (formula "45") (term "0,0,0"))
+ (rule "jdiv_axiom" (formula "57") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "57"))
+ (rule "inEqSimp_subsumption6" (formula "57") (term "0,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "57") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "57") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "leq_literals" (formula "57") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "eqSymm" (formula "57"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "57"))
+ (rule "applyEq" (formula "55") (term "0,1,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "58") (term "0,1,1") (ifseqformula "57"))
+ (rule "applyEqRigid" (formula "54") (term "0") (ifseqformula "57"))
+ (rule "applyEq" (formula "62") (term "0,1,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "57"))
+ (rule "applyEqRigid" (formula "65") (term "1") (ifseqformula "57"))
+ (rule "applyEq" (formula "67") (term "1,0,1") (ifseqformula "57"))
+ (rule "applyEqRigid" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "57"))
+ (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "67") (term "1,0,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,1,0,1"))
+ (rule "equal_literals" (formula "67") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "67") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "67") (term "0,0,1,0,1"))
+ (rule "div_literals" (formula "67") (term "0,1,0,1"))
+ (rule "add_zero_left" (formula "67") (term "1,0,1"))
+ (rule "polyDiv_pullOut" (formula "65") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "65") (term "0,1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "65") (term "0,0,1"))
+ (rule "add_literals" (formula "65") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "65") (term "0,0,1"))
+ (rule "div_literals" (formula "65") (term "0,1"))
+ (rule "add_zero_left" (formula "65") (term "1"))
+ (rule "polyDiv_pullOut" (formula "63") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "63") (term "0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "polySimp_pullOutFactor0" (formula "63") (term "0,0,0"))
+ (rule "add_literals" (formula "63") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "63") (term "0,0,0"))
+ (rule "div_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_pullOutFactor0b" (formula "63") (term "0"))
+ (rule "add_literals" (formula "63") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "13"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "polyDiv_pullOut" (formula "62") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "62") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "62") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "62") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "62") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "62") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "62") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "54") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "54") (term "0,0,0"))
+ (rule "div_literals" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "54"))
+ (rule "polySimp_pullOutFactor1b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0"))
+ (rule "add_zero_right" (formula "54") (term "0"))
+ (rule "leq_literals" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "polyDiv_pullOut" (formula "57") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "57") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "57") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "57") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "57") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "57") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "57") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "54") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "54") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "54") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "54") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "54") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "54") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "54") (term "1"))
+ (rule "add_literals" (formula "54") (term "1,1,1"))
+ (rule "times_zero_1" (formula "54") (term "1,1"))
+ (rule "add_zero_right" (formula "54") (term "1"))
+ (rule "polyDiv_pullOut" (formula "54") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "54") (term "0,0,0"))
+ (rule "div_literals" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "13"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "polyDiv_pullOut" (formula "54") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,2,1"))
+ (rule "equal_literals" (formula "54") (term "0,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,1"))
+ (rule "add_literals" (formula "54") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "54") (term "0,0,1"))
+ (rule "div_literals" (formula "54") (term "0,1"))
+ (rule "add_zero_left" (formula "54") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "13"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow1" (formula "59") (ifseqformula "61"))
+ (rule "greater_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "13"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "mul_literals" (formula "56") (term "1"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "17") (term "0"))
+ (rule "wellFormedAnon" (formula "17") (term "1,0"))
+ (rule "wellFormedAnonEQ" (formula "17") (term "0,1,0") (ifseqformula "45"))
+ (rule "replace_known_left" (formula "17") (term "0,1") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "65")) (ifInst "" (formula "23")) (ifInst "" (formula "44")) (ifInst "" (formula "21")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0"))
+ (rule "nnf_notAnd" (formula "43") (term "0,0"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "61") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "62"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "arrayLengthIsAShort" (formula "61") (term "0"))
+ (rule "expand_inShort" (formula "61"))
+ (rule "replace_short_MIN" (formula "61") (term "0,1"))
+ (rule "replace_short_MAX" (formula "61") (term "1,0"))
+ (rule "andLeft" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "62"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "31"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "arrayLengthIsAShort" (formula "36") (term "0"))
+ (rule "expand_inShort" (formula "36"))
+ (rule "replace_short_MIN" (formula "36") (term "0,1"))
+ (rule "replace_short_MAX" (formula "36") (term "1,0"))
+ (rule "andLeft" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "48") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "48") (term "1,0") (ifseqformula "45"))
+ (rule "replace_known_right" (formula "48") (term "0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "23")) (ifInst "" (formula "44")) (ifInst "" (formula "49")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "49") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "42") (term "0"))
+ (rule "replace_known_left" (formula "42") (term "1,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "67")) (ifInst "" (formula "43")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,2,0,1,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "44") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "44") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "44") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,2,0,1,0"))
+ (rule "nnf_notAnd" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "8") (term "0,0"))
+ (rule "commute_or_2" (formula "48") (term "0,0"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "commute_or_2" (formula "48") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "nnf_imp2or" (formula "52") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_imp2or" (formula "20") (term "0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "div_axiom" (formula "12") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "qeq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "polySimp_addComm1" (formula "14") (term "1"))
+ (rule "add_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mod_axiom" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "15") (term "1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "0,1,1"))
+ (rule "add_zero_left" (formula "15") (term "1,1"))
+ (rule "add_zero_right" (formula "15") (term "1"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1"))
+ (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "polySimp_invertEq" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14"))
+ (rule "mul_literals" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "14") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14"))
+ (rule "applyEq" (formula "17") (term "0,1,1") (ifseqformula "10"))
+ (rule "mul_literals" (formula "17") (term "1,1"))
+ (rule "add_zero_right" (formula "17") (term "1"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "10"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "applyEqRigid" (formula "14") (term "0,1") (ifseqformula "10"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "add_zero_left" (formula "17") (term "1,0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "12"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "nnf_notAnd" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE"
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "71"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "qeq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "66"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "23"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE"
+ (rule "inEqSimp_geqRight" (formula "71"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "66"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "2") (ifseqformula "22"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "64") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "times_zero_2" (formula "51") (term "1,0"))
+ (rule "add_zero_right" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "52"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "mul_literals" (formula "47") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "mul_literals" (formula "48") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "48"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "add_zero_left" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "qeq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "mul_literals" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1"))
+ (rule "polySimp_rightDist" (formula "43") (term "1"))
+ (rule "mul_literals" (formula "43") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "45"))
+ (rule "greater_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "mul_literals" (formula "49") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "43") (term "0,0"))
+ (rule "mul_literals" (formula "43") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54"))
+ (rule "greater_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "43"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0"))
+ (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0"))
+ (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "12")))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "eqSymm" (formula "33"))
+ (rule "translateJavaMulInt" (formula "30") (term "1"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,2,1"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,2,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,2,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq1" (formula "53"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "applyEq" (formula "37") (term "1,1,0,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "50") (term "1,1") (ifseqformula "30"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1"))
+ (rule "mul_literals" (formula "53") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1"))
+ (rule "newSym_eq" (formula "30") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "30") (term "1,1"))
+ (rule "add_zero_right" (formula "30") (term "1"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq0" (formula "49"))
+ (rule "polySimp_addComm1" (formula "49") (term "0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "31"))
+ (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "34"))
+ (rule "applyEq" (formula "50") (term "1") (ifseqformula "30"))
+ (rule "applyEq" (formula "33") (term "3,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "34"))
+ (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "54"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "applyEq" (formula "56") (term "0,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "47") (term "0,0,1,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "53") (term "0,0,1,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "38") (term "1,1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "51") (term "1,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "49") (term "0,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "31"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "28") (ifseqformula "48"))
+ (rule "greater_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "elimGcdLeq_antec" (formula "28") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "28") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "56"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "52") (ifseqformula "56"))
+ (rule "greater_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,0"))
+ (rule "mul_literals" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "45"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "mul_literals" (formula "48") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "mul_literals" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "44") (ifseqformula "47"))
+ (rule "mul_literals" (formula "44") (term "1,1,0"))
+ (rule "greater_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "50"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,0"))
+ (rule "mul_literals" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "47") (term "0"))
+ (rule "add_literals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "46"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "18") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "3,0"))
+ (rule "mul_literals" (formula "16") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "12"))
+ (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "13"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "40") (term "0"))
+ (rule "replace_known_left" (formula "40") (term "1,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "68")) (ifInst "" (formula "41")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "43") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "67")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "50") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "44") (term "1"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "3,0"))
+ (rule "mul_literals" (formula "48") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteGeq" (formula "45"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "37"))
+ (rule "eqSymm" (formula "43"))
+ (rule "applyEq" (formula "46") (term "1,3,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "37"))
+ (rule "applyEq" (formula "47") (term "1,0,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "43") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0"))
+ (rule "mul_literals" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "51") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "70")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "51") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "51") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "translateJavaSubInt" (formula "58") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "56") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "52") (term "1"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "3,0"))
+ (rule "mul_literals" (formula "56") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "applyEq" (formula "54") (term "1") (ifseqformula "51"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteGeq" (formula "54"))
+ (rule "applyEq" (formula "55") (term "1,3,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "51"))
+ (rule "applyEq" (formula "57") (term "1,0,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "55") (term "1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "51"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "51"))
+ (rule "applyEq" (formula "57") (term "0,1,0,0,1,0,0,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,1,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "55") (term "1,3,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "37"))
+ (rule "applyEq" (formula "51") (term "1") (ifseqformula "37"))
+ (rule "applyEq" (formula "73") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,1,1,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "37") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "40") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "commute_or" (formula "48") (term "0,0,0"))
+ (rule "commute_or" (formula "8") (term "0,0,0"))
+ (rule "commute_or" (formula "47") (term "0,0,0"))
+ (rule "commute_and" (formula "47") (term "1,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "expand_moduloInteger" (formula "41") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "41") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "41") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0"))
+ (rule "applyEq" (formula "41") (term "0,1,0") (ifseqformula "12"))
+ (rule "polySimp_pullOutFactor1" (formula "41") (term "0"))
+ (rule "add_literals" (formula "41") (term "1,0"))
+ (rule "times_zero_1" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "17") (term "0"))
+ (rule "wellFormedAnon" (formula "17") (term "1,0"))
+ (rule "wellFormedAnonEQ" (formula "17") (term "0,1,0") (ifseqformula "46"))
+ (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "23")) (ifInst "" (formula "45")) (ifInst "" (formula "21")) (ifInst "" (formula "18")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "51") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "jdiv_axiom" (formula "60") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "60"))
+ (rule "inEqSimp_subsumption6" (formula "60") (term "0,0") (ifseqformula "13"))
+ (rule "mul_literals" (formula "60") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "60") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "leq_literals" (formula "60") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "eqSymm" (formula "60"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "60"))
+ (rule "applyEqRigid" (formula "57") (term "0") (ifseqformula "60"))
+ (rule "applyEq" (formula "61") (term "0,1,1") (ifseqformula "60"))
+ (rule "applyEqRigid" (formula "58") (term "0,1,1") (ifseqformula "60"))
+ (rule "applyEq" (formula "65") (term "0,1,1") (ifseqformula "60"))
+ (rule "applyEqRigid" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "applyEq" (formula "68") (term "1") (ifseqformula "60"))
+ (rule "applyEqRigid" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "60"))
+ (rule "applyEqRigid" (formula "70") (term "1,0,1") (ifseqformula "60"))
+ (rule "polyDiv_pullOut" (formula "70") (term "1,0,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "70") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "70") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "70") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "70") (term "0,0,1,0,1"))
+ (rule "div_literals" (formula "70") (term "0,1,0,1"))
+ (rule "add_zero_left" (formula "70") (term "1,0,1"))
+ (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "68") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "68") (term "0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "68") (term "0,0,1"))
+ (rule "add_literals" (formula "68") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "68") (term "0,0,1"))
+ (rule "div_literals" (formula "68") (term "0,1"))
+ (rule "add_zero_left" (formula "68") (term "1"))
+ (rule "polyDiv_pullOut" (formula "59") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "59") (term "0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,0"))
+ (rule "div_literals" (formula "59") (term "0,0"))
+ (rule "add_zero_left" (formula "59") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "59"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "1,1,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0"))
+ (rule "add_zero_right" (formula "59") (term "0"))
+ (rule "leq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "polyDiv_pullOut" (formula "64") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "64") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "64") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "64") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "64") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "64") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "64") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "58") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "58") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "58") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "58") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "58") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "58") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "60") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,2,0,1,1"))
+ (rule "equal_literals" (formula "60") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "polySimp_pullOutFactor0" (formula "60") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "60") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "60") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "60") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "60") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "1"))
+ (rule "add_literals" (formula "60") (term "1,1,1"))
+ (rule "times_zero_1" (formula "60") (term "1,1"))
+ (rule "add_zero_right" (formula "60") (term "1"))
+ (rule "polyDiv_pullOut" (formula "57") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "57") (term "0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "polySimp_pullOutFactor0" (formula "57") (term "0,0,0"))
+ (rule "add_literals" (formula "57") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "57") (term "0,0,0"))
+ (rule "div_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "13"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "polyDiv_pullOut" (formula "63") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "63") (term "0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "63") (term "0,0,0"))
+ (rule "add_literals" (formula "63") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "63") (term "0,0,0"))
+ (rule "div_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_pullOutFactor0b" (formula "63") (term "0"))
+ (rule "add_literals" (formula "63") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "13"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "polyDiv_pullOut" (formula "58") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0,2,1"))
+ (rule "equal_literals" (formula "58") (term "0,1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,1"))
+ (rule "add_literals" (formula "58") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "58") (term "0,0,1"))
+ (rule "div_literals" (formula "58") (term "0,1"))
+ (rule "add_zero_left" (formula "58") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "62") (ifseqformula "64"))
+ (rule "greater_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "13"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "59") (term "0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "13"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "39") (term "0"))
+ (rule "replace_known_left" (formula "39") (term "0,1") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "68")) (ifInst "" (formula "23")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "40") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "40") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "40") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0"))
+ (rule "commute_or_2" (formula "19") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "43") (term "0"))
+ (rule "replace_known_left" (formula "43") (term "1,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "69")) (ifInst "" (formula "44")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "44") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "31"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "arrayLengthNotNegative" (formula "66") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "65"))
+ (rule "leq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "65") (term "0"))
+ (rule "expand_inShort" (formula "65"))
+ (rule "replace_short_MIN" (formula "65") (term "0,1"))
+ (rule "replace_short_MAX" (formula "65") (term "1,0"))
+ (rule "andLeft" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "66"))
+ (rule "leq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "arrayLengthIsAShort" (formula "36") (term "0"))
+ (rule "expand_inShort" (formula "36"))
+ (rule "replace_short_MIN" (formula "36") (term "0,1"))
+ (rule "replace_short_MAX" (formula "36") (term "1,0"))
+ (rule "andLeft" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "52") (term "1,0") (ifseqformula "48"))
+ (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "70")) (ifInst "" (formula "23")) (ifInst "" (formula "47")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0"))
+ (rule "nnf_imp2or" (formula "41") (term "0,1,0"))
+ (rule "div_axiom" (formula "12") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "12") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "equal_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1,1,1"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "polySimp_addComm1" (formula "14") (term "1"))
+ (rule "add_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mod_axiom" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "15") (term "1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "0,1,1"))
+ (rule "add_zero_left" (formula "15") (term "1,1"))
+ (rule "add_zero_right" (formula "15") (term "1"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1"))
+ (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "polySimp_invertEq" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "15"))
+ (rule "mul_literals" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14"))
+ (rule "applyEq" (formula "17") (term "0,1,1") (ifseqformula "10"))
+ (rule "mul_literals" (formula "17") (term "1,1"))
+ (rule "add_zero_right" (formula "17") (term "1"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "10"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "applyEq" (formula "14") (term "0,1") (ifseqformula "10"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "add_zero_left" (formula "17") (term "1,0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "12"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "50") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "50") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "50") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "50") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "50") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "50") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "50") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "55") (term "0,0"))
+ (rule "commute_or_2" (formula "8") (term "0,0"))
+ (rule "commute_or_2" (formula "54") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "59") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "59") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "59") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,2,0,1,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_notAnd" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "49") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_imp2or" (formula "23") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "59") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "59") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "58") (term "0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "44") (term "0"))
+ (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "76")) (ifInst "" (formula "45")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "45") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "49") (term "0"))
+ (rule "replace_known_right" (formula "49") (term "0,0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "28")) (ifInst "" (formula "50")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "25") (term "1,0,0,0"))
+ (rule "commute_or" (formula "24") (term "1,0,0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE"
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(neglit(5(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "neg_literal" (formula "2") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "70"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE"
+ (rule "inEqSimp_geqRight" (formula "76"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(neglit(5(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "2") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "70"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaAddInt" (formula "64") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_18"))
+ (rule "assignment_read_attribute_this_final" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "assignmentSubtractionInt" (formula "64") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "expand_inInt" (formula "64") (userinteraction))
+ (rule "andRight" (formula "64") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "64") (term "1"))
+ (rule "polySimp_elimSub" (formula "64") (term "0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "times_zero_2" (formula "51") (term "1,0"))
+ (rule "add_zero_right" (formula "51") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "29"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "7") (term "0,0"))
+ (rule "add_zero_left" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "qeq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "52"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "49"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "43"))
+ (rule "greater_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "mul_literals" (formula "49") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "mul_literals" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54"))
+ (rule "mul_literals" (formula "50") (term "1,0,1"))
+ (rule "greater_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "44"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0"))
+ (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0"))
+ (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "37") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "43") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "39") (term "1"))
+ (rule "eqSymm" (formula "45") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "43") (term "3,0"))
+ (rule "mul_literals" (formula "43") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "43") (term "1,3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "56") (term "0,1,1") (ifseqformula "39"))
+ (rule "applyEq" (formula "34") (term "0,1,1,0,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "34") (term "1,1,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "40"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "1,3,0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "0,1,1"))
+ (rule "mod_axiom" (formula "55") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "34") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "34") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "0,0"))
+ (rule "mod_axiom" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "1"))
+ (rule "mod_axiom" (formula "42") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "41") (term "1"))
+ (rule "mod_axiom" (formula "41") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "34") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1"))
+ (rule "eqSymm" (formula "39"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "43") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "43") (term "1,3,0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "55") (term "0,0,1,1"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0,1,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0,1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0,1,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,1"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "55"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "55") (term "0,1,0") (ifseqformula "39"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "shiftLeftDef" (formula "34") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "34") (term "0,1,1,0,1,0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "58") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "42") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "42"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "shiftLeftDef" (formula "40") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "41") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "41"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "54"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "shiftLeftDef" (formula "34") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "34") (term "1,1,1,0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "44") (term "1,1,1,1,0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "44") (term "1,1,1,0,0,0") (ifseqformula "39"))
+ (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1"))
+ (rule "mul_literals" (formula "60") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1"))
+ (rule "inEqSimp_exactShadow1" (formula "58") (ifseqformula "51"))
+ (rule "greater_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "mul_literals" (formula "58") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "51"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "41"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "40"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "expand_moduloInteger" (formula "39") (term "0"))
+ (rule "replace_int_RANGE" (formula "39") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "39") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "23"))
+ (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "11") (inst "i_0=i_0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "62")) (ifInst "" (formula "61")) (ifInst "" (formula "34")))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "18") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "3,0"))
+ (rule "mul_literals" (formula "16") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "applyEq" (formula "46") (term "1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "45") (term "1,1,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "11"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "11"))
+ (rule "applyEq" (formula "34") (term "0,1,1,0,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "34") (term "1,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "14") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "13") (term "0,1,0,0,1,1,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "38") (term "1,1") (ifseqformula "11"))
+ (rule "applyEq" (formula "13") (term "0,1,0,0,1,0,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "11") (term "1"))
+ (rule "mod_axiom" (formula "11") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "1,3,0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1,3,0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0,1,1"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "33") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "41") (term "1"))
+ (rule "mod_axiom" (formula "41") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "0,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "1"))
+ (rule "mod_axiom" (formula "52") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "1"))
+ (rule "mod_axiom" (formula "42") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "33") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "1,1"))
+ (rule "mod_axiom" (formula "37") (term "1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "11") (term "0,1"))
+ (rule "eqSymm" (formula "11"))
+ (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "43") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "43") (term "1,3,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "44") (term "1,1,1,1,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0,1,1"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0,1,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0,1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0,1,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,1,1"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "53"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "53") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "shiftLeftDef" (formula "40") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "33") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "33") (term "0,1,1,0,1,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "41") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "41"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "shiftLeftDef" (formula "56") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "44") (term "1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "52") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "shiftLeftDef" (formula "42") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "42"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "shiftLeftDef" (formula "33") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "33") (term "1,1,1,0") (ifseqformula "11"))
+ (rule "shiftLeftDef" (formula "37") (term "0,1,1"))
+ (rule "polySimp_homoEq" (formula "37"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_homoEq" (formula "37"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0") (ifseqformula "11"))
+ (rule "polySimp_sepPosMonomial" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "shiftLeftDef" (formula "13") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "13") (term "1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "mul_literals" (formula "58") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "51"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "40"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow1" (formula "56") (ifseqformula "51"))
+ (rule "greater_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "15")))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,0"))
+ (rule "eqSymm" (formula "32"))
+ (rule "eqSymm" (formula "35"))
+ (rule "translateJavaMulInt" (formula "32") (term "0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "33"))
+ (rule "inEqSimp_commuteGeq" (formula "48"))
+ (rule "applyEq" (formula "51") (term "1,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "13") (term "1,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "49") (term "1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "39") (term "1,1,0,1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "32"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq1" (formula "62"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "33"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1"))
+ (rule "newSym_eq" (formula "32") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "32") (term "1,1"))
+ (rule "add_zero_right" (formula "32") (term "1"))
+ (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "13") (term "1,1,1,0,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "51") (term "1,1,1,1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "48") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "applyEq" (formula "51") (term "1,1,1,0,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "40") (term "1,1,1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "36") (term "1,0,2,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "36"))
+ (rule "applyEq" (formula "52") (term "1,1,1,0,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "59") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "35") (term "3,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "applyEq" (formula "46") (term "0,0,1,1") (ifseqformula "33"))
+ (rule "applyEq" (formula "40") (term "1,1,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "63") (term "1,1") (ifseqformula "33"))
+ (rule "applyEq" (formula "60") (term "1,1") (ifseqformula "33"))
+ (rule "applyEq" (formula "36") (term "1,0,2,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "36"))
+ (rule "applyEq" (formula "63") (term "0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "62") (term "0,0,1,1") (ifseqformula "33"))
+ (rule "applyEq" (formula "65") (term "0,1") (ifseqformula "33"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "32"))
+ (rule "applyEq" (formula "1") (term "1,0,1") (ifseqformula "33"))
+ (rule "applyEq" (formula "11") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "67") (term "0,1,0,1") (ifseqformula "33"))
+ (rule "applyEq" (formula "58") (term "0,1,0,0") (ifseqformula "33"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1"))
+ (rule "mul_literals" (formula "58") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,0,1"))
+ (rule "inEqSimp_subsumption6" (formula "30") (ifseqformula "47"))
+ (rule "mul_literals" (formula "30") (term "1,1,0"))
+ (rule "greater_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "leq_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0"))
+ (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "62"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "44") (ifseqformula "47"))
+ (rule "greater_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1,0"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "mul_literals" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "59"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "58") (term "0"))
+ (rule "add_literals" (formula "58") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "mul_literals" (formula "58") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "45"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_zero_right" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "62") (ifseqformula "66"))
+ (rule "mul_literals" (formula "62") (term "1,0,1"))
+ (rule "greater_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "43"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1"))
+ (rule "mul_literals" (formula "59") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "63"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "45"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "expand_moduloInteger" (formula "11") (term "0"))
+ (rule "replace_int_RANGE" (formula "11") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "0,1,0") (ifseqformula "42"))
+ (rule "polySimp_pullOutFactor1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "1,0"))
+ (rule "times_zero_1" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "50") (term "0"))
+ (rule "nnf_imp2or" (formula "49") (term "0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "49") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "49") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "48") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "48") (term "1,0") (ifseqformula "36"))
+ (rule "replace_known_right" (formula "48") (term "0,0,0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "15")) (ifInst "" (formula "35")) (ifInst "" (formula "49")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "34") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "70")) (ifInst "" (formula "40")))
+ (rule "expand_inInt" (formula "34") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "41") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "35") (term "1"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "3,0"))
+ (rule "mul_literals" (formula "39") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "35") (term "1") (ifseqformula "29"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "31"))
+ (rule "inEqSimp_commuteGeq" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "29"))
+ (rule "eqSymm" (formula "34"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "36") (term "1,3,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,1,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "34") (term "0"))
+ (rule "mod_axiom" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "34") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "52") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52") (term "1,0,0"))
+ (rule "expand_inInt" (formula "52") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "11") (term "0"))
+ (rule "wellFormedAnon" (formula "11") (term "1,0"))
+ (rule "wellFormedAnonEQ" (formula "11") (term "0,1,0") (ifseqformula "40"))
+ (rule "replace_known_left" (formula "11") (term "0,1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "73")) (ifInst "" (formula "16")) (ifInst "" (formula "39")) (ifInst "" (formula "14")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "12") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "12") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "12") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "12") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "54") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "54") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "54") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "54") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "53") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "53") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "53") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "53") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "53") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,0,1,0,1,0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "expand_moduloInteger" (formula "34") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "34") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "44"))
+ (rule "polySimp_pullOutFactor1" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "1,0"))
+ (rule "times_zero_1" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "nnf_imp2or" (formula "51") (term "0"))
+ (rule "commute_and" (formula "39") (term "1,0"))
+ (rule "commute_or" (formula "40") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "commute_or" (formula "8") (term "0,0,0"))
+ (rule "div_axiom" (formula "43") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "43") (term "0,1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "polySimp_addComm1" (formula "45") (term "1"))
+ (rule "add_literals" (formula "45") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_homoInEq1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "applyEq" (formula "46") (term "0,0,0,1,0,0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq1" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "46") (term "0,1,1,2,1,0,0") (ifseqformula "43"))
+ (rule "polySimp_addComm0" (formula "46") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "46") (term "0,1,1,1,1,1,0,0") (ifseqformula "43"))
+ (rule "polySimp_addComm0" (formula "46") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "mul_literals" (formula "45") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "46") (term "0,1,0,0") (ifseqformula "44"))
+ (rule "inEqSimp_homoInEq1" (formula "46") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "mod_axiom" (formula "46") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1"))
+ (rule "newSym_eq" (formula "46") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "46") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "46") (term "0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "polySimp_homoEq" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "0,0"))
+ (rule "add_zero_left" (formula "46") (term "0"))
+ (rule "polySimp_invertEq" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "42"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "44") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "44") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0"))
+ (rule "qeq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "46"))
+ (rule "mul_literals" (formula "41") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "mul_literals" (formula "41") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "41") (term "0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "inEqSimp_antiSymm" (formula "41") (ifseqformula "45"))
+ (rule "applyEqRigid" (formula "42") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "41"))
+ (rule "leq_literals" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "applyEqRigid" (formula "45") (term "0,1") (ifseqformula "41"))
+ (rule "mul_literals" (formula "45") (term "1"))
+ (rule "applyEq" (formula "46") (term "0,1,1") (ifseqformula "41"))
+ (rule "mul_literals" (formula "46") (term "1,1"))
+ (rule "add_literals" (formula "46") (term "1"))
+ (rule "applyEqRigid" (formula "48") (term "0,0,1,0") (ifseqformula "41"))
+ (rule "mul_literals" (formula "48") (term "0,1,0"))
+ (rule "add_zero_left" (formula "48") (term "1,0"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "41"))
+ (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "43"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "42"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "jdiv_axiom" (formula "72") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "72"))
+ (rule "inEqSimp_subsumption6" (formula "72") (term "0,0") (ifseqformula "49"))
+ (rule "mul_literals" (formula "72") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "72") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "leq_literals" (formula "72") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "eqSymm" (formula "72"))
+ (rule "applyEqRigid" (formula "70") (term "1") (ifseqformula "72"))
+ (rule "applyEq" (formula "68") (term "0") (ifseqformula "72"))
+ (rule "applyEqRigid" (formula "62") (term "0") (ifseqformula "72"))
+ (rule "applyEqRigid" (formula "47") (term "0") (ifseqformula "72"))
+ (rule "applyEqRigid" (formula "63") (term "0,1,1") (ifseqformula "72"))
+ (rule "applyEq" (formula "48") (term "0,1,1") (ifseqformula "72"))
+ (rule "applyEqRigid" (formula "67") (term "0,1,1") (ifseqformula "72"))
+ (rule "applyEqRigid" (formula "73") (term "1,0,1") (ifseqformula "72"))
+ (rule "applyEq" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "72"))
+ (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "73") (term "1,0,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "73") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "73") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "73") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "73") (term "0,0,1,0,1"))
+ (rule "div_literals" (formula "73") (term "0,1,0,1"))
+ (rule "add_zero_left" (formula "73") (term "1,0,1"))
+ (rule "polyDiv_pullOut" (formula "67") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,0,1,1"))
+ (rule "equal_literals" (formula "67") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "67") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "67") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "67") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "67") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "48") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,2,0,1,1"))
+ (rule "equal_literals" (formula "48") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "polySimp_pullOutFactor0" (formula "48") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "48") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "48") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "48") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "48") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "63") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "63") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "63") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "63") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "63") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "63") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "63") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "63") (term "1"))
+ (rule "add_literals" (formula "63") (term "1,1,1"))
+ (rule "times_zero_1" (formula "63") (term "1,1"))
+ (rule "add_literals" (formula "63") (term "1"))
+ (rule "polyDiv_pullOut" (formula "47") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "0,0,0"))
+ (rule "div_literals" (formula "47") (term "0,0"))
+ (rule "add_zero_left" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "49"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "polyDiv_pullOut" (formula "61") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "61") (term "0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "polySimp_pullOutFactor0" (formula "61") (term "0,0,0"))
+ (rule "add_literals" (formula "61") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "61") (term "0,0,0"))
+ (rule "div_literals" (formula "61") (term "0,0"))
+ (rule "add_zero_left" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "61"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0"))
+ (rule "add_literals" (formula "61") (term "1,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0"))
+ (rule "add_zero_right" (formula "61") (term "0"))
+ (rule "leq_literals" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "polyDiv_pullOut" (formula "65") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "65") (term "0,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "65") (term "0,0,0"))
+ (rule "div_literals" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_pullOutFactor0b" (formula "65") (term "0"))
+ (rule "add_literals" (formula "65") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "48"))
+ (rule "leq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "polyDiv_pullOut" (formula "66") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "66") (term "0,1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "66") (term "0,0,1"))
+ (rule "add_literals" (formula "66") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "66") (term "0,0,1"))
+ (rule "div_literals" (formula "66") (term "0,1"))
+ (rule "add_zero_left" (formula "66") (term "1"))
+ (rule "polyDiv_pullOut" (formula "67") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "67") (term "0,1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,1"))
+ (rule "add_literals" (formula "67") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "67") (term "0,0,1"))
+ (rule "div_literals" (formula "67") (term "0,1"))
+ (rule "add_zero_left" (formula "67") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "64") (ifseqformula "66"))
+ (rule "greater_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "48"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "68"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,0"))
+ (rule "mul_literals" (formula "47") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "add_literals" (formula "47") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "49"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "commute_or_2" (formula "55") (term "0,0"))
+ (rule "commute_or_2" (formula "54") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "52") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "52") (term "1,0") (ifseqformula "38"))
+ (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "71")) (ifInst "" (formula "15")) (ifInst "" (formula "37")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "53") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "39") (term "0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "66") (term "0"))
+ (rule "expand_inShort" (formula "66"))
+ (rule "replace_short_MIN" (formula "66") (term "0,1"))
+ (rule "replace_short_MAX" (formula "66") (term "1,0"))
+ (rule "andLeft" (formula "66"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "67"))
+ (rule "leq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "23"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "67") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "66"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "arrayLengthIsAShort" (formula "49") (term "0"))
+ (rule "expand_inShort" (formula "49"))
+ (rule "replace_short_MAX" (formula "49") (term "1,0"))
+ (rule "replace_short_MIN" (formula "49") (term "0,1"))
+ (rule "andLeft" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "51") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "51"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "arrayLengthNotNegative" (formula "28") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthIsAShort" (formula "28") (term "0"))
+ (rule "expand_inShort" (formula "28"))
+ (rule "replace_short_MIN" (formula "28") (term "0,1"))
+ (rule "replace_short_MAX" (formula "28") (term "1,0"))
+ (rule "andLeft" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "34") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "nnf_imp2or" (formula "56") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "10") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,0,1,1,1,0"))
+ (rule "commute_or_2" (formula "40") (term "0,0"))
+ (rule "commute_or_2" (formula "8") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_imp2or" (formula "32") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "55") (term "0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "36") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "56") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "56") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "56") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_notAnd" (formula "56") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "54") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "54") (term "1,0") (ifseqformula "38"))
+ (rule "replace_known_left" (formula "54") (term "1,1,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "74")) (ifInst "" (formula "15")) (ifInst "" (formula "55")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "55") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "div_axiom" (formula "45") (term "0") (inst "quotient=quotient_1"))
+ (rule "qeq_literals" (formula "45") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "equal_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "mul_literals" (formula "45") (term "1,1,1"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1"))
+ (rule "add_literals" (formula "47") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "47") (term "1"))
+ (rule "add_literals" (formula "47") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "applyEqRigid" (formula "45") (term "0") (ifseqformula "48"))
+ (rule "eqSymm" (formula "45"))
+ (rule "applyEqRigid" (formula "46") (term "0,1,0,0") (ifseqformula "45"))
+ (rule "mul_literals" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEqRigid" (formula "47") (term "0,1,0,0") (ifseqformula "45"))
+ (rule "mul_literals" (formula "47") (term "1,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "51"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "54"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "commute_or_2" (formula "39") (term "0,0"))
+ (rule "nnf_notAnd" (formula "57") (term "0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0"))
+ (rule "commute_or" (formula "12") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "60") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "59") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0"))
+ (rule "nnf_imp2or" (formula "34") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE"
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "67") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0"))
+ (rule "qeq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "73"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "72") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "closeFalse" (formula "72"))
+ )
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE"
+ (rule "inEqSimp_geqRight" (formula "74"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>,
+ indices,
+ arr(i_0))") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "67") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0"))
+ (rule "qeq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "2"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_contradInEq1" (formula "54") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "closeFalse" (formula "54"))
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "64") (term "0"))
+ (rule "polySimp_elimSub" (formula "64") (term "1"))
+ (rule "polySimp_addComm1" (formula "64") (term "1"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,1"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "times_zero_2" (formula "51") (term "1,0"))
+ (rule "add_zero_right" (formula "51") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "add_zero_left" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "28"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "52"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "49"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "43"))
+ (rule "greater_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "mul_literals" (formula "49") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "53"))
+ (rule "mul_literals" (formula "49") (term "1,0,1"))
+ (rule "greater_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0"))
+ (rule "add_literals" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "44"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0"))
+ (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0"))
+ (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "13") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "eqSymm" (formula "21") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "1"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "3,0"))
+ (rule "mul_literals" (formula "19") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "15"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "56") (term "0,1,1") (ifseqformula "15"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "15"))
+ (rule "applyEq" (formula "42") (term "0,1,1,0,1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "15"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "15"))
+ (rule "applyEq" (formula "42") (term "1,1,1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "15"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "16"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1,3,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "58") (term "0,0"))
+ (rule "mod_axiom" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "0,1,1"))
+ (rule "mod_axiom" (formula "55") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "42") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "1"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "42") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "17"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "shiftLeftDef" (formula "16") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "58") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "55") (term "0,0,1,1"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0,1,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0,1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0,1,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,1"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "55"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "mul_literals" (formula "55") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "mul_literals" (formula "55") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "54"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "shiftLeftDef" (formula "42") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "42") (term "0,1,1,0,1,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "18") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "18"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "42") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "42") (term "1,1,1,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "20") (term "1,1,1,1,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "15"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "20") (term "1,1,1,0,0,0") (ifseqformula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1"))
+ (rule "mul_literals" (formula "60") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1"))
+ (rule "inEqSimp_exactShadow1" (formula "58") (ifseqformula "51"))
+ (rule "greater_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "mul_literals" (formula "58") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "51"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "17"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "16"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "46") (inst "i_0=i_0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "63")) (ifInst "" (formula "62")) (ifInst "" (formula "14")))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "46"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "51") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "47") (term "1"))
+ (rule "eqSymm" (formula "53") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "3,0"))
+ (rule "mul_literals" (formula "51") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "46"))
+ (rule "applyEq" (formula "22") (term "1,1,1,1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "21") (term "1,3,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "23") (term "1,1,1,0,0,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "57") (term "0,1,1") (ifseqformula "46"))
+ (rule "applyEq" (formula "56") (term "1") (ifseqformula "46"))
+ (rule "applyEq" (formula "19") (term "1") (ifseqformula "46"))
+ (rule "applyEq" (formula "44") (term "0,1,1,0,1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "46"))
+ (rule "applyEq" (formula "60") (term "0,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "20") (term "1") (ifseqformula "46"))
+ (rule "applyEq" (formula "49") (term "0,1,0,0,1,0,0,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "46"))
+ (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "48") (term "0,1,0,0,1,1,0") (ifseqformula "46"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "46") (term "1"))
+ (rule "mod_axiom" (formula "46") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "1,3,0"))
+ (rule "mod_axiom" (formula "47") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "1,3,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "0,1,1"))
+ (rule "mod_axiom" (formula "56") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "59") (term "0,0"))
+ (rule "mod_axiom" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "20") (term "1"))
+ (rule "mod_axiom" (formula "20") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1,1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "48") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "46") (term "0,1"))
+ (rule "eqSymm" (formula "46"))
+ (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "47") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "54") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "22") (term "1,1,1,1,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "21") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "21") (term "1,3,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "23") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "23") (term "1,1,1,0,0,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "56") (term "0,0,1,1"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,1,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,1,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,1,1"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "56"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "46"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "55"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "19"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "shiftLeftDef" (formula "44") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,1,0,1,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "18") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "59") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "46"))
+ (rule "shiftLeftDef" (formula "20") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "20"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1,1"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "46"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "shiftLeftDef" (formula "48") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "48") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "48") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "48") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "48") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "48") (term "1,1,1,0,0,0") (ifseqformula "46"))
+ (rule "inEqSimp_exactShadow1" (formula "59") (ifseqformula "54"))
+ (rule "greater_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "1"))
+ (rule "mul_literals" (formula "59") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "18"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "54"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "22")))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaSubInt" (formula "42") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "42") (term "0,2,1"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "42"))
+ (rule "translateJavaMulInt" (formula "39") (term "0"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,2,1"))
+ (rule "mul_literals" (formula "42") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,2,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "46") (term "1,1,0,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "58") (term "1,1") (ifseqformula "39"))
+ (rule "applyEq" (formula "49") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "50") (term "1,0,1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_homoInEq1" (formula "61"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "40"))
+ (rule "inEqSimp_commuteGeq" (formula "17"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1"))
+ (rule "mul_literals" (formula "61") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1"))
+ (rule "newSym_eq" (formula "39") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "39") (term "1,1"))
+ (rule "add_zero_right" (formula "39") (term "1"))
+ (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "19") (term "1,1,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "51") (term "1,1,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "42") (term "3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "39"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "47") (term "1,1,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "43") (term "1,0,2,0") (ifseqformula "39"))
+ (rule "eqSymm" (formula "43"))
+ (rule "applyEq" (formula "19") (term "1,1,1,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "20") (term "1,1,1,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "18") (term "1,3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "14") (term "0,0,1,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "62") (term "0,0") (ifseqformula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "47") (term "1,1,0,1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "61") (term "0,0,1,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "64") (term "0,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "43") (term "1,0,2,0") (ifseqformula "39"))
+ (rule "eqSymm" (formula "43"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "66") (term "0,1,0,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "1") (term "1,0,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "39"))
+ (rule "applyEq" (formula "57") (term "0,1,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "40"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1"))
+ (rule "mul_literals" (formula "57") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "37") (ifseqformula "15"))
+ (rule "greater_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1,0"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "elimGcdLeq_antec" (formula "37") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0"))
+ (rule "neg_literal" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "37") (term "0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_exactShadow1" (formula "60") (ifseqformula "64"))
+ (rule "mul_literals" (formula "60") (term "1,0,1"))
+ (rule "greater_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "13"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "61"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "13") (ifseqformula "16"))
+ (rule "greater_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1,0"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "15"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1"))
+ (rule "mul_literals" (formula "57") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "62"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "mul_literals" (formula "56") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "15"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "expand_moduloInteger" (formula "48") (term "0"))
+ (rule "replace_int_RANGE" (formula "48") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "48") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "applyEq" (formula "48") (term "0,1,0") (ifseqformula "12"))
+ (rule "polySimp_pullOutFactor1" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,0"))
+ (rule "times_zero_1" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "nnf_imp2or" (formula "20") (term "0"))
+ (rule "nnf_imp2or" (formula "49") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "20") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "49") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "49") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "43") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "68")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "44") (term "1"))
+ (rule "eqSymm" (formula "50") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "3,0"))
+ (rule "mul_literals" (formula "48") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "45") (term "1") (ifseqformula "38"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "38"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "38"))
+ (rule "eqSymm" (formula "43"))
+ (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,1,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "43") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0"))
+ (rule "mul_literals" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "41") (term "0"))
+ (rule "replace_known_left" (formula "41") (term "1,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "71")) (ifInst "" (formula "42")))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "52") (term "1,0") (ifseqformula "49"))
+ (rule "replace_known_right" (formula "52") (term "0,0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "24")) (ifInst "" (formula "48")) (ifInst "" (formula "53")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "42") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "42") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "54") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "54") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "54") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "54") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "21") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,2,0,1,0"))
+ (rule "nnf_imp2or" (formula "47") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "expand_moduloInteger" (formula "44") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "44") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "44") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "12"))
+ (rule "polySimp_pullOutFactor1" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,0"))
+ (rule "times_zero_1" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "commute_and" (formula "49") (term "1,0"))
+ (rule "commute_or" (formula "8") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "div_axiom" (formula "12") (term "0,0,0,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "qeq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "polySimp_addComm1" (formula "14") (term "1"))
+ (rule "add_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mod_axiom" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "15") (term "1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "0,1,1"))
+ (rule "add_zero_left" (formula "15") (term "1,1"))
+ (rule "add_zero_right" (formula "15") (term "1"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1"))
+ (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "polySimp_invertEq" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14"))
+ (rule "mul_literals" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "neg_literal" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14"))
+ (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "10"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEqRigid" (formula "15") (term "0,1") (ifseqformula "10"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "applyEq" (formula "15") (term "0,1,1") (ifseqformula "10"))
+ (rule "mul_literals" (formula "15") (term "1,1"))
+ (rule "add_zero_right" (formula "15") (term "1"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "add_zero_left" (formula "17") (term "1,0"))
+ (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "jdiv_axiom" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "inEqSimp_subsumption6" (formula "16") (term "0,0") (ifseqformula "19"))
+ (rule "greater_literals" (formula "16") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEq" (formula "71") (term "1") (ifseqformula "16"))
+ (rule "applyEq" (formula "64") (term "0,1,1") (ifseqformula "16"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "18") (term "0,1,1") (ifseqformula "16"))
+ (rule "applyEqRigid" (formula "69") (term "0") (ifseqformula "16"))
+ (rule "applyEq" (formula "68") (term "0,1,1") (ifseqformula "16"))
+ (rule "applyEqRigid" (formula "17") (term "0") (ifseqformula "16"))
+ (rule "applyEqRigid" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "16"))
+ (rule "applyEqRigid" (formula "73") (term "1,0,1") (ifseqformula "16"))
+ (rule "polyDiv_pullOut" (formula "73") (term "1,0,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "73") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "73") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "73") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "73") (term "0,0,1,0,1"))
+ (rule "div_literals" (formula "73") (term "0,1,0,1"))
+ (rule "add_zero_left" (formula "73") (term "1,0,1"))
+ (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0"))
+ (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0"))
+ (rule "polyDiv_pullOut" (formula "17") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_pullOutFactor0" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "0,0,0"))
+ (rule "div_literals" (formula "17") (term "0,0"))
+ (rule "add_zero_left" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "polyDiv_pullOut" (formula "67") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,0,1,1"))
+ (rule "equal_literals" (formula "67") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "67") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "67") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "67") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "67") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "68") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "68") (term "0,0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "68") (term "0,0,0"))
+ (rule "add_literals" (formula "68") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "68") (term "0,0,0"))
+ (rule "div_literals" (formula "68") (term "0,0"))
+ (rule "add_zero_left" (formula "68") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "polySimp_pullOutFactor0b" (formula "68") (term "0"))
+ (rule "add_literals" (formula "68") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "18"))
+ (rule "leq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "polyDiv_pullOut" (formula "17") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "17") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "17") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "17") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "17") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "17") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "17") (term "0,1,1"))
+ (rule "polyDiv_pullOut" (formula "62") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "62") (term "0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_pullOutFactor0" (formula "62") (term "0,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,0,0"))
+ (rule "div_literals" (formula "62") (term "0,0"))
+ (rule "add_zero_left" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "62"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0"))
+ (rule "add_literals" (formula "62") (term "1,1,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0"))
+ (rule "add_zero_right" (formula "62") (term "0"))
+ (rule "leq_literals" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "polyDiv_pullOut" (formula "62") (term "0,1,1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "62") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "62") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "62") (term "1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "62") (term "0,0,0,1,1"))
+ (rule "div_literals" (formula "62") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "62") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "1"))
+ (rule "add_literals" (formula "62") (term "1,1,1"))
+ (rule "times_zero_1" (formula "62") (term "1,1"))
+ (rule "add_zero_right" (formula "62") (term "1"))
+ (rule "polyDiv_pullOut" (formula "67") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,1"))
+ (rule "equal_literals" (formula "67") (term "0,1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,1"))
+ (rule "add_literals" (formula "67") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "67") (term "0,0,1"))
+ (rule "div_literals" (formula "67") (term "0,1"))
+ (rule "add_zero_left" (formula "67") (term "1"))
+ (rule "polyDiv_pullOut" (formula "16") (term "1") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "16") (term "0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "16") (term "0,0,1"))
+ (rule "add_literals" (formula "16") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "16") (term "0,0,1"))
+ (rule "div_literals" (formula "16") (term "0,1"))
+ (rule "add_zero_left" (formula "16") (term "1"))
+ (rule "inEqSimp_exactShadow1" (formula "65") (ifseqformula "67"))
+ (rule "mul_literals" (formula "65") (term "1,0,1"))
+ (rule "greater_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "18"))
+ (rule "leq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "68"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "commute_or" (formula "53") (term "0,0,0"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "nnf_imp2or" (formula "55") (term "0"))
+ (rule "commute_or_2" (formula "56") (term "0,0"))
+ (rule "commute_or" (formula "52") (term "0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_homoInEq1" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "40") (term "0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0"))
+ (rule "qeq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "69"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "69") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "68"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "arrayLengthNotNegative" (formula "40") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "37"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthNotNegative" (formula "42") (term "0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1"))
+ (rule "polySimp_elimOne" (formula "42") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0"))
+ (rule "qeq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "commute_or_2" (formula "26") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "49") (term "0"))
+ (rule "replace_known_left" (formula "49") (term "0,1") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "73")) (ifInst "" (formula "29")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0,0"))
+ (rule "nnf_notAnd" (formula "52") (term "0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "46") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0"))
+ (rule "nnf_imp2or" (formula "47") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "52") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "52") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "52") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "52") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "51") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,0,0,1,1,1,0"))
+ (rule "commute_or_2" (formula "8") (term "0,0"))
+ (rule "nnf_notAnd" (formula "58") (term "0,0"))
+ (rule "nnf_imp2or" (formula "58") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "50") (term "0"))
+ (rule "nnf_notAnd" (formula "52") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "52") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "52") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "52") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "52") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "52") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "52") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,0,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "57") (term "0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,1,0"))
+ (rule "div_axiom" (formula "14") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "qeq_literals" (formula "14") (term "0,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "16") (term "1"))
+ (rule "add_literals" (formula "16") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "17"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0") (ifseqformula "14"))
+ (rule "mul_literals" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "14"))
+ (rule "mul_literals" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "21"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "commute_or_2" (formula "57") (term "0,0"))
+ (rule "commute_or_2" (formula "56") (term "0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0"))
+ (rule "commute_or" (formula "26") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "59") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "59") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,1,0,0"))
+ (rule "shift_paren_or" (formula "60") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "51") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "59") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0"))
+ (rule "nnf_notAnd" (formula "58") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE"
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "67"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE"
+ (rule "inEqSimp_geqRight" (formula "73"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "67"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "64"))
+ (branch "Normal Execution (x_arr_2 != null)"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (rule "preincrement" (formula "64") (term "1"))
+ (rule "compound_int_cast_expression" (formula "64") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "64") (term "1"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_23"))
+ (rule "remove_parentheses_right" (formula "64") (term "1"))
+ (rule "assignmentAdditionInt" (formula "64") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "expand_inInt" (formula "64"))
+ (rule "replace_int_MAX" (formula "64") (term "1,0"))
+ (rule "replace_int_MIN" (formula "64") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "times_zero_2" (formula "50") (term "1,0"))
+ (rule "add_zero_right" (formula "50") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,1"))
+ (rule "add_literals" (formula "64") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1"))
+ (rule "mul_literals" (formula "53") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "mul_literals" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1"))
+ (rule "mul_literals" (formula "3") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "59") (term "1") (ifseqformula "6"))
+ (rule "leq_literals" (formula "59") (term "0,1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_leqRight" (formula "59"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "27"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "28"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "23"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "48"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "4"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "29") (ifseqformula "1"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "1,1,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0"))
+ (rule "add_zero_right" (formula "29") (term "0"))
+ (rule "leq_literals" (formula "29"))
+ (rule "closeFalse" (formula "29"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaAddInt" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "64") (term "1"))
+ (rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (rule "lsContinue" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "precOfInt" (formula "64"))
+ (rule "inEqSimp_ltToLeq" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,1"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "64") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,1"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0,1"))
+ (rule "add_zero_left" (formula "64") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "times_zero_2" (formula "50") (term "1,0"))
+ (rule "add_zero_right" (formula "50") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "times_zero_2" (formula "64") (term "1,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0"))
+ (rule "applyEq" (formula "64") (term "1,0,0") (ifseqformula "34"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0"))
+ (rule "applyEq" (formula "64") (term "1,0,1") (ifseqformula "34"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,1"))
+ (rule "add_literals" (formula "64") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "64") (term "1,0,1"))
+ (rule "add_zero_right" (formula "64") (term "0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1"))
+ (rule "add_literals" (formula "64") (term "1,0,1"))
+ (rule "times_zero_1" (formula "64") (term "0,1"))
+ (rule "leq_literals" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_geqRight" (formula "64"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "50"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "4"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (x_arr_2 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_2 != null, but x_15 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64")))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "false_right" (formula "65"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "times_zero_2" (formula "51") (term "1,0"))
+ (rule "add_zero_right" (formula "51") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1"))
+ (rule "mul_literals" (formula "4") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1"))
+ (rule "mul_literals" (formula "54") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "51"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "4"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "false_right" (formula "60"))
+ (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "times_zero_2" (formula "48") (term "1,0"))
+ (rule "add_zero_right" (formula "48") (term "0"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "52"))
+ (rule "applyEq" (formula "49") (term "0,0,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "53"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "mul_literals" (formula "45") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1"))
+ (rule "polySimp_rightDist" (formula "43") (term "1"))
+ (rule "mul_literals" (formula "43") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "1,1,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0"))
+ (rule "add_zero_right" (formula "46") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "46") (ifseqformula "42"))
+ (rule "greater_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1"))
+ (rule "mul_literals" (formula "46") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "4"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0"))
+ (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0"))
+ (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "10"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "55")))
+ (rule "expand_inInt" (formula "11") (term "1,0,0"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "eqSymm" (formula "18") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "12") (term "1"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "3,0"))
+ (rule "mul_literals" (formula "16") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "51") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "52") (term "0,1,1") (ifseqformula "12"))
+ (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "13"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "1"))
+ (rule "mod_axiom" (formula "14") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,3,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "49") (term "0"))
+ (rule "mod_axiom" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "0,0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "50") (term "1"))
+ (rule "mod_axiom" (formula "50") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0,1,1"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1"))
+ (rule "eqSymm" (formula "12"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "13") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "14") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "49") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "49") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "49") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "54") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "50") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,1"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "50"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0,1,1"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0,1,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0,1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0,1,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,1,1"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "polySimp_addComm1" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "mul_literals" (formula "51") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "mul_literals" (formula "51") (term "0,1"))
+ (rule "shiftLeftDef" (formula "39") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "17") (term "1,1,1,1,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "49"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "qeq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "inEqSimp_exactShadow1" (formula "54") (ifseqformula "49"))
+ (rule "greater_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,0"))
+ (rule "mul_literals" (formula "54") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,1,0"))
+ (rule "mul_literals" (formula "54") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "mul_literals" (formula "54") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "14"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "nnf_imp2or" (formula "7") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "43") (inst "i_0=i_0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "58")) (ifInst "" (formula "62")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "45"))
+ (rule "eqSymm" (formula "50") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "44") (term "1"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "3,0"))
+ (rule "mul_literals" (formula "48") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "43"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "43"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "43"))
+ (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "43"))
+ (rule "applyEq" (formula "19") (term "1,1,1,0,0,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "40") (term "0,1,1,0,1,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "43"))
+ (rule "applyEq" (formula "18") (term "1,1,1,1,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "40") (term "1,1,1,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "43"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "43"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,1,0") (ifseqformula "43"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "1"))
+ (rule "mod_axiom" (formula "43") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "0,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "1"))
+ (rule "mod_axiom" (formula "52") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0,1,1"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "1,3,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,3,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1,1"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "43") (term "0,1"))
+ (rule "eqSymm" (formula "43"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "56") (term "0,0,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "shiftLeftDef" (formula "52") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0,1,1"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0,1,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0,1,1"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0,1,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,1,1"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "53"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "53") (term "0,1,0") (ifseqformula "43"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "19") (term "1,1,1,0,0,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "40") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "40") (term "0,1,1,0,1,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "16"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "18") (term "1,1,1,1,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "44") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "40") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "40") (term "1,1,1,0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "14") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "43"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1,1"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,1"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "applyEq" (formula "12") (term "0,1,0,0") (ifseqformula "43"))
+ (rule "polySimp_sepPosMonomial" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "mul_literals" (formula "58") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "59"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "14"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow1" (formula "56") (ifseqformula "51"))
+ (rule "greater_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "51"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "59") (ifseqformula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but bucket Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "false_right" (formula "60"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "49"))
+ (rule "times_zero_2" (formula "49") (term "1,0"))
+ (rule "add_zero_right" (formula "49") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1"))
+ (rule "mul_literals" (formula "46") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "leq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_contradInEq1" (formula "45") (ifseqformula "1"))
+ (rule "andLeft" (formula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,1,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0"))
+ (rule "add_zero_right" (formula "45") (term "0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,1,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0"))
+ (rule "add_literals" (formula "45") (term "0"))
+ (rule "leq_literals" (formula "45"))
+ (rule "closeFalse" (formula "45"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "equal_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "closeTrue" (formula "59"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_indices = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_indices != null, but i Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53")))
+ (rule "false_right" (formula "54"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_5 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (rule "false_right" (formula "51"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "5") (term "0,0"))
+ (rule "add_zero_left" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "27"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "26"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "5"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0"))
+ (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i_0=i_0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "18") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "3,0"))
+ (rule "mul_literals" (formula "16") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "1") (ifseqformula "12"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "0,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "1"))
+ (rule "mod_axiom" (formula "14") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1"))
+ (rule "mod_axiom" (formula "15") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1,3,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1"))
+ (rule "eqSymm" (formula "12"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "13") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "39") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,0,1,1,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,1,1,0,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,1,1,0,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "14") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "17") (term "1,1,1,1,0") (ifseqformula "12"))
+ (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "commute_or" (formula "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "20")))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,2,1"))
+ (rule "eqSymm" (formula "37"))
+ (rule "eqSymm" (formula "40"))
+ (rule "translateJavaMulInt" (formula "37") (term "0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,2,1"))
+ (rule "mul_literals" (formula "40") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,2,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "44") (term "1,1,0,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "15"))
+ (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "38"))
+ (rule "newSym_eq" (formula "37") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "37") (term "1,1"))
+ (rule "add_zero_right" (formula "37") (term "1"))
+ (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "40") (term "3,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "38") (term "0,0") (ifseqformula "37"))
+ (rule "eqSymm" (formula "38"))
+ (rule "applyEq" (formula "41") (term "1,0,2,0") (ifseqformula "37"))
+ (rule "eqSymm" (formula "41"))
+ (rule "applyEq" (formula "45") (term "1,1,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "17") (term "1,1,1,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "14") (term "1") (ifseqformula "37"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "45") (term "1,1,0,1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "41") (term "1,0,2,0") (ifseqformula "37"))
+ (rule "eqSymm" (formula "41"))
+ (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "37"))
+ (rule "inEqSimp_subsumption6" (formula "35") (ifseqformula "13"))
+ (rule "mul_literals" (formula "35") (term "1,1,0"))
+ (rule "greater_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "46") (inst "i_0=i_0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "48")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "51") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "47") (term "1"))
+ (rule "eqSymm" (formula "53") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "3,0"))
+ (rule "mul_literals" (formula "51") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "48") (term "1") (ifseqformula "46"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "46"))
+ (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "46"))
+ (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "49"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "46"))
+ (rule "applyEq" (formula "50") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "52") (term "1,0,1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "51") (term "0,1,0,0,1,1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "52") (term "0,1,0,0,1,0,0,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "51") (term "0,1,0,0,1,0,0,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "48") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "49") (term "1,3,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "applyEq" (formula "46") (term "1") (ifseqformula "36"))
+ (rule "applyEq" (formula "48") (term "0,1,0,0,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "49") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "36") (term "0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "36") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "commute_or" (formula "45") (term "0,0,0"))
+ (rule "commute_or" (formula "8") (term "0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "18") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "18") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,2,0,1,0"))
+ (rule "commute_or" (formula "44") (term "0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0,1,1,1,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0,0"))
+ (rule "commute_and" (formula "18") (term "1,0,0"))
+ (rule "commute_and" (formula "17") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "expand_moduloInteger" (formula "36") (term "0"))
+ (rule "replace_int_RANGE" (formula "36") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0"))
+ (rule "applyEq" (formula "36") (term "0,1,0") (ifseqformula "12"))
+ (rule "polySimp_pullOutFactor1" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "1,0"))
+ (rule "times_zero_1" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "35"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "16") (term "0"))
+ (rule "wellFormedAnon" (formula "16") (term "1,0"))
+ (rule "wellFormedAnonEQ" (formula "16") (term "0,1,0") (ifseqformula "42"))
+ (rule "replace_known_left" (formula "16") (term "1,0,1,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "51")) (ifInst "" (formula "22")) (ifInst "" (formula "20")) (ifInst "" (formula "17")))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "47") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "47") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "47") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_imp2or" (formula "38") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "46") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "46") (term "1,0") (ifseqformula "42"))
+ (rule "replace_known_left" (formula "46") (term "0,1") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "52")) (ifInst "" (formula "22")) (ifInst "" (formula "41")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "40") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "50")) (ifInst "" (formula "11")))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "45") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "41") (term "1"))
+ (rule "eqSymm" (formula "47") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "45") (term "3,0"))
+ (rule "mul_literals" (formula "45") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "51"))
+ (rule "applyEq" (formula "45") (term "1,0,1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "49"))
+ (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,1,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "40") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "nnf_imp2or" (formula "17") (term "0,1,0"))
+ (rule "commute_or_2" (formula "47") (term "0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0"))
+ (rule "commute_or_2" (formula "8") (term "0,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "commute_or_2" (formula "51") (term "0,0"))
+ (rule "expand_moduloInteger" (formula "40") (term "0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "40") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "applyEq" (formula "40") (term "0,1,0") (ifseqformula "12"))
+ (rule "polySimp_pullOutFactor1" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,0"))
+ (rule "times_zero_1" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "commute_and" (formula "45") (term "1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "18") (term "0,0"))
+ (rule "commute_or_2" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "49") (term "0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,1,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0"))
+ (rule "nnf_imp2or" (formula "49") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "42") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0"))
+ (rule "commute_or_2" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "48") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "48") (term "1,0") (ifseqformula "44"))
+ (rule "replace_known_right" (formula "48") (term "0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "22")) (ifInst "" (formula "43")) (ifInst "" (formula "49")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "49") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "49") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "17") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,1,0,0,1,0"))
+ (rule "div_axiom" (formula "12") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "12") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "equal_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "polySimp_addComm1" (formula "14") (term "1"))
+ (rule "add_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mod_axiom" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1"))
+ (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "15") (term "1,1,1"))
+ (rule "times_zero_1" (formula "15") (term "0,1,1"))
+ (rule "add_zero_right" (formula "15") (term "1,1"))
+ (rule "add_zero_right" (formula "15") (term "1"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15"))
+ (rule "polySimp_homoEq" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1"))
+ (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "polySimp_invertEq" (formula "15"))
+ (rule "times_zero_2" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "15"))
+ (rule "mul_literals" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "applyEq" (formula "15") (term "0,1") (ifseqformula "10"))
+ (rule "times_zero_2" (formula "15") (term "1"))
+ (rule "applyEq" (formula "16") (term "0,1,1") (ifseqformula "10"))
+ (rule "mul_literals" (formula "16") (term "1,1"))
+ (rule "add_literals" (formula "16") (term "1"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "10"))
+ (rule "leq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10"))
+ (rule "times_zero_2" (formula "17") (term "0,1,0"))
+ (rule "add_zero_left" (formula "17") (term "1,0"))
+ (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "12"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or_2" (formula "41") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "52") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "1") (term "0,1"))
+ (rule "expand_inShort" (formula "1"))
+ (rule "replace_short_MAX" (formula "1") (term "1,0"))
+ (rule "replace_short_MIN" (formula "1") (term "0,1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "37"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "arrayLengthNotNegative" (formula "41") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0"))
+ (rule "qeq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "cut_direct" (formula "1") (term "1"))
+ (branch "CUT: values.length <= begin + i_0 TRUE"
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "36") (term "0,0"))
+ (rule "add_zero_left" (formula "36") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "40") (ifseqformula "2"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,1,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0"))
+ (rule "add_zero_right" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,1,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0"))
+ (rule "add_zero_right" (formula "40") (term "0"))
+ (rule "leq_literals" (formula "40"))
+ (rule "closeFalse" (formula "40"))
+ )
+ (branch "CUT: values.length <= begin + i_0 FALSE"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "59"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "37") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "closeFalse" (formula "37"))
+ )
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "50") (term "1"))
+ (rule "blockBreak" (formula "50") (term "1"))
+ (rule "lsBreak" (formula "50") (term "1"))
+ (rule "assignment" (formula "50") (term "1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "methodCallEmpty" (formula "50") (term "1"))
+ (rule "tryEmpty" (formula "50") (term "1"))
+ (rule "emptyModality" (formula "50") (term "1"))
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (rule "impRight" (formula "50"))
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "8")))
+ (rule "closeTrue" (formula "51"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "closeTrue" (formula "51"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "50"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Null Reference (_indices = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_4" (formula "40") (term "1"))
+ (rule "for_to_while" (formula "40") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "variableDeclarationAssign" (formula "40") (term "1"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "i"))
+ (rule "assignment" (formula "40") (term "1"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "loopScopeInvDia" (formula "40") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "40"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0,0"))
+ (rule "impRight" (formula "41"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "0,2,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "47") (term "1,0,1,1,0") (ifseqformula "28"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "28"))
+ (rule "inEqSimp_commuteGeq" (formula "2"))
+ (rule "commute_and" (formula "4") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "commute_and" (formula "4") (term "0,0,0"))
+ (rule "commute_and_2" (formula "4") (term "0,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "4") (term "0,0,0"))
+ (rule "ifElseUnfold" (formula "47") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_2"))
+ (rule "compound_less_than_comparison_2" (formula "47") (term "1") (inst "#v1=x_4") (inst "#v0=x_3"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_3"))
+ (rule "assignment" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "variableDeclarationAssign" (formula "47") (term "1"))
+ (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_4"))
+ (rule "assignment_read_length" (formula "47"))
+ (branch "Normal Execution (_indices != null)"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "applyEq" (formula "47") (term "0,1,0") (ifseqformula "28"))
+ (rule "less_than_comparison_simple" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "41") (term "0,0") (ifseqformula "8") (ifseqformula "9"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "41") (term "0") (ifseqformula "9") (ifseqformula "10"))
+ (rule "ifElseSplit" (formula "49"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "Block Contract (Internal)" (formula "50") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "51"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "20")) (ifInst "" (formula "13")) (ifInst "" (formula "48")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,1") (ifseqformula "34"))
+ (rule "andLeft" (formula "40"))
+ (rule "eqSymm" (formula "52") (term "0,0,1,0,1"))
+ (rule "replace_known_left" (formula "41") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "emptyStatement" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "emptyStatement" (formula "51") (term "1"))
+ (rule "tryEmpty" (formula "51") (term "1"))
+ (rule "blockEmptyLabel" (formula "51") (term "1"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (rule "methodCallEmpty" (formula "51") (term "1"))
+ (rule "emptyModality" (formula "51") (term "1"))
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "closeTrue" (formula "51"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "closeTrue" (formula "51"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "50"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "wellFormedAnon" (formula "50"))
+ (rule "wellFormedAnonEQ" (formula "50") (term "0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "50") (term "1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "11")) (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "50"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47")))
+ (rule "closeTrue" (formula "50"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0") (ifseqformula "34"))
+ (rule "orRight" (formula "50"))
+ (rule "orRight" (formula "50"))
+ (rule "close" (formula "50") (ifseqformula "12"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "50"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,1,1,0") (ifseqformula "34"))
+ (rule "expand_inInt" (formula "40") (term "1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "0,2,1"))
+ (rule "replace_known_left" (formula "41") (term "0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "pullOutSelect" (formula "41") (term "0") (inst "selectSK=arr_0"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "41"))
+ (rule "simplifySelectOfAnon" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "46")) (ifInst "" (formula "52")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "0,0,0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "41") (term "0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "simplifySelectOfAnonEQ" (formula "41") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "46")) (ifInst "" (formula "52")) (ifInst "" (formula "14")))
+ (rule "applyEqReverse" (formula "43") (term "0") (ifseqformula "41"))
+ (rule "applyEqReverse" (formula "42") (term "0") (ifseqformula "41"))
+ (rule "hideAuxiliaryEq" (formula "41"))
+ (rule "elim_double_block_2" (formula "53") (term "1"))
+ (rule "ifUnfold" (formula "53") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "replace_known_left" (formula "53") (term "0,0,1,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "ifSplit" (formula "53"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "53") (term "1"))
+ (rule "compound_assignment_op_minus_array" (formula "53") (term "1") (inst "#v1=x_2") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_6"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "eval_order_array_access3" (formula "53") (term "1") (inst "#v1=x_8") (inst "#v2=x_7") (inst "#v0=x_arr_1"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_arr_1"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_7"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_8"))
+ (rule "compound_int_cast_expression" (formula "53") (term "1") (inst "#v=x_9"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_9"))
+ (rule "remove_parentheses_right" (formula "53") (term "1"))
+ (rule "compound_subtraction_2" (formula "53") (term "1") (inst "#v1=x_11") (inst "#v0=x_10"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_10"))
+ (rule "assignment_array2" (formula "53"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "pullOutSelect" (formula "53") (term "0,1,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "54") (term "0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_11"))
+ (rule "assignment_read_attribute_this_final" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "assignmentSubtractionInt" (formula "53") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "53") (userinteraction))
+ (rule "instAll" (formula "4") (term "0") (ifseqformula "7") (userinteraction))
+ (rule "impLeft" (formula "4") (userinteraction))
+ (branch "Case 1"
+ (rule "expand_inInt" (formula "54"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0"))
+ (rule "replace_known_left" (formula "43") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "polySimp_elimSub" (formula "54") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "43") (term "1"))
+ (rule "polySimp_pullOutFactor1" (formula "43") (term "0,1"))
+ (rule "add_literals" (formula "43") (term "1,0,1"))
+ (rule "times_zero_1" (formula "43") (term "0,1"))
+ (rule "leq_literals" (formula "43") (term "1"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "1"))
+ (rule "mul_literals" (formula "54") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1"))
+ (rule "mul_literals" (formula "53") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "42") (term "0") (ifseqformula "4"))
+ (rule "leq_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_leqRight" (formula "42"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "25"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "21"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "1"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_literals" (formula "26") (term "0"))
+ (rule "leq_literals" (formula "26"))
+ (rule "closeFalse" (formula "26"))
+ )
+ (branch "Case 2"
+ (builtin "Evaluate Query" (formula "4") (term "0") (newnames "value,callee,queryResult,res_classify") (userinteraction))
+ (rule "replaceKnownQuery1001200110_5" (formula "5") (term "0"))
+ (rule "replaceKnownSelect_taclet01200110_3" (formula "5") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet01200110_4" (formula "5") (term "1"))
+ (rule "replaceKnownSelect_taclet200110_0" (formula "1") (term "0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet200110_2" (formula "1") (term "0,1,0,0"))
+ (rule "expand_inInt" (formula "55"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0"))
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "4"))
+ (rule "eqSymm" (formula "44") (term "0,0,1"))
+ (rule "polySimp_elimSub" (formula "55") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "55") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "1,1"))
+ (rule "variableDeclaration" (formula "44") (term "1") (newnames "queryResult"))
+ (rule "applyEq" (formula "55") (term "1,0,0") (ifseqformula "4"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "applyEq" (formula "55") (term "1,1,1") (ifseqformula "4"))
+ (rule "polySimp_addComm0" (formula "55") (term "1,1"))
+ (rule "commute_and" (formula "55"))
+ (builtin "Use Operation Contract" (formula "44") (newnames "heapBefore_classify,result,exc_1") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify)"
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "10")))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "44") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "49"))
+ (rule "translateJavaSubInt" (formula "48") (term "3,0"))
+ (rule "translateJavaMulInt" (formula "47") (term "1"))
+ (rule "eqSymm" (formula "49"))
+ (rule "polySimp_elimSub" (formula "48") (term "3,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "methodCallEmpty" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "emptyModality" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notRight" (formula "52"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0,0"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "47") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "48") (term "1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "50") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "49") (term "0,3,0") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1"))
+ (rule "mul_literals" (formula "62") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow1" (formula "43") (ifseqformula "42"))
+ (rule "greater_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "0,0"))
+ (rule "mul_literals" (formula "43") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "43"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "26"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "add_zero_left" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "27"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "23"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "6"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0"))
+ (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "43") (term "0,2,0,1"))
+ (rule "translateJavaSubInt" (formula "44") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "43") (term "0,2,0,1"))
+ (rule "mul_literals" (formula "43") (term "1,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "44") (term "1,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0"))
+ (rule "add_zero_right" (formula "43") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1"))
+ (rule "mul_literals" (formula "43") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1"))
+ (rule "pullOutSelect" (formula "44") (term "0,1") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,1,0,0") (ifseqformula "31"))
+ (rule "inEqSimp_commuteGeq" (formula "45") (term "1"))
+ (rule "pullOutSelect" (formula "43") (term "0,1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,1,1,0,0") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "1"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1"))
+ (rule "mul_literals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1"))
+ (rule "pullOutSelect" (formula "45") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "45") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "pullOutSelect" (formula "43") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnonEQ" (formula "43") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "52")))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,2,1"))
+ (rule "eqSymm" (formula "31"))
+ (rule "eqSymm" (formula "34"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,2,1"))
+ (rule "mul_literals" (formula "34") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,2,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "33") (term "3,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "52") (term "1,2,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "54") (term "0,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "50") (term "1,0,1,0,1,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "50") (term "0,0,0,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "53") (term "1,0,1,0,1,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "53") (term "0,1,0,2,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "50") (term "1,1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "49") (term "0,0,0,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "49") (term "1,2,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "49") (term "1,1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "52") (term "0,0,0,0") (ifseqformula "32"))
+ (rule "replace_known_right" (formula "52") (term "0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "49") (term "0,0,0,0") (ifseqformula "32"))
+ (rule "replace_known_right" (formula "49") (term "0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "applyEq" (formula "53") (term "0,0,0,0") (ifseqformula "32"))
+ (rule "replace_known_right" (formula "53") (term "0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "applyEq" (formula "50") (term "0,1,0,2,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "50") (term "1,0,0,0,1,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "31"))
+ (rule "eqSymm" (formula "34"))
+ (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "50") (term "0,0,0,0") (ifseqformula "32"))
+ (rule "replace_known_right" (formula "50") (term "0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "49") (term "1,0,0,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "49") (term "0,1,0,2,2,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "52") (term "1,0,0,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "52") (term "1,1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "49") (term "0,1,0,2,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "52") (term "0,1,0,2,2,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "52") (term "0,0,0,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "52") (term "0,1,0,2,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "31"))
+ (rule "eqSymm" (formula "34"))
+ (rule "applyEq" (formula "53") (term "0,0,0,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "53") (term "1,1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "53") (term "1,0,0,0,1,0,0") (ifseqformula "32"))
+ (rule "inEqSimp_subsumption0" (formula "68") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq0" (formula "68") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "68") (term "0,0,0"))
+ (rule "qeq_literals" (formula "68") (term "0,0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_geqRight" (formula "68"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "52") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0"))
+ (rule "qeq_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_subsumption0" (formula "47") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0"))
+ (rule "qeq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_exactShadow1" (formula "48") (ifseqformula "1"))
+ (rule "greater_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0"))
+ (rule "mul_literals" (formula "48") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "mul_literals" (formula "48") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "48"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_contradInEq0" (formula "47") (ifseqformula "46"))
+ (rule "qeq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "closeFalse" (formula "47"))
+ )
+ (branch "Exceptional Post (classify)"
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "10")))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,0") (ifseqformula "35"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "close" (formula "46") (ifseqformula "45"))
+ )
+ (branch "Pre (classify)"
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "10")))
+ (rule "wellFormedAnon" (formula "44") (term "0,0"))
+ (rule "wellFormedAnonEQ" (formula "44") (term "0,0,0") (ifseqformula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,0") (ifseqformula "35"))
+ (rule "expand_inInt" (formula "44") (term "1"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1"))
+ (rule "replace_known_left" (formula "44") (term "1,0,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "12")) (ifInst "" (formula "11")) (ifInst "" (formula "42")))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1"))
+ (rule "replace_known_left" (formula "44") (term "1") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "orRight" (formula "44"))
+ (rule "orRight" (formula "44"))
+ (rule "replace_known_right" (formula "3") (term "1") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "1"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "36") (term "0,0,1,0,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "37") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "10") (term "1") (ifseqformula "3"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "3"))
+ (rule "applyEq" (formula "36") (term "0,1,1,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "38") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "22"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "5") (term "0,0"))
+ (rule "add_zero_left" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "5"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0"))
+ (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "21"))
+ (rule "notLeft" (formula "20"))
+ (rule "close" (formula "38") (ifseqformula "3"))
+ )
+ (branch "Null reference (callee = null)"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notRight" (formula "44"))
+ (rule "replace_known_left" (formula "4") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,1"))
+ (rule "applyEq" (formula "36") (term "0,0,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "37") (term "1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "50") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "36") (term "0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "38") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1"))
+ (rule "mul_literals" (formula "53") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "5") (term "0,0"))
+ (rule "add_zero_left" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "25"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "5"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0"))
+ (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0"))
+ (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "39")))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,2,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,2,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "34") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "33") (term "0,1,0,2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "33") (term "0,1,0,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "32") (term "0,3,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "37") (term "0,1,1,0,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "37") (term "1,1,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "33"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "close" (formula "45") (ifseqformula "1"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "53") (term "1"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "assignment_to_primitive_array_component" (formula "53"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "blockEmpty" (formula "53") (term "1"))
+ (rule "preincrement" (formula "53") (term "1"))
+ (rule "compound_int_cast_expression" (formula "53") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_12"))
+ (rule "remove_parentheses_right" (formula "53") (term "1"))
+ (rule "assignmentAdditionInt" (formula "53") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "1"))
+ (rule "mul_literals" (formula "53") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,1"))
+ (rule "add_literals" (formula "53") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "21"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "48") (term "1") (ifseqformula "4"))
+ (rule "leq_literals" (formula "48") (term "0,1"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_leqRight" (formula "48"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "26"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "53") (term "1"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "blockEmpty" (formula "53") (term "1"))
+ (rule "lsContinue" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,0"))
+ (rule "precOfInt" (formula "53"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "53") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0,1"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "53") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,0,0,1"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,1"))
+ (rule "add_zero_left" (formula "53") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "times_zero_2" (formula "53") (term "1,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0"))
+ (rule "applyEq" (formula "53") (term "1,0,0") (ifseqformula "31"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0"))
+ (rule "applyEq" (formula "53") (term "1,0,1") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "53") (term "0,1"))
+ (rule "add_literals" (formula "53") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "53") (term "1,0,1"))
+ (rule "add_zero_right" (formula "53") (term "0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "53") (term "0,1"))
+ (rule "add_literals" (formula "53") (term "1,0,1"))
+ (rule "times_zero_1" (formula "53") (term "0,1"))
+ (rule "leq_literals" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "inEqSimp_geqRight" (formula "53"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but x_7 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53")))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "false_right" (formula "54"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_6 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53")))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "false_right" (formula "54"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "50") (term "1"))
+ (rule "blockBreak" (formula "50") (term "1"))
+ (rule "lsBreak" (formula "50") (term "1"))
+ (rule "assignment" (formula "50") (term "1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "methodCallEmpty" (formula "50") (term "1"))
+ (rule "tryEmpty" (formula "50") (term "1"))
+ (rule "emptyModality" (formula "50") (term "1"))
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (rule "impRight" (formula "50"))
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "8")))
+ (rule "closeTrue" (formula "51"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "closeTrue" (formula "51"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "50"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Null Reference (_indices = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+)
+(branch "Exceptional Post (classify_all)"
+ (builtin "One Step Simplification" (formula "18"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "19"))
+ (rule "close" (formula "22") (ifseqformula "21"))
+)
+(branch "Pre (classify_all)"
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "24")) (ifInst "" (formula "25")) (ifInst "" (formula "1")) (ifInst "" (formula "24")) (ifInst "" (formula "4")) (ifInst "" (formula "25")) (ifInst "" (formula "9")))
+ (rule "expand_inInt" (formula "26") (term "1,0,1"))
+ (rule "expand_inInt" (formula "26") (term "1,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "26") (term "0,1,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "5")))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1"))
+ (rule "replace_known_left" (formula "26") (term "1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1"))
+ (rule "replace_known_left" (formula "26") (term "1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "20") (term "0,2,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "eqSymm" (formula "20"))
+ (rule "translateJavaMulInt" (formula "17") (term "1,0"))
+ (rule "replace_known_left" (formula "31") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,2,1"))
+ (rule "mul_literals" (formula "20") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,2,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "20") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "eqSymm" (formula "28") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "22") (term "1"))
+ (rule "translateJavaSubInt" (formula "28") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "3,0"))
+ (rule "mul_literals" (formula "26") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "22"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "22"))
+ (rule "applyEq" (formula "25") (term "1") (ifseqformula "22"))
+ (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "28") (term "1,0,1,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "16") (term "2,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "18") (term "3,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "17"))
+ (rule "inEqSimp_commuteGeq" (formula "25"))
+ (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22"))
+ (rule "eqSymm" (formula "19"))
+ (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "16") (term "0,1,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,1,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22"))
+ (rule "eqSymm" (formula "19"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1"))
+ (rule "mod_axiom" (formula "22") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "23") (term "0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "1"))
+ (rule "mod_axiom" (formula "24") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "26") (term "1,3,0"))
+ (rule "mod_axiom" (formula "26") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "2,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "18") (term "3,0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "0,1,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1"))
+ (rule "eqSymm" (formula "22"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "23") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "24") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "shiftLeftDef" (formula "26") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "16") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "16") (term "2,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "18") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "18") (term "3,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "25") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "16") (term "0,1,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "19"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "27") (term "1,1,1,1,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "28") (term "1,1,1,0,0,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "27") (term "1,1,1,0,0,0") (ifseqformula "22"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "19"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "25"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "expand_moduloInteger" (formula "22") (term "0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "22") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "29") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "29") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "29") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "commute_and" (formula "28") (term "1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "27") (term "0"))
+ (rule "replace_known_left" (formula "27") (term "1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32")) (ifInst "" (formula "28")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "28") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "expand_inInt" (formula "28") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "28") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "18") (term "0"))
+ (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "1")) (ifInst "" (formula "19")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0"))
+ (rule "nnf_imp2or" (formula "29") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "13") (term "0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "14"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "11"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "arrayLengthIsAShort" (formula "13") (term "0"))
+ (rule "expand_inShort" (formula "13"))
+ (rule "replace_short_MIN" (formula "13") (term "0,1"))
+ (rule "replace_short_MAX" (formula "13") (term "1,0"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "14"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "30") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "27"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthIsAShort" (formula "30") (term "1"))
+ (rule "expand_inShort" (formula "30"))
+ (rule "replace_short_MIN" (formula "30") (term "0,1"))
+ (rule "replace_short_MAX" (formula "30") (term "1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "27"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "32") (term "0"))
+ (rule "replace_known_left" (formula "32") (term "0,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "38")) (ifInst "" (formula "1")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0"))
+ (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "1")) (ifInst "" (formula "22")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "30") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "31") (term "0"))
+ (rule "expand_inShort" (formula "31"))
+ (rule "replace_short_MIN" (formula "31") (term "0,1"))
+ (rule "replace_short_MAX" (formula "31") (term "1,0"))
+ (rule "andLeft" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "ifthenelse_split" (formula "19") (term "0"))
+ (branch "self.equal_buckets = TRUE TRUE"
+ (rule "newSym_eq" (formula "20") (inst "newSymDef=mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "20") (term "1,1"))
+ (rule "add_zero_right" (formula "20") (term "1"))
+ (rule "applyEq" (formula "25") (term "1,1,0,0,0,1,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "24") (term "1,1,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "41") (term "1,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "35") (term "1") (ifseqformula "20"))
+ (rule "applyEq" (formula "40") (term "1,1,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "26") (term "1,0,2,0") (ifseqformula "20"))
+ (rule "eqSymm" (formula "26"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "42") (term "1,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "40") (term "1,1,1,0,0,0,1,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "25") (term "1,1,0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "20"))
+ (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "20"))
+ (rule "eqSymm" (formula "21"))
+ (rule "applyEq" (formula "23") (term "3,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "21"))
+ (rule "applyEq" (formula "26") (term "1,0,2,0") (ifseqformula "20"))
+ (rule "eqSymm" (formula "26"))
+ (rule "applyEq" (formula "29") (term "1,1") (ifseqformula "20"))
+ (rule "applyEq" (formula "41") (term "0,1,0,0,1,1,1,0") (ifseqformula "20"))
+ (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "31"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1,0"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "elimGcdLeq_antec" (formula "17") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "17") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "17") (term "0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "35") (term "0"))
+ (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "1")) (ifInst "" (formula "36")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0"))
+ (rule "nnf_imp2or" (formula "36") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "36") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "22") (term "0,0"))
+ (rule "commute_or_2" (formula "37") (term "0,0"))
+ (rule "commute_or_2" (formula "38") (term "0,0"))
+ (rule "commute_or_2" (formula "39") (term "0,0"))
+ (rule "commute_or_2" (formula "37") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "22") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "36") (term "0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "35") (term "0"))
+ (rule "replace_known_left" (formula "35") (term "1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "42")) (ifInst "" (formula "36")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "36") (term "0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,0,0"))
+ (rule "div_axiom" (formula "26") (term "0,0,0,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "26") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "equal_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "polySimp_addComm1" (formula "28") (term "1"))
+ (rule "add_literals" (formula "28") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "applyEq" (formula "29") (term "0,1,1,1,1,1,0,0") (ifseqformula "26"))
+ (rule "polySimp_addComm0" (formula "29") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "29") (term "0,0,0,1,0,0") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "29") (term "0,1,1,2,1,0,0") (ifseqformula "26"))
+ (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "29") (term "0,1,0,0") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "29") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "29") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mod_axiom" (formula "29") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "newSym_eq" (formula "29") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "29") (term "0,1,1"))
+ (rule "times_zero_1" (formula "29") (term "1,1,1"))
+ (rule "add_zero_left" (formula "29") (term "1,1"))
+ (rule "add_zero_right" (formula "29") (term "1"))
+ (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "29"))
+ (rule "polySimp_homoEq" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1"))
+ (rule "applyEq" (formula "29") (term "1,0,0") (ifseqformula "30"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "29") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "polySimp_homoEq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "0,0"))
+ (rule "add_zero_left" (formula "29") (term "0"))
+ (rule "polySimp_invertEq" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "times_zero_2" (formula "29") (term "1"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25"))
+ (rule "polySimp_mulAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "27") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "29"))
+ (rule "mul_literals" (formula "24") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_antiSymm" (formula "24") (ifseqformula "28"))
+ (rule "applyEqRigid" (formula "29") (term "0") (ifseqformula "24"))
+ (rule "leq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "applyEq" (formula "29") (term "0,1,1") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "29") (term "1,1"))
+ (rule "add_zero_right" (formula "29") (term "1"))
+ (rule "applyEqRigid" (formula "28") (term "0,1") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "28") (term "1"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "24"))
+ (rule "applyEq" (formula "31") (term "0,0,1,0") (ifseqformula "24"))
+ (rule "times_zero_2" (formula "31") (term "0,1,0"))
+ (rule "add_zero_left" (formula "31") (term "1,0"))
+ (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "26"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "25"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "38") (term "0"))
+ (rule "replace_known_left" (formula "38") (term "1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "46")) (ifInst "" (formula "39")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "39") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "39") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "commute_or" (formula "22") (term "1,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "33") (term "0"))
+ (rule "expand_inShort" (formula "33"))
+ (rule "replace_short_MIN" (formula "33") (term "0,1"))
+ (rule "replace_short_MAX" (formula "33") (term "1,0"))
+ (rule "andLeft" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "32"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "arrayLengthNotNegative" (formula "35") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "30") (term "0"))
+ (rule "expand_inShort" (formula "30"))
+ (rule "replace_short_MIN" (formula "30") (term "0,1"))
+ (rule "replace_short_MAX" (formula "30") (term "1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthNotNegative" (formula "16") (term "0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "17"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "12"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "30"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "arrayLengthIsAShort" (formula "16") (term "0"))
+ (rule "expand_inShort" (formula "16"))
+ (rule "replace_short_MIN" (formula "16") (term "0,1"))
+ (rule "replace_short_MAX" (formula "16") (term "1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "commute_or" (formula "42") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "43") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "44") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "41") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "21") (term "0,0,0"))
+ (rule "commute_or" (formula "42") (term "0,0,0,1,0"))
+ (rule "commute_or" (formula "22") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "40") (term "0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "39") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0"))
+ (rule "commute_or_2" (formula "39") (term "0,0"))
+ (rule "shift_paren_or" (formula "22") (term "0,0,0"))
+ (rule "div_axiom" (formula "28") (term "0") (inst "quotient=quotient_1"))
+ (rule "equal_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "28") (term "0,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,1"))
+ (rule "add_literals" (formula "30") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "30") (term "1"))
+ (rule "add_literals" (formula "30") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "31"))
+ (rule "eqSymm" (formula "28"))
+ (rule "applyEqRigid" (formula "30") (term "0,1,0,0") (ifseqformula "28"))
+ (rule "times_zero_2" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "28"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "37"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "33"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "commute_or_2" (formula "45") (term "0,0,0"))
+ (rule "commute_or_2" (formula "42") (term "0,0,0"))
+ (rule "commute_or_2" (formula "21") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "44") (term "0"))
+ (rule "shift_paren_or" (formula "43") (term "0,0,0"))
+ (rule "commute_or_2" (formula "43") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "22") (term "0,0,1,0"))
+ (rule "commute_or" (formula "41") (term "1,0,0,0"))
+ (rule "distr_forallAnd" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "commute_or_2" (formula "40") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "39") (term "0,0"))
+ (rule "commute_or" (formula "45") (term "0"))
+ (rule "commute_or" (formula "40") (term "1,0,0,0"))
+ (rule "commute_or" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "22") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "commute_or" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "46") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "46") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "commute_or" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "42") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "42") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "21") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "commute_or" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "43") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "43") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "shift_paren_or" (formula "41") (term "0,0,0"))
+ (rule "commute_or" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "44") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "shift_paren_or" (formula "39") (term "0,0,0"))
+ (rule "commute_or" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "45") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "shift_paren_or" (formula "40") (term "0,0,0"))
+ (rule "commute_or_2" (formula "39") (term "0,0,0"))
+ (rule "commute_or" (formula "39") (term "0,0,0,1,0"))
+ (rule "commute_or" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "41")))
+ (rule "true_left" (formula "40"))
+ (rule "commute_or" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "57") (term "1,0") (ifseqformula "1") (ifseqformula "2"))
+ (rule "replace_known_right" (formula "1") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "self.equal_buckets = TRUE FALSE"
+ (rule "applyEq" (formula "40") (term "1,1,0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "35") (term "1,3,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "32") (term "1") (ifseqformula "19"))
+ (rule "applyEq" (formula "23") (term "1,1,0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "24") (term "1,0,2,0") (ifseqformula "19"))
+ (rule "eqSymm" (formula "24"))
+ (rule "applyEq" (formula "21") (term "3,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "19"))
+ (rule "applyEq" (formula "38") (term "1,1,0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "36") (term "1,1,1,0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "37") (term "1,1,1,0,0,0,1,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "37") (term "1,1,1,0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "23") (term "1,1,0,0,0,1,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "19"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "24") (term "1,0,2,0") (ifseqformula "19"))
+ (rule "eqSymm" (formula "24"))
+ (rule "applyEq" (formula "27") (term "1,1") (ifseqformula "19"))
+ (rule "applyEq" (formula "38") (term "0,1,0,0,1,1,1,0") (ifseqformula "19"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "18"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "18"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "33") (ifseqformula "18"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "commute_or" (formula "38") (term "1,0,0"))
+ (rule "div_axiom" (formula "27") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "qeq_literals" (formula "27") (term "0,1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "polySimp_addComm1" (formula "29") (term "1"))
+ (rule "add_literals" (formula "29") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0"))
+ (rule "applyEq" (formula "30") (term "0,1,1,1,1,1,0,0") (ifseqformula "27"))
+ (rule "polySimp_addComm0" (formula "30") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "30") (term "0,1,1,2,1,0,0") (ifseqformula "27"))
+ (rule "polySimp_addComm0" (formula "30") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "30") (term "0,0,0,1,0,0") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "30") (term "0,1,0,0") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq1" (formula "30") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "30") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "mod_axiom" (formula "30") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "newSym_eq" (formula "30") (inst "newSymDef=add(mul(int::final(self,
+ de.wiesler.Classifier::$num_buckets),
+ Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "30") (term "0,1,1"))
+ (rule "times_zero_1" (formula "30") (term "1,1,1"))
+ (rule "add_zero_left" (formula "30") (term "1,1"))
+ (rule "add_zero_right" (formula "30") (term "1"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "30"))
+ (rule "polySimp_homoEq" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1"))
+ (rule "applyEq" (formula "30") (term "1,0,0") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "30") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "polySimp_homoEq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "0,0"))
+ (rule "add_zero_left" (formula "30") (term "0"))
+ (rule "polySimp_invertEq" (formula "30"))
+ (rule "times_zero_2" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "29"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "25") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "polySimp_addLiterals" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "27"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "neg_literal" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_antiSymm" (formula "25") (ifseqformula "29"))
+ (rule "applyEqRigid" (formula "32") (term "0,1,1") (ifseqformula "25"))
+ (rule "times_zero_2" (formula "32") (term "1,1"))
+ (rule "add_zero_right" (formula "32") (term "1"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "applyEqRigid" (formula "29") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEqRigid" (formula "29") (term "0,1") (ifseqformula "25"))
+ (rule "times_zero_2" (formula "29") (term "1"))
+ (rule "applyEqRigid" (formula "32") (term "0,0,1,0") (ifseqformula "25"))
+ (rule "times_zero_2" (formula "32") (term "0,1,0"))
+ (rule "add_zero_left" (formula "32") (term "1,0"))
+ (rule "applyEqRigid" (formula "28") (term "1") (ifseqformula "25"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "26"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "27"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "commute_or" (formula "39") (term "1,0,0"))
+ (rule "commute_or" (formula "23") (term "1,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "commute_or" (formula "39") (term "1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "37") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "40") (term "0,0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "commute_or" (formula "23") (term "1,0,0,1,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "20") (term "0,0") (ifseqformula "1") (ifseqformula "2"))
+ (rule "replace_known_right" (formula "20") (term "1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "46")))
+ (rule "closeFalse" (formula "20"))
+ )
+)
+(branch "Null reference (t = null)"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notRight" (formula "26"))
+ (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "13"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "18") (term "1,1"))
+ (rule "eqSymm" (formula "21"))
+ (rule "eqSymm" (formula "18"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,2,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "21"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,2,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "applyEq" (formula "18") (term "0,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "18") (term "0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "21") (term "0,1,0,2,0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "21"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "20") (term "0,3,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "21") (term "0,1,0,2,0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "21"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "close" (formula "23") (ifseqformula "1"))
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..5788b04
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,9257 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Sep 05 21:23:00 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Sep 05 21:23:00 CEST 2022
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "32088")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "10"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "notLeft" (formula "12"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "15"))
+(rule "notLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "18"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "translateJavaAddInt" (formula "14") (term "1"))
+(rule "eqSymm" (formula "35"))
+(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "10"))
+(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "4"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "polySimp_addComm0" (formula "14") (term "1"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "35"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "eqSymm" (formula "34"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "33"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "eqSymm" (formula "32"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "31"))
+(rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+(rule "notLeft" (formula "28"))
+(rule "eqSymm" (formula "30"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "eqSymm" (formula "29"))
+(rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "eqSymm" (formula "28"))
+(rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "notLeft" (formula "25"))
+(rule "eqSymm" (formula "27"))
+(rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "notLeft" (formula "24"))
+(rule "eqSymm" (formula "26"))
+(rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+(rule "notLeft" (formula "23"))
+(rule "eqSymm" (formula "25"))
+(rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+(rule "notLeft" (formula "22"))
+(rule "eqSymm" (formula "24"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "eqSymm" (formula "22"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "assignment" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "applyEq" (formula "18") (term "1,1,0,0,0") (ifseqformula "20"))
+(rule "applyEq" (formula "14") (term "1,1") (ifseqformula "20"))
+(rule "commute_and" (formula "18") (term "1,0,0"))
+(rule "commute_and" (formula "18") (term "0,0,0"))
+(rule "shift_paren_and" (formula "18") (term "0,0"))
+(rule "commute_and_2" (formula "18") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "41") (term "1") (newnames "heapBefore_classify_locally,savedHeapBefore_classify_locally"))
+ (builtin "One Step Simplification" (formula "41"))
+ (builtin "Block Contract (Internal)" (formula "41") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+(branch "Validity"
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "11")) (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "22"))
+ (rule "eqSymm" (formula "41") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "41") (term "1"))
+ (rule "variableDeclaration" (formula "41") (term "1") (newnames "exc_25_1"))
+ (rule "assignment" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "emptyStatement" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "emptyStatement" (formula "41") (term "1"))
+ (rule "tryEmpty" (formula "41") (term "1"))
+ (rule "blockEmptyLabel" (formula "41") (term "1"))
+ (rule "blockEmpty" (formula "41") (term "1"))
+ (rule "methodCallEmpty" (formula "41") (term "1"))
+ (rule "emptyModality" (formula "41") (term "1"))
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "closeTrue" (formula "41"))
+ )
+)
+(branch "Precondition"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "41"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "37")))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "2")))
+ (rule "closeTrue" (formula "41"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "41"))
+ )
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "0,1,0"))
+ (rule "expand_inInt" (formula "22") (term "0,0,1"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,0,0,1"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "eqSymm" (formula "26") (term "1,0"))
+ (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "commute_and" (formula "25") (term "0,0"))
+ (rule "elim_double_block_2" (formula "45") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "arrayLengthNotNegative" (formula "16") (term "0"))
+ (rule "ifUnfold" (formula "48") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "48") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "48") (term "1"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "replace_known_left" (formula "48") (term "0,0,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "ifSplit" (formula "51"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "write"))
+ (builtin "Use Operation Contract" (formula "51") (newnames "heapBefore_classify_locally_batched,result_22,exc_26,heapAfter_classify_locally_batched,anon_heap_classify_locally_batched") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_locally_batched([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify_locally_batched)"
+ (builtin "One Step Simplification" (formula "33"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "33") (term "0,1,0,1"))
+ (rule "expand_inInt" (formula "33") (term "0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,0,0,0,1,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "38"))
+ (rule "translateJavaMulInt" (formula "33") (term "0,2,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "2,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "41") (term "5,0"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,0"))
+ (rule "eqSymm" (formula "42") (term "1,0"))
+ (rule "translateJavaMod" (formula "39") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "33") (term "2,1,1,1,0"))
+ (rule "translateJavaMod" (formula "33") (term "1,0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,1,5,0"))
+ (rule "translateJavaSubInt" (formula "42") (term "4,0,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "1"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,1,0,2,0,0,1,0"))
+ (rule "translateJavaMod" (formula "41") (term "1,5,0"))
+ (rule "translateJavaMod" (formula "42") (term "1,4,0,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,1,1"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "2,0,1,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,2,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "2,1,1,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,2,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "0,1,5,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,1,0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "5,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "1"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,2,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "2,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0,1,5,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,1,0,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "assignment" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "variableDeclarationAssign" (formula "65") (term "1"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "i"))
+ (rule "applyEq" (formula "33") (term "0,1,2,1,1,1,0") (ifseqformula "26"))
+ (rule "applyEq" (formula "33") (term "1,2,0,1,1,0") (ifseqformula "26"))
+ (rule "applyEq" (formula "33") (term "1,2,1,0,1,0") (ifseqformula "26"))
+ (rule "commuteUnion" (formula "33") (term "1,1,0"))
+ (rule "commuteUnion" (formula "33") (term "0,1,0"))
+ (rule "commute_and" (formula "42") (term "0,0"))
+ (rule "associativeLawUnion" (formula "33") (term "1,0"))
+ (rule "compound_subtraction_2" (formula "65") (term "1") (inst "#v1=x_1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "65") (term "1"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "variableDeclarationAssign" (formula "65") (term "1"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_1"))
+ (rule "compound_modulo_1" (formula "65") (term "1") (inst "#v=x_3"))
+ (rule "variableDeclarationAssign" (formula "65") (term "1"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_3"))
+ (rule "remove_parentheses_right" (formula "65") (term "1"))
+ (rule "assignmentSubtractionInt" (formula "65") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "expand_inInt" (formula "65"))
+ (rule "replace_int_MIN" (formula "65") (term "0,1"))
+ (rule "replace_int_MAX" (formula "65") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "39"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "jmod_axiom" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,5,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "41") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "33") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "33") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1"))
+ (rule "mul_literals" (formula "65") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "64") (term "1") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,1"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "64") (term "0,0,1"))
+ (rule "qeq_literals" (formula "64") (term "0,1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_leqRight" (formula "64"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "18"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "mul_literals" (formula "33") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "1"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "translateJavaSubInt" (formula "65") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,1,0"))
+ (rule "assignmentModulo" (formula "65"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "translateJavaMod" (formula "65") (term "0,1,0"))
+ (rule "assignmentSubtractionInt" (formula "65") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "expand_inInt" (formula "65"))
+ (rule "replace_int_MIN" (formula "65") (term "0,1"))
+ (rule "replace_int_MAX" (formula "65") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "39"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,5,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "41") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "33") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "33") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "65") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "65") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "65") (term "0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "65") (term "0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,1"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "65") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1"))
+ (rule "mul_literals" (formula "65") (term "0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "17"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "20"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "mul_literals" (formula "33") (term "0,1"))
+ (rule "replace_known_left" (formula "63") (term "1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "inEqSimp_leqRight" (formula "63"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "0,0"))
+ (rule "add_zero_left" (formula "36") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "36") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "36") (term "0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "17"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaSubInt" (formula "30") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "30") (term "0,2,1"))
+ (rule "eqSymm" (formula "27"))
+ (rule "eqSymm" (formula "30"))
+ (rule "translateJavaMulInt" (formula "27") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,2,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,2,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "24"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "24"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "14"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "25"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "41") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "26")))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "translateJavaMulInt" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1"))
+ (rule "eqSymm" (formula "54"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "25"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "22") (term "0") (inst "element=element"))
+ (rule "expand_inInt" (formula "22") (term "0,0,1,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,0,0,1,0,1,1,1"))
+ (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "2")) (ifInst "" (formula "71")) (ifInst "" (formula "23")) (ifInst "" (formula "23")) (ifInst "" (formula "11")))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0,1,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "23") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "50"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "28")))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "eqSymm" (formula "54"))
+ (rule "eqSymm" (formula "52"))
+ (rule "translateJavaSubInt" (formula "54") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "54") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "52") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "0,2,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "54"))
+ (rule "polySimp_elimSub" (formula "54") (term "0,2,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0"))
+ (rule "eqSymm" (formula "54"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0"))
+ (rule "eqSymm" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "27"))
+ (rule "eqSymm" (formula "52"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "23"))
+ (rule "pullOutSelect" (formula "51") (term "1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "52") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "56")))
+ (rule "simplifySelectOfAnonEQ" (formula "51") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "56")))
+ (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "30"))
+ (rule "elementOfUnion" (formula "52") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "52") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "52") (term "0,0,1,0,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "elementOfUnion" (formula "51") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "51") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "51") (term "0,0,1,0,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "elementOfUnion" (formula "52") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "52") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "52") (term "0,0,1,0,0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "elementOfUnion" (formula "51") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "51") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "51") (term "0,0,1,0,0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "elementOfUnion" (formula "52") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "52") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "52") (term "0,0,0,0,0,0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "elementOfArrayRangeConcrete" (formula "52") (term "0,0,0"))
+ (rule "replace_known_right" (formula "52") (term "0,0,0,0,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "ifthenelse_negated" (formula "52") (term "0"))
+ (rule "elementOfUnion" (formula "51") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "51") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "51") (term "0,0,0,0,0,0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "elementOfArrayRangeConcrete" (formula "51") (term "0,0,0"))
+ (rule "replace_known_right" (formula "51") (term "0,0,0,0,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "ifthenelse_negated" (formula "51") (term "0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "translateJavaMod" (formula "47") (term "0"))
+ (rule "jmod_axiom" (formula "47") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "newSym_eq" (formula "47") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_22, Z(0(#))))"))
+ (rule "times_zero_1" (formula "47") (term "1,1,1"))
+ (rule "times_zero_1" (formula "47") (term "0,1,1"))
+ (rule "add_zero_right" (formula "47") (term "1,1"))
+ (rule "add_zero_right" (formula "47") (term "1"))
+ (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "47"))
+ (rule "polySimp_homoEq" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1"))
+ (rule "applyEq" (formula "49") (term "4,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "50") (term "3,0,1,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "48"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "48"))
+ (rule "inEqSimp_homoInEq1" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,1,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0"))
+ (rule "add_zero_right" (formula "45") (term "0"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "48"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "47") (term "1,0,0") (ifseqformula "48"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "48"))
+ (rule "inEqSimp_homoInEq0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "times_zero_2" (formula "45") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "46") (inst "elimGcdRightDiv=mul(l_0, Z(6(1(#))))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "46") (term "0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "39"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "mul_literals" (formula "41") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "41") (ifseqformula "47"))
+ (rule "times_zero_1" (formula "41") (term "1,1,0"))
+ (rule "greater_literals" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "43")) (ifInst "" (formula "27")))
+ (rule "expand_inInt" (formula "10") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "translateJavaMulInt" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "eqSymm" (formula "57"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "27"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,1,1"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Classifier" (formula "36") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "36") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,1,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "36") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "36") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Classifier" (formula "51") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "32") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "40") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "34") (term "1"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "3,0"))
+ (rule "mul_literals" (formula "38") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "applyEq" (formula "37") (term "1") (ifseqformula "34"))
+ (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "62") (term "1,0,2,2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "40") (term "1,0,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "eqSymm" (formula "31"))
+ (rule "applyEq" (formula "61") (term "1,0,2,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "34"))
+ (rule "applyEq" (formula "62") (term "1,0,2,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "36") (term "1") (ifseqformula "34"))
+ (rule "applyEq" (formula "61") (term "1,0,2,2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "60") (term "3,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "29"))
+ (rule "inEqSimp_commuteGeq" (formula "37"))
+ (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "39") (term "0,1,0,0,1,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "eqSymm" (formula "31"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "34") (term "1"))
+ (rule "mod_axiom" (formula "34") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1,0,2,2,0"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,0,2,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "61") (term "1,0,2,1,0"))
+ (rule "mod_axiom" (formula "61") (term "1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,0,2,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "35") (term "0"))
+ (rule "mod_axiom" (formula "35") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "1,0,2,1,0"))
+ (rule "mod_axiom" (formula "62") (term "1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,0,2,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "36") (term "1"))
+ (rule "mod_axiom" (formula "36") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "61") (term "1,0,2,2,0"))
+ (rule "mod_axiom" (formula "61") (term "1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,0,2,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "60") (term "3,0"))
+ (rule "mod_axiom" (formula "60") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "2,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "1,3,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "30") (term "3,0"))
+ (rule "mod_axiom" (formula "30") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "34") (term "0,1"))
+ (rule "eqSymm" (formula "34"))
+ (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1,0,2,2,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,0,2,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,0,2,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,0,2,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,0,2,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,0,2,2,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,0,2,2,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,0,2,2,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0,2,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,0,2,2,0"))
+ (rule "applyEq" (formula "62") (term "1,0,2,2,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "61") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "61") (term "1,0,2,1,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "35") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "62") (term "1,0,2,1,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "36") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,1"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "36"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "shiftLeftDef" (formula "61") (term "0,1,0,2,2,0"))
+ (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,0,2,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,0,2,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,0,2,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,0,2,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0,2,2,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,0,2,2,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,0,2,2,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,2,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,0,2,2,0"))
+ (rule "applyEq" (formula "61") (term "1,0,2,2,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "60") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "60") (term "3,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "28") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,2,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "37") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "38") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "30") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "31"))
+ (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "31"))
+ (rule "shiftLeftDef" (formula "40") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "40") (term "1,1,1,0,0,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "39") (term "1,1,1,1,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "31"))
+ (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "61") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "61") (term "1,0,2,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "31"))
+ (rule "shiftLeftDef" (formula "62") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "62") (term "1,0,2,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "37"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,1,1"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,1,1,1"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,1,1,1"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,1,1"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0,1,1,1"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,1,1"))
+ (rule "expand_moduloInteger" (formula "34") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "34") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Buffers" (formula "22") (term "0,1,0,1,1,1") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,1,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "22") (term "0"))
+ (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "66")))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "62") (term "1,1,1,0") (inst "i=i_1"))
+ (rule "polySimp_homoEq" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "66") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "67")) (ifInst "" (formula "35")))
+ (rule "expand_inInt" (formula "66") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "73") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "71") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "67") (term "1"))
+ (rule "translateJavaSubInt" (formula "73") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "71") (term "3,0"))
+ (rule "mul_literals" (formula "71") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "73") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "73") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70"))
+ (rule "inEqSimp_commuteLeq" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "68"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "applyEq" (formula "64") (term "1,0,2,2,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "65") (term "1,0,2,2,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "64") (term "1,0,2,1,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "66"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "42") (term "1,1,1,0,0,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "66"))
+ (rule "applyEq" (formula "41") (term "1,3,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "43") (term "1,1,1,0,0,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "63") (term "3,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "30") (term "2,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "42") (term "1,1,1,1,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "66"))
+ (rule "applyEq" (formula "65") (term "1,0,2,1,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "66"))
+ (rule "applyEq" (formula "68") (term "1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "67") (term "0,0") (ifseqformula "31"))
+ (rule "inEqSimp_commuteGeq" (formula "67"))
+ (rule "applyEq" (formula "68") (term "1,3,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "70") (term "1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "36") (term "1,1") (ifseqformula "66"))
+ (rule "applyEq" (formula "70") (term "0,1,0,0,1,0,0,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "69") (term "0,1,0,0,1,0,0,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "69") (term "0,1,0,0,1,1,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "66"))
+ (rule "eqSymm" (formula "33"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "66") (term "1"))
+ (rule "applyEq" (formula "67") (term "0") (ifseqformula "66"))
+ (rule "mod_axiom" (formula "66") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1"))
+ (rule "mod_axiom" (formula "67") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "64") (term "1,0,2,2,0"))
+ (rule "mod_axiom" (formula "64") (term "1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,0,2,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "32") (term "3,0"))
+ (rule "mod_axiom" (formula "32") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "65") (term "1,0,2,2,0"))
+ (rule "mod_axiom" (formula "65") (term "1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,1,0,2,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "64") (term "1,0,2,1,0"))
+ (rule "mod_axiom" (formula "64") (term "1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "42") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "1,3,0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "42") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "62") (term "3,0"))
+ (rule "mod_axiom" (formula "62") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "30") (term "2,0"))
+ (rule "mod_axiom" (formula "30") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "41") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "41") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "64") (term "1,0,2,1,0"))
+ (rule "mod_axiom" (formula "64") (term "1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "30") (term "0,1,0"))
+ (rule "mod_axiom" (formula "30") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "67") (term "1,3,0"))
+ (rule "mod_axiom" (formula "67") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "36") (term "1,1"))
+ (rule "mod_axiom" (formula "36") (term "1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,1"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "33") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "33") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "68") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "68") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "65") (term "0,1"))
+ (rule "eqSymm" (formula "65"))
+ (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "66") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,0"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,0,2,2,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,0,2,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,0,2,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,0,2,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,0,2,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,0,2,2,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,0,2,2,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,0,2,2,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,2,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,0,2,2,0"))
+ (rule "applyEq" (formula "63") (term "1,0,2,2,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "32") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "32") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "32") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "32") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "32") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "64") (term "0,1,0,2,2,0"))
+ (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,0,2,2,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,0,2,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,0,2,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,0,2,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,0,2,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,0,2,2,0"))
+ (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1,0,2,2,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,0,2,2,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,0,2,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,0,2,2,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,0,2,2,0"))
+ (rule "applyEq" (formula "64") (term "1,0,2,2,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "63") (term "1,0,2,1,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "41") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "41") (term "1,1,1,0,0,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "40") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "40") (term "1,3,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "42") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "42") (term "1,1,1,0,0,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "62") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,3,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "62") (term "3,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "30") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,2,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "30") (term "2,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "41") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "41") (term "1,1,1,1,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "39"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "shiftLeftDef" (formula "64") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "64") (term "1,0,2,1,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "38") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "67") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "67") (term "1,3,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "36") (term "0,1,1"))
+ (rule "polySimp_homoEq" (formula "36"))
+ (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,1,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_homoEq" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "applyEq" (formula "36") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "polySimp_sepPosMonomial" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "shiftLeftDef" (formula "33") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "64") (term "1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "63") (term "1,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "68") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "68") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "68") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "68") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "68") (term "1,1,1,0,0,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "33") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "65"))
+ (rule "shiftLeftDef" (formula "64") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "64") (term "1,0,2,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "64") (term "1,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "63") (term "0,1,0,2,1,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,0,2,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,0,2,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,0,2,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,0,2,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,0,2,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,0,2,1,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,2,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,0,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,0,2,1,0"))
+ (rule "applyEq" (formula "63") (term "1,0,2,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "63") (term "1,0") (ifseqformula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "66"))
+ (rule "mul_literals" (formula "38") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "Contract_axiom_for_countElement_in_Buffers" (formula "46") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "46") (term "1,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "22")) (ifInst "" (formula "8")) (ifInst "" (formula "92")) (ifInst "" (formula "22")))
+ (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "61") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "1,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "61") (term "1,0,0,0") (ifseqformula "49"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,0,0,1,1,1,0,0,0,0"))
+ (rule "eqSymm" (formula "61") (term "0,1,1,0,0,0,0"))
+ (rule "replace_known_right" (formula "61") (term "0,0,1,1,1,1,1,1,0,0,0,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "26")) (ifInst "" (formula "94")) (ifInst "" (formula "93")) (ifInst "" (formula "2")) (ifInst "" (formula "48")) (ifInst "" (formula "3")) (ifInst "" (formula "91")))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "61") (term "0,1,0"))
+ (rule "applyEq" (formula "61") (term "0,0,1,0") (ifseqformula "26"))
+ (rule "inEqSimp_subsumption0" (formula "61") (term "0,1,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,1,0"))
+ (rule "qeq_literals" (formula "61") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "47") (term "0,1,0") (inst "i=i_1"))
+ (rule "bsum_lower_equals_upper" (formula "47") (term "0,1,0"))
+ (rule "eqSymm" (formula "47") (term "1,0"))
+ (rule "polySimp_invertEq" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "62") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "expand_inInt" (formula "62") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "translateJavaSubInt" (formula "66") (term "1"))
+ (rule "polySimp_elimSub" (formula "66") (term "1"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "66") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,1,1"))
+ (rule "polySimp_addComm1" (formula "66") (term "1"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "66") (term "0,1"))
+ (rule "add_literals" (formula "66") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "66") (term "1,0,1"))
+ (rule "add_zero_right" (formula "66") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,1,0,0,0") (ifseqformula "26"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "25") (term "0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "42") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "42") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "42") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "42") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "41") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "41") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "41") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "41") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "41") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "41") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,0,1,1,1,0"))
+ (rule "commute_and" (formula "42") (term "1,0,0"))
+ (rule "commute_and" (formula "41") (term "1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "jdiv_axiom" (formula "58") (term "0"))
+ (rule "eqSymm" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,2,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,0,0"))
+ (rule "replace_known_left" (formula "58") (term "0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "eqSymm" (formula "58"))
+ (rule "applyEq" (formula "49") (term "0,1,2,1,0,0,1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "58"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "58"))
+ (rule "applyEq" (formula "67") (term "0,1,1") (ifseqformula "58"))
+ (rule "applyEq" (formula "68") (term "0,1,4,1,1,1,0") (ifseqformula "58"))
+ (rule "jdiv_axiom" (formula "60") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "60"))
+ (rule "applyEq" (formula "60") (term "1") (ifseqformula "61"))
+ (rule "inEqSimp_subsumption6" (formula "60") (term "0,0") (ifseqformula "57"))
+ (rule "times_zero_1" (formula "60") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "60") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "leq_literals" (formula "60") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "polyDiv_pullOut" (formula "60") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "60") (term "0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "polySimp_homoEq" (formula "60"))
+ (rule "polySimp_pullOutFactor0" (formula "60") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "60") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "60") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "60") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "1,0"))
+ (rule "times_zero_1" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "nnf_notAnd" (formula "55") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "55") (term "1,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "1,0,0"))
+ (rule "arrayLengthNotNegative" (formula "54") (term "0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "55"))
+ (rule "qeq_literals" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "28"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "53") (term "0"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "54"))
+ (rule "qeq_literals" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "arrayLengthIsAShort" (formula "54") (term "0"))
+ (rule "expand_inShort" (formula "54"))
+ (rule "replace_short_MAX" (formula "54") (term "1,0"))
+ (rule "replace_short_MIN" (formula "54") (term "0,1"))
+ (rule "andLeft" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "56"))
+ (rule "qeq_literals" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "55"))
+ (rule "leq_literals" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "53") (term "0"))
+ (rule "expand_inShort" (formula "53"))
+ (rule "replace_short_MAX" (formula "53") (term "1,0"))
+ (rule "replace_short_MIN" (formula "53") (term "0,1"))
+ (rule "andLeft" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "55"))
+ (rule "qeq_literals" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "54"))
+ (rule "leq_literals" (formula "53"))
+ (rule "closeFalse" (formula "53"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "65"))
+ (builtin "Block Contract (Internal)" (formula "65") (newnames "result_23,exc_27,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "66"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "11")) (ifInst "" (formula "3")) (ifInst "" (formula "62")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "1") (ifseqformula "33"))
+ (rule "andLeft" (formula "46"))
+ (rule "eqSymm" (formula "67") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "polySimp_elimSub" (formula "66") (term "0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "66") (term "1"))
+ (rule "variableDeclaration" (formula "66") (term "1") (newnames "exc_27_1"))
+ (rule "assignment" (formula "66") (term "1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "emptyStatement" (formula "66") (term "1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "emptyStatement" (formula "66") (term "1"))
+ (rule "tryEmpty" (formula "66") (term "1"))
+ (rule "blockEmptyLabel" (formula "66") (term "1"))
+ (rule "blockEmpty" (formula "66") (term "1"))
+ (rule "methodCallEmpty" (formula "66") (term "1"))
+ (rule "emptyModality" (formula "66") (term "1"))
+ (rule "andRight" (formula "66"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "closeTrue" (formula "66"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "closeTrue" (formula "66"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "65"))
+ (branch "Case 1"
+ (rule "andRight" (formula "65"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "65"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "wellFormedAnonEQ" (formula "65") (ifseqformula "33"))
+ (rule "replace_known_left" (formula "65") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "32")))
+ (rule "closeTrue" (formula "65"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "65"))
+ (branch "Case 1"
+ (rule "andRight" (formula "65"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "61")))
+ (rule "closeTrue" (formula "65"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (ifseqformula "33"))
+ (rule "orRight" (formula "65"))
+ (rule "close" (formula "65") (ifseqformula "2"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "65"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "46"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "1,1,1,0") (ifseqformula "33"))
+ (rule "expand_inInt" (formula "46") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "translateJavaSubInt" (formula "70") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "0"))
+ (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "0"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "0,0"))
+ (rule "add_zero_left" (formula "49") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "elim_double_block_2" (formula "69") (term "1"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "1") (ifseqformula "10"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "55") (term "0,0") (ifseqformula "2") (ifseqformula "3"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "58") (term "0") (ifseqformula "3") (ifseqformula "12"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "0") (ifseqformula "4") (ifseqformula "5"))
+ (rule "ifUnfold" (formula "73") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "73") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "73") (term "1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "replace_known_left" (formula "73") (term "0,0,1,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "ifSplit" (formula "73"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "73") (term "1"))
+ (rule "variableDeclarationAssign" (formula "73") (term "1"))
+ (rule "variableDeclaration" (formula "73") (term "1") (newnames "indices"))
+ (rule "arrayCreation" (formula "73") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclaration" (formula "73") (term "1") (newnames "x_arr"))
+ (rule "variableDeclarationAssign" (formula "73") (term "1"))
+ (rule "variableDeclaration" (formula "73") (term "1") (newnames "dim0"))
+ (rule "assignmentSubtractionInt" (formula "73") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "expand_inInt" (formula "73"))
+ (rule "replace_int_MAX" (formula "73") (term "1,0"))
+ (rule "replace_int_MIN" (formula "73") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "73") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "73") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,0"))
+ (rule "add_literals" (formula "73") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "73") (term "0,0,0"))
+ (rule "add_zero_left" (formula "73") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,1"))
+ (rule "add_literals" (formula "73") (term "1,0,1,1"))
+ (rule "times_zero_1" (formula "73") (term "0,1,1"))
+ (rule "add_zero_left" (formula "73") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "jmod_axiom" (formula "53") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0"))
+ (rule "jmod_axiom" (formula "46") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "46") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "45") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,5,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "45") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "37") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "73") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73") (term "0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "73") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "73") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "73") (term "1"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "73") (term "0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73") (term "0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "73") (term "1"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1,1"))
+ (rule "mul_literals" (formula "73") (term "0,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "70") (term "1") (ifseqformula "50"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "70") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "70") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0,1"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "70") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "70") (term "0,0,1"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0,1"))
+ (rule "add_literals" (formula "70") (term "0,0,1"))
+ (rule "qeq_literals" (formula "70") (term "0,1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "inEqSimp_geqRight" (formula "70"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_subsumption2" (formula "51") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "greater_literals" (formula "51") (term "0,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0"))
+ (rule "qeq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "25"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "0,0"))
+ (rule "add_zero_left" (formula "40") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "40") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "42"))
+ (rule "mul_literals" (formula "38") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "mul_literals" (formula "38") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "21"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow0" (formula "38") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "greater_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "38") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=end") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "38"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow2" (formula "41") (ifseqformula "1"))
+ (rule "greater_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "mul_literals" (formula "41") (term "1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "0,0"))
+ (rule "add_zero_left" (formula "41") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1"))
+ (rule "mul_literals" (formula "41") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "40"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "translateJavaSubInt" (formula "73") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "73") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0"))
+ (rule "add_literals" (formula "73") (term "1,0,0,1,0"))
+ (rule "times_zero_1" (formula "73") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "73") (term "0,1,0"))
+ (rule "ifUnfold" (formula "73") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "73") (term "1") (newnames "x_5"))
+ (rule "less_than_comparison_simple" (formula "73") (term "1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "ifSplit" (formula "73"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "blockThrow" (formula "74") (term "1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "throwUnfold" (formula "74") (term "1") (inst "#v0=n"))
+ (rule "variableDeclarationAssign" (formula "74") (term "1"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "n"))
+ (builtin "Use Dependency Contract" (formula "50") (ifInst "" (formula "74") (term "1,0,0,1")) (ifInst "" (formula "38")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "55") (term "1,1,0,0,0") (ifseqformula "38"))
+ (rule "replace_known_left" (formula "55") (term "1,1") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "71")) (ifInst "" (formula "7")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "37")) (ifInst "" (formula "17")) (ifInst "" (formula "50")))
+ (rule "true_left" (formula "55"))
+ (rule "instanceCreationAssignment" (formula "74") (term "1") (inst "#v0=n_1"))
+ (rule "variableDeclarationAssign" (formula "74") (term "1"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "n_1"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=n_2"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "n_2"))
+ (rule "methodBodyExpand" (formula "74") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "__NEW__"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=n_3"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "n_3"))
+ (rule "allocateInstance" (formula "74"))
+ (builtin "One Step Simplification" (formula "75"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "wellFormedAnonEQ" (formula "1") (term "0,1,0") (ifseqformula "39"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,1,0") (ifseqformula "39"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")))
+ (rule "notLeft" (formula "1"))
+ (rule "orRight" (formula "56"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "assignment_write_attribute_this" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallWithinClass" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__1,savedHeapBefore__1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__2,savedHeapBefore__2"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "assignment_write_attribute_this" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "methodCallReturnIgnoreResult" (formula "78") (term "1"))
+ (rule "methodCallReturn" (formula "78") (term "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__1,savedHeapBefore__1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__2,savedHeapBefore__2"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallSuper" (formula "78") (term "1"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__3,savedHeapBefore__3"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "assignment_write_attribute_this" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "assignment_write_attribute" (formula "78"))
+ (branch "Normal Execution (n_1 != null)"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallParamThrow" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "tryCatchThrow" (formula "78") (term "1"))
+ (rule "ifElseUnfold" (formula "78") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_6"))
+ (rule "equality_comparison_simple" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "replace_known_right" (formula "78") (term "0,0,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "ifElseSplit" (formula "78"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "79"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "elim_double_block" (formula "78") (term "1"))
+ (rule "ifElseSplit" (formula "78"))
+ (branch "if n instanceof java.lang.Throwable true"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59")))
+ (rule "true_left" (formula "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "e"))
+ (rule "delete_unnecessary_cast" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "emptyModality" (formula "78") (term "1"))
+ (rule "andRight" (formula "78"))
+ (branch "Case 1"
+ (rule "andRight" (formula "78"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "jmod_axiom" (formula "39") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,5,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "47") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0"))
+ (rule "jmod_axiom" (formula "48") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "48") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "24"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq4" (formula "52") (ifseqformula "2"))
+ (rule "greater_literals" (formula "52") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "greater_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "polySimp_rightDist" (formula "52") (term "1"))
+ (rule "polySimp_rightDist" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1"))
+ (rule "mul_literals" (formula "52") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "52"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0"))
+ (rule "add_zero_right" (formula "52") (term "0"))
+ (rule "leq_literals" (formula "52"))
+ (rule "closeFalse" (formula "52"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "jmod_axiom" (formula "39") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "48") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "48") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,5,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "47") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "23"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_contradInEq4" (formula "52") (ifseqformula "2"))
+ (rule "greater_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "greater_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "polySimp_rightDist" (formula "52") (term "1"))
+ (rule "polySimp_rightDist" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1"))
+ (rule "mul_literals" (formula "52") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "52"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0"))
+ (rule "add_zero_right" (formula "52") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0"))
+ (rule "add_zero_right" (formula "52") (term "0"))
+ (rule "leq_literals" (formula "52"))
+ (rule "closeFalse" (formula "52"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "58")))
+ (rule "false_right" (formula "78"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "jmod_axiom" (formula "48") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "48") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,5,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "47") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0"))
+ (rule "jmod_axiom" (formula "39") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "55") (ifseqformula "2"))
+ (rule "andLeft" (formula "55"))
+ (rule "inEqSimp_homoInEq1" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "1,1,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0"))
+ (rule "add_zero_right" (formula "55") (term "0"))
+ (rule "leq_literals" (formula "55"))
+ (rule "closeFalse" (formula "55"))
+ )
+ )
+ (branch "if n instanceof java.lang.Throwable false"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Null Reference (n_1 = null)"
+ (rule "false_right" (formula "79"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "1"))
+ (builtin "Use Dependency Contract" (formula "49") (ifInst "" (formula "74") (term "1,0,0,1")) (ifInst "" (formula "37")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "54") (term "1,1,0,0,0") (ifseqformula "37"))
+ (rule "replace_known_left" (formula "54") (term "0,1") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "71")) (ifInst "" (formula "6")) (ifInst "" (formula "5")) (ifInst "" (formula "5")) (ifInst "" (formula "36")) (ifInst "" (formula "16")) (ifInst "" (formula "16")))
+ (rule "true_left" (formula "54"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=x_arr_1"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "x_arr_1"))
+ (rule "variableDeclarationAssign" (formula "74") (term "1"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "length_1"))
+ (rule "assignment" (formula "74") (term "1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "methodBodyExpand" (formula "74") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "newObject"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=x_arr_2"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "x_arr_2"))
+ (rule "variableDeclarationAssign" (formula "74") (term "1"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "length_2"))
+ (rule "assignment" (formula "74") (term "1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "allocateInstanceWithLength" (formula "74"))
+ (builtin "One Step Simplification" (formula "75"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "wellFormedAnonEQ" (formula "1") (term "0,1,0") (ifseqformula "38"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,1,1,0") (ifseqformula "38"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38")))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "orRight" (formula "56"))
+ (rule "blockEmpty" (formula "79") (term "1"))
+ (rule "assignment" (formula "79") (term "1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "arrayLengthIsAShort" (formula "1") (term "0"))
+ (rule "expand_inShort" (formula "1"))
+ (rule "replace_short_MIN" (formula "1") (term "0,1"))
+ (rule "replace_short_MAX" (formula "1") (term "1,0"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "3"))
+ (rule "arrayLengthNotNegative" (formula "3") (term "0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "4"))
+ (rule "methodCall" (formula "81"))
+ (branch "Normal Execution (newObject != null )"
+ (rule "methodBodyExpand" (formula "81") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "assignment_write_attribute_this" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "methodCallWithinClass" (formula "81") (term "1"))
+ (rule "methodBodyExpand" (formula "81") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "arrayInitialisation" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "polySimp_elimSub" (formula "81") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "81") (term "1,2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "2,1,0,1,0"))
+ (rule "applyEq" (formula "81") (term "1,2,1,0,1,0") (ifseqformula "3"))
+ (rule "methodCallEmpty" (formula "81") (term "1"))
+ (rule "blockEmpty" (formula "81") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "methodCallReturnIgnoreResult" (formula "81") (term "1"))
+ (rule "blockEmpty" (formula "81") (term "1"))
+ (rule "methodCallReturn" (formula "81") (term "1"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "methodCallEmpty" (formula "81") (term "1"))
+ (rule "blockEmpty" (formula "81") (term "1"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "blockEmpty" (formula "81") (term "1"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "Block Contract (Internal)" (formula "81") (newnames "result_24,exc_28,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "19")) (ifInst "" (formula "11")) (ifInst "" (formula "78")))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "andLeft" (formula "58"))
+ (rule "eqSymm" (formula "83") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "59") (term "0"))
+ (rule "variableDeclarationAssign" (formula "83") (term "1"))
+ (rule "variableDeclaration" (formula "83") (term "1") (newnames "exc_28_1"))
+ (rule "assignment" (formula "83") (term "1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "emptyStatement" (formula "83") (term "1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "emptyStatement" (formula "83") (term "1"))
+ (rule "pullOutSelect" (formula "59") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "simplifySelectOfStore" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "simplifySelectOfStore" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "simplifySelectOfStore" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "simplifySelectOfCreate" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63")))
+ (rule "castDel" (formula "59") (term "1,0"))
+ (rule "eqSymm" (formula "59") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "59") (term "0,0"))
+ (rule "replace_known_right" (formula "59") (term "1,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "80")))
+ (rule "simplifySelectOfAnonEQ" (formula "59") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "80")) (ifInst "" (formula "10")))
+ (rule "applyEqReverse" (formula "60") (term "0") (ifseqformula "59"))
+ (rule "hideAuxiliaryEq" (formula "59"))
+ (rule "tryEmpty" (formula "82") (term "1"))
+ (rule "blockEmptyLabel" (formula "82") (term "1"))
+ (rule "blockEmpty" (formula "82") (term "1"))
+ (rule "methodCallEmpty" (formula "82") (term "1"))
+ (rule "emptyModality" (formula "82") (term "1"))
+ (rule "andRight" (formula "82"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "closeTrue" (formula "82"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "closeTrue" (formula "82"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "81"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "wellFormedStorePrimitive" (formula "81"))
+ (rule "inEqSimp_ltRight" (formula "61"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "80") (term "1,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "2,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0,2,1,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "76"))
+ (rule "wellFormedStorePrimitive" (formula "76"))
+ (rule "wellFormedStorePrimitive" (formula "76"))
+ (rule "wellFormedStorePrimitive" (formula "76"))
+ (rule "wellFormedCreate" (formula "76"))
+ (rule "wellFormedAnonEQ" (formula "76") (ifseqformula "37"))
+ (rule "replace_known_left" (formula "76") (term "0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "36")))
+ (rule "closeTrue" (formula "76"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "77")))
+ (rule "closeTrue" (formula "81"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "dismissNonSelectedField" (formula "81") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "61"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "80") (term "1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0,2,1,0,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "pullOutSelect" (formula "76") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "73")) (ifInst "" (formula "10")))
+ (rule "applyEqReverse" (formula "77") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "77") (ifseqformula "10"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "81"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "58"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "expand_inInt" (formula "58") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "58") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "58") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "replace_known_left" (formula "61") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "74")))
+ (rule "true_left" (formula "61"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "elim_double_block_2" (formula "90") (term "1"))
+ (rule "ifUnfold" (formula "90") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "90") (term "1"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "replace_known_left" (formula "90") (term "0,0,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "ifSplit" (formula "90"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "91"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "91"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "90") (term "1"))
+ (builtin "Use Operation Contract" (formula "90") (newnames "heapBefore_classify_all,exc_29,heapAfter_classify_all,anon_heap_classify_all") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_all([I,int,int,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify_all)"
+ (builtin "One Step Simplification" (formula "92"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "expand_inInt" (formula "62") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "64"))
+ (rule "translateJavaAddInt" (formula "64") (term "0,2,2,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0"))
+ (rule "applyEq" (formula "64") (term "1,1,0,0,0") (ifseqformula "3"))
+ (rule "commute_and" (formula "64") (term "1,0,0"))
+ (rule "commute_and" (formula "64") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "64") (term "0,0"))
+ (rule "commute_and_2" (formula "64") (term "0,0,0"))
+ (builtin "Use Operation Contract" (formula "96") (newnames "heapBefore_finish_batch,result_25,exc_30,heapAfter_finish_batch,anon_heap_finish_batch") (contract "de.wiesler.Classifier[de.wiesler.Classifier::finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0"))
+ (branch "Post (finish_batch)"
+ (builtin "One Step Simplification" (formula "98"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "expand_inInt" (formula "68") (term "0,0,0,1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "68") (term "0,1,0,1"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,0,1,0,1"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "74"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "74"))
+ (rule "andLeft" (formula "78"))
+ (rule "translateJavaSubInt" (formula "68") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "2,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "2,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "76") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "5,0"))
+ (rule "eqSymm" (formula "78") (term "1,0"))
+ (rule "translateJavaMulInt" (formula "68") (term "0,2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "78") (term "4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "2,0,1,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,2,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "76") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "2,1,1,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,2,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "2,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "inEqSimp_commuteLeq" (formula "74"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0"))
+ (rule "assignment" (formula "110") (term "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "applyEq" (formula "78") (term "1,4,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "4,0,1,0"))
+ (rule "add_literals" (formula "78") (term "1,1,4,0,1,0"))
+ (rule "times_zero_1" (formula "78") (term "1,4,0,1,0"))
+ (rule "add_zero_right" (formula "78") (term "4,0,1,0"))
+ (rule "applyEq" (formula "68") (term "1,2,0,1,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "68") (term "0,1,2,1,1,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "68") (term "1,2,1,0,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "77") (term "1,5,0") (ifseqformula "3"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "5,0"))
+ (rule "add_literals" (formula "77") (term "1,1,5,0"))
+ (rule "times_zero_1" (formula "77") (term "1,5,0"))
+ (rule "add_zero_right" (formula "77") (term "5,0"))
+ (rule "commuteUnion" (formula "68") (term "1,1,0"))
+ (rule "commuteUnion" (formula "68") (term "0,1,0"))
+ (rule "commute_and" (formula "78") (term "0,0"))
+ (rule "associativeLawUnion" (formula "68") (term "1,0"))
+ (builtin "Use Operation Contract" (formula "110") (newnames "heapBefore_calculate_bucket_starts,exc_31,heapAfter_calculate_bucket_starts,anon_heap_calculate_bucket_starts") (contract "de.wiesler.Classifier[de.wiesler.Classifier::calculate_bucket_starts([I,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0"))
+ (branch "Post (calculate_bucket_starts)"
+ (builtin "One Step Simplification" (formula "82"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "85"))
+ (rule "translateJavaSubInt" (formula "84") (term "1"))
+ (rule "translateJavaSubInt" (formula "85") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "84") (term "1"))
+ (rule "polySimp_elimSub" (formula "85") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "1"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,0"))
+ (rule "applyEq" (formula "82") (term "2,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "83") (term "2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "84") (term "0,2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "85") (term "1,1,0,0,0") (ifseqformula "34"))
+ (rule "pullOutSelect" (formula "84") (term "0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "116")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "84") (term "0,1,0,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "84") (term "0,0,1,0,0") (ifseqformula "62"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "dismissNonSelectedField" (formula "84") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0"))
+ (rule "pullOutSelect" (formula "84") (term "2,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "117")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "84") (term "0,1,0,0") (ifseqformula "62"))
+ (rule "dismissNonSelectedField" (formula "84") (term "0,0,0,1,0,0"))
+ (rule "elementOfUnion" (formula "84") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0,0"))
+ (rule "eqSymm" (formula "84") (term "0,0,1,0,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,1,0,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfUnion" (formula "84") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0,0"))
+ (rule "eqSymm" (formula "84") (term "0,0,1,0,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,1,0,0,0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfUnion" (formula "84") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0,0"))
+ (rule "eqSymm" (formula "84") (term "0,0,1,0,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,1,0,0,0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0"))
+ (rule "pullOutSelect" (formula "85") (term "0,0,0,0,1,0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "applyEq" (formula "84") (term "0,0,0,1,0,0") (ifseqformula "85"))
+ (rule "simplifySelectOfMemset" (formula "85"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "simplifySelectOfStore" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93")))
+ (rule "simplifySelectOfStore" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93")))
+ (rule "simplifySelectOfStore" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93")))
+ (rule "simplifySelectOfCreate" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93")) (ifInst "" (formula "100")))
+ (rule "simplifySelectOfAnonEQ" (formula "85") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "118")) (ifInst "" (formula "17")))
+ (rule "applyEqReverse" (formula "86") (term "0,0,0,0,1,0,0") (ifseqformula "85"))
+ (rule "applyEqReverse" (formula "84") (term "0,0,0,1,0,0") (ifseqformula "85"))
+ (rule "hideAuxiliaryEq" (formula "85"))
+ (rule "replace_known_left" (formula "84") (term "0,0,1,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "replace_known_left" (formula "85") (term "0,0,0,1,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "pullOutSelect" (formula "84") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "118")))
+ (rule "eqSymm" (formula "84") (term "0,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "dismissNonSelectedField" (formula "84") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "84") (term "0,0,0,0"))
+ (rule "replaceKnownSelect_taclet0001201112101012_2" (formula "84") (term "0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0001201112101012_8" (formula "84") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "84") (term "0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "simplifySelectOfMemset" (formula "84"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "dismissNonSelectedField" (formula "84") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0"))
+ (rule "eqSymm" (formula "84") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "simplifySelectOfStore" (formula "84"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "93")))
+ (rule "simplifySelectOfStore" (formula "84"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "93")))
+ (rule "simplifySelectOfCreate" (formula "84"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "93")) (ifInst "" (formula "100")))
+ (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "118")) (ifInst "" (formula "17")))
+ (rule "elementOfUnion" (formula "84") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0"))
+ (rule "eqSymm" (formula "84") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,1,0,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfUnion" (formula "84") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0"))
+ (rule "eqSymm" (formula "84") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,1,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfUnion" (formula "84") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0"))
+ (rule "eqSymm" (formula "84") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,1,0,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0"))
+ (rule "commute_and" (formula "88") (term "1,0,0"))
+ (rule "commute_and" (formula "88") (term "0,0,0"))
+ (rule "methodCallReturn" (formula "121") (term "1"))
+ (rule "assignment" (formula "121") (term "1"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "shift_paren_and" (formula "88") (term "0,0"))
+ (rule "commute_and_2" (formula "88") (term "0,0,0"))
+ (rule "methodCallEmpty" (formula "121") (term "1"))
+ (rule "tryEmpty" (formula "121") (term "1"))
+ (rule "emptyModality" (formula "121") (term "1"))
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "121") (userinteraction))
+ (rule "polySimp_homoEq" (formula "87"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "88") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "101"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "88") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "86") (term "0,1,0,0"))
+ (rule "add_literals" (formula "86") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "86") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "86") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,1,0,0"))
+ (rule "add_literals" (formula "85") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "85") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "85") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "85") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "applyEqReverse" (formula "86") (term "2,0") (ifseqformula "85"))
+ (rule "hideAuxiliaryEq" (formula "85"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,1,0,0"))
+ (rule "add_literals" (formula "84") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "84") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "84") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "applyEqReverse" (formula "85") (term "2,0") (ifseqformula "84"))
+ (rule "hideAuxiliaryEq" (formula "84"))
+ (rule "jmod_axiom" (formula "64") (term "0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0,2,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,0,2,2,0,1,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,2,2,0,1,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "78") (term "0,1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,1,4,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,4,1,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,4,1,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,1,4,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,0,1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "4,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,4,1,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,4,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,4,1,1,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,4,1,1,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,4,1,1,0"))
+ (rule "add_zero_right" (formula "78") (term "0,4,1,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "62") (term "1,2,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,2,1,0,0,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "68") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "68") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "64") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "75") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "85"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1"))
+ (rule "polySimp_rightDist" (formula "85") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "85") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "85") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "85") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "85") (term "0,1"))
+ (rule "applyEq" (formula "31") (term "1") (ifseqformula "85"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "85"))
+ (rule "inEqSimp_homoInEq1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0"))
+ (rule "add_zero_right" (formula "27") (term "0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "85"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "applyEq" (formula "41") (term "1,0,0,1,2,1,0,0,1,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "50") (term "5,0,1,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "1") (term "1,0,0,1,0") (ifseqformula "85"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "50") (term "1,0,0,1,4,0,1,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,0,1,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0,1,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "4,0,1,0"))
+ (rule "applyEq" (formula "2") (term "1,0,0,1,0") (ifseqformula "85"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "39") (term "5,0,1,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "78") (term "5,0,1,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "77") (term "5,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "68") (term "1,0,0,1,2,1,0,0,1,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "78") (term "4,0,1,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "57") (term "1,0,0,1,0") (ifseqformula "85"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "57") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "57") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "applyEq" (formula "49") (term "1,0,0,1,5,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0,1,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0,1,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "5,0"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "85"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "applyEq" (formula "62") (term "1,0,0,1,2,1,0,0,0") (ifseqformula "85"))
+ (rule "polySimp_addComm1" (formula "62") (term "2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,2,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0,0,1,0,2,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0,1,0,2,1,0,0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0,1,0,2,1,0,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,1,0,2,1,0,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,1,0,2,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,2,1,0,0,0"))
+ (rule "applyEq" (formula "64") (term "1,0,0,1,0,0,2,2,0,1,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,1,0,0,2,2,0,1,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,1,0,0,2,2,0,1,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,2,2,0,1,0"))
+ (rule "applyEq" (formula "78") (term "5,1,1,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "64") (term "1,0,0,1,0,0,0,0,0,0,0") (ifseqformula "85"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0,1,0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,1,0,0,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,1,0,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,1,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0,0"))
+ (rule "applyEq" (formula "50") (term "5,1,1,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "3") (term "1,0,0,1,1") (ifseqformula "85"))
+ (rule "polySimp_addComm1" (formula "3") (term "1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,1"))
+ (rule "applyEq" (formula "78") (term "1,0,0,1,4,1,1,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,0,1,4,1,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0,1,4,1,1,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0,1,4,1,1,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "4,1,1,0"))
+ (rule "applyEq" (formula "75") (term "1,0,0,1,0,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "applyEq" (formula "39") (term "3,1,1,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "47") (term "1,0,0,1,0,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "47") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "applyEq" (formula "62") (term "1,2,1,0,0,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,2,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "62") (term "2,1,0,0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,2,1,0,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,2,1,0,0,0"))
+ (rule "add_zero_right" (formula "62") (term "2,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "2,1,0,0,0"))
+ (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "1,1,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0"))
+ (rule "add_zero_right" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0"))
+ (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "85"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "85"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "85"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "1,1,1"))
+ (rule "times_zero_1" (formula "3") (term "1,1"))
+ (rule "add_zero_right" (formula "3") (term "1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1"))
+ (rule "applyEq" (formula "64") (term "0,1,0,0,0,0,0,0,0") (ifseqformula "85"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "86") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "86") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "86") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "times_zero_2" (formula "27") (term "1"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "42") (term "0"))
+ (rule "add_literals" (formula "42") (term "1,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0"))
+ (rule "add_zero_right" (formula "42") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=jdiv(arr_0<>, Z(6(1(#))))") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "72"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "72"))
+ (rule "mul_literals" (formula "68") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "13"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "add_zero_left" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "45"))
+ (rule "mul_literals" (formula "41") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "mul_literals" (formula "69") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "69") (ifseqformula "43"))
+ (rule "greater_literals" (formula "69") (term "0,0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "mul_literals" (formula "69") (term "1,0"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1"))
+ (rule "mul_literals" (formula "69") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0"))
+ (rule "qeq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "27"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "add_zero_left" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55"))
+ (rule "greater_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "85") (term "0,0,0"))
+ (rule "leq_literals" (formula "85") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "inEqSimp_and_subsumption3" (formula "29") (term "0,0,0"))
+ (rule "leq_literals" (formula "29") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_and_subsumption3" (formula "62") (term "0,0,0"))
+ (rule "leq_literals" (formula "62") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "17"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "eqSymm" (formula "67"))
+ (rule "translateJavaMulInt" (formula "64") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,2,1"))
+ (rule "eqSymm" (formula "64"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,2,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "67"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,2,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0"))
+ (rule "eqSymm" (formula "67"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0"))
+ (rule "eqSymm" (formula "67"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "30"))
+ (rule "inEqSimp_subsumption1" (formula "88") (term "0,0") (ifseqformula "62"))
+ (rule "leq_literals" (formula "88") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "applyEqReverse" (formula "82") (term "0,5,1,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "37") (term "0,0,1,0,2,1,0,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "44") (term "0,0,0,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "47") (term "0,5,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "1") (term "0,0,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "2") (term "0,0,1,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "74") (term "0,0,1,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "21") (term "0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "61") (term "0,0,1,1,0,0,0,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "47") (term "0,5,1,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "2") (term "0,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "35") (term "0,5,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "47") (term "0,0,0,4,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "54") (term "0,0,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "82") (term "0,4,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "82") (term "0,5,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "71") (term "0,0,1,0,2,1,0,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "46") (term "0,0,0,5,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "13") (term "0,1,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "27") (term "0,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "79") (term "0,0,0,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "26") (term "0,1,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "61") (term "1,0,1,0,0,0,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "54") (term "1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "23") (term "0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "81") (term "0,5,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "42") (term "0,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "35") (term "0,3,1,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "89") (term "0,1") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "59") (term "1,0,2,1,0,0,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "59") (term "0,0,1,2,1,0,0,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "61") (term "0,0,0,0,0,2,2,0,1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "82") (term "0,0,0,4,1,1,0") (ifseqformula "88"))
+ (rule "hideAuxiliaryEq" (formula "88"))
+ (rule "polySimp_homoEq" (formula "2"))
+ (rule "polySimp_homoEq" (formula "88"))
+ (rule "polySimp_addComm0" (formula "82") (term "5,1,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "1"))
+ (rule "polySimp_addComm0" (formula "47") (term "5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "5,1,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "5,0,1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "1"))
+ (rule "polySimp_addComm0" (formula "79") (term "1"))
+ (rule "polySimp_addComm0" (formula "81") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "3,1,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,2,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "4,1,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "74"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_addComm1" (formula "26") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "44"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "27"))
+ (rule "polySimp_addComm1" (formula "27") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "applyEq" (formula "47") (term "1,4,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "47") (term "4,0,1,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "applyEq" (formula "71") (term "1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "71") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0"))
+ (rule "add_zero_right" (formula "54") (term "0"))
+ (rule "applyEq" (formula "79") (term "1,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "applyEq" (formula "37") (term "1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "37") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "46") (term "1,5,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "46") (term "5,0"))
+ (rule "applyEq" (formula "61") (term "1,0,0,2,2,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,2,2,0,1,0"))
+ (rule "applyEq" (formula "82") (term "1,4,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "82") (term "4,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "88"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1"))
+ (rule "polySimp_rightDist" (formula "88") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,1"))
+ (rule "applyEq" (formula "81") (term "1,5,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "81") (term "5,0"))
+ (rule "polySimp_pullOutFactor1" (formula "81") (term "0,5,0"))
+ (rule "add_literals" (formula "81") (term "1,0,5,0"))
+ (rule "times_zero_1" (formula "81") (term "0,5,0"))
+ (rule "add_zero_left" (formula "81") (term "5,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "88"))
+ (rule "applyEq" (formula "13") (term "0,1,0") (ifseqformula "88"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "applyEq" (formula "71") (term "1,2,1,0,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "71") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "71") (term "1,1,0,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "71") (term "1,0,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "71") (term "0,0,2,1,0,0,1,0"))
+ (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "59") (term "0,0,1,2,1,0,0,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "59") (term "2,1,0,0,0"))
+ (rule "applyEq" (formula "82") (term "1,4,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "82") (term "4,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "82") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "82") (term "1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "82") (term "0,4,0,1,0"))
+ (rule "add_zero_left" (formula "82") (term "4,0,1,0"))
+ (rule "applyEq" (formula "61") (term "0,0,1,1,0,0,0,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "61") (term "1,0,0,0,0"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "44") (term "0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "applyEq" (formula "26") (term "0,1,0") (ifseqformula "88"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "applyEq" (formula "82") (term "1,5,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "82") (term "5,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "82") (term "0,5,0,1,0"))
+ (rule "add_literals" (formula "82") (term "1,0,5,0,1,0"))
+ (rule "times_zero_1" (formula "82") (term "0,5,0,1,0"))
+ (rule "add_zero_left" (formula "82") (term "5,0,1,0"))
+ (rule "applyEq" (formula "47") (term "1,4,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "47") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "47") (term "0,0,4,0,1,0"))
+ (rule "add_literals" (formula "47") (term "1,0,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "47") (term "0,0,4,0,1,0"))
+ (rule "add_zero_left" (formula "47") (term "0,4,0,1,0"))
+ (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "27") (term "0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "88"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "applyEq" (formula "47") (term "1,5,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "47") (term "5,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "47") (term "0,5,0,1,0"))
+ (rule "add_literals" (formula "47") (term "1,0,5,0,1,0"))
+ (rule "times_zero_1" (formula "47") (term "0,5,0,1,0"))
+ (rule "add_zero_left" (formula "47") (term "5,0,1,0"))
+ (rule "applyEq" (formula "35") (term "1,5,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "35") (term "5,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "35") (term "0,5,0,1,0"))
+ (rule "add_literals" (formula "35") (term "1,0,5,0,1,0"))
+ (rule "times_zero_1" (formula "35") (term "0,5,0,1,0"))
+ (rule "add_zero_left" (formula "35") (term "5,0,1,0"))
+ (rule "applyEq" (formula "46") (term "1,5,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "46") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,5,0"))
+ (rule "polySimp_pullOutFactor1" (formula "46") (term "0,0,5,0"))
+ (rule "add_literals" (formula "46") (term "1,0,0,5,0"))
+ (rule "times_zero_1" (formula "46") (term "0,0,5,0"))
+ (rule "add_zero_left" (formula "46") (term "0,5,0"))
+ (rule "applyEq" (formula "37") (term "1,2,1,0,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "37") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,2,1,0,0,1,0"))
+ (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "88"))
+ (rule "polySimp_homoEq" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "74") (term "0,0,1,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "79") (term "1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "79") (term "0,0,0,0"))
+ (rule "add_literals" (formula "79") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "79") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "79") (term "0,0,0"))
+ (rule "applyEq" (formula "82") (term "1,4,1,1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "82") (term "4,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,4,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "82") (term "0,0,4,1,1,0"))
+ (rule "add_literals" (formula "82") (term "1,0,0,4,1,1,0"))
+ (rule "times_zero_1" (formula "82") (term "0,0,4,1,1,0"))
+ (rule "add_zero_left" (formula "82") (term "0,4,1,1,0"))
+ (rule "applyEq" (formula "82") (term "1,5,1,1,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "82") (term "5,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "82") (term "0,5,1,1,0"))
+ (rule "add_literals" (formula "82") (term "1,0,5,1,1,0"))
+ (rule "times_zero_1" (formula "82") (term "0,5,1,1,0"))
+ (rule "add_zero_left" (formula "82") (term "5,1,1,0"))
+ (rule "applyEq" (formula "61") (term "1,0,0,2,2,0,1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,2,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,0,2,2,0,1,0"))
+ (rule "add_literals" (formula "61") (term "1,0,0,0,0,2,2,0,1,0"))
+ (rule "times_zero_1" (formula "61") (term "0,0,0,0,2,2,0,1,0"))
+ (rule "add_zero_left" (formula "61") (term "0,0,0,2,2,0,1,0"))
+ (rule "applyEq" (formula "47") (term "1,5,1,1,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "47") (term "5,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "47") (term "0,5,1,1,0"))
+ (rule "add_literals" (formula "47") (term "1,0,5,1,1,0"))
+ (rule "times_zero_1" (formula "47") (term "0,5,1,1,0"))
+ (rule "add_zero_left" (formula "47") (term "5,1,1,0"))
+ (rule "applyEq" (formula "35") (term "1,3,1,1,0") (ifseqformula "88"))
+ (rule "polySimp_addAssoc" (formula "35") (term "3,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "35") (term "0,3,1,1,0"))
+ (rule "add_literals" (formula "35") (term "1,0,3,1,1,0"))
+ (rule "times_zero_1" (formula "35") (term "0,3,1,1,0"))
+ (rule "add_zero_left" (formula "35") (term "3,1,1,0"))
+ (rule "applyEq" (formula "59") (term "1,2,1,0,0,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "59") (term "2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0,0,0"))
+ (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "61") (term "1,1,0,0,0,0") (ifseqformula "88"))
+ (rule "polySimp_addComm1" (formula "61") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "2"))
+ (rule "applyEq" (formula "47") (term "0,1,4,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "47") (term "0,4,0,1,0"))
+ (rule "applyEq" (formula "79") (term "0,1,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "79") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0"))
+ (rule "applyEq" (formula "71") (term "0,1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "71") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "71") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "71") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "71") (term "0,2,1,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0"))
+ (rule "applyEq" (formula "37") (term "0,1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,2,1,0,0,1,0"))
+ (rule "applyEq" (formula "46") (term "0,1,5,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,5,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "46") (term "0,5,0"))
+ (rule "applyEq" (formula "82") (term "0,1,4,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,4,1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,4,1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,4,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "4,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,4,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,0,4,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,4,1,1,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,4,1,1,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,4,1,1,0"))
+ (rule "add_zero_right" (formula "82") (term "0,4,1,1,0"))
+ (rule "applyEq" (formula "61") (term "0,1,0,0,2,2,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,2,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0,0,2,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,2,2,0,1,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,0,2,2,0,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,2,2,0,1,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,2,2,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "pullOutSelect" (formula "67") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "100")) (ifInst "" (formula "95")))
+ (rule "simplifySelectOfAnonEQ" (formula "68") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "100")) (ifInst "" (formula "95")))
+ (rule "ifthenelse_negated" (formula "67") (term "0"))
+ (rule "dismissNonSelectedField" (formula "68") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "68") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "67") (term "1,0"))
+ (rule "dismissNonSelectedField" (formula "67") (term "0,0,0"))
+ (rule "ifthenelse_negated" (formula "68") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "44"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "43") (ifseqformula "42"))
+ (rule "mul_literals" (formula "43") (term "1,1,0"))
+ (rule "greater_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "80"))
+ (rule "mul_literals" (formula "76") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "80"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "pullOutSelect" (formula "67") (term "1,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfMemset" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "dismissNonSelectedField" (formula "67") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfStore" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfStore" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfCreate" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "105")))
+ (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "96")) (ifInst "" (formula "4")))
+ (rule "elementOfUnion" (formula "67") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "118"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfUnion" (formula "67") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfUnion" (formula "67") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "applyEqReverse" (formula "68") (term "1,0") (ifseqformula "67"))
+ (rule "hideAuxiliaryEq" (formula "67"))
+ (rule "pullOutSelect" (formula "67") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "applyEq" (formula "69") (term "0,0,0") (ifseqformula "67"))
+ (rule "simplifySelectOfMemset" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfStore" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfStore" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfStore" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfCreate" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "105")))
+ (rule "castDel" (formula "67") (term "1,0"))
+ (rule "eqSymm" (formula "67") (term "0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "96")) (ifInst "" (formula "4")))
+ (rule "applyEqReverse" (formula "69") (term "0,0,0") (ifseqformula "67"))
+ (rule "applyEqReverse" (formula "68") (term "0,0,0") (ifseqformula "67"))
+ (rule "hideAuxiliaryEq" (formula "67"))
+ (rule "replace_known_left" (formula "67") (term "0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "applyEqReverse" (formula "68") (term "1") (ifseqformula "67"))
+ (rule "hideAuxiliaryEq" (formula "67"))
+ (rule "replace_known_left" (formula "67") (term "0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "21"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "23"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_exactShadow0" (formula "74") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "greater_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "74") (ifseqformula "13"))
+ (rule "greater_literals" (formula "74") (term "0,0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow2" (formula "42") (ifseqformula "54"))
+ (rule "greater_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,0"))
+ (rule "add_zero_left" (formula "42") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1"))
+ (rule "polySimp_elimOne" (formula "42") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "20"))
+ (rule "mul_literals" (formula "62") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "62"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "22"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "pullOutSelect" (formula "67") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfMemset" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "eqSymm" (formula "68"))
+ (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "68"))
+ (rule "hideAuxiliaryEq" (formula "68"))
+ (rule "dismissNonSelectedField" (formula "67") (term "2,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "dismissNonSelectedField" (formula "67") (term "0"))
+ (rule "dismissNonSelectedField" (formula "67") (term "0"))
+ (rule "pullOutSelect" (formula "67") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfCreate" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "104")))
+ (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "95")) (ifInst "" (formula "4")))
+ (rule "eqSymm" (formula "68"))
+ (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "68"))
+ (rule "hideAuxiliaryEq" (formula "68"))
+ (rule "elementOfUnion" (formula "67") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfUnion" (formula "67") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfUnion" (formula "67") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "90"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "65")))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "translateJavaSubInt" (formula "94") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "94") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "92") (term "1,1"))
+ (rule "eqSymm" (formula "94"))
+ (rule "eqSymm" (formula "92"))
+ (rule "polySimp_elimSub" (formula "94") (term "0,2,0"))
+ (rule "mul_literals" (formula "94") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "94"))
+ (rule "polySimp_elimSub" (formula "94") (term "0,2,0"))
+ (rule "mul_literals" (formula "94") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,2,0"))
+ (rule "eqSymm" (formula "94"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,2,0"))
+ (rule "eqSymm" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "90"))
+ (rule "applyEq" (formula "91") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "90") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "90") (term "0") (ifseqformula "64"))
+ (rule "eqSymm" (formula "90"))
+ (rule "pullOutSelect" (formula "91") (term "0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnonEQ" (formula "91") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "97")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0,0") (ifseqformula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,0,1,0,0") (ifseqformula "58"))
+ (rule "eqSymm" (formula "92"))
+ (rule "simplifySelectOfAnonEQ" (formula "92") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "97")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,0,0") (ifseqformula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,0,1,0,0") (ifseqformula "58"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,0,0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfArrayRangeConcrete" (formula "92") (term "0,0,0"))
+ (rule "replace_known_right" (formula "92") (term "0,0,0,0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "ifthenelse_negated" (formula "91") (term "0"))
+ (rule "ifthenelse_negated" (formula "92") (term "0"))
+ (rule "dismissNonSelectedField" (formula "91") (term "0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "91") (term "0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "91") (term "0,0,0,0,0"))
+ (rule "replace_known_left" (formula "91") (term "0,0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "simplifySelectOfAnonEQ" (formula "91") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "97")))
+ (rule "replaceKnownSelect_taclet000001201112101012_19" (formula "91") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_33" (formula "91") (term "2,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0,0") (ifseqformula "58"))
+ (rule "dismissNonSelectedField" (formula "92") (term "0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "92") (term "0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "92") (term "0,0,0,0,0"))
+ (rule "replace_known_left" (formula "92") (term "0,0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "simplifySelectOfAnonEQ" (formula "92") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "97")))
+ (rule "replaceKnownSelect_taclet000001201112101012_18" (formula "92") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_33" (formula "92") (term "2,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,0,0") (ifseqformula "58"))
+ (rule "dismissNonSelectedField" (formula "91") (term "0,0,0,1,0,0"))
+ (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "91") (term "0,0,0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "91") (term "0,0,0,1,0,0"))
+ (rule "replace_known_left" (formula "91") (term "0,0,1,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "dismissNonSelectedField" (formula "92") (term "0,0,0,1,0,0"))
+ (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "92") (term "0,0,0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "92") (term "0,0,0,1,0,0"))
+ (rule "replace_known_left" (formula "92") (term "0,0,1,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "elementOfUnion" (formula "91") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "1,0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,1,0,0") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfUnion" (formula "92") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "92") (term "1,0,0"))
+ (rule "replace_known_right" (formula "92") (term "0,0,1,0,0") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "elementOfUnion" (formula "91") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "1,0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,1,0,0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfUnion" (formula "92") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "92") (term "1,0,0"))
+ (rule "replace_known_right" (formula "92") (term "0,0,1,0,0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "elementOfUnion" (formula "91") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "1,0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,1,0,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "applyEqReverse" (formula "92") (term "1") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "hideAuxiliaryEq" (formula "91"))
+ (rule "elementOfUnion" (formula "91") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,0,0,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "28") (term "0") (inst "element=element"))
+ (rule "expand_inInt" (formula "28") (term "0,0,1,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,0,0,1,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "replace_known_left" (formula "28") (term "1,1,1,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "123")) (ifInst "" (formula "29")) (ifInst "" (formula "29")))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0,1,1,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "78"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "66")))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "eqSymm" (formula "82"))
+ (rule "translateJavaMulInt" (formula "80") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "82") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "82") (term "0,2,1"))
+ (rule "eqSymm" (formula "80"))
+ (rule "polySimp_elimSub" (formula "82") (term "0,2,0"))
+ (rule "mul_literals" (formula "82") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "82"))
+ (rule "polySimp_elimSub" (formula "82") (term "0,2,0"))
+ (rule "mul_literals" (formula "82") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "82"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,2,1"))
+ (rule "replaceKnownSelect_taclet000001201112101012_42" (formula "82") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_43" (formula "82") (term "1"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,2,0"))
+ (rule "replaceKnownSelect_taclet000001201112101012_41" (formula "82") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_43" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "78"))
+ (rule "applyEq" (formula "79") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "79"))
+ (rule "applyEq" (formula "77") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "77") (term "1") (ifseqformula "30"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "49"))
+ (rule "close" (formula "126") (ifseqformula "49"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "90")))
+ (rule "closeTrue" (formula "121"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "closeTrue" (formula "121"))
+ )
+ )
+ (branch "Exceptional Post (calculate_bucket_starts)"
+ (builtin "One Step Simplification" (formula "82"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "andLeft" (formula "82"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "1,0") (ifseqformula "82"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,0,1,0") (ifseqformula "62"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "85"))
+ (rule "notLeft" (formula "83"))
+ (rule "close" (formula "86") (ifseqformula "85"))
+ )
+ (branch "Pre (calculate_bucket_starts)"
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "80")) (ifInst "" (formula "109")) (ifInst "" (formula "107")) (ifInst "" (formula "108")) (ifInst "" (formula "109")) (ifInst "" (formula "107")) (ifInst "" (formula "108")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1") (ifseqformula "62"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1,0") (ifseqformula "62"))
+ (rule "wellFormedAnonEQ" (formula "110") (term "0,0,0,0,0,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1,0,0,0,0,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1,0,0,0,0,0") (ifseqformula "62"))
+ (rule "wellFormedAnonEQ" (formula "110") (term "0,0,0,0,0,0,0") (ifseqformula "62"))
+ (rule "wellFormedStorePrimitive" (formula "110") (term "0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "110") (term "1,0,0,0"))
+ (rule "expand_inInt" (formula "110") (term "1,0,0"))
+ (rule "expand_inInt" (formula "110") (term "1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0,0,0"))
+ (rule "replace_known_left" (formula "110") (term "1,0,0,0,0,0,0,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "67")) (ifInst "" (formula "13")) (ifInst "" (formula "70")) (ifInst "" (formula "15")))
+ (rule "inEqSimp_ltRight" (formula "90"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "109") (term "0,0,0,1"))
+ (rule "dismissNonSelectedField" (formula "109") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "109") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0,0"))
+ (rule "replace_known_left" (formula "109") (term "1,0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0"))
+ (rule "replace_known_left" (formula "109") (term "1,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0"))
+ (rule "replace_known_left" (formula "109") (term "1,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "62") (term "1,2,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,2,1,0,0,0"))
+ (rule "jmod_axiom" (formula "78") (term "0,1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,1,4,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,4,1,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,4,1,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,1,4,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,0,1,4,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0,1,4,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "4,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,4,1,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,4,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,4,1,1,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,4,1,1,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,4,1,1,0"))
+ (rule "add_zero_right" (formula "78") (term "0,4,1,1,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "68") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "68") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "64") (term "0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0,2,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,0,2,2,0,1,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,2,2,0,1,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "64") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0,0"))
+ (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0,1"))
+ (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0,1,0"))
+ (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "75") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "105") (term "0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "105") (term "0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "105") (term "0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "105") (term "0,0,0"))
+ (rule "wellFormedCreate" (formula "105") (term "0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "105") (term "0,0,0") (ifseqformula "37"))
+ (rule "replace_known_left" (formula "105") (term "0,0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "36")))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "0,0"))
+ (rule "add_zero_left" (formula "42") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "72"))
+ (rule "mul_literals" (formula "68") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "44"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "73"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "27"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "pullOutSelect" (formula "107") (term "0,0,0,0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")) (ifInst "" (formula "88")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")) (ifInst "" (formula "12")))
+ (rule "applyEqReverse" (formula "108") (term "0,0,0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "107") (term "0,0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "pullOutSelect" (formula "107") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")) (ifInst "" (formula "88")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "105")) (ifInst "" (formula "14")))
+ (rule "applyEqReverse" (formula "108") (term "0,0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "107") (term "0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "orRight" (formula "107"))
+ (rule "orRight" (formula "107"))
+ (rule "inEqSimp_exactShadow0" (formula "68") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "greater_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "68") (term "0,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "68") (ifseqformula "12"))
+ (rule "greater_literals" (formula "68") (term "0,0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "leq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "inEqSimp_exactShadow2" (formula "42") (ifseqformula "54"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "times_zero_1" (formula "42") (term "0,0"))
+ (rule "add_zero_left" (formula "42") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1"))
+ (rule "polySimp_elimOne" (formula "42") (term "1"))
+ (rule "pullOutSelect" (formula "107") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "88")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "88")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "106")) (ifInst "" (formula "15")))
+ (rule "applyEqReverse" (formula "108") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "108") (ifseqformula "15"))
+ )
+ )
+ (branch "Exceptional Post (finish_batch)"
+ (builtin "One Step Simplification" (formula "68"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "andLeft" (formula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,0") (ifseqformula "62"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "71"))
+ (rule "notLeft" (formula "69"))
+ (rule "close" (formula "72") (ifseqformula "71"))
+ )
+ (branch "Pre (finish_batch)"
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "66")) (ifInst "" (formula "75")) (ifInst "" (formula "95")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "75")) (ifInst "" (formula "95")) (ifInst "" (formula "93")) (ifInst "" (formula "94")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1") (ifseqformula "62"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0") (ifseqformula "62"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0,0,0,0,0,0") (ifseqformula "62"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0,0,0,0,0,0,0") (ifseqformula "62"))
+ (rule "wellFormedAnonEQ" (formula "96") (term "0,0,0,0,0,0,0,0") (ifseqformula "62"))
+ (rule "wellFormedStorePrimitive" (formula "96") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "96") (term "1,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "96") (term "1,0,0,0,0"))
+ (rule "expand_inInt" (formula "96") (term "1,0,0"))
+ (rule "expand_inInt" (formula "96") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,0"))
+ (rule "replace_known_left" (formula "96") (term "0,1,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "61")) (ifInst "" (formula "13")) (ifInst "" (formula "43")))
+ (rule "inEqSimp_ltRight" (formula "76"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "95") (term "0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "95") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "95") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "95") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "95") (term "1,0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0,0,0"))
+ (rule "replace_known_left" (formula "95") (term "1,0,0,0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0"))
+ (rule "replace_known_left" (formula "95") (term "1,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "95") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,0,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "95") (term "0,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "95") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "95") (term "1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "64") (term "0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0,2,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,0,2,2,0,1,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,2,2,0,1,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,2,2,0,1,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "62") (term "1,2,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,2,1,0,0,0"))
+ (rule "jmod_axiom" (formula "64") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0,0"))
+ (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1,0,0,0,0"))
+ (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,0,0,0"))
+ (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1,0,0,0"))
+ (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "95") (term "0,1,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,0,1,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "0,1,0,1,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "95") (term "0,0,1,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,0,0,1,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0,0,1,0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "95") (term "0,0,1,0,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "95") (term "0,0,0,1,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0,1,1,0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0,1,1,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0,1,1,0,0"))
+ (rule "add_zero_right" (formula "95") (term "0,0,1,1,0,0"))
+ (rule "jmod_axiom" (formula "95") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "95") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "95") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "95") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "95") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "95") (term "0,1,1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "95") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0,0,1,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "91") (term "0,0,0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "91") (term "0,0,0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "91") (term "0,0,0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "91") (term "0,0,0,0,0"))
+ (rule "wellFormedCreate" (formula "91") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "91") (term "0,0,0,0,0") (ifseqformula "37"))
+ (rule "replace_known_left" (formula "91") (term "1,0,0,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "8")))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "43"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "replace_known_left" (formula "92") (term "1,1,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "27"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "pullOutSelect" (formula "93") (term "0,0,1,0,0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66")) (ifInst "" (formula "74")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "93")) (ifInst "" (formula "12")))
+ (rule "applyEqReverse" (formula "94") (term "0,0,1,0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "93") (term "0,1,0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "inEqSimp_exactShadow0" (formula "40") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "greater_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "13"))
+ (rule "mul_literals" (formula "40") (term "1,1,0"))
+ (rule "greater_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "pullOutSelect" (formula "93") (term "0,0,0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "94") (term "0,0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55"))
+ (rule "mul_literals" (formula "43") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "times_zero_1" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1"))
+ (rule "polySimp_elimOne" (formula "43") (term "1"))
+ (rule "pullOutSelect" (formula "93") (term "0,0,1,0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67")) (ifInst "" (formula "74")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "91")) (ifInst "" (formula "14")))
+ (rule "applyEqReverse" (formula "94") (term "0,0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "93") (term "0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "pullOutSelect" (formula "93") (term "0,0,1") (inst "selectSK=java_lang_Object_created__3"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "92")) (ifInst "" (formula "15")))
+ (rule "applyEqReverse" (formula "94") (term "0,0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "93") (term "0,1") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "inEqSimp_leqRight" (formula "93"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "qeq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_exactShadow0" (formula "1") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "28"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (classify_all)"
+ (builtin "One Step Simplification" (formula "92"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "63") (term "1,0") (ifseqformula "62"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "close" (formula "66") (ifseqformula "65"))
+ )
+ (branch "Pre (classify_all)"
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "89")) (ifInst "" (formula "69")) (ifInst "" (formula "89")) (ifInst "" (formula "69")))
+ (rule "andRight" (formula "90"))
+ (branch "Case 1"
+ (rule "inEqSimp_ltRight" (formula "70"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "89") (term "1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "0,0"))
+ (rule "add_zero_left" (formula "42") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "27"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "44"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "inEqSimp_exactShadow0" (formula "40") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "greater_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "13"))
+ (rule "mul_literals" (formula "40") (term "1,1,0"))
+ (rule "greater_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55"))
+ (rule "greater_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1"))
+ (rule "polySimp_elimOne" (formula "43") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "28") (term "0,0,0"))
+ (rule "leq_literals" (formula "28") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,1"))
+ (rule "eqSymm" (formula "33"))
+ (rule "eqSymm" (formula "36"))
+ (rule "translateJavaMulInt" (formula "33") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,2,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,2,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "33") (term "1") (ifseqformula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "20"))
+ (rule "mul_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "55"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "34")))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "eqSymm" (formula "59"))
+ (rule "eqSymm" (formula "57"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "57") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,2,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,2,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "57"))
+ (rule "pullOutSelect" (formula "58") (term "1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "59") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "simplifySelectOfAnonEQ" (formula "58") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "applyEq" (formula "59") (term "2,0") (ifseqformula "35"))
+ (rule "elementOfUnion" (formula "59") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "59") (term "0,0,1,0,0,0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "elementOfUnion" (formula "58") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "58") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "58") (term "0,0,1,0,0,0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "elementOfUnion" (formula "59") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "59") (term "0,0,1,0,0,0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "elementOfUnion" (formula "58") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "58") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "58") (term "0,0,1,0,0,0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "elementOfUnion" (formula "59") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "59") (term "0,0,0,0,0,0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0,0"))
+ (rule "replace_known_right" (formula "59") (term "0,0,0,0,0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "elementOfUnion" (formula "58") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "58") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "58") (term "0,0,0,0,0,0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "elementOfArrayRangeConcrete" (formula "58") (term "0,0,0"))
+ (rule "replace_known_right" (formula "58") (term "0,0,0,0,0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "replace_known_right" (formula "58") (term "0,0,0,0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "replace_known_right" (formula "59") (term "0,0,0,0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_left" (formula "58") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "applyEqReverse" (formula "59") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "4")))
+ (rule "true_left" (formula "59"))
+ (rule "hideAuxiliaryEq" (formula "58"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "16"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "16") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "31")))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "16"))
+ (rule "translateJavaMulInt" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "eqSymm" (formula "69"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "56") (term "1") (ifseqformula "31"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "33"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "29") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "48") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "17")) (ifInst "" (formula "33")))
+ (rule "expand_inInt" (formula "48") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "translateJavaMulInt" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "1"))
+ (rule "eqSymm" (formula "67"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "32"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaMod" (formula "52") (term "0"))
+ (rule "jmod_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "newSym_eq" (formula "52") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_22, Z(0(#))))"))
+ (rule "times_zero_1" (formula "52") (term "0,1,1"))
+ (rule "times_zero_1" (formula "52") (term "1,1,1"))
+ (rule "add_zero_right" (formula "52") (term "1,1"))
+ (rule "add_zero_right" (formula "52") (term "1"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "52"))
+ (rule "polySimp_homoEq" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,1"))
+ (rule "applyEq" (formula "54") (term "4,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "55") (term "3,0,1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "applyEq" (formula "52") (term "1,0,0") (ifseqformula "53"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_homoInEq1" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_homoInEq1" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "1,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0"))
+ (rule "add_zero_right" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "50"))
+ (rule "times_zero_2" (formula "50") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "50") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "50") (term "0,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "50") (term "0,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "elimGcdGeq_antec" (formula "51") (inst "elimGcdRightDiv=mul(l_0, Z(6(1(#))))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "51") (term "0,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "45"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "add_zero_left" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "21") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "mul_literals" (formula "48") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "48") (ifseqformula "52"))
+ (rule "greater_literals" (formula "48") (term "0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "times_zero_1" (formula "48") (term "1,0"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_exactShadow2" (formula "52") (ifseqformula "63"))
+ (rule "greater_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "qeq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "51"))
+ (rule "times_zero_1" (formula "22") (term "0,0"))
+ (rule "add_zero_left" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(7(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "100"))
+ (rule "replace_known_right" (formula "100") (term "0,1") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "71")))
+ (rule "closeTrue" (formula "100"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "90"))
+ (branch "Case 1"
+ (rule "andRight" (formula "90"))
+ (branch "Case 1"
+ (rule "andRight" (formula "90"))
+ (branch "Case 1"
+ (rule "andRight" (formula "90"))
+ (branch "Case 1"
+ (rule "wellFormedStorePrimitive" (formula "90"))
+ (rule "inEqSimp_ltRight" (formula "70"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "89") (term "1,2,1,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "2,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "85"))
+ (rule "wellFormedStorePrimitive" (formula "85"))
+ (rule "wellFormedStorePrimitive" (formula "85"))
+ (rule "wellFormedStorePrimitive" (formula "85"))
+ (rule "wellFormedCreate" (formula "85"))
+ (rule "wellFormedAnonEQ" (formula "85") (ifseqformula "37"))
+ (rule "replace_known_left" (formula "85") (term "0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "36")))
+ (rule "closeTrue" (formula "85"))
+ )
+ (branch "Case 2"
+ (rule "dismissNonSelectedField" (formula "90") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "70"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "89") (term "1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "54"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "pullOutSelect" (formula "85") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")) (ifInst "" (formula "66")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "85")) (ifInst "" (formula "12")))
+ (rule "applyEqReverse" (formula "86") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "86") (ifseqformula "12"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "90"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1"))
+ (rule "inEqSimp_ltRight" (formula "70"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "89") (term "0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "89") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "89") (term "1"))
+ (rule "mul_literals" (formula "89") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "89") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "89") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "89") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "89") (term "0,0,0"))
+ (rule "add_literals" (formula "89") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "89") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "89") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "89") (term "0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "89") (term "0,1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "89") (term "0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "89") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "89") (term "0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "89") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "89") (term "0,0,1"))
+ (rule "add_literals" (formula "89") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "89") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "89") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "89") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "89") (term "1"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,1"))
+ (rule "mul_literals" (formula "89") (term "0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "43"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "replace_known_left" (formula "86") (term "1") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "inEqSimp_leqRight" (formula "86"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption5" (formula "41") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "greater_literals" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "qeq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "28"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55"))
+ (rule "greater_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1"))
+ (rule "polySimp_elimOne" (formula "43") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow0" (formula "1") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "28"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "90"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0"))
+ (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_ltRight" (formula "70"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_addComm1" (formula "26") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "jmod_axiom" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "jmod_axiom" (formula "58") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0"))
+ (rule "jmod_axiom" (formula "51") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "51") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "51") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "42") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,5,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "50") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "jmod_axiom" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "mul_literals" (formula "26") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1"))
+ (rule "mul_literals" (formula "3") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "29"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeFalse" (formula "16"))
+ )
+ )
+ (branch "Case 2"
+ (rule "dismissNonSelectedField" (formula "90") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "70"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,4,0,1,0"))
+ (rule "jmod_axiom" (formula "57") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,5,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,5,0"))
+ (rule "add_zero_right" (formula "49") (term "0,5,0"))
+ (rule "jmod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "jmod_axiom" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "jmod_axiom" (formula "89") (term "1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0,0"))
+ (rule "jmod_axiom" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "pullOutSelect" (formula "85") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "86") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "closeTrue" (formula "86"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (newObject = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "61")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "equal_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "closeTrue" (formula "65"))
+ )
+ )
+ )
+ (branch "Exceptional Post (classify_locally_batched)"
+ (builtin "One Step Simplification" (formula "53"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,0") (ifseqformula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "34"))
+ (rule "close" (formula "38") (ifseqformula "37"))
+ )
+ (branch "Pre (classify_locally_batched)"
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "12")) (ifInst "" (formula "50")) (ifInst "" (formula "48")) (ifInst "" (formula "49")) (ifInst "" (formula "1")) (ifInst "" (formula "50")) (ifInst "" (formula "4")) (ifInst "" (formula "48")) (ifInst "" (formula "9")) (ifInst "" (formula "49")) (ifInst "" (formula "10")))
+ (rule "expand_inInt" (formula "51") (term "1"))
+ (rule "expand_inInt" (formula "51") (term "0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0,1"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1,0"))
+ (rule "replace_known_left" (formula "51") (term "0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "7")))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "1"))
+ (rule "replace_known_left" (formula "51") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "inEqSimp_leqRight" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally_batched((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally_batched((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..87454dd
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally_batched((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,8937 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 12:45:31 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 12:45:31 CEST 2023
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally_batched([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally_batched([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "37667")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "10"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "notLeft" (formula "12"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "15"))
+(rule "notLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "18"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "translateJavaAddInt" (formula "14") (term "1"))
+(rule "eqSymm" (formula "35"))
+(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "10"))
+(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "4"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "polySimp_addComm0" (formula "14") (term "1"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "35"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "eqSymm" (formula "34"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "33"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "eqSymm" (formula "32"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "31"))
+(rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+(rule "notLeft" (formula "28"))
+(rule "eqSymm" (formula "30"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "eqSymm" (formula "29"))
+(rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "eqSymm" (formula "28"))
+(rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "notLeft" (formula "25"))
+(rule "eqSymm" (formula "27"))
+(rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "notLeft" (formula "24"))
+(rule "eqSymm" (formula "26"))
+(rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+(rule "notLeft" (formula "23"))
+(rule "eqSymm" (formula "25"))
+(rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+(rule "notLeft" (formula "22"))
+(rule "eqSymm" (formula "24"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "eqSymm" (formula "22"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "assignment" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "applyEq" (formula "18") (term "1,1,0,0,0") (ifseqformula "20"))
+(rule "applyEq" (formula "14") (term "1,1") (ifseqformula "20"))
+(rule "commute_and" (formula "18") (term "1,0,0"))
+(rule "commute_and" (formula "18") (term "0,0,0"))
+(rule "shift_paren_and" (formula "18") (term "0,0"))
+(rule "commute_and_2" (formula "18") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "41") (term "1") (newnames "heapBefore_classify_locally_batched,savedHeapBefore_classify_locally_batched,_beginBefore_classify_locally_batched,_bucket_startsBefore_classify_locally_batched,_buffersBefore_classify_locally_batched,_endBefore_classify_locally_batched,_valuesBefore_classify_locally_batched"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "variableDeclarationAssign" (formula "41") (term "1"))
+(rule "variableDeclaration" (formula "41") (term "1") (newnames "write"))
+(rule "assignment" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "variableDeclarationAssign" (formula "41") (term "1"))
+(rule "variableDeclaration" (formula "41") (term "1") (newnames "i"))
+(rule "assignment" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (builtin "Block Contract (Internal)" (formula "41") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+(branch "Validity"
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "11")) (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "22"))
+ (rule "eqSymm" (formula "41") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "41") (term "1"))
+ (rule "variableDeclaration" (formula "41") (term "1") (newnames "exc_25_1"))
+ (rule "assignment" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "emptyStatement" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "emptyStatement" (formula "41") (term "1"))
+ (rule "tryEmpty" (formula "41") (term "1"))
+ (rule "blockEmptyLabel" (formula "41") (term "1"))
+ (rule "blockEmpty" (formula "41") (term "1"))
+ (rule "methodCallEmpty" (formula "41") (term "1"))
+ (rule "emptyModality" (formula "41") (term "1"))
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "closeTrue" (formula "41"))
+ )
+)
+(branch "Precondition"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "41"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "37")))
+ (rule "closeTrue" (formula "41"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "2")))
+ (rule "closeTrue" (formula "41"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "41"))
+ )
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "22"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "22") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "elim_double_block_2" (formula "45") (term "1"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "ifUnfold" (formula "48") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "48") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "48") (term "1"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "replace_known_left" (formula "48") (term "0,0,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "ifSplit" (formula "51"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (rule "ifUnfold" (formula "51") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_1"))
+ (rule "compound_greater_equal_than_comparison_1" (formula "51") (term "1") (inst "#v0=x_2"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_2"))
+ (rule "assignmentSubtractionInt" (formula "51") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "expand_inInt" (formula "51"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "1"))
+ (rule "mul_literals" (formula "51") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1"))
+ (rule "mul_literals" (formula "51") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "49") (term "1") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,0,1"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "49") (term "0,0,1"))
+ (rule "qeq_literals" (formula "49") (term "0,1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "inEqSimp_leqRight" (formula "49"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "18"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,1,0"))
+ (rule "greater_equal_than_comparison_simple" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "ifSplit" (formula "51"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "cutoff"))
+ (rule "assignmentSubtractionInt" (formula "52") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "1,1"))
+ (rule "mul_literals" (formula "52") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "52") (term "0,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "50") (term "0") (ifseqformula "8"))
+ (rule "leq_literals" (formula "50") (term "0,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "inEqSimp_geqRight" (formula "50"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "19"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "2"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaSubInt" (formula "52") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "0,1,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "52") (term "1"))
+ (rule "variableDeclarationFinal" (formula "52") (term "1") (newnames "indices"))
+ (rule "arrayCreation" (formula "52") (term "1") (inst "#v0=x_arr"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_arr"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "dim0"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "ifUnfold" (formula "52") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_3"))
+ (rule "less_than_comparison_simple" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "less_literals" (formula "52") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "ifSplit" (formula "52"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "53"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "53"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "47") (term "1") (ifseqformula "2") (ifseqformula "3"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "47") (term "0,0") (ifseqformula "3") (ifseqformula "4"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "48") (term "1") (ifseqformula "4") (ifseqformula "13"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "36") (term "0") (ifseqformula "5") (ifseqformula "14"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "56") (term "1") (inst "#v0=x_arr_1"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_arr_1"))
+ (rule "variableDeclarationAssign" (formula "56") (term "1"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "length_1"))
+ (rule "assignment" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "methodBodyExpand" (formula "56") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "newObject"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "56") (term "1") (inst "#v0=x_arr_2"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_arr_2"))
+ (rule "variableDeclarationAssign" (formula "56") (term "1"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "length_2"))
+ (rule "assignment" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "allocateInstanceWithLength" (formula "56"))
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "7")))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "arrayLengthIsAShort" (formula "1") (term "0"))
+ (rule "expand_inShort" (formula "1"))
+ (rule "replace_short_MIN" (formula "1") (term "0,1"))
+ (rule "replace_short_MAX" (formula "1") (term "1,0"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "3"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "arrayLengthNotNegative" (formula "1") (term "0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "methodCall" (formula "60"))
+ (branch "Normal Execution (newObject != null )"
+ (rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "assignment_write_attribute_this" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "methodCallWithinClass" (formula "60") (term "1"))
+ (rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "arrayInitialisation" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "polySimp_elimSub" (formula "60") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "2,1,0,1,0"))
+ (rule "applyEq" (formula "60") (term "1,2,1,0,1,0") (ifseqformula "1"))
+ (rule "add_literals" (formula "60") (term "2,1,0,1,0"))
+ (rule "methodCallEmpty" (formula "60") (term "1"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "methodCallReturnIgnoreResult" (formula "60") (term "1"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (rule "methodCallReturn" (formula "60") (term "1"))
+ (rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "methodCallEmpty" (formula "60") (term "1"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "Block Contract (Internal)" (formula "60") (newnames "result_22,exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "61"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "18")) (ifInst "" (formula "10")) (ifInst "" (formula "57")))
+ (rule "andLeft" (formula "39"))
+ (rule "eqSymm" (formula "62") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "variableDeclarationAssign" (formula "62") (term "1"))
+ (rule "variableDeclaration" (formula "62") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "62") (term "1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "emptyStatement" (formula "62") (term "1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "emptyStatement" (formula "62") (term "1"))
+ (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "simplifySelectOfStore" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "simplifySelectOfStore" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "simplifySelectOfStore" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "simplifySelectOfCreate" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "43")))
+ (rule "castDel" (formula "40") (term "1,0"))
+ (rule "eqSymm" (formula "40") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "40") (term "0,0"))
+ (rule "replace_known_right" (formula "40") (term "0,0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "43")))
+ (rule "applyEqReverse" (formula "41") (term "0") (ifseqformula "40"))
+ (rule "hideAuxiliaryEq" (formula "40"))
+ (rule "tryEmpty" (formula "61") (term "1"))
+ (rule "blockEmptyLabel" (formula "61") (term "1"))
+ (rule "blockEmpty" (formula "61") (term "1"))
+ (rule "methodCallEmpty" (formula "61") (term "1"))
+ (rule "emptyModality" (formula "61") (term "1"))
+ (rule "andRight" (formula "61"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "closeTrue" (formula "61"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "closeTrue" (formula "61"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "60"))
+ (branch "Case 1"
+ (rule "andRight" (formula "60"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "18")))
+ (rule "closeTrue" (formula "60"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "wellFormedStorePrimitive" (formula "60"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "56"))
+ (rule "wellFormedStorePrimitive" (formula "56"))
+ (rule "wellFormedStorePrimitive" (formula "56"))
+ (rule "wellFormedStorePrimitive" (formula "56"))
+ (rule "wellFormedCreate" (formula "56"))
+ (rule "close" (formula "56") (ifseqformula "8"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "60"))
+ (branch "Case 1"
+ (rule "andRight" (formula "60"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "56")))
+ (rule "closeTrue" (formula "60"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "dismissNonSelectedField" (formula "60") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1"))
+ (rule "mul_literals" (formula "24") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "25"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "pullOutSelect" (formula "56") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")))
+ (rule "applyEqReverse" (formula "57") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "57") (ifseqformula "10"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "10")))
+ (rule "closeTrue" (formula "60"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "39"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "expand_inInt" (formula "39") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "52")))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "elim_double_block_2" (formula "69") (term "1"))
+ (rule "ifUnfold" (formula "69") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "69") (term "1"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "replace_known_left" (formula "69") (term "0,0,1,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "ifSplit" (formula "69"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "69") (term "1"))
+ (rule "loopScopeInvDia" (formula "69") (term "1") (newnames "i_0,write_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "69"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "expand_inInt" (formula "70") (term "0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,0,0,1,0,0"))
+ (rule "impRight" (formula "70"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "80") (term "2,1,0,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "80") (term "2,0,0,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "80") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "80") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "80") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "80") (term "0,1,1,0,1"))
+ (rule "translateJavaMulInt" (formula "8") (term "0,2,1,0,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,0,0,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "2,1,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "2,0,0,0,0,1,0"))
+ (rule "translateJavaMod" (formula "7") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,0,0,0,0,1,0,0"))
+ (rule "translateJavaMulInt" (formula "7") (term "0,2,1,0,0,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "0,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "0,0"))
+ (rule "translateJavaMod" (formula "2") (term "1,1"))
+ (rule "translateJavaMulInt" (formula "80") (term "0,2,1,0,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "80") (term "0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "0,1,0,2,1,0,0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "9") (term "0,2,1,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "0,2,1,0,0,1,0"))
+ (rule "translateJavaMod" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "10") (term "0,2,1,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "0,1,0,2,1,0,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0,0,1,0,0"))
+ (rule "translateJavaMod" (formula "5") (term "0"))
+ (rule "translateJavaSubInt" (formula "2") (term "1"))
+ (rule "translateJavaMod" (formula "80") (term "1,0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "eqSymm" (formula "8") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "0,1,0,2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "2") (term "0,1,1"))
+ (rule "translateJavaSubInt" (formula "80") (term "0,1,0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaMod" (formula "8") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "translateJavaMod" (formula "9") (term "1,0,2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "0,1,0,2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "0,2,1,0,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "80") (term "2,0,0,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "80") (term "1,2,0,0,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "80") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "80") (term "1,2,1,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "80") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "80") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "2,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "1,2,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,0,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,0,0,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "80") (term "2,1,0,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "80") (term "1,2,1,0,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "2,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "1,2,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,0,0,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,0,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "polySimp_elimSub" (formula "80") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "80") (term "1,2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "0,1,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "0,0,1,1"))
+ (rule "polySimp_elimSub" (formula "80") (term "0,1,0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,2,1,0,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "0,1,0,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,2,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "0,0,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,2,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "80") (term "0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,2,1,0,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "0,0,1,0,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,2,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "2,0,0,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "2,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,0,0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,0,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "80") (term "2,1,0,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "2,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0,1,0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,1,0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,1,0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,1,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "polySimp_addComm1" (formula "80") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_5"))
+ (rule "applyEq" (formula "80") (term "1,2,1,0,1,0,1,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "80") (term "1,2,0,0,0,0,1,0,1,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "8") (term "0,1,2,1,0,0,0,1,0,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "7") (term "0,1,2,1,0,0,0,1,0,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "10") (term "0,1,2,1,0,0,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "8") (term "1,2,0,0,0,0,1,0,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "10") (term "1,2,0,0,0,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "80") (term "0,1,2,1,0,0,0,1,0,1,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "9") (term "0,1,2,1,0,0,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "8") (term "1,2,1,0,1,0,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "7") (term "1,2,0,0,0,0,1,0,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "9") (term "1,2,1,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "9") (term "1,2,0,0,0,0,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "7") (term "1,2,1,0,1,0,0") (ifseqformula "44"))
+ (rule "commuteUnion" (formula "8") (term "0,0,0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "10") (term "0,0,0,1,0"))
+ (rule "commuteUnion" (formula "80") (term "0,0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "9") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "8") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "10") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "80") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "7") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "9") (term "1,0"))
+ (rule "commuteUnion_2" (formula "8") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "10") (term "1,0"))
+ (rule "commuteUnion_2" (formula "80") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "1,0,1,0,0"))
+ (rule "commuteUnion" (formula "7") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "9") (term "1,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "10") (term "0,1,1,0"))
+ (rule "commuteUnion" (formula "80") (term "0,0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "80") (term "1,0,1,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "7") (term "1,0,0"))
+ (rule "commuteUnion_2" (formula "9") (term "1,1,1,0"))
+ (rule "commuteUnion_2" (formula "8") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "10") (term "1,1,0"))
+ (rule "commuteUnion_2" (formula "80") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "9") (term "0,1,1,1,0"))
+ (rule "commuteUnion_2" (formula "8") (term "1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "80") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,0,1,0,0,1,0"))
+ (rule "commute_and" (formula "8") (term "0,0"))
+ (rule "associativeLawUnion" (formula "10") (term "1,0"))
+ (rule "associativeLawUnion" (formula "9") (term "1,0"))
+ (rule "associativeLawUnion" (formula "10") (term "1,0"))
+ (rule "associativeLawUnion" (formula "9") (term "1,0"))
+ (rule "associativeLawUnion" (formula "7") (term "1,0,0"))
+ (rule "associativeLawUnion" (formula "9") (term "0,1,0"))
+ (rule "associativeLawUnion" (formula "10") (term "0,0,1,0"))
+ (rule "associativeLawUnion" (formula "8") (term "1,0,0,1,0"))
+ (rule "ifElseUnfold" (formula "80") (term "1") (inst "#boolv=x_6"))
+ (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_6"))
+ (rule "less_equal_than_comparison_simple" (formula "80") (term "1"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "associativeLawUnion" (formula "7") (term "0,0,1,0,0"))
+ (rule "associativeLawUnion" (formula "80") (term "1,0,1,0,1,0,0"))
+ (rule "ifElseSplit" (formula "80"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "methodCallUnfoldArguments" (formula "81") (term "1"))
+ (rule "variableDeclarationAssign" (formula "81") (term "1"))
+ (rule "variableDeclaration" (formula "81") (term "1") (newnames "var"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "variableDeclarationAssign" (formula "81") (term "1"))
+ (rule "variableDeclaration" (formula "81") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "variableDeclarationAssign" (formula "81") (term "1"))
+ (rule "variableDeclaration" (formula "81") (term "1") (newnames "var_2"))
+ (rule "assignmentAdditionInt" (formula "81") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "expand_inInt" (formula "81"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0"))
+ (rule "add_literals" (formula "81") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,1"))
+ (rule "add_literals" (formula "81") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "81") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))"))
+ (rule "times_zero_1" (formula "6") (term "1,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,1,1"))
+ (rule "add_zero_right" (formula "6") (term "1,1"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_homoEq" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1"))
+ (rule "applyEq" (formula "78") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "5") (term "1") (ifseqformula "7"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "applyEq" (formula "78") (term "0,1") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "78") (term "1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1"))
+ (rule "inEqSimp_invertInEq0" (formula "2"))
+ (rule "times_zero_2" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "39"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "4") (term "1,1,0"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0"))
+ (rule "qeq_literals" (formula "79") (term "0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_geqRight" (formula "79"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "39"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "21"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "36") (term "0,0"))
+ (rule "add_zero_left" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "36") (ifseqformula "3"))
+ (rule "greater_literals" (formula "36") (term "0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "times_zero_1" (formula "36") (term "1,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "closeFalse" (formula "36"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "81") (term "1"))
+ (rule "variableDeclaration" (formula "81") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "Use Operation Contract" (formula "81") (newnames "heapBefore_classify_all,exc_27,heapAfter_classify_all,anon_heap_classify_all") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_all([I,int,int,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify_all)"
+ (builtin "One Step Simplification" (formula "55"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "57"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,2,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "blockEmpty" (formula "87") (term "1"))
+ (rule "applyEq" (formula "57") (term "1,1,0,0,0") (ifseqformula "13"))
+ (rule "commute_and" (formula "57") (term "1,0,0"))
+ (rule "commute_and" (formula "57") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "57") (term "0,0"))
+ (rule "commute_and_2" (formula "57") (term "0,0,0"))
+ (builtin "Use Operation Contract" (formula "87") (newnames "heapBefore_finish_batch,result_23,exc_28,heapAfter_finish_batch,anon_heap_finish_batch") (contract "de.wiesler.Classifier[de.wiesler.Classifier::finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0"))
+ (branch "Post (finish_batch)"
+ (builtin "One Step Simplification" (formula "61"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "expand_inInt" (formula "61") (term "0,0,0,1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "61") (term "0,1,0,1"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,0,1,0,1"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "67"))
+ (rule "translateJavaSubInt" (formula "61") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "2,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "70") (term "5,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "71") (term "4,1,1,0"))
+ (rule "translateJavaMulInt" (formula "61") (term "0,2,1,1,1,0"))
+ (rule "eqSymm" (formula "71") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "2,0,1,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,2,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "2,1,1,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,2,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "2,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "2,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "1,0,0"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "applyEq" (formula "71") (term "1,4,0,1,0") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "71") (term "4,0,1,0"))
+ (rule "applyEq" (formula "70") (term "1,5,0") (ifseqformula "13"))
+ (rule "polySimp_addComm0" (formula "70") (term "5,0"))
+ (rule "applyEq" (formula "61") (term "1,2,0,1,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "61") (term "0,1,2,1,1,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "61") (term "1,2,1,0,1,0") (ifseqformula "45"))
+ (rule "commuteUnion" (formula "61") (term "1,1,0"))
+ (rule "commuteUnion" (formula "61") (term "0,1,0"))
+ (rule "commute_and" (formula "71") (term "0,0"))
+ (rule "associativeLawUnion" (formula "61") (term "1,0"))
+ (rule "compound_assignment_op_plus" (formula "101") (term "1"))
+ (rule "compound_int_cast_expression" (formula "101") (term "1") (inst "#v=x_6"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_7"))
+ (rule "remove_parentheses_right" (formula "101") (term "1"))
+ (rule "compound_addition_2" (formula "101") (term "1") (inst "#v1=x_9") (inst "#v0=x_8"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_8"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_9"))
+ (rule "remove_parentheses_right" (formula "101") (term "1"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "assignmentAdditionInt" (formula "101") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "expand_inInt" (formula "101"))
+ (rule "replace_int_MIN" (formula "101") (term "0,1"))
+ (rule "replace_int_MAX" (formula "101") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "101") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "101") (term "0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0,0"))
+ (rule "mul_literals" (formula "101") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0,0"))
+ (rule "add_literals" (formula "101") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "101") (term "1"))
+ (rule "mul_literals" (formula "101") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,1"))
+ (rule "add_literals" (formula "101") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101") (term "1"))
+ (rule "mul_literals" (formula "101") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))"))
+ (rule "times_zero_1" (formula "6") (term "0,1,1"))
+ (rule "times_zero_1" (formula "6") (term "1,1,1"))
+ (rule "add_zero_right" (formula "6") (term "1,1"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_homoEq" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1"))
+ (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "58") (term "1,2,1,0,0,1,0") (ifseqformula "7"))
+ (rule "polySimp_addAssoc" (formula "58") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "5") (term "1") (ifseqformula "7"))
+ (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "applyEq" (formula "98") (term "0,1") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "98") (term "1"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "98") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "98") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "98") (term "0,1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "68") (term "1,4,0,1,0") (ifseqformula "7"))
+ (rule "polySimp_addAssoc" (formula "68") (term "4,0,1,0"))
+ (rule "applyEq" (formula "67") (term "1,5,0") (ifseqformula "7"))
+ (rule "polySimp_addAssoc" (formula "67") (term "5,0"))
+ (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "applyEq" (formula "98") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "98") (term "0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "98") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "98") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "98") (term "0,0"))
+ (rule "applyEq" (formula "65") (term "1") (ifseqformula "7"))
+ (rule "applyEq" (formula "68") (term "4,1,1,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "54") (term "0,0,2,2,0,1,0") (ifseqformula "7"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1"))
+ (rule "inEqSimp_invertInEq0" (formula "2"))
+ (rule "times_zero_2" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "98") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "98") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "98") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "98") (term "0,0"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "64"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "40"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "5") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "5") (term "1,1,0"))
+ (rule "greater_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66"))
+ (rule "mul_literals" (formula "62") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "100") (term "1") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "100") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "100") (term "0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "100") (term "0,0,0,1"))
+ (rule "add_literals" (formula "100") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "100") (term "0,0,1"))
+ (rule "add_literals" (formula "100") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "100") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "100") (term "0,0,1"))
+ (rule "qeq_literals" (formula "100") (term "0,1"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "inEqSimp_leqRight" (formula "100"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "40"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "translateJavaAddInt" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "101") (term "1"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "blockEmpty" (formula "101") (term "1"))
+ (rule "lsContinue" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "mul_literals" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,0"))
+ (rule "precOfInt" (formula "101"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "101") (term "1"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "101") (term "0,1"))
+ (rule "add_literals" (formula "101") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "101") (term "1,0,1"))
+ (rule "add_zero_right" (formula "101") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0,1"))
+ (rule "add_literals" (formula "101") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "101") (term "0,1"))
+ (rule "add_literals" (formula "101") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "101") (term "1,0,1"))
+ (rule "add_zero_right" (formula "101") (term "0,1"))
+ (rule "leq_literals" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "inEqSimp_leqRight" (formula "101"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "jmod_axiom" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "38") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "38"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (finish_batch)"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "62") (term "1,0") (ifseqformula "61"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "62") (term "0,1,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "64"))
+ (rule "notLeft" (formula "62"))
+ (rule "close" (formula "66") (ifseqformula "65"))
+ )
+ (branch "Pre (finish_batch)"
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "59")) (ifInst "" (formula "67")) (ifInst "" (formula "86")) (ifInst "" (formula "84")) (ifInst "" (formula "85")) (ifInst "" (formula "67")) (ifInst "" (formula "86")) (ifInst "" (formula "84")) (ifInst "" (formula "85")))
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "wellFormedAnonEQ" (formula "87") (ifseqformula "55"))
+ (rule "wellFormedAnon" (formula "87") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "87") (term "0,0"))
+ (rule "replace_known_left" (formula "87") (term "1") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "12")))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "83"))
+ (rule "wellFormedStorePrimitive" (formula "83"))
+ (rule "wellFormedStorePrimitive" (formula "83"))
+ (rule "wellFormedStorePrimitive" (formula "83"))
+ (rule "wellFormedCreate" (formula "83"))
+ (rule "close" (formula "83") (ifseqformula "20"))
+ )
+ (branch "Case 2"
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "dismissNonSelectedField" (formula "87") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "closeTrue" (formula "84"))
+ )
+ )
+ (branch "Case 2"
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "dismissNonSelectedField" (formula "87") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")) (ifInst "" (formula "64")))
+ (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "84") (ifseqformula "24"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "87"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1"))
+ (rule "replace_known_left" (formula "87") (term "0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_leqRight" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "38"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_contradInEq0" (formula "37") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "closeFalse" (formula "37"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "87") (userinteraction))
+ (rule "andRight" (formula "87") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "87") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "87"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "38"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "newSym_eq" (formula "7") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))"))
+ (rule "times_zero_1" (formula "7") (term "1,1,1"))
+ (rule "times_zero_1" (formula "7") (term "0,1,1"))
+ (rule "add_zero_left" (formula "7") (term "1,1"))
+ (rule "add_zero_right" (formula "7") (term "1"))
+ (rule "applyEq" (formula "8") (term "0,0") (ifseqformula "7"))
+ (rule "polySimp_homoEq" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "1,0,0") (ifseqformula "8"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "4,0,1,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "6") (term "1") (ifseqformula "8"))
+ (rule "applyEq" (formula "10") (term "5,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "55") (term "0,0,2,2,0,1,0") (ifseqformula "8"))
+ (rule "inEqSimp_invertInEq0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "40"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "5") (ifseqformula "3"))
+ (rule "greater_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "6"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "40"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "22"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "40"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "87") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "jmod_axiom" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "38"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "newSym_eq" (formula "7") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))"))
+ (rule "times_zero_1" (formula "7") (term "0,1,1"))
+ (rule "times_zero_1" (formula "7") (term "1,1,1"))
+ (rule "add_zero_left" (formula "7") (term "1,1"))
+ (rule "add_zero_right" (formula "7") (term "1"))
+ (rule "applyEq" (formula "8") (term "0,0") (ifseqformula "7"))
+ (rule "polySimp_homoEq" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "4,0,1,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "10") (term "5,0") (ifseqformula "8"))
+ (rule "applyEq" (formula "7") (term "1,0,0") (ifseqformula "8"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "6") (term "1") (ifseqformula "8"))
+ (rule "applyEq" (formula "55") (term "0,0,2,2,0,1,0") (ifseqformula "8"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_invertInEq0" (formula "3"))
+ (rule "times_zero_2" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "38") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "closeFalse" (formula "38"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "87"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "38") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))"))
+ (rule "times_zero_1" (formula "6") (term "1,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,1,1"))
+ (rule "add_zero_right" (formula "6") (term "1,1"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_homoEq" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1"))
+ (rule "applyEq" (formula "5") (term "1") (ifseqformula "7"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "84") (term "0,1") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "84") (term "1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,1"))
+ (rule "applyEq" (formula "84") (term "0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0"))
+ (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "54") (term "0,0,2,2,0,1,0") (ifseqformula "7"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1"))
+ (rule "inEqSimp_invertInEq0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "84") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "84") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,0"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "39"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "85") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "85") (term "0,0,0,0"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "85") (term "0,0,0"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "85") (term "0,0,0"))
+ (rule "qeq_literals" (formula "85") (term "0,0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "inEqSimp_geqRight" (formula "85"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "39"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "21"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "36") (term "0,0"))
+ (rule "add_zero_left" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "36") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "36") (term "1,1,0"))
+ (rule "greater_literals" (formula "36") (term "0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "closeFalse" (formula "36"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "87"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1"))
+ (rule "replace_known_left" (formula "87") (term "0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_leqRight" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "28") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeFalse" (formula "28"))
+ )
+ )
+ (branch "Case 2"
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "dismissNonSelectedField" (formula "87") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "38") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")) (ifInst "" (formula "64")))
+ (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "84") (ifseqformula "28"))
+ )
+ )
+ (branch "Case 2"
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "orRight" (formula "87"))
+ (rule "dismissNonSelectedField" (formula "87") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "82")))
+ (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "84") (ifseqformula "29"))
+ )
+ )
+ )
+ (branch "Exceptional Post (classify_all)"
+ (builtin "One Step Simplification" (formula "55"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "andLeft" (formula "55"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "close" (formula "59") (ifseqformula "58"))
+ )
+ (branch "Pre (classify_all)"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "11")) (ifInst "" (formula "80")) (ifInst "" (formula "61")) (ifInst "" (formula "80")) (ifInst "" (formula "61")))
+ (rule "wellFormedAnon" (formula "81") (term "0,0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "81") (term "0,0,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0"))
+ (rule "replace_known_left" (formula "81") (term "1,0,0,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "dismissNonSelectedField" (formula "81") (term "0,0,1,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "81") (term "0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "add_literals" (formula "81") (term "0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,1,0"))
+ (rule "mul_literals" (formula "81") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,1,1,0"))
+ (rule "add_literals" (formula "81") (term "0,0,1,1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "81") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,1,0"))
+ (rule "mul_literals" (formula "81") (term "1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "77") (term "0,0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "77") (term "0,0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "77") (term "0,0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "77") (term "0,0,0,0"))
+ (rule "wellFormedCreate" (formula "77") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "77") (term "0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))"))
+ (rule "times_zero_1" (formula "6") (term "1,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,1,1"))
+ (rule "add_zero_right" (formula "6") (term "1,1"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_homoEq" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1"))
+ (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "applyEq" (formula "78") (term "0,1,1,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "78") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,0"))
+ (rule "applyEq" (formula "78") (term "0,0,1,0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "78") (term "0,1,1,0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,1,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "applyEq" (formula "78") (term "0,0,1,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,1,0"))
+ (rule "applyEq" (formula "5") (term "1") (ifseqformula "7"))
+ (rule "inEqSimp_invertInEq0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0,1,0"))
+ (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "pullOutSelect" (formula "78") (term "0,0,1") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "79") (term "0,0,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "39"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "4") (term "1,1,0"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "pullOutSelect" (formula "78") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")) (ifInst "" (formula "59")))
+ (rule "applyEqReverse" (formula "79") (term "0,0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "78") (term "0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "79") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_subsumption0" (formula "79") (term "0,1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,0,1"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0,0,1"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0,1"))
+ (rule "qeq_literals" (formula "79") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "39"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "21"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "36") (term "0,0"))
+ (rule "add_zero_left" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "36") (inst "elimGcdRightDiv=Z(6(4(0(2(#)))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "36") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "36") (term "0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_and_subsumption3" (formula "42") (term "0,0,0"))
+ (rule "leq_literals" (formula "42") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "31"))
+ (rule "replace_known_right" (formula "20") (term "0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "translateJavaSubInt" (formula "49") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "49") (term "0,2,1"))
+ (rule "eqSymm" (formula "46"))
+ (rule "eqSymm" (formula "49"))
+ (rule "translateJavaMulInt" (formula "46") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,2,1"))
+ (rule "mul_literals" (formula "49") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,2,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "43"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "43"))
+ (rule "applyEq" (formula "46") (term "1") (ifseqformula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "34"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "44"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "54") (term "0"))
+ (rule "translateJavaSubInt" (formula "54") (term "0,0,0,1,1,1,0,0,0,0"))
+ (rule "eqSymm" (formula "54") (term "0,1,1,0,0,0,0"))
+ (rule "replace_known_right" (formula "54") (term "0,1,0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "42")) (ifInst "" (formula "87")) (ifInst "" (formula "85")) (ifInst "" (formula "86")) (ifInst "" (formula "23")) (ifInst "" (formula "24")))
+ (rule "polySimp_elimSub" (formula "54") (term "0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "54") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "54") (term "1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "54") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "54") (term "0,1,0"))
+ (rule "applyEq" (formula "54") (term "0,0,1,0") (ifseqformula "42"))
+ (rule "inEqSimp_subsumption0" (formula "54") (term "0,1,0") (ifseqformula "33"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,1,0"))
+ (rule "qeq_literals" (formula "54") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaMod" (formula "9") (term "0"))
+ (rule "jmod_axiom" (formula "9") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "newSym_eq" (formula "9") (inst "l=l_1") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write_0, Z(0(#))))"))
+ (rule "times_zero_1" (formula "9") (term "1,1,1"))
+ (rule "times_zero_1" (formula "9") (term "0,1,1"))
+ (rule "add_zero_left" (formula "9") (term "1,1"))
+ (rule "add_zero_right" (formula "9") (term "1"))
+ (rule "applyEq" (formula "10") (term "0,0") (ifseqformula "9"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1"))
+ (rule "applyEq" (formula "9") (term "1,0,0") (ifseqformula "10"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "3,0,1,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "11") (term "4,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "6") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_zero_right" (formula "6") (term "0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1"))
+ (rule "inEqSimp_invertInEq0" (formula "5"))
+ (rule "times_zero_2" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "5") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcdRightDiv=mul(l_1, Z(6(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "6") (term "0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "35"))
+ (rule "polySimp_mulAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "6") (inst "elimGcdRightDiv=Z(7(2(1(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "6") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "6") (term "0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "43") (term "0") (inst "element=element"))
+ (rule "expand_inInt" (formula "43") (term "0,0,1,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,0,0,1,0,1,1,1"))
+ (rule "replace_known_left" (formula "43") (term "1,1,1,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "25")) (ifInst "" (formula "31")) (ifInst "" (formula "89")) (ifInst "" (formula "44")) (ifInst "" (formula "44")))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,0,1,1,1"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "58") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "expand_inInt" (formula "58") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "58") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "58") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "translateJavaSubInt" (formula "62") (term "1"))
+ (rule "polySimp_elimSub" (formula "62") (term "1"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "1"))
+ (rule "add_literals" (formula "62") (term "1,1"))
+ (rule "times_zero_1" (formula "62") (term "1"))
+ (rule "replace_known_left" (formula "43") (term "0,1,1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0"))
+ (rule "applyEq" (formula "61") (term "0,1,0,0,1,0,0,0") (ifseqformula "45"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "44") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "33") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "48")))
+ (rule "expand_inInt" (formula "33") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "translateJavaMulInt" (formula "33") (term "1"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "eqSymm" (formula "69"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "50"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Classifier" (formula "13") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "15"))
+ (rule "notLeft" (formula "14"))
+ (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "jdiv_axiom" (formula "12") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "eqSymm" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,2,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "eqSymm" (formula "12"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "12"))
+ (rule "applyEq" (formula "14") (term "0,1,2,1,0,0,1,0,0,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "13") (term "0,1,2,1,0,0,1,0,0") (ifseqformula "12"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0,1,1"))
+ (rule "jdiv_axiom" (formula "8") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "8"))
+ (rule "applyEqRigid" (formula "8") (term "1") (ifseqformula "9"))
+ (rule "inEqSimp_subsumption6" (formula "8") (term "0,0") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "8") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "8") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "leq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polyDiv_pullOut" (formula "8") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_pullOutFactor0" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "0,0,0"))
+ (rule "div_literals" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "commute_and" (formula "98"))
+ (rule "inEqSimp_and_subsumption2" (formula "98"))
+ (rule "inEqSimp_homoInEq0" (formula "98") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "98") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "98") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "98") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "98") (term "0,0,0,0"))
+ (rule "add_literals" (formula "98") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "98") (term "0,0,0"))
+ (rule "add_literals" (formula "98") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "98") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "98") (term "0,0,0"))
+ (rule "qeq_literals" (formula "98") (term "0,0"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "inEqSimp_geqRight" (formula "98"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "38") (ifseqformula "3"))
+ (rule "greater_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "times_zero_1" (formula "38") (term "1,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "closeFalse" (formula "38"))
+ )
+ )
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "81") (term "1"))
+ (rule "blockBreak" (formula "81") (term "1"))
+ (rule "lsBreak" (formula "81") (term "1"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "Block Contract (Internal)" (formula "81") (newnames "result_23,exc_27,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "29")) (ifInst "" (formula "21")) (ifInst "" (formula "78")))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "andLeft" (formula "53"))
+ (rule "eqSymm" (formula "83") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "54") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "83") (term "1"))
+ (rule "variableDeclaration" (formula "83") (term "1") (newnames "exc_27_1"))
+ (rule "assignment" (formula "83") (term "1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "emptyStatement" (formula "83") (term "1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "emptyStatement" (formula "83") (term "1"))
+ (rule "pullOutSelect" (formula "54") (term "0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "simplifySelectOfStore" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "simplifySelectOfStore" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "simplifySelectOfStore" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "simplifySelectOfCreate" (formula "54"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "64")))
+ (rule "castDel" (formula "54") (term "1,0"))
+ (rule "eqSymm" (formula "54") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "54") (term "0,0"))
+ (rule "replace_known_right" (formula "54") (term "1,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "80")))
+ (rule "applyEqReverse" (formula "55") (term "0,0") (ifseqformula "54"))
+ (rule "hideAuxiliaryEq" (formula "54"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "tryEmpty" (formula "82") (term "1"))
+ (rule "blockEmptyLabel" (formula "82") (term "1"))
+ (rule "blockEmpty" (formula "82") (term "1"))
+ (rule "methodCallEmpty" (formula "82") (term "1"))
+ (rule "emptyModality" (formula "82") (term "1"))
+ (rule "andRight" (formula "82"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "closeTrue" (formula "82"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "closeTrue" (formula "82"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "81"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "wellFormedAnon" (formula "81"))
+ (rule "wellFormedStorePrimitive" (formula "81") (term "0"))
+ (rule "replace_known_left" (formula "81") (term "1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_leqRight" (formula "53"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "wellFormedMemsetArrayPrimitive" (formula "77"))
+ (rule "wellFormedStorePrimitive" (formula "77"))
+ (rule "wellFormedStorePrimitive" (formula "77"))
+ (rule "wellFormedStorePrimitive" (formula "77"))
+ (rule "wellFormedCreate" (formula "77"))
+ (rule "close" (formula "77") (ifseqformula "20"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "77")))
+ (rule "closeTrue" (formula "81"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "orRight" (formula "81"))
+ (rule "dismissNonSelectedField" (formula "81") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "53"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0"))
+ (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0"))
+ (rule "jmod_axiom" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "38") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "pullOutSelect" (formula "77") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfMemset" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74")))
+ (rule "applyEqReverse" (formula "78") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "78") (ifseqformula "22"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "81"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "82"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "eqSymm" (formula "57"))
+ (rule "translateJavaMod" (formula "57") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "0"))
+ (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "elim_double_block_2" (formula "85") (term "1"))
+ (rule "ifUnfold" (formula "85") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "85") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "85") (term "1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "replace_known_left" (formula "85") (term "0,0,1,0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "ifSplit" (formula "85"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "85") (term "1"))
+ (rule "emptyStatement" (formula "85") (term "1"))
+ (rule "blockEmpty" (formula "85") (term "1"))
+ (rule "methodCallReturn" (formula "85") (term "1"))
+ (rule "assignment" (formula "85") (term "1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "methodCallEmpty" (formula "85") (term "1"))
+ (rule "tryEmpty" (formula "85") (term "1"))
+ (rule "emptyModality" (formula "85") (term "1"))
+ (rule "andRight" (formula "85"))
+ (branch "Case 1"
+ (rule "impRight" (formula "85"))
+ (rule "andRight" (formula "86"))
+ (branch "Case 1"
+ (rule "andRight" (formula "86"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "10")))
+ (rule "closeTrue" (formula "86"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "86"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "closeTrue" (formula "86"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "85"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (newObject = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "41")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "1"))
+ (rule "methodCallReturn" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "methodCallEmpty" (formula "52") (term "1"))
+ (rule "tryEmpty" (formula "52") (term "1"))
+ (rule "emptyModality" (formula "52") (term "1"))
+ (rule "andRight" (formula "52"))
+ (branch "Case 1"
+ (rule "andRight" (formula "52"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "52") (userinteraction))
+ (rule "inEqSimp_geqRight" (formula "32"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "18"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "1"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "21"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "17"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "23") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "29") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "translateJavaSubInt" (formula "33") (term "1"))
+ (rule "polySimp_elimSub" (formula "33") (term "1"))
+ (rule "polySimp_pullOutFactor1" (formula "33") (term "1"))
+ (rule "add_literals" (formula "33") (term "1,1"))
+ (rule "times_zero_1" (formula "33") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+ (rule "applyEq" (formula "32") (term "0,1,0,0,1,0,0,0") (ifseqformula "24"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "translateJavaMulInt" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "eqSymm" (formula "38"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "18"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "13"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "eqSymm" (formula "33"))
+ (rule "eqSymm" (formula "30"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "33") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "30") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,2,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_elimSub" (formula "33") (term "0,2,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "27"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "27"))
+ (rule "applyEq" (formula "29") (term "1") (ifseqformula "27"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "28"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "16"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "24") (term "0,1,0"))
+ (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "40") (term "0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "40") (term "0"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "38") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "38") (term "3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "38") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_allElementsCounted_in_Classifier" (formula "36") (term "0"))
+ (rule "replace_known_left" (formula "36") (term "1,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "62")) (ifInst "" (formula "60")) (ifInst "" (formula "3")) (ifInst "" (formula "59")))
+ (rule "inEqSimp_commuteGeq" (formula "36") (term "0,0"))
+ (rule "applyEq" (formula "36") (term "0,0,0") (ifseqformula "25"))
+ (rule "inEqSimp_subsumption0" (formula "36") (term "0,0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "36") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "38") (term "0"))
+ (rule "translateJavaSubInt" (formula "38") (term "0,0,0,0,0,0,0"))
+ (rule "replace_known_right" (formula "38") (term "0,1,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "63")) (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (rule "polySimp_elimSub" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "39") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0"))
+ (rule "translateJavaDivInt" (formula "39") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "39") (term "0,1,4,0,1,0"))
+ (rule "translateJavaAddInt" (formula "39") (term "3,0,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "39") (term "4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "1,3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "1,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "jdiv_axiom_inline" (formula "39") (term "1,1,0,0,0"))
+ (rule "times_zero_2" (formula "39") (term "0,0,2,1,1,0,0,0"))
+ (rule "qeq_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "div_literals" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "37") (term "0") (inst "b=b") (inst "b_0=b_0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,0"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaCastInt" (formula "38") (term "0"))
+ (rule "translateJavaSubInt" (formula "38") (term "1"))
+ (rule "polySimp_elimSub" (formula "38") (term "1"))
+ (rule "polySimp_pullOutFactor1" (formula "38") (term "1"))
+ (rule "add_literals" (formula "38") (term "1,1"))
+ (rule "times_zero_1" (formula "38") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0"))
+ (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "25"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0,0") (ifseqformula "25"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "23") (term "0,0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "42") (term "0,0,1,0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "commute_or_2" (formula "24") (term "0,0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "nnf_notAnd" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0"))
+ (rule "commute_or_2" (formula "41") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "32") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "40") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "34") (term "1"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "3,0"))
+ (rule "mul_literals" (formula "38") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "applyEq" (formula "36") (term "1") (ifseqformula "34"))
+ (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "40") (term "1,0,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "34"))
+ (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "37") (term "1") (ifseqformula "34"))
+ (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "29"))
+ (rule "inEqSimp_commuteGeq" (formula "37"))
+ (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "eqSymm" (formula "31"))
+ (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "39") (term "0,1,0,0,1,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "eqSymm" (formula "31"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "34") (term "1"))
+ (rule "mod_axiom" (formula "34") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "36") (term "1"))
+ (rule "mod_axiom" (formula "36") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "30") (term "3,0"))
+ (rule "mod_axiom" (formula "30") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "35") (term "0"))
+ (rule "mod_axiom" (formula "35") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "1,3,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "2,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "40") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "34") (term "0,1"))
+ (rule "eqSymm" (formula "34"))
+ (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "36") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,1"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "36"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "shiftLeftDef" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "30") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,3,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "35") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "38") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "37") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "28") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,2,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "31"))
+ (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "40") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "40") (term "1,1,1,0,0,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "39") (term "1,1,1,1,0") (ifseqformula "34"))
+ (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "31"))
+ (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "37"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "expand_moduloInteger" (formula "34") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "34") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "48") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "translateJavaMod" (formula "48") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "45")))
+ (rule "true_left" (formula "48"))
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "46") (term "1,1,0") (inst "i=i_1"))
+ (rule "bsum_lower_equals_upper" (formula "46") (term "1,1,0"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "48") (term "0,1,0"))
+ (rule "replace_known_right" (formula "48") (term "0,1,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "2")) (ifInst "" (formula "3")))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "49") (term "0,1,0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "45") (term "1,1"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "29")) (ifInst "" (formula "30")))
+ (rule "translateJavaMulInt" (formula "45") (term "1,1,1,0,0,1,1"))
+ (rule "eqSymm" (formula "45") (term "1,0,1,1"))
+ (rule "eqSymm" (formula "45") (term "1,0,0,1,1"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,2,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,2,0,1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,2,1,1,0,1,1"))
+ (rule "mul_literals" (formula "45") (term "1,0,2,1,1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,2,0,1,0,1,1"))
+ (rule "mul_literals" (formula "45") (term "1,0,2,0,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "45") (term "1,0,1,1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,1,1"))
+ (rule "applyEq" (formula "45") (term "0,1,0,1,1") (ifseqformula "28"))
+ (rule "eqSymm" (formula "45") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "45") (term "1,0,1,1") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "applyEq" (formula "45") (term "0,1,0,1,1") (ifseqformula "25"))
+ (rule "replace_known_left" (formula "45") (term "1,0,1,1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "applyEq" (formula "45") (term "0,0,1,1") (ifseqformula "25"))
+ (rule "replace_known_left" (formula "45") (term "0,1,1") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "51") (term "2,0"))
+ (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "50") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,1,1,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,0,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "41") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "41") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "41") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "40") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "40") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "40") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "40") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "40") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "40") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "40") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,0,1,1,1,0"))
+ (rule "commute_or" (formula "24") (term "1,0,0,0"))
+ (rule "commute_and" (formula "41") (term "1,0,0"))
+ (rule "commute_and" (formula "40") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "49") (term "0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "30") (term "0"))
+ (rule "replace_known_right" (formula "30") (term "0,0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "2")) (ifInst "" (formula "31")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "31") (term "0") (inst "j=j") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "51") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,1,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,1,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "40") (term "0"))
+ (rule "replace_known_left" (formula "40") (term "0,1") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "55")) (ifInst "" (formula "2")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "41") (term "0") (inst "j=j") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0,1,0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "cut_direct" (formula "76") (term "0,0"))
+ (branch "CUT: buffers.buffer = null TRUE"
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "false_right" (formula "77"))
+ (rule "replace_known_left" (formula "51") (term "0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "62"))
+ (rule "applyEq" (formula "67") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "66") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "51") (term "1,2,0,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "65") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "57"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "12") (term "0"))
+ (rule "expand_inShort" (formula "12"))
+ (rule "replace_short_MIN" (formula "12") (term "0,1"))
+ (rule "replace_short_MAX" (formula "12") (term "1,0"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "20"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "nnf_notAnd" (formula "43") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_imp2or" (formula "32") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "51") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,0,0,1,0"))
+ (rule "commute_or_2" (formula "51") (term "0,0"))
+ (rule "arrayLengthNotNegative" (formula "40") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "37"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "1"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "37"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "49") (term "0,1"))
+ (rule "replace_known_right" (formula "49") (term "0,0,0,1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "56")))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "53") (term "0,1,0,1,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "translateJavaMod" (formula "53") (term "0,1,0,1,0"))
+ (rule "jmod_axiom" (formula "53") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "53") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "43") (term "0,0"))
+ (rule "nnf_imp2or" (formula "43") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "45") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "39") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "31") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "31") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "31") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "31") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0"))
+ (rule "ifthenelse_split" (formula "29") (term "0"))
+ (branch "self.equal_buckets = TRUE TRUE"
+ (rule "newSym_eq" (formula "30") (inst "newSymDef=mul(int::final(buffers,
+ de.wiesler.Buffers::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "30") (term "1,1"))
+ (rule "add_zero_right" (formula "30") (term "1"))
+ (rule "applyEq" (formula "35") (term "1,0,2,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "35"))
+ (rule "applyEq" (formula "33") (term "1,1,1,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "34") (term "1,1,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "49") (term "1,1,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "31"))
+ (rule "applyEq" (formula "48") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "48") (term "1,1,1,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "34") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "30"))
+ (rule "applyEq" (formula "50") (term "1,1,0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "30"))
+ (rule "applyEq" (formula "14") (term "1,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "58") (term "1,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "35") (term "1,0,2,0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "35"))
+ (rule "applyEq" (formula "55") (term "1,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "59") (term "1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "57") (term "1,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "applyEq" (formula "24") (term "1,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "25") (term "1,1,0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "38") (term "1,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "26") (term "1") (ifseqformula "31"))
+ (rule "applyEq" (formula "49") (term "0,1,0,0,1,1,1,0") (ifseqformula "30"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "inEqSimp_subsumption6" (formula "28") (ifseqformula "40"))
+ (rule "mul_literals" (formula "28") (term "1,1,0"))
+ (rule "greater_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "15"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "44") (ifseqformula "15"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "15"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "52") (term "0"))
+ (rule "replace_known_right" (formula "52") (term "0,0,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "59")))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "55") (term "0,1,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "45") (term "0"))
+ (rule "replace_known_left" (formula "45") (term "0,1") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "60")) (ifInst "" (formula "3")))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "56") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "46") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "commute_or_2" (formula "49") (term "0,0"))
+ (rule "commute_or_2" (formula "47") (term "0,0"))
+ (rule "commute_or_2" (formula "33") (term "0,0"))
+ (rule "commute_or_2" (formula "48") (term "0,0"))
+ (rule "commute_or" (formula "57") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "13") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "25") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "54") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "56") (term "0,0,0"))
+ (rule "commute_or" (formula "56") (term "1,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (inst "i=i_1") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "59")) (ifInst "" (formula "36")))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "60") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "58") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "54") (term "1"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "3,0"))
+ (rule "mul_literals" (formula "58") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "53"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "29"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "29"))
+ (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "29"))
+ (rule "eqSymm" (formula "53"))
+ (rule "applyEq" (formula "58") (term "1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "56") (term "1,3,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "55") (term "0"))
+ (rule "nnf_imp2or" (formula "54") (term "0"))
+ (rule "expand_moduloInteger" (formula "53") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "53") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "53") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,0"))
+ (rule "applyEq" (formula "53") (term "0,1,0") (ifseqformula "37"))
+ (rule "polySimp_pullOutFactor1" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "1,0"))
+ (rule "times_zero_1" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "nnf_notAnd" (formula "54") (term "0,0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0"))
+ (rule "nnf_notAnd" (formula "54") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "54") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "54") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "54") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "54") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "54") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "54") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "53") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "53") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "53") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "53") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "53") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "45") (term "0"))
+ (rule "replace_known_right" (formula "45") (term "0,0,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "3")) (ifInst "" (formula "46")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "33") (term "0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "commute_or_2" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "commute_or" (formula "48") (term "0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0"))
+ (rule "commute_or" (formula "33") (term "1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,1,0"))
+ (rule "commute_or" (formula "48") (term "1,0,0,1,0"))
+ (rule "commute_or_2" (formula "47") (term "0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0,1,0"))
+ (rule "div_axiom" (formula "37") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "37") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "equal_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1,1,1"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "polySimp_addComm1" (formula "39") (term "1"))
+ (rule "add_literals" (formula "39") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "inEqSimp_homoInEq1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "applyEq" (formula "40") (term "0,1,1,2,1,0,0") (ifseqformula "37"))
+ (rule "polySimp_addComm0" (formula "40") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "40") (term "0,1,1,1,1,1,0,0") (ifseqformula "37"))
+ (rule "polySimp_addComm0" (formula "40") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "40") (term "0,0,0,1,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "40") (term "0,1,0,0") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "40") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "mod_axiom" (formula "40") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "newSym_eq" (formula "40") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "40") (term "0,1,1"))
+ (rule "times_zero_1" (formula "40") (term "1,1,1"))
+ (rule "add_zero_left" (formula "40") (term "1,1"))
+ (rule "add_zero_right" (formula "40") (term "1"))
+ (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "40"))
+ (rule "polySimp_homoEq" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1"))
+ (rule "applyEq" (formula "40") (term "1,0,0") (ifseqformula "41"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "40") (term "0") (inst "polyDivCoeff=l_1"))
+ (rule "equal_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,1,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0,1,1,1,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "0,0"))
+ (rule "add_zero_left" (formula "40") (term "0"))
+ (rule "polySimp_invertEq" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "times_zero_2" (formula "40") (term "1"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "39"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "35") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_antiSymm" (formula "35") (ifseqformula "39"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "35"))
+ (rule "leq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "applyEq" (formula "40") (term "0,1") (ifseqformula "35"))
+ (rule "times_zero_2" (formula "40") (term "1"))
+ (rule "applyEq" (formula "41") (term "0,1,1") (ifseqformula "35"))
+ (rule "times_zero_2" (formula "41") (term "1,1"))
+ (rule "add_zero_right" (formula "41") (term "1"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "applyEq" (formula "38") (term "1") (ifseqformula "35"))
+ (rule "applyEq" (formula "42") (term "0,0,1,0") (ifseqformula "35"))
+ (rule "times_zero_2" (formula "42") (term "0,1,0"))
+ (rule "add_zero_left" (formula "42") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "36"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption0" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "commute_or_2" (formula "13") (term "0,0,0"))
+ (rule "commute_or_2" (formula "59") (term "0,0,0"))
+ (rule "commute_or_2" (formula "61") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "53") (term "0,0,0"))
+ (rule "commute_or" (formula "51") (term "1,0,0,0"))
+ (rule "commute_or" (formula "33") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "52") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "62") (term "0,0,0"))
+ (rule "commute_or" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "25") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "25") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "commute_or_2" (formula "61") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "58") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "58") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "58") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "58") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "57") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "57") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "57") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "57") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "57") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "57") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,0,1,1,1,0"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "47") (term "0"))
+ (rule "expand_inShort" (formula "47"))
+ (rule "replace_short_MIN" (formula "47") (term "0,1"))
+ (rule "replace_short_MAX" (formula "47") (term "1,0"))
+ (rule "andLeft" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "41"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthNotNegative" (formula "11") (term "0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "12"))
+ (rule "qeq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthIsAShort" (formula "45") (term "0"))
+ (rule "expand_inShort" (formula "45"))
+ (rule "replace_short_MAX" (formula "45") (term "1,0"))
+ (rule "replace_short_MIN" (formula "45") (term "0,1"))
+ (rule "andLeft" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "arrayLengthNotNegative" (formula "46") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "41"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "arrayLengthNotNegative" (formula "44") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "12") (term "0"))
+ (rule "expand_inShort" (formula "12"))
+ (rule "replace_short_MAX" (formula "12") (term "1,0"))
+ (rule "replace_short_MIN" (formula "12") (term "0,1"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "13"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ (branch "self.equal_buckets = TRUE FALSE"
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "29"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "45") (term "1,3,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "46") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "48") (term "1,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "31") (term "1,1,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "47") (term "1,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "46") (term "1,1,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "32") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "32") (term "1,1,0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "36") (term "1,1") (ifseqformula "29"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,1,1,0") (ifseqformula "29"))
+ (rule "inEqSimp_subsumption0" (formula "40") (ifseqformula "13"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "40") (ifseqformula "13"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "13"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "commute_or" (formula "51") (term "1,0,0,0"))
+ (rule "commute_or" (formula "14") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "25") (term "0,0,0"))
+ (rule "div_axiom" (formula "36") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "qeq_literals" (formula "36") (term "0,1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "polySimp_addComm1" (formula "38") (term "1"))
+ (rule "add_literals" (formula "38") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_homoInEq1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "applyEq" (formula "39") (term "0,1,1,1,1,1,0,0") (ifseqformula "36"))
+ (rule "polySimp_addComm0" (formula "39") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "39") (term "0,0,0,1,0,0") (ifseqformula "36"))
+ (rule "inEqSimp_homoInEq1" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "39") (term "0,1,1,2,1,0,0") (ifseqformula "36"))
+ (rule "polySimp_addComm0" (formula "39") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "mul_literals" (formula "38") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "39") (term "0,1,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_homoInEq1" (formula "39") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "39") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "mod_axiom" (formula "39") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1"))
+ (rule "newSym_eq" (formula "39") (inst "newSymDef=add(mul(int::final(buffers,
+ de.wiesler.Buffers::$num_buckets),
+ Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ int::final(de.wiesler.Tree::final(self,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$log_buckets))),
+ Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "39") (term "1,1,1"))
+ (rule "times_zero_1" (formula "39") (term "0,1,1"))
+ (rule "add_zero_left" (formula "39") (term "1,1"))
+ (rule "add_zero_right" (formula "39") (term "1"))
+ (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "39"))
+ (rule "polySimp_homoEq" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1"))
+ (rule "applyEq" (formula "39") (term "1,0,0") (ifseqformula "40"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "39") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "polySimp_homoEq" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "0,0"))
+ (rule "add_zero_left" (formula "39") (term "0"))
+ (rule "polySimp_invertEq" (formula "39"))
+ (rule "times_zero_2" (formula "39") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "38"))
+ (rule "mul_literals" (formula "34") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "mul_literals" (formula "34") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "34") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "34") (term "0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "34") (term "0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_antiSymm" (formula "34") (ifseqformula "38"))
+ (rule "applyEqRigid" (formula "40") (term "0,1") (ifseqformula "34"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "applyEq" (formula "40") (term "0,1,1") (ifseqformula "34"))
+ (rule "mul_literals" (formula "40") (term "1,1"))
+ (rule "add_zero_right" (formula "40") (term "1"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "34"))
+ (rule "leq_literals" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "applyEq" (formula "41") (term "0,0,1,0") (ifseqformula "34"))
+ (rule "times_zero_2" (formula "41") (term "0,1,0"))
+ (rule "add_zero_left" (formula "41") (term "1,0"))
+ (rule "applyEq" (formula "37") (term "1") (ifseqformula "34"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "35"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption0" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "56") (term "0,1,0,1,0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_notAnd" (formula "47") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "56") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (term "1") (inst "i_0=i_0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "60")) (ifInst "" (formula "36")))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,1"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "53") (term "3,0,1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "53") (term "0,2,1,1,0,1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "53") (term "1,1,0,0,0,0,0,1"))
+ (rule "eqSymm" (formula "53") (term "1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "53") (term "3,0,1,0,0,1"))
+ (rule "mul_literals" (formula "53") (term "1,3,0,1,0,0,1"))
+ (rule "polySimp_elimSub" (formula "53") (term "0,2,0,1,0,1,1"))
+ (rule "mul_literals" (formula "53") (term "1,0,2,0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "53") (term "3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,1,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,0,0,0,0,0,1"))
+ (rule "replace_known_left" (formula "53") (term "1,0,0,0,0,0,0,1") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0,1"))
+ (rule "applyEq" (formula "53") (term "1,1,1,0,0,0,0,1") (ifseqformula "29"))
+ (rule "replace_known_left" (formula "53") (term "1,1,0,0,0,0,1") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "applyEq" (formula "53") (term "1,0,1,0,1,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "53") (term "0,0,1,0,0,0,1") (ifseqformula "30"))
+ (rule "inEqSimp_commuteGeq" (formula "53") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "53") (term "0,0,0,0,0,0,0,0,1") (ifseqformula "30"))
+ (rule "replace_known_right" (formula "53") (term "0,0,0,0,0,0,0,1") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,0,0,1") (ifseqformula "29"))
+ (rule "replace_known_left" (formula "53") (term "1,0,0,0,0,1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "applyEq" (formula "53") (term "1,3,0,1,0,0,1") (ifseqformula "29"))
+ (rule "applyEq" (formula "53") (term "1,0,1,0,0,1") (ifseqformula "30"))
+ (rule "applyEq" (formula "53") (term "0,0,0,0,0,1") (ifseqformula "29"))
+ (rule "eqSymm" (formula "53") (term "0,0,0,0,1"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,0,1") (ifseqformula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,0,0,1"))
+ (rule "replace_known_left" (formula "53") (term "1,0,0,0,1") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,1,1,0,1,0,1") (ifseqformula "29"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0,0,1,1") (ifseqformula "29"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0,0,1,0,1") (ifseqformula "29"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,1,0,1,0,1"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,1,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,1,0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0,0,0,0,1"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0,1"))
+ (rule "applyEq" (formula "53") (term "0,1,1,0,0,0,0,0,1") (ifseqformula "37"))
+ (rule "times_zero_2" (formula "53") (term "1,1,0,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "53") (term "1,0,0,0,0,0,1"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0,0,0,0,1"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0,0,0,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0,0,0,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0,0,0,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "applyEq" (formula "53") (term "2,0,0,0,0,0,1") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "53") (term "0,0,0,0,0,0,1") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "53") (term "0,0,0,0,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "commute_or" (formula "56") (term "1,0,0,0"))
+ (rule "commute_or" (formula "56") (term "1,0,0,1,0"))
+ (rule "commute_or" (formula "57") (term "1,0,0,0"))
+ (rule "commute_or" (formula "32") (term "1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "46") (term "0"))
+ (rule "replace_known_left" (formula "46") (term "0,1") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "62")) (ifInst "" (formula "3")))
+ (rule "replace_known_left" (formula "54") (term "1,0,0,1") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "47") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "47") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "48") (term "1,0,0"))
+ (rule "commute_or_2" (formula "50") (term "0,0"))
+ (rule "commute_or_2" (formula "49") (term "0,0"))
+ (rule "arrayLengthNotNegative" (formula "11") (term "0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "12"))
+ (rule "qeq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "applyEqRigid" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "12"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ )
+ (branch "CUT: buffers.buffer = null FALSE"
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notRight" (formula "77"))
+ (rule "replace_known_right" (formula "51") (term "0,1,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "applyEq" (formula "70") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "60"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "66"))
+ (rule "applyEq" (formula "54") (term "1,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "68") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "53") (term "1,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "63"))
+ (rule "applyEq" (formula "14") (term "1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "14") (term "1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "25") (term "1,0,1,0") (ifseqformula "1"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "11") (term "0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "12"))
+ (rule "qeq_literals" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "20"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "12"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "12"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "52"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "closeTrue" (formula "52"))
+ )
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__equal_buckets()).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__equal_buckets()).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..4b29e0d
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__equal_buckets()).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,98 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 21:24:55 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 21:24:55 CEST 2022
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:equal_buckets()].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:equal_buckets()].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "13")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "assignment" (formula "8"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_equal_buckets,savedHeapBefore_equal_buckets"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "returnUnfold" (formula "8") (term "1") (inst "#v0=x"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "x"))
+(rule "assignment_read_attribute_this_final" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallReturn" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "tryEmpty" (formula "8") (term "1"))
+(rule "emptyModality" (formula "8") (term "1"))
+(rule "andRight" (formula "8"))
+(branch "Case 1"
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "5")))
+ (rule "closeTrue" (formula "8"))
+)
+(branch "Case 2"
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeTrue" (formula "8"))
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__finish_batch((I,(I,int,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__finish_batch((I,(I,int,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..fa37a18
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__finish_batch((I,(I,int,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,9857 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 14:06:18 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 14:06:18 CEST 2022
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "70852")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "notLeft" (formula "7"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "10"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "notLeft" (formula "11"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "17"))
+(rule "notLeft" (formula "2"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "24"))
+(rule "andLeft" (formula "26"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "18"))
+(rule "andLeft" (formula "28"))
+(rule "andLeft" (formula "32"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "36"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "38"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "40"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "20"))
+(rule "translateJavaAddInt" (formula "19") (term "1"))
+(rule "eqSymm" (formula "41"))
+(rule "translateJavaAddInt" (formula "47") (term "0"))
+(rule "translateJavaSubInt" (formula "48") (term "0,0"))
+(rule "translateJavaMod" (formula "49") (term "0"))
+(rule "translateJavaAddInt" (formula "51") (term "0,2,2,0,1,0"))
+(rule "translateJavaSubInt" (formula "49") (term "0,0"))
+(rule "replace_known_right" (formula "15") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "15"))
+(rule "replace_known_right" (formula "14") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "14"))
+(rule "replace_known_right" (formula "5") (term "0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "5"))
+(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "4"))
+(rule "polySimp_elimSub" (formula "48") (term "0,0"))
+(rule "polySimp_elimSub" (formula "49") (term "0,0"))
+(rule "polySimp_addComm0" (formula "19") (term "1"))
+(rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+(rule "notLeft" (formula "40"))
+(rule "polySimp_addComm0" (formula "47") (term "0,0"))
+(rule "polySimp_addComm0" (formula "48") (term "0,0"))
+(rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+(rule "notLeft" (formula "39"))
+(rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+(rule "notLeft" (formula "38"))
+(rule "eqSymm" (formula "51"))
+(rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+(rule "notLeft" (formula "37"))
+(rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+(rule "notLeft" (formula "36"))
+(rule "eqSymm" (formula "49"))
+(rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "notLeft" (formula "35"))
+(rule "eqSymm" (formula "48"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "46"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "eqSymm" (formula "45"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "44"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "eqSymm" (formula "43"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "42"))
+(rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+(rule "notLeft" (formula "28"))
+(rule "eqSymm" (formula "41"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "eqSymm" (formula "40"))
+(rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "eqSymm" (formula "39"))
+(rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "notLeft" (formula "25"))
+(rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "notLeft" (formula "24"))
+(rule "eqSymm" (formula "37"))
+(rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+(rule "notLeft" (formula "23"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+(rule "notLeft" (formula "22"))
+(rule "eqSymm" (formula "35"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+(rule "notLeft" (formula "20"))
+(rule "eqSymm" (formula "33"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "23"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "22"))
+(rule "inEqSimp_commuteLeq" (formula "21"))
+(rule "inEqSimp_commuteLeq" (formula "9"))
+(rule "inEqSimp_commuteLeq" (formula "24"))
+(rule "inEqSimp_commuteLeq" (formula "7"))
+(rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0"))
+(rule "assignment" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+(rule "applyEq" (formula "19") (term "1,1") (ifseqformula "20"))
+(rule "commute_and" (formula "30") (term "0,0,0"))
+(rule "commute_and" (formula "30") (term "1,0,0"))
+(rule "shift_paren_and" (formula "30") (term "0,0"))
+(rule "commute_and_2" (formula "30") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "59") (term "1") (newnames "heapBefore_finish_batch,savedHeapBefore_finish_batch,_beginBefore_finish_batch,_bucket_startsBefore_finish_batch,_buffersBefore_finish_batch,_endBefore_finish_batch,_iBefore_finish_batch,_indicesBefore_finish_batch,_valuesBefore_finish_batch,_writeBefore_finish_batch,bucketBefore_finish_batch"))
+ (builtin "One Step Simplification" (formula "59"))
+(rule "variableDeclarationGhostAssign" (formula "59") (term "1"))
+(rule "variableDeclarationGhost" (formula "59") (term "1") (newnames "old_write"))
+(rule "assignment" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+(rule "for_to_while" (formula "59") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1"))
+(rule "variableDeclarationAssign" (formula "59") (term "1"))
+(rule "variableDeclaration" (formula "59") (term "1") (newnames "j"))
+(rule "assignment" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+(rule "elim_double_block_3" (formula "59") (term "1"))
+(rule "arrayLengthNotNegative" (formula "19") (term "0"))
+(rule "arrayLengthIsAShort" (formula "20") (term "0"))
+(rule "expand_inShort" (formula "20"))
+(rule "replace_short_MIN" (formula "20") (term "0,1"))
+(rule "replace_short_MAX" (formula "20") (term "1,0"))
+(rule "andLeft" (formula "20"))
+(rule "inEqSimp_commuteLeq" (formula "21"))
+(rule "arrayLengthNotNegative" (formula "32") (term "0"))
+(rule "arrayLengthIsAShort" (formula "33") (term "0"))
+(rule "expand_inShort" (formula "33"))
+(rule "replace_short_MIN" (formula "33") (term "0,1"))
+(rule "replace_short_MAX" (formula "33") (term "1,0"))
+(rule "andLeft" (formula "33"))
+(rule "inEqSimp_commuteLeq" (formula "34"))
+(rule "loopScopeInvDia" (formula "65") (term "1") (newnames "j_0,_write_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1"))
+(branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "65"))
+)
+(branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "expand_inInt" (formula "66") (term "0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,0,0,1,0,0"))
+ (rule "impRight" (formula "66"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "75") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "75") (term "2,0,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "75") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "75") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "75") (term "2,1,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "75") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,0,0,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "7") (term "4,1,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "9") (term "0,2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,0,1,0"))
+ (rule "translateJavaMulInt" (formula "8") (term "0,2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "6") (term "5,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,1,0,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,0,0,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "0,0"))
+ (rule "translateJavaMulInt" (formula "75") (term "0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "eqSymm" (formula "7") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "6") (term "0,2,1,0,0,1,0,0"))
+ (rule "translateJavaMulInt" (formula "7") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "75") (term "2,0,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "75") (term "1,2,0,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "75") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "75") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "75") (term "1,2,1,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "75") (term "2,1,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "75") (term "1,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "75") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,0,0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,0,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,1,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,0,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "75") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "75") (term "1,2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,0,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,2,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "2,0,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,1,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,1,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,1,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "6") (term "0,1,2,1,0,0,1,0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "7") (term "0,1,2,1,0,0,1,0,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "9") (term "0,1,2,1,0,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "8") (term "0,1,2,1,0,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "7") (term "1,2,1,1,0,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "6") (term "1,2,1,1,0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "7") (term "1,2,0,0,0,1,0,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "75") (term "1,2,1,1,0,1,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "75") (term "1,2,0,0,0,1,0,1,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "6") (term "1,2,0,0,0,1,0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "9") (term "1,2,1,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "8") (term "1,2,0,0,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "75") (term "0,1,2,1,0,0,1,0,1,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "9") (term "1,2,0,0,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "8") (term "1,2,1,1,0") (ifseqformula "33"))
+ (rule "commuteUnion_2" (formula "7") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "8") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "75") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "9") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "7") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,0,0"))
+ (rule "commuteUnion" (formula "8") (term "1,0"))
+ (rule "commuteUnion_2" (formula "75") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "9") (term "0,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "0,0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,1,1,0,0"))
+ (rule "commuteUnion" (formula "8") (term "1,1,0"))
+ (rule "commuteUnion" (formula "75") (term "0,0,1,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "9") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "7") (term "1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "75") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "9") (term "1,0"))
+ (rule "commuteUnion_2" (formula "7") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "75") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "9") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "7") (term "1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "75") (term "0,1,0,1,0,1,0"))
+ (rule "commute_and" (formula "7") (term "0,0"))
+ (rule "associativeLawUnion" (formula "8") (term "1,0"))
+ (rule "associativeLawUnion" (formula "8") (term "1,0"))
+ (rule "associativeLawUnion" (formula "6") (term "1,0,0"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "associativeLawUnion" (formula "9") (term "0,1,0"))
+ (rule "associativeLawUnion" (formula "6") (term "1,0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0,0") (ifseqformula "11") (ifseqformula "12"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0") (ifseqformula "12") (ifseqformula "13"))
+ (rule "ifElseUnfold" (formula "80") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_2"))
+ (rule "compound_less_than_comparison_2" (formula "80") (term "1") (inst "#v0=x_3") (inst "#v1=x_4"))
+ (rule "variableDeclarationAssign" (formula "80") (term "1"))
+ (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_3"))
+ (rule "assignment" (formula "80") (term "1"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "variableDeclarationAssign" (formula "80") (term "1"))
+ (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_4"))
+ (rule "assignment_read_length" (formula "80"))
+ (branch "Normal Execution (_indices != null)"
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "less_than_comparison_simple" (formula "80") (term "1"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "ifElseSplit" (formula "80"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "variableDeclarationGhostAssign" (formula "81") (term "1"))
+ (rule "variableDeclarationGhost" (formula "81") (term "1") (newnames "heapAtLoopBodyBegin"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "variableDeclarationAssign" (formula "81") (term "1"))
+ (rule "variableDeclaration" (formula "81") (term "1") (newnames "bucket"))
+ (rule "assignment_array2" (formula "81"))
+ (branch "Normal Execution (_indices != null)"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "pullOutSelect" (formula "81") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")) (ifInst "" (formula "18")))
+ (rule "variableDeclarationAssign" (formula "82") (term "1"))
+ (rule "variableDeclaration" (formula "82") (term "1") (newnames "value"))
+ (rule "eval_order_array_access5" (formula "82") (term "1") (inst "#ar1=x_arr") (inst "#v1=x_2"))
+ (rule "variableDeclarationAssign" (formula "82") (term "1"))
+ (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "82") (term "1"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "variableDeclarationAssign" (formula "82") (term "1"))
+ (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_5"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "82") (term "0,1,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "assignmentAdditionInt" (formula "81") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "expand_inInt" (formula "81") (userinteraction))
+ (rule "andRight" (formula "81") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "81") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "81"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "jmod_axiom" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "46"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption0" (formula "47") (ifseqformula "48"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "44") (term "1,1,1"))
+ (rule "times_zero_1" (formula "44") (term "0,1,1"))
+ (rule "add_zero_right" (formula "44") (term "1,1"))
+ (rule "add_zero_right" (formula "44") (term "1"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44"))
+ (rule "polySimp_homoEq" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "45"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "1"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "1"))
+ (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "42"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "41") (term "0"))
+ (rule "add_literals" (formula "41") (term "1,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0"))
+ (rule "add_zero_right" (formula "41") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "44"))
+ (rule "times_zero_1" (formula "48") (term "0,0"))
+ (rule "add_zero_left" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "43"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "22"))
+ (rule "times_zero_1" (formula "35") (term "0,0"))
+ (rule "add_zero_left" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "35") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "28") (ifseqformula "48"))
+ (rule "times_zero_1" (formula "28") (term "1,1,0"))
+ (rule "greater_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "46"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "add_zero_left" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "40"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,0"))
+ (rule "mul_literals" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "47"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "1,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0"))
+ (rule "add_zero_right" (formula "11") (term "0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "49"))
+ (rule "times_zero_1" (formula "11") (term "1,1,0"))
+ (rule "greater_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "46") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "closeFalse" (formula "46"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "81") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "81"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "jmod_axiom" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "48"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "38"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "48") (ifseqformula "49"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "44") (term "1,1,1"))
+ (rule "times_zero_1" (formula "44") (term "0,1,1"))
+ (rule "add_literals" (formula "44") (term "1,1"))
+ (rule "add_zero_right" (formula "44") (term "1"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44"))
+ (rule "polySimp_homoEq" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "1"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "45"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "42"))
+ (rule "mul_literals" (formula "46") (term "0,0"))
+ (rule "add_zero_left" (formula "46") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "6"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "5") (term "0,0"))
+ (rule "add_zero_left" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "25"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,1,0"))
+ (rule "assignment_array2" (formula "81"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "Block Contract (Internal)" (formula "81") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "29")) (ifInst "" (formula "16")) (ifInst "" (formula "77")) (ifInst "" (formula "15")))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "eqSymm" (formula "82") (term "0,0,1,0,1"))
+ (rule "pullOutSelect" (formula "82") (term "0,1,0,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")) (ifInst "" (formula "19")))
+ (rule "variableDeclarationAssign" (formula "83") (term "1"))
+ (rule "variableDeclaration" (formula "83") (term "1") (newnames "exc_25_1"))
+ (rule "assignment" (formula "83") (term "1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "emptyStatement" (formula "83") (term "1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "emptyStatement" (formula "83") (term "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "commute_and" (formula "1") (term "0,0"))
+ (rule "tryEmpty" (formula "83") (term "1"))
+ (rule "blockEmptyLabel" (formula "83") (term "1"))
+ (rule "blockEmpty" (formula "83") (term "1"))
+ (rule "methodCallEmpty" (formula "83") (term "1"))
+ (rule "emptyModality" (formula "83") (term "1"))
+ (rule "andRight" (formula "83"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "closeTrue" (formula "83"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "closeTrue" (formula "83"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "81"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "wellFormedAnon" (formula "81"))
+ (rule "replace_known_left" (formula "81") (term "0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "81"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "76")))
+ (rule "closeTrue" (formula "81"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "81"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "81"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "82"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "pullOutSelect" (formula "85") (term "0,1,0") (inst "selectSK=arr_1"))
+ (rule "applyEq" (formula "59") (term "2,0") (ifseqformula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "84")) (ifInst "" (formula "19")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "commute_and" (formula "1") (term "0,0"))
+ (rule "elim_double_block_2" (formula "86") (term "1"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "75") (term "1") (ifseqformula "15") (ifseqformula "29"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "67") (term "0") (ifseqformula "16") (ifseqformula "30"))
+ (rule "ifUnfold" (formula "88") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "replace_known_left" (formula "88") (term "0,0,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "ifSplit" (formula "88"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "88") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "88") (newnames "result_22,exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "32")) (ifInst "" (formula "19")) (ifInst "" (formula "84")) (ifInst "" (formula "18")))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "eqSymm" (formula "89") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "89") (term "1"))
+ (rule "variableDeclaration" (formula "89") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "89") (term "1"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "emptyStatement" (formula "89") (term "1"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "emptyStatement" (formula "89") (term "1"))
+ (rule "tryEmpty" (formula "89") (term "1"))
+ (rule "blockEmptyLabel" (formula "89") (term "1"))
+ (rule "blockEmpty" (formula "89") (term "1"))
+ (rule "methodCallEmpty" (formula "89") (term "1"))
+ (rule "emptyModality" (formula "89") (term "1"))
+ (rule "andRight" (formula "89"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "closeTrue" (formula "89"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "closeTrue" (formula "89"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "88"))
+ (branch "Case 1"
+ (rule "andRight" (formula "88"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "32")))
+ (rule "closeTrue" (formula "88"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "wellFormedAnon" (formula "88"))
+ (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "88"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "88"))
+ (branch "Case 1"
+ (rule "andRight" (formula "88"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "83")))
+ (rule "closeTrue" (formula "88"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "18")))
+ (rule "closeTrue" (formula "88"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "88"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "62"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "expand_inInt" (formula "62") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "replace_known_left" (formula "65") (term "0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "applyEq" (formula "66") (term "1") (ifseqformula "39"))
+ (rule "elim_double_block_2" (formula "93") (term "1"))
+ (rule "ifUnfold" (formula "93") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "93") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "93") (term "1"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "replace_known_left" (formula "93") (term "0,0,1,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "ifSplit" (formula "93"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "94"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "94"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "93") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "93") (newnames "anonOut_heap,result_23,exc_27,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,write_Before_BLOCK#11,o,f,anonOut__write"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "32")) (ifInst "" (formula "92")) (ifInst "" (formula "21")) (ifInst "" (formula "91")) (ifInst "" (formula "30")) (ifInst "" (formula "90")) (ifInst "" (formula "31")) (ifInst "" (formula "19")) (ifInst "" (formula "89")) (ifInst "" (formula "18")))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "expand_inInt" (formula "67") (term "1,0,1"))
+ (rule "expand_inInt" (formula "67") (term "1,1"))
+ (rule "expand_inInt" (formula "67") (term "0,0,1"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,1,1"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,0,0,1"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "72"))
+ (rule "inEqSimp_commuteLeq" (formula "68"))
+ (rule "inEqSimp_commuteLeq" (formula "69"))
+ (rule "variableDeclarationAssign" (formula "98") (term "1"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "exc_27_1"))
+ (rule "assignment" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "ifUnfold" (formula "98") (term "1") (inst "#boolv=x"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "x"))
+ (rule "compound_equality_comparison_1" (formula "98") (term "1") (inst "#v0=x_1"))
+ (rule "variableDeclarationAssign" (formula "98") (term "1"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "x_8"))
+ (builtin "Use Operation Contract" (formula "98") (newnames "heapBefore_len,result_24,exc_28") (contract "de.wiesler.Buffers[de.wiesler.Buffers::len(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (len)"
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "14")))
+ (rule "expand_inInt" (formula "72") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "72") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "72") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "72"))
+ (rule "eqSymm" (formula "74"))
+ (rule "inEqSimp_commuteLeq" (formula "73"))
+ (rule "assignment" (formula "103") (term "1"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "equality_comparison_simple" (formula "103") (term "1"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "ifSplit" (formula "103"))
+ (branch "if x true"
+ (builtin "Block Contract (Internal)" (formula "104") (newnames "result_25,exc_29,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "105"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "33")) (ifInst "" (formula "68")) (ifInst "" (formula "20")) (ifInst "" (formula "100")) (ifInst "" (formula "19")))
+ (rule "true_left" (formula "78"))
+ (rule "eqSymm" (formula "104") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "104") (term "1"))
+ (rule "variableDeclaration" (formula "104") (term "1") (newnames "exc_29_1"))
+ (rule "assignment" (formula "104") (term "1"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "emptyStatement" (formula "104") (term "1"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "emptyStatement" (formula "104") (term "1"))
+ (rule "applyEq" (formula "73") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "applyEq" (formula "73") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "applyEq" (formula "73") (term "1") (ifseqformula "1"))
+ (rule "tryEmpty" (formula "102") (term "1"))
+ (rule "blockEmptyLabel" (formula "102") (term "1"))
+ (rule "blockEmpty" (formula "102") (term "1"))
+ (rule "methodCallEmpty" (formula "102") (term "1"))
+ (rule "emptyModality" (formula "102") (term "1"))
+ (rule "andRight" (formula "102"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "closeTrue" (formula "102"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "closeTrue" (formula "102"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "104"))
+ (branch "Case 1"
+ (rule "andRight" (formula "104"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "104"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "68")))
+ (rule "closeTrue" (formula "104"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "104"))
+ (branch "Case 1"
+ (rule "andRight" (formula "104"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "99")))
+ (rule "closeTrue" (formula "104"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "104"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "104"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "expand_inInt" (formula "78") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "78") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "78") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "translateJavaAddInt" (formula "82") (term "0"))
+ (rule "translateJavaSubInt" (formula "83") (term "1,0"))
+ (rule "replace_known_left" (formula "81") (term "0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "polySimp_elimSub" (formula "82") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "80"))
+ (rule "inEqSimp_commuteLeq" (formula "81"))
+ (rule "applyEq" (formula "74") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "applyEq" (formula "73") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "applyEq" (formula "73") (term "1") (ifseqformula "1"))
+ (rule "pullOutSelect" (formula "81") (term "1,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "81"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "106")) (ifInst "" (formula "31")))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0"))
+ (rule "eqSymm" (formula "81") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "81") (term "0,0,1,0,0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0"))
+ (rule "eqSymm" (formula "81") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "81") (term "0,0,1,0,0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "81") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0"))
+ (rule "eqSymm" (formula "81") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "81") (term "0,0,1,0,0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0"))
+ (rule "replace_known_left" (formula "81") (term "0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elim_double_block_2" (formula "109") (term "1"))
+ (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "109"))
+ (builtin "Use Dependency Contract" (formula "16") (ifInst "" (formula "109") (term "1,1,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "83") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "83") (term "0,1,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "105")) (ifInst "" (formula "19")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "34")) (ifInst "" (formula "16")) (ifInst "" (formula "34")))
+ (rule "true_left" (formula "83"))
+ (rule "ifSplit" (formula "109"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "109") (term "1"))
+ (rule "compound_assignment_op_plus_array" (formula "109") (term "1") (inst "#v0=x_arr") (inst "#v1=x"))
+ (rule "variableDeclarationAssign" (formula "109") (term "1"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_arr_1"))
+ (rule "assignment" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "variableDeclarationAssign" (formula "109") (term "1"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_10"))
+ (rule "assignment" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "eval_order_array_access3" (formula "109") (term "1") (inst "#v0=x_arr_2") (inst "#v2=x_11") (inst "#v1=x_12"))
+ (rule "variableDeclarationAssign" (formula "109") (term "1"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_arr_2"))
+ (rule "assignment" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "variableDeclarationAssign" (formula "109") (term "1"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_11"))
+ (rule "assignment" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "variableDeclarationAssign" (formula "109") (term "1"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_12"))
+ (rule "compound_int_cast_expression" (formula "109") (term "1") (inst "#v=x_13"))
+ (rule "variableDeclarationAssign" (formula "109") (term "1"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_13"))
+ (rule "remove_parentheses_right" (formula "109") (term "1"))
+ (rule "compound_addition_1" (formula "109") (term "1") (inst "#v=x_14"))
+ (rule "variableDeclarationAssign" (formula "109") (term "1"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_14"))
+ (rule "assignment_array2" (formula "109"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "replaceKnownSelect_taclet20001212010001_3" (formula "109") (term "0,1,0"))
+ (rule "assignmentAdditionInt" (formula "109") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "applyEqReverse" (formula "109") (term "0,0") (ifseqformula "81") (userinteraction))
+ (rule "ifthenelse_split" (formula "109") (term "0,0") (userinteraction))
+ (branch "indices[j_0] <= -1 + buffers.num_buckets TRUE"
+ (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "14") (term "0") (inst "b=b") (userinteraction))
+ (builtin "One Step Simplification" (formula "14") (userinteraction))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "14") (term "0") (inst "b_0=b_0") (inst "b=b") (userinteraction))
+ (builtin "One Step Simplification" (formula "14") (userinteraction))
+ (rule "andLeft" (formula "14"))
+ (rule "translateJavaCastInt" (formula "15") (term "0") (userinteraction))
+ (rule "cut" (inst "cutFormula=leq(int::select(anon_heap_LOOP_0<>,
+ bucket_starts,
+ arr(int::select(heap,
+ indices,
+ arr(j_0)))),
+ javaSubInt(_write_0, begin))<>") (userinteraction))
+ (branch "CUT: bucket_starts[indices[j_0]]@anon_heap_LOOP_0<> <= javaSubInt(_write_0, begin) TRUE"
+ (rule "expand_inInt" (formula "116") (userinteraction))
+ (rule "andRight" (formula "116") (userinteraction))
+ (branch "Case 1"
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "116") (term "1"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "1") (term "1"))
+ (rule "translateJavaSubInt" (formula "16") (term "1"))
+ (rule "translateJavaSubInt" (formula "20") (term "1"))
+ (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88"))
+ (rule "hideAuxiliaryEq" (formula "88"))
+ (rule "polySimp_elimSub" (formula "1") (term "1"))
+ (rule "polySimp_elimSub" (formula "16") (term "1"))
+ (rule "polySimp_elimSub" (formula "20") (term "1"))
+ (rule "polySimp_addComm0" (formula "115") (term "0"))
+ (rule "polySimp_addComm1" (formula "20") (term "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "115"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "jmod_axiom" (formula "59") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "mul_literals" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "74"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "60"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "49"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "82"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "48"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (term "0,0,0") (ifseqformula "11"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "65") (term "2,0") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "56"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "newSym_eq" (formula "53") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "53") (term "1,1,1"))
+ (rule "times_zero_1" (formula "53") (term "0,1,1"))
+ (rule "add_zero_left" (formula "53") (term "1,1"))
+ (rule "add_zero_right" (formula "53") (term "1"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "53"))
+ (rule "polySimp_homoEq" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,1"))
+ (rule "applyEq" (formula "51") (term "0,1,1") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "51") (term "1"))
+ (rule "applyEq" (formula "50") (term "1") (ifseqformula "54"))
+ (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "17") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "17") (term "2,1,0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "68") (term "1,2,1,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "68") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "20") (term "1,2,1,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0,2,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "15") (term "1,2,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "15") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "58") (term "5,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "53") (term "1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0"))
+ (rule "applyEq" (formula "78") (term "0") (ifseqformula "54"))
+ (rule "inEqSimp_homoInEq1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0"))
+ (rule "applyEq" (formula "18") (term "1,2,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "18") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "17") (term "1,2,1,0,0,1,0,1,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "17") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "applyEq" (formula "16") (term "1,2,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "16") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "72") (term "1,2,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "72") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "54"))
+ (rule "inEqSimp_homoInEq0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "applyEq" (formula "63") (term "1,2,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "63") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "80") (term "1,2,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "21") (term "1,2,1,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "21") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "54"))
+ (rule "inEqSimp_homoInEq1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0,1,1,0") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0,1,1,0"))
+ (rule "applyEq" (formula "19") (term "4,1,1,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "57") (term "0,0,2,2,0,1,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "63") (term "0,0,2,2,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "19") (term "0,4,0,1,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "18") (term "1,0,1") (ifseqformula "54"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "33") (ifseqformula "48"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "11"))
+ (rule "mul_literals" (formula "30") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "3"))
+ (rule "mul_literals" (formula "68") (term "0,0"))
+ (rule "add_zero_left" (formula "68") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "57"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "32"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "add_zero_left" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "44") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "leq_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0"))
+ (rule "neg_literal" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "44") (term "0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "qeq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0"))
+ (rule "add_zero_right" (formula "52") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "52") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0"))
+ (rule "qeq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "54"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "56"))
+ (rule "mul_literals" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "85") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "85") (term "0"))
+ (rule "polySimp_rightDist" (formula "85") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "85") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "85") (term "0,0"))
+ (rule "add_literals" (formula "85") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "85"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0"))
+ (rule "polySimp_elimOne" (formula "85") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "35") (ifseqformula "54"))
+ (rule "mul_literals" (formula "35") (term "1,1,0"))
+ (rule "greater_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "86") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "86") (term "0"))
+ (rule "polySimp_rightDist" (formula "86") (term "0,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "86") (term "0,0,0"))
+ (rule "add_literals" (formula "86") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "86") (term "0,0"))
+ (rule "add_literals" (formula "86") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "86") (term "1,0,0"))
+ (rule "add_literals" (formula "86") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "86"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "48"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "86") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "0,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0"))
+ (rule "polySimp_addComm1" (formula "86") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "86") (term "0"))
+ (rule "add_literals" (formula "86") (term "1,1,0"))
+ (rule "times_zero_1" (formula "86") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "86") (term "0"))
+ (rule "polySimp_addComm1" (formula "86") (term "0"))
+ (rule "add_literals" (formula "86") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "86"))
+ (rule "mul_literals" (formula "86") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "86") (ifseqformula "45"))
+ (rule "mul_literals" (formula "86") (term "0,1,0"))
+ (rule "greater_literals" (formula "86") (term "0,0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "qeq_literals" (formula "86") (term "0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "closeFalse" (formula "86"))
+ )
+ (branch "Case 2"
+ (rule "instAll" (formula "1") (term "0,2,0") (ifseqformula "15") (userinteraction))
+ (rule "impLeft" (formula "1") (userinteraction))
+ (branch "Case 1"
+ (rule "expand_inInt" (formula "90") (term "1"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "117") (term "0"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "1"))
+ (rule "translateJavaSubInt" (formula "20") (term "1"))
+ (rule "translateJavaSubInt" (formula "1") (term "1"))
+ (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88"))
+ (rule "hideAuxiliaryEq" (formula "88"))
+ (rule "replace_known_left" (formula "89") (term "0,1") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "polySimp_elimSub" (formula "16") (term "1"))
+ (rule "polySimp_elimSub" (formula "20") (term "1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1"))
+ (rule "polySimp_addComm0" (formula "116") (term "1"))
+ (rule "polySimp_addComm1" (formula "20") (term "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "90") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "1"))
+ (rule "replace_known_left" (formula "90") (term "1") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_homoInEq1" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "0"))
+ (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_leqRight" (formula "90"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "1") (term "0,0,0") (ifseqformula "49"))
+ (rule "jmod_axiom" (formula "60") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "Case 2"
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "1") (inst "i=i_1") (userinteraction))
+ (rule "bsum_positive1" (formula "1") (term "1") (userinteraction))
+ (rule "replaceKnownSelect_taclet20001212010001_3" (formula "2") (term "0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "118") (term "0"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "1"))
+ (rule "translateJavaSubInt" (formula "3") (term "1"))
+ (rule "translateJavaSubInt" (formula "22") (term "1"))
+ (rule "eqSymm" (formula "2"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "replace_known_left" (formula "90") (term "0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "90"))
+ (rule "applyEqReverse" (formula "91") (term "1,0") (ifseqformula "90"))
+ (rule "applyEqReverse" (formula "1") (term "0") (ifseqformula "90"))
+ (rule "hideAuxiliaryEq" (formula "90"))
+ (rule "polySimp_elimSub" (formula "18") (term "1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1"))
+ (rule "polySimp_elimSub" (formula "22") (term "1"))
+ (rule "polySimp_addComm0" (formula "117") (term "1"))
+ (rule "polySimp_addComm1" (formula "22") (term "1"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0"))
+ (rule "inEqSimp_leqRight" (formula "117"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "49"))
+ (rule "polySimp_addComm1" (formula "49") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "jmod_axiom" (formula "61") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1"))
+ (rule "mul_literals" (formula "77") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "mul_literals" (formula "49") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "51"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (term "0,0,0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "9") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "applyEqReverse" (formula "71") (term "2,0") (ifseqformula "9"))
+ (rule "hideAuxiliaryEq" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "74"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ (branch "CUT: bucket_starts[indices[j_0]]@anon_heap_LOOP_0<> <= javaSubInt(_write_0, begin) FALSE"
+ (rule "applyEqReverse" (formula "89") (term "1") (ifseqformula "15") (userinteraction))
+ (rule "bsum_positive_element_upper_bound" (formula "89") (term "1") (inst "index=int::select(heap, indices, arr(j_0))") (userinteraction))
+ (branch "Precondition"
+ (rule "andRight" (formula "89"))
+ (branch "Case 1"
+ (rule "andRight" (formula "89"))
+ (branch "Case 1"
+ (rule "allRight" (formula "89") (inst "sk=b_0") (userinteraction))
+ (rule "allLeftHide" (formula "14") (inst "t=b_0") (userinteraction))
+ (rule "impLeft" (formula "14") (userinteraction))
+ (branch "Case 1"
+ (rule "expand_inInt" (formula "117"))
+ (rule "expand_inInt" (formula "88") (term "1"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0"))
+ (rule "impRight" (formula "89"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "16") (term "1"))
+ (rule "translateJavaSubInt" (formula "20") (term "1"))
+ (rule "eqSymm" (formula "90"))
+ (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88"))
+ (rule "hideAuxiliaryEq" (formula "88"))
+ (rule "replace_known_left" (formula "90") (term "1,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "polySimp_elimSub" (formula "16") (term "1"))
+ (rule "polySimp_elimSub" (formula "20") (term "1"))
+ (rule "polySimp_addComm0" (formula "119") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "119") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,1"))
+ (rule "inEqSimp_leqRight" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "92"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "0"))
+ (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "48"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "119") (term "1"))
+ (rule "mul_literals" (formula "119") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "119") (term "0,1"))
+ (rule "add_literals" (formula "119") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "119") (term "0"))
+ (rule "polySimp_mulComm0" (formula "119") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "119") (term "1,0,0"))
+ (rule "mul_literals" (formula "119") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "119") (term "0,0"))
+ (rule "add_literals" (formula "119") (term "0,0,0"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "49"))
+ (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "1,1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,1,0"))
+ (rule "add_zero_right" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "49"))
+ (rule "jmod_axiom" (formula "60") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "118") (term "1"))
+ (rule "mul_literals" (formula "118") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "118") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "118") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "52"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "74"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "50"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "44"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "83"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "86") (term "1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "86") (term "0,1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "inEqSimp_leqRight" (formula "86"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "58"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (term "0,0,0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "10") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "applyEqReverse" (formula "67") (term "2,0") (ifseqformula "10"))
+ (rule "hideAuxiliaryEq" (formula "10"))
+ (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "59"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "106")) (ifInst "" (formula "37")))
+ (rule "newSym_eq" (formula "55") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))"))
+ (rule "times_zero_1" (formula "55") (term "0,1,1"))
+ (rule "times_zero_1" (formula "55") (term "1,1,1"))
+ (rule "add_zero_left" (formula "55") (term "1,1"))
+ (rule "add_zero_right" (formula "55") (term "1"))
+ (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "55"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,1"))
+ (rule "applyEq" (formula "18") (term "1,2,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "18") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "20") (term "1,2,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "22") (term "1,2,1,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "22") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "56"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "53") (term "0,1,1") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "53") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "53") (term "1"))
+ (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "17") (term "1,2,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "17") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "70") (term "1,2,1,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "70") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "55") (term "1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq1" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "applyEq" (formula "60") (term "5,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "21") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "21") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "80") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "80") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "1,2,1,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "23") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "81") (term "1,2,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "81") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "82") (term "1,2,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "82") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0,1,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0,1,0,1,0"))
+ (rule "applyEq" (formula "65") (term "1,2,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "65") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "2") (term "1,2,1,0,0,2,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "2") (term "2,1,0,0,2,0,0"))
+ (rule "applyEq" (formula "16") (term "1,2,1,0,0,1,0,2,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "16") (term "2,1,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "21") (term "4,1,1,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "21") (term "0,4,0,1,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "65") (term "0,0,2,2,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "59") (term "0,0,2,2,0,1,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "20") (term "1,0,1") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "elementOfUnion" (formula "2") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "1,0,0"))
+ (rule "eqSymm" (formula "2") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "35") (ifseqformula "50"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "6"))
+ (rule "mul_literals" (formula "70") (term "0,0"))
+ (rule "add_zero_left" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70"))
+ (rule "mul_literals" (formula "70") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "14"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "elementOfUnion" (formula "2") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "1,0,0"))
+ (rule "eqSymm" (formula "2") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "elementOfUnion" (formula "2") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "1,0,0"))
+ (rule "eqSymm" (formula "2") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0"))
+ (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "58"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0"))
+ (rule "add_zero_right" (formula "54") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "54") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "57"))
+ (rule "mul_literals" (formula "61") (term "0,0"))
+ (rule "add_zero_left" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "35"))
+ (rule "mul_literals" (formula "47") (term "0,0"))
+ (rule "add_zero_left" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "47") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "47") (term "0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0"))
+ (rule "qeq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "57"))
+ (rule "mul_literals" (formula "34") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1"))
+ (rule "mul_literals" (formula "34") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "35"))
+ (rule "polySimp_rightDist" (formula "87") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0"))
+ (rule "polySimp_rightDist" (formula "87") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0"))
+ (rule "add_zero_right" (formula "87") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "87"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "87"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "87") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "87") (term "0"))
+ (rule "add_literals" (formula "87") (term "1,1,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0"))
+ (rule "add_zero_right" (formula "87") (term "0"))
+ (rule "polySimp_rightDist" (formula "87") (term "0"))
+ (rule "mul_literals" (formula "87") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "87"))
+ (rule "mul_literals" (formula "87") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "87") (inst "elimGcdRightDiv=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "87") (term "0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "87") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "87") (term "0,0,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0"))
+ (rule "add_zero_right" (formula "87") (term "0,0"))
+ (rule "leq_literals" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "87"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "87") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0"))
+ (rule "polySimp_rightDist" (formula "87") (term "0,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "87"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "37") (ifseqformula "88"))
+ (rule "mul_literals" (formula "37") (term "1,1,0"))
+ (rule "greater_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "50"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "11"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1"))
+ (rule "mul_literals" (formula "15") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "56"))
+ (rule "mul_literals" (formula "49") (term "0,0"))
+ (rule "add_zero_left" (formula "49") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "49"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "46"))
+ (rule "mul_literals" (formula "76") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "76"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "Case 2"
+ (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "14") (term "1") (inst "i=i_1") (userinteraction))
+ (rule "bsum_positive1" (formula "14") (term "1") (userinteraction))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "118"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "118") (term "0,1"))
+ (rule "replace_int_MAX" (formula "118") (term "1,0"))
+ (rule "impRight" (formula "90"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "3"))
+ (rule "translateJavaSubInt" (formula "22") (term "1"))
+ (rule "translateJavaSubInt" (formula "18") (term "1"))
+ (rule "eqSymm" (formula "17"))
+ (rule "eqSymm" (formula "92"))
+ (rule "replace_known_left" (formula "90") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "applyEqReverse" (formula "91") (term "1,0") (ifseqformula "90"))
+ (rule "hideAuxiliaryEq" (formula "90"))
+ (rule "polySimp_elimSub" (formula "22") (term "1"))
+ (rule "polySimp_elimSub" (formula "18") (term "1"))
+ (rule "polySimp_addComm0" (formula "120") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "120") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "1"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1"))
+ (rule "inEqSimp_leqRight" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "93"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "50"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "120") (term "1"))
+ (rule "mul_literals" (formula "120") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "120") (term "0,1"))
+ (rule "add_literals" (formula "120") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "120") (term "0"))
+ (rule "polySimp_mulComm0" (formula "120") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "120") (term "1,0,0"))
+ (rule "mul_literals" (formula "120") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "120") (term "0,0"))
+ (rule "add_literals" (formula "120") (term "0,0,0"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "51"))
+ (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "51"))
+ (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "1,1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,1,0"))
+ (rule "add_zero_right" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,0,0") (ifseqformula "51"))
+ (rule "jmod_axiom" (formula "62") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1"))
+ (rule "polySimp_rightDist" (formula "50") (term "1"))
+ (rule "mul_literals" (formula "50") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "119") (term "1"))
+ (rule "mul_literals" (formula "119") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "119") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "119") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "62"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "53"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "46"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "85"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "60") (ifseqformula "61"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "71"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "49"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (term "0,0,0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "9") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "applyEqReverse" (formula "66") (term "2,0") (ifseqformula "9"))
+ (rule "hideAuxiliaryEq" (formula "9"))
+ (rule "pullOutSelect" (formula "16") (term "1") (inst "selectSK=arr_3"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "16"))
+ (rule "simplifySelectOfAnon" (formula "16"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "108")) (ifInst "" (formula "39")))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "117"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "1"))
+ (rule "translateJavaSubInt" (formula "19") (term "1"))
+ (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEqReverse" (formula "88") (term "1,0") (ifseqformula "87"))
+ (rule "hideAuxiliaryEq" (formula "87"))
+ (rule "polySimp_elimSub" (formula "15") (term "1"))
+ (rule "polySimp_elimSub" (formula "19") (term "1"))
+ (rule "polySimp_addComm0" (formula "116") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "116") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1"))
+ (rule "inEqSimp_leqRight" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "89"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "116") (term "0"))
+ (rule "polySimp_mulComm0" (formula "116") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "116") (term "1,0,0"))
+ (rule "mul_literals" (formula "116") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "116") (term "0,0"))
+ (rule "add_literals" (formula "116") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "116") (term "1"))
+ (rule "mul_literals" (formula "116") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "116") (term "0,1"))
+ (rule "add_literals" (formula "116") (term "0,0,1"))
+ (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "48"))
+ (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "1,1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,1,0"))
+ (rule "add_zero_right" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "jmod_axiom" (formula "59") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "mul_literals" (formula "47") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "115") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "115") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "115") (term "1"))
+ (rule "mul_literals" (formula "115") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "44"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_subsumption0" (formula "60") (ifseqformula "62"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "59"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "50"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "47"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption0" (formula "72") (ifseqformula "1"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "true_left" (formula "72"))
+ (rule "inEqSimp_contradInEq0" (formula "68") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "closeFalse" (formula "68"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "117"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "1"))
+ (rule "translateJavaSubInt" (formula "19") (term "1"))
+ (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEqReverse" (formula "88") (term "1,0") (ifseqformula "87"))
+ (rule "hideAuxiliaryEq" (formula "87"))
+ (rule "polySimp_elimSub" (formula "15") (term "1"))
+ (rule "polySimp_elimSub" (formula "19") (term "1"))
+ (rule "polySimp_addComm0" (formula "116") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "116") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1"))
+ (rule "inEqSimp_leqRight" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "116") (term "1"))
+ (rule "mul_literals" (formula "116") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "116") (term "0,1"))
+ (rule "add_literals" (formula "116") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "116") (term "0"))
+ (rule "polySimp_mulComm0" (formula "116") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "116") (term "1,0,0"))
+ (rule "mul_literals" (formula "116") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "116") (term "0,0"))
+ (rule "add_literals" (formula "116") (term "0,0,0"))
+ (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "48"))
+ (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "1,1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,1,0"))
+ (rule "add_zero_right" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "jmod_axiom" (formula "59") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "mul_literals" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "115") (term "1"))
+ (rule "mul_literals" (formula "115") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "115") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "115") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "86"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "Usage"
+ (rule "replaceKnownSelect_taclet20001212010001_3" (formula "1") (term "0"))
+ (rule "expand_inInt" (formula "117"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "1"))
+ (rule "translateJavaSubInt" (formula "20") (term "1"))
+ (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88"))
+ (rule "applyEqReverse" (formula "1") (term "0") (ifseqformula "88"))
+ (rule "close" (formula "90") (ifseqformula "1"))
+ )
+ )
+ )
+ (branch "indices[j_0] <= -1 + buffers.num_buckets FALSE"
+ (rule "expand_inInt" (formula "110"))
+ (rule "replace_int_MIN" (formula "110") (term "0,1"))
+ (rule "replace_int_MAX" (formula "110") (term "1,0"))
+ (rule "replace_known_right" (formula "81") (term "0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "applyEqReverse" (formula "82") (term "1,0") (ifseqformula "81"))
+ (rule "hideAuxiliaryEq" (formula "81"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "1,1"))
+ (rule "inEqSimp_leqRight" (formula "108"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "109") (term "0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0,0"))
+ (rule "mul_literals" (formula "109") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,0"))
+ (rule "add_literals" (formula "109") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "109") (term "1"))
+ (rule "mul_literals" (formula "109") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,1"))
+ (rule "add_literals" (formula "109") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "109") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "109") (term "1"))
+ (rule "mul_literals" (formula "109") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "73") (ifseqformula "67"))
+ (rule "leq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "79"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "51"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "52"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "63"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "translateJavaAddInt" (formula "109") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "109") (term "1"))
+ (rule "assignment" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "assignment_to_primitive_array_component" (formula "109"))
+ (branch "Normal Execution (x_arr_2 != null)"
+ (builtin "One Step Simplification" (formula "109"))
+ (builtin "Use Operation Contract" (formula "109") (newnames "heapBefore_flush,exc_30,heapAfter_flush,anon_heap_flush") (contract "de.wiesler.Buffers[de.wiesler.Buffers::flush(int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (flush)"
+ (builtin "One Step Simplification" (formula "84"))
+ (builtin "One Step Simplification" (formula "111"))
+ (builtin "Block Contract (Internal)" (formula "111") (newnames "result_26,exc_31,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "107")))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "84"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "84"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "88"))
+ (rule "eqSymm" (formula "120") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,0,1,1,0"))
+ (rule "eqSymm" (formula "88"))
+ (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "86") (term "0,0,2,1,1,0"))
+ (rule "eqSymm" (formula "87") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "88") (term "0"))
+ (rule "eqSymm" (formula "86") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "84") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "84") (term "1,2,1,1,0"))
+ (rule "polySimp_addLiterals" (formula "84") (term "2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "88") (term "0"))
+ (rule "mul_literals" (formula "88") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "3,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "93") (term "0,0"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "19")))
+ (rule "true_left" (formula "93"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0"))
+ (rule "variableDeclarationAssign" (formula "119") (term "1"))
+ (rule "variableDeclaration" (formula "119") (term "1") (newnames "exc_31_1"))
+ (rule "assignment" (formula "119") (term "1"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "emptyStatement" (formula "119") (term "1"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "emptyStatement" (formula "119") (term "1"))
+ (rule "commute_and" (formula "87") (term "0,0"))
+ (rule "commute_and" (formula "86") (term "1,0,0"))
+ (rule "commute_and" (formula "86") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "86") (term "0,0"))
+ (rule "commute_and_2" (formula "86") (term "0,0,0"))
+ (rule "tryEmpty" (formula "119") (term "1"))
+ (rule "blockEmptyLabel" (formula "119") (term "1"))
+ (rule "blockEmpty" (formula "119") (term "1"))
+ (rule "methodCallEmpty" (formula "119") (term "1"))
+ (rule "emptyModality" (formula "119") (term "1"))
+ (rule "andRight" (formula "119"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "closeTrue" (formula "119"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "closeTrue" (formula "119"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "111"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "andLeft" (formula "84"))
+ (rule "wellFormedAnonEQ" (formula "112") (ifseqformula "84"))
+ (rule "wellFormedStorePrimitiveArray" (formula "112") (term "0"))
+ (rule "wellFormedAnon" (formula "112") (term "0"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "88"))
+ (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "88") (term "1"))
+ (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0"))
+ (rule "eqSymm" (formula "86") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,0,1,1,0"))
+ (rule "eqSymm" (formula "88"))
+ (rule "translateJavaMulInt" (formula "86") (term "0,0,2,0,1,0"))
+ (rule "replace_known_left" (formula "118") (term "1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "18")) (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "118"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "106")))
+ (rule "closeTrue" (formula "111"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "andLeft" (formula "84"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (ifseqformula "84"))
+ (rule "andLeft" (formula "85"))
+ (rule "orRight" (formula "113"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "89"))
+ (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "88") (term "3,0,1,1,0"))
+ (rule "eqSymm" (formula "89"))
+ (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "87") (term "0,0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "88") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "89") (term "0"))
+ (rule "eqSymm" (formula "87") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "84") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "84") (term "1,2,1,1,0"))
+ (rule "polySimp_addLiterals" (formula "84") (term "2,1,1,0"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "89") (term "0"))
+ (rule "mul_literals" (formula "89") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "89") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "3,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "118") (term "0"))
+ (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "118"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "111"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "85"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "85") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "84"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,1,1,0") (ifseqformula "84"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "89"))
+ (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "97") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "88") (term "3,0,1,1,0"))
+ (rule "eqSymm" (formula "89"))
+ (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "97") (term "0,0,0"))
+ (rule "translateJavaMulInt" (formula "87") (term "0,0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "88") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "89") (term "0"))
+ (rule "eqSymm" (formula "87") (term "1,0"))
+ (rule "replace_known_left" (formula "95") (term "0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "polySimp_elimSub" (formula "84") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "84") (term "1,2,1,1,0"))
+ (rule "polySimp_addLiterals" (formula "84") (term "2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "96") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "89") (term "0"))
+ (rule "mul_literals" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "3,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1,0,0"))
+ (rule "pullOutSelect" (formula "97") (term "0,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "97") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "122")))
+ (rule "dismissNonSelectedField" (formula "97") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "31")))
+ (rule "elementOfUnion" (formula "97") (term "0,0"))
+ (rule "elementOfSingleton" (formula "97") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "eqSymm" (formula "97") (term "0,0,0"))
+ (rule "replace_known_right" (formula "97") (term "0,0,0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "elementOfArrayRangeConcrete" (formula "97") (term "0,0"))
+ (rule "eqSymm" (formula "97") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "97") (term "0,0,0,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "simplifySelectOfStore" (formula "97"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "castDel" (formula "97") (term "0"))
+ (rule "applyEqReverse" (formula "98") (term "0,0") (ifseqformula "97"))
+ (rule "hideAuxiliaryEq" (formula "97"))
+ (rule "commute_and" (formula "88") (term "0,0"))
+ (rule "elim_double_block_2" (formula "124") (term "1"))
+ (rule "commute_and" (formula "87") (term "1,0,0"))
+ (rule "commute_and" (formula "87") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "87") (term "0,0"))
+ (rule "commute_and_2" (formula "87") (term "0,0,0"))
+ (rule "ifUnfold" (formula "124") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "124") (term "1") (newnames "x_15"))
+ (rule "inequality_comparison_simple" (formula "124") (term "1"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "replace_known_left" (formula "124") (term "0,0,1,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "ifSplit" (formula "124"))
+ (branch "if x_15 true"
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_15 false"
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "124") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "124") (newnames "result_27,exc_32,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "120")))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1") (ifseqformula "84"))
+ (rule "andLeft" (formula "98"))
+ (rule "eqSymm" (formula "126") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "99") (term "0,0"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "19")))
+ (rule "true_left" (formula "99"))
+ (rule "variableDeclarationAssign" (formula "125") (term "1"))
+ (rule "variableDeclaration" (formula "125") (term "1") (newnames "exc_32_1"))
+ (rule "assignment" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "emptyStatement" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "emptyStatement" (formula "125") (term "1"))
+ (rule "tryEmpty" (formula "125") (term "1"))
+ (rule "blockEmptyLabel" (formula "125") (term "1"))
+ (rule "blockEmpty" (formula "125") (term "1"))
+ (rule "methodCallEmpty" (formula "125") (term "1"))
+ (rule "emptyModality" (formula "125") (term "1"))
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "124"))
+ (branch "Case 1"
+ (rule "andRight" (formula "124"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "124"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "wellFormedAnonEQ" (formula "124") (ifseqformula "84"))
+ (rule "wellFormedStorePrimitiveArray" (formula "124") (term "0"))
+ (rule "wellFormedAnon" (formula "124") (term "0"))
+ (rule "replace_known_left" (formula "124") (term "1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "18")) (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "124"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "124"))
+ (branch "Case 1"
+ (rule "andRight" (formula "124"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "119")))
+ (rule "closeTrue" (formula "124"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "124") (ifseqformula "84"))
+ (rule "orRight" (formula "124"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "124") (term "0"))
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "124"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "124"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "98"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1,1,1,0") (ifseqformula "84"))
+ (rule "expand_inInt" (formula "98") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "98") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "98") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "100"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "99"))
+ (rule "translateJavaAddInt" (formula "104") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "102") (term "5,0"))
+ (rule "translateJavaMulInt" (formula "103") (term "3,0"))
+ (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "polySimp_addComm0" (formula "103") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "101") (term "5,0"))
+ (rule "inEqSimp_commuteLeq" (formula "100"))
+ (rule "elim_double_block_2" (formula "130") (term "1"))
+ (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_16"))
+ (rule "inequality_comparison_simple" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "ifSplit" (formula "130"))
+ (branch "if x_16 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_16 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "130") (newnames "result_28,exc_33,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "126")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "104") (term "1") (ifseqformula "84"))
+ (rule "andLeft" (formula "104"))
+ (rule "eqSymm" (formula "132") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "105") (term "0,0"))
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "19")))
+ (rule "true_left" (formula "105"))
+ (rule "variableDeclarationAssign" (formula "131") (term "1"))
+ (rule "variableDeclaration" (formula "131") (term "1") (newnames "exc_33_1"))
+ (rule "assignment" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "emptyStatement" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "emptyStatement" (formula "131") (term "1"))
+ (rule "tryEmpty" (formula "131") (term "1"))
+ (rule "blockEmptyLabel" (formula "131") (term "1"))
+ (rule "blockEmpty" (formula "131") (term "1"))
+ (rule "methodCallEmpty" (formula "131") (term "1"))
+ (rule "emptyModality" (formula "131") (term "1"))
+ (rule "andRight" (formula "131"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "closeTrue" (formula "131"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "closeTrue" (formula "131"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "wellFormedAnonEQ" (formula "130") (ifseqformula "84"))
+ (rule "wellFormedStorePrimitiveArray" (formula "130") (term "0"))
+ (rule "wellFormedAnon" (formula "130") (term "0"))
+ (rule "replace_known_left" (formula "130") (term "1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "18")) (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "125")))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "130") (ifseqformula "84"))
+ (rule "orRight" (formula "130"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "130") (term "0"))
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "104") (term "1,1,1,0") (ifseqformula "84"))
+ (rule "expand_inInt" (formula "104") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "104") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "104") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "translateJavaAddInt" (formula "108") (term "4,0"))
+ (rule "replace_known_left" (formula "107") (term "0") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "true_left" (formula "107"))
+ (rule "polySimp_addComm0" (formula "107") (term "4,0"))
+ (rule "inEqSimp_commuteLeq" (formula "106"))
+ (rule "elim_double_block_2" (formula "134") (term "1"))
+ (rule "ifUnfold" (formula "134") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "134") (term "1") (newnames "x_17"))
+ (rule "inequality_comparison_simple" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "replace_known_left" (formula "134") (term "0,0,1,0") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "Use Dependency Contract" (formula "16") (ifInst "" (formula "134") (term "1,1,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "108") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "108") (term "0,1,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "130")) (ifInst "" (formula "19")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "34")) (ifInst "" (formula "16")) (ifInst "" (formula "34")))
+ (rule "true_left" (formula "108"))
+ (rule "ifSplit" (formula "134"))
+ (branch "if x_17 true"
+ (builtin "One Step Simplification" (formula "135"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_17 false"
+ (builtin "One Step Simplification" (formula "135"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "134") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "134") (newnames "result_29,exc_34,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "135"))
+ (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "130")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "108") (term "1") (ifseqformula "84"))
+ (rule "andLeft" (formula "108"))
+ (rule "eqSymm" (formula "136") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "109") (term "0,0"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "19")))
+ (rule "true_left" (formula "109"))
+ (rule "variableDeclarationAssign" (formula "135") (term "1"))
+ (rule "variableDeclaration" (formula "135") (term "1") (newnames "exc_34_1"))
+ (rule "assignment" (formula "135") (term "1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "emptyStatement" (formula "135") (term "1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "emptyStatement" (formula "135") (term "1"))
+ (rule "tryEmpty" (formula "135") (term "1"))
+ (rule "blockEmptyLabel" (formula "135") (term "1"))
+ (rule "blockEmpty" (formula "135") (term "1"))
+ (rule "methodCallEmpty" (formula "135") (term "1"))
+ (rule "emptyModality" (formula "135") (term "1"))
+ (rule "andRight" (formula "135"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "closeTrue" (formula "135"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "closeTrue" (formula "135"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "134"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "wellFormedAnonEQ" (formula "134") (ifseqformula "84"))
+ (rule "wellFormedStorePrimitiveArray" (formula "134") (term "0"))
+ (rule "wellFormedAnon" (formula "134") (term "0"))
+ (rule "replace_known_left" (formula "134") (term "1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "18")) (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "134"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "129")))
+ (rule "closeTrue" (formula "134"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "134") (ifseqformula "84"))
+ (rule "orRight" (formula "134"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "134") (term "0"))
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "134"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "134"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "135"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "108") (term "1,1,1,0") (ifseqformula "84"))
+ (rule "expand_inInt" (formula "108") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "108") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "108") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "108"))
+ (rule "andLeft" (formula "108"))
+ (rule "andLeft" (formula "109"))
+ (rule "andLeft" (formula "109"))
+ (rule "translateJavaAddInt" (formula "112") (term "4,0"))
+ (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "true_left" (formula "111"))
+ (rule "polySimp_addComm0" (formula "111") (term "4,0"))
+ (rule "inEqSimp_commuteLeq" (formula "110"))
+ (rule "elim_double_block_2" (formula "138") (term "1"))
+ (rule "ifUnfold" (formula "138") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "138") (term "1") (newnames "x_18"))
+ (rule "inequality_comparison_simple" (formula "138") (term "1"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "replace_known_left" (formula "138") (term "0,0,1,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "ifSplit" (formula "138"))
+ (branch "if x_18 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_18 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "138") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "138") (newnames "result_30,exc_35,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "139"))
+ (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "134")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1") (ifseqformula "84"))
+ (rule "andLeft" (formula "112"))
+ (rule "eqSymm" (formula "140") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "113") (term "0,0"))
+ (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "19")))
+ (rule "true_left" (formula "113"))
+ (rule "variableDeclarationAssign" (formula "139") (term "1"))
+ (rule "variableDeclaration" (formula "139") (term "1") (newnames "exc_35_1"))
+ (rule "assignment" (formula "139") (term "1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "emptyStatement" (formula "139") (term "1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "emptyStatement" (formula "139") (term "1"))
+ (rule "tryEmpty" (formula "139") (term "1"))
+ (rule "blockEmptyLabel" (formula "139") (term "1"))
+ (rule "blockEmpty" (formula "139") (term "1"))
+ (rule "methodCallEmpty" (formula "139") (term "1"))
+ (rule "emptyModality" (formula "139") (term "1"))
+ (rule "andRight" (formula "139"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "closeTrue" (formula "139"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "closeTrue" (formula "139"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "138"))
+ (branch "Case 1"
+ (rule "andRight" (formula "138"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "138"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "wellFormedAnonEQ" (formula "138") (ifseqformula "84"))
+ (rule "wellFormedStorePrimitiveArray" (formula "138") (term "0"))
+ (rule "wellFormedAnon" (formula "138") (term "0"))
+ (rule "replace_known_left" (formula "138") (term "1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "18")) (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "138"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "138"))
+ (branch "Case 1"
+ (rule "andRight" (formula "138"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "133")))
+ (rule "closeTrue" (formula "138"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "138") (ifseqformula "84"))
+ (rule "orRight" (formula "138"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "138") (term "0"))
+ (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "138"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "138"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "139"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1,1,1,0") (ifseqformula "84"))
+ (rule "expand_inInt" (formula "112") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "112") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "112"))
+ (rule "andLeft" (formula "112"))
+ (rule "andLeft" (formula "113"))
+ (rule "andLeft" (formula "113"))
+ (rule "translateJavaAddInt" (formula "116") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "4,1,1,0"))
+ (rule "replace_known_left" (formula "115") (term "0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "true_left" (formula "115"))
+ (rule "polySimp_addComm0" (formula "115") (term "4,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "114"))
+ (rule "applyEq" (formula "115") (term "1,1,0,0,0") (ifseqformula "40"))
+ (rule "commute_and" (formula "115") (term "1,0,0"))
+ (rule "commute_and" (formula "115") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "142") (term "1"))
+ (rule "shift_paren_and" (formula "115") (term "0,0"))
+ (rule "commute_and_2" (formula "115") (term "0,0,0"))
+ (rule "ifUnfold" (formula "142") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "142") (term "1") (newnames "x_19"))
+ (rule "inequality_comparison_simple" (formula "142") (term "1"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "replace_known_left" (formula "142") (term "0,0,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "Use Dependency Contract" (formula "86") (term "0") (ifInst "" (formula "73") (term "0")) (ifInst "" (formula "84")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "139")) (ifInst "" (formula "68")) (ifInst "" (formula "67")) (ifInst "" (formula "15")) (ifInst "" (formula "32")))
+ (rule "wellFormedAnonEQ" (formula "116") (term "0,0,0,0") (ifseqformula "84"))
+ (rule "wellFormedStorePrimitiveArray" (formula "116") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "116") (term "0,0,0,0,0"))
+ (rule "expand_inInt" (formula "116") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "116") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "116") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "116") (term "1"))
+ (rule "replace_known_left" (formula "116") (term "1,0,0,0,0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "71")))
+ (rule "disjointDefinition" (formula "116") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "116") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "1,0,0"))
+ (rule "replace_known_left" (formula "116") (term "1,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "0,0"))
+ (rule "replace_known_left" (formula "116") (term "0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "applyEq" (formula "116") (term "0,1") (ifseqformula "73"))
+ (rule "eqSymm" (formula "116") (term "1"))
+ (rule "applyEq" (formula "116") (term "0,1") (ifseqformula "86"))
+ (rule "equal_literals" (formula "116") (term "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "elementOfUnion" (formula "116"))
+ (rule "elementOfSingleton" (formula "116") (term "1"))
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "124")))
+ (rule "elementOfUnion" (formula "116"))
+ (rule "elementOfArrayRangeConcrete" (formula "116") (term "1"))
+ (rule "replace_known_right" (formula "116") (term "0,0,1") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "elementOfSingleton" (formula "116"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "true_left" (formula "116"))
+ (rule "ifSplit" (formula "142"))
+ (branch "if x_19 true"
+ (builtin "One Step Simplification" (formula "143"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_19 false"
+ (builtin "One Step Simplification" (formula "143"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "142") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "142") (newnames "result_31,exc_36,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "138")))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1") (ifseqformula "84"))
+ (rule "andLeft" (formula "116"))
+ (rule "eqSymm" (formula "144") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "117") (term "0,0"))
+ (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "19")))
+ (rule "true_left" (formula "117"))
+ (rule "variableDeclarationAssign" (formula "143") (term "1"))
+ (rule "variableDeclaration" (formula "143") (term "1") (newnames "exc_36_1"))
+ (rule "assignment" (formula "143") (term "1"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "emptyStatement" (formula "143") (term "1"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "emptyStatement" (formula "143") (term "1"))
+ (rule "tryEmpty" (formula "143") (term "1"))
+ (rule "blockEmptyLabel" (formula "143") (term "1"))
+ (rule "blockEmpty" (formula "143") (term "1"))
+ (rule "methodCallEmpty" (formula "143") (term "1"))
+ (rule "emptyModality" (formula "143") (term "1"))
+ (rule "andRight" (formula "143"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "closeTrue" (formula "143"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "closeTrue" (formula "143"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "142"))
+ (branch "Case 1"
+ (rule "andRight" (formula "142"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "33")))
+ (rule "closeTrue" (formula "142"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "wellFormedAnonEQ" (formula "142") (ifseqformula "84"))
+ (rule "wellFormedStorePrimitiveArray" (formula "142") (term "0"))
+ (rule "wellFormedAnon" (formula "142") (term "0"))
+ (rule "replace_known_left" (formula "142") (term "1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "18")) (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "142"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "142"))
+ (branch "Case 1"
+ (rule "andRight" (formula "142"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "137")))
+ (rule "closeTrue" (formula "142"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (ifseqformula "84"))
+ (rule "orRight" (formula "142"))
+ (rule "polySimp_homoEq" (formula "115") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "115") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "115") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "142") (term "0"))
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "142"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "142"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1,1,0") (ifseqformula "84"))
+ (rule "expand_inInt" (formula "116") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "116") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "116") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "117"))
+ (rule "andLeft" (formula "117"))
+ (rule "translateJavaCastInt" (formula "120") (term "0,1"))
+ (rule "translateJavaCastInt" (formula "120") (term "0"))
+ (rule "translateJavaAddInt" (formula "120") (term "1"))
+ (rule "replace_known_left" (formula "119") (term "0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "true_left" (formula "119"))
+ (rule "polySimp_addComm0" (formula "119") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "118"))
+ (rule "applyEq" (formula "119") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "119") (term "1,1,1") (ifseqformula "40"))
+ (rule "elim_double_block_2" (formula "146") (term "1"))
+ (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_20"))
+ (rule "inequality_comparison_simple" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "146"))
+ (builtin "Use Dependency Contract" (formula "89") (term "1") (ifInst "" (formula "89") (term "1,0")) (ifInst "" (formula "84")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::count()].JML accessible clause.0"))
+ (rule "wellFormedStorePrimitiveArray" (formula "120") (term "0,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "120") (term "1,1,0,0,0") (ifseqformula "84"))
+ (rule "wellFormedAnon" (formula "120") (term "0,1,0,0,0"))
+ (rule "wellFormedStorePrimitiveArray" (formula "120") (term "0,1,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "120") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "120") (term "1"))
+ (rule "translateJavaSubInt" (formula "120") (term "2,1,1,0"))
+ (rule "replace_known_right" (formula "120") (term "0,0,0,0,0,0") (ifseqformula "143"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "83")))
+ (rule "polySimp_elimSub" (formula "120") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "120") (term "1,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "120") (term "2,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "120") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "32")))
+ (rule "disjointDefinition" (formula "120") (term "1,0"))
+ (rule "distributeIntersection_2" (formula "120") (term "0,1,0"))
+ (rule "intersectWithSingleton" (formula "120") (term "0,0,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "120") (term "0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "inEqSimp_commuteLeq" (formula "120") (term "0,0,0,0,1,0"))
+ (rule "replace_known_left" (formula "120") (term "0,0,0,0,1,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "unionEqualsEmpty" (formula "120") (term "1,0"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "disjointArrayRanges" (formula "120") (term "1,1,0"))
+ (rule "eqSymm" (formula "120") (term "0,0,0,0,1,1,0"))
+ (rule "replace_known_right" (formula "120") (term "0,0,0,0,1,1,0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "ifSplit" (formula "147"))
+ (branch "if x_20 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_20 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "147") (term "1"))
+ (rule "compound_assignment_op_plus" (formula "147") (term "1"))
+ (rule "compound_int_cast_expression" (formula "147") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "147") (term "1"))
+ (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_21"))
+ (rule "remove_parentheses_right" (formula "147") (term "1"))
+ (rule "compound_addition_2" (formula "147") (term "1") (inst "#v0=x_22") (inst "#v1=x_23"))
+ (rule "variableDeclarationAssign" (formula "147") (term "1"))
+ (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_22"))
+ (rule "assignment" (formula "147") (term "1"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "variableDeclarationAssign" (formula "147") (term "1"))
+ (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_23"))
+ (rule "remove_parentheses_right" (formula "147") (term "1"))
+ (rule "assignment" (formula "147") (term "1"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "assignmentAdditionInt" (formula "147") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "expand_inInt" (formula "147"))
+ (rule "replace_int_MAX" (formula "147") (term "1,0"))
+ (rule "replace_int_MIN" (formula "147") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "115") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "119"))
+ (rule "polySimp_homoEq" (formula "88") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "115") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "147") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "147") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "115") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "115") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "115") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "87") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "39"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "147") (term "1"))
+ (rule "mul_literals" (formula "147") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "147") (term "0,1"))
+ (rule "add_literals" (formula "147") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "147") (term "0"))
+ (rule "polySimp_mulComm0" (formula "147") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "147") (term "1,0,0"))
+ (rule "mul_literals" (formula "147") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "147") (term "0,0"))
+ (rule "add_literals" (formula "147") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "51") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "119"))
+ (rule "polySimp_mulComm0" (formula "119") (term "1"))
+ (rule "polySimp_rightDist" (formula "119") (term "1"))
+ (rule "mul_literals" (formula "119") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "119") (term "1,1"))
+ (rule "polySimp_sepPosMonomial" (formula "88") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "115") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "115") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "89"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0"))
+ (rule "polySimp_elimOne" (formula "89") (term "0"))
+ (rule "applyEq" (formula "120") (term "0,1") (ifseqformula "89"))
+ (rule "polySimp_homoEq" (formula "120") (term "1"))
+ (rule "polySimp_mulComm0" (formula "120") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "120") (term "1,0,1"))
+ (rule "mul_literals" (formula "120") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "120") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "120") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "120") (term "0,1"))
+ (rule "add_literals" (formula "120") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "120") (term "1,0,1"))
+ (rule "add_zero_right" (formula "120") (term "0,1"))
+ (rule "equal_literals" (formula "120") (term "1"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "notLeft" (formula "120"))
+ (rule "polySimp_sepNegMonomial" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1"))
+ (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "applyEqReverse" (formula "88") (term "1,3,0,1,1,1,0") (ifseqformula "81"))
+ (rule "applyEqReverse" (formula "82") (term "1,0") (ifseqformula "81"))
+ (rule "applyEqReverse" (formula "97") (term "1,0,0") (ifseqformula "81"))
+ (rule "applyEqReverse" (formula "84") (term "1,3,0,0") (ifseqformula "81"))
+ (rule "applyEqReverse" (formula "89") (term "1,3,0,0") (ifseqformula "81"))
+ (rule "applyEqReverse" (formula "120") (term "1,3,0,0") (ifseqformula "81"))
+ (rule "applyEqReverse" (formula "87") (term "1,3,0,0,1,0") (ifseqformula "81"))
+ (rule "hideAuxiliaryEq" (formula "81"))
+ (rule "replace_known_left" (formula "119") (term "0,1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "false_right" (formula "119"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "114") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "114") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "86") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "mul_literals" (formula "39") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "145") (term "1"))
+ (rule "mul_literals" (formula "145") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "145") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "145") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "145") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "54"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_subsumption1" (formula "141") (term "1") (ifseqformula "66"))
+ (rule "leq_literals" (formula "141") (term "0,1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_leqRight" (formula "141"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (term "0,0,0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "58") (term "2,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "61"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "73"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "47"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "1"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "47"))
+ (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "78") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "78") (term "2,1,0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "110") (term "1,2,1,0,0,1,0,2,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "110") (term "2,1,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "1"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "72") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "72") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "80") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "65") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "65") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "66") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "66") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "106") (term "1,2,1,0,0,1,0,0,1,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "106") (term "2,1,0,0,1,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0,1,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "mul_literals" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "9"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "1"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,1,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0"))
+ (rule "add_zero_right" (formula "43") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "47"))
+ (rule "times_zero_1" (formula "51") (term "0,0"))
+ (rule "add_zero_left" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "46"))
+ (rule "mul_literals" (formula "24") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26"))
+ (rule "times_zero_1" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "45"))
+ (rule "times_zero_1" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "1"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "70") (ifseqformula "78"))
+ (rule "leq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_contradInEq1" (formula "77") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "closeFalse" (formula "77"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "translateJavaAddInt" (formula "147") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "147") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "147") (term "1"))
+ (rule "assignment" (formula "147") (term "1"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "tryEmpty" (formula "147") (term "1"))
+ (rule "blockEmptyLabel" (formula "147") (term "1"))
+ (rule "blockEmpty" (formula "147") (term "1"))
+ (rule "methodCallEmpty" (formula "147") (term "1"))
+ (rule "emptyModality" (formula "147") (term "1"))
+ (rule "andRight" (formula "147"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "closeTrue" (formula "147"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "147"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "91")))
+ (rule "closeTrue" (formula "147"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "95")))
+ (rule "closeTrue" (formula "147"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (flush)"
+ (builtin "One Step Simplification" (formula "111"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,0") (ifseqformula "84"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "87"))
+ (rule "notLeft" (formula "85"))
+ (rule "close" (formula "88") (ifseqformula "87"))
+ )
+ (branch "Pre (flush)"
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "107")) (ifInst "" (formula "107")))
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "109") (userinteraction))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15") (userinteraction))
+ (rule "close" (formula "109") (ifseqformula "15"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "wellFormedStorePrimitiveArray" (formula "109"))
+ (rule "close" (formula "109") (ifseqformula "68"))
+ )
+ (branch "Case 2"
+ (rule "dismissNonSelectedField" (formula "109") (term "0"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "32")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "inEqSimp_leqRight" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "jmod_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1"))
+ (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82"))
+ (rule "hideAuxiliaryEq" (formula "82"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "72") (ifseqformula "1"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "true_left" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "42"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "42"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "50"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "66") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "closeFalse" (formula "66"))
+ )
+ )
+ (branch "Case 2"
+ (rule "dismissNonSelectedField" (formula "109") (term "0"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "22")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "inEqSimp_leqRight" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "jmod_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1"))
+ (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82"))
+ (rule "hideAuxiliaryEq" (formula "82"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "53"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "79"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "64"))
+ (rule "leq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "53"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_contradInEq0" (formula "65") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "closeFalse" (formula "65"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "inEqSimp_leqRight" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "jmod_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1"))
+ (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82"))
+ (rule "hideAuxiliaryEq" (formula "82"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "52"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "52"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "62"))
+ (rule "leq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "73"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "1"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Null reference (_buffers = null)"
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "105")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ (branch "Null Reference (x_arr_2 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_2 != null, but x_11 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "false_right" (formula "110"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "jmod_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1"))
+ (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82"))
+ (rule "hideAuxiliaryEq" (formula "82"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "56"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "65"))
+ (rule "leq_literals" (formula "71") (term "0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "50"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "62"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (term "0,0,0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "56") (term "2,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "1"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "66") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "66") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "47"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "applyEq" (formula "67") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "67") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "9"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "mul_literals" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "44"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "35") (ifseqformula "1"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_homoInEq1" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "35") (term "0"))
+ (rule "add_literals" (formula "35") (term "1,1,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0"))
+ (rule "add_zero_right" (formula "35") (term "0"))
+ (rule "leq_literals" (formula "35"))
+ (rule "closeFalse" (formula "35"))
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but x_10 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "false_right" (formula "110"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_addComm1" (formula "40") (term "0"))
+ (rule "jmod_axiom" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1"))
+ (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82"))
+ (rule "hideAuxiliaryEq" (formula "82"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "56"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "79"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "50"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "62"))
+ (rule "leq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (term "0,0,0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "57") (term "2,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "47"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "66") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "66") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "1"))
+ (rule "applyEq" (formula "67") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "67") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "9"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62"))
+ (rule "times_zero_1" (formula "61") (term "0,0"))
+ (rule "add_zero_left" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "45"))
+ (rule "times_zero_1" (formula "49") (term "0,0"))
+ (rule "add_zero_left" (formula "49") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "44"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,1,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0"))
+ (rule "add_zero_right" (formula "43") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "69"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "34"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "47"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26"))
+ (rule "mul_literals" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "68"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "37"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "104"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "tryEmpty" (formula "104") (term "1"))
+ (rule "blockEmptyLabel" (formula "104") (term "1"))
+ (rule "blockEmpty" (formula "104") (term "1"))
+ (rule "methodCallEmpty" (formula "104") (term "1"))
+ (rule "emptyModality" (formula "104") (term "1"))
+ (rule "andRight" (formula "104"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "closeTrue" (formula "104"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "104"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "104"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "104"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (len)"
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "14")))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "close" (formula "74") (ifseqformula "73"))
+ )
+ (branch "Pre (len)"
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "14")) (ifInst "" (formula "67")) (ifInst "" (formula "31")))
+ (rule "expand_inInt" (formula "98"))
+ (rule "replace_int_MIN" (formula "98") (term "0,1"))
+ (rule "replace_int_MAX" (formula "98") (term "1,0"))
+ (rule "replace_known_left" (formula "98") (term "0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "inEqSimp_leqRight" (formula "98"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "39"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "jmod_axiom" (formula "51") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "mul_literals" (formula "39") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "51"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "64"))
+ (rule "leq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_contradInEq0" (formula "61") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "closeFalse" (formula "61"))
+ )
+ (branch "Null reference (_buffers = null)"
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "94")))
+ (rule "closeTrue" (formula "98"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "32")))
+ (rule "closeTrue" (formula "93"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "wellFormedAnon" (formula "93"))
+ (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "93"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "expand_inInt" (formula "93"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0"))
+ (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "inEqSimp_leqRight" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "39"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "jmod_axiom" (formula "51") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "52"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_contradInEq0" (formula "28") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeFalse" (formula "28"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "expand_inInt" (formula "93"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "1"))
+ (rule "inEqSimp_homoInEq1" (formula "38"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "jmod_axiom" (formula "50") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1"))
+ (rule "mul_literals" (formula "38") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "51"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (term "0,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "60") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "51"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "newSym_eq" (formula "45") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "45") (term "1,1,1"))
+ (rule "times_zero_1" (formula "45") (term "0,1,1"))
+ (rule "add_zero_left" (formula "45") (term "1,1"))
+ (rule "add_zero_right" (formula "45") (term "1"))
+ (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "45"))
+ (rule "polySimp_homoEq" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "46"))
+ (rule "applyEq" (formula "55") (term "1,2,1,0,0,1,0,0") (ifseqformula "46"))
+ (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "46"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "50") (term "5,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0") (ifseqformula "46"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "45") (term "1,0,0") (ifseqformula "46"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "46"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "46"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "46"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "applyEq" (formula "43") (term "0,1,1") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "43") (term "1"))
+ (rule "applyEq" (formula "10") (term "0,5,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "49") (term "0,0,2,2,0,1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "55") (term "0,0,2,2,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "11") (term "0,4,0,1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "11") (term "4,1,1,0") (ifseqformula "46"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "times_zero_1" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "44"))
+ (rule "times_zero_1" (formula "48") (term "0,0"))
+ (rule "add_zero_left" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "50"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "inEqSimp_geqRight" (formula "92"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "28"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "42"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "43"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "46"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,1,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0"))
+ (rule "add_zero_right" (formula "45") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26"))
+ (rule "times_zero_1" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "neg_literal" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,0"))
+ (rule "mul_literals" (formula "27") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "47"))
+ (rule "greater_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "10"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "26") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "closeFalse" (formula "26"))
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "93"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "94"))
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "93"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "30")))
+ (rule "closeTrue" (formula "94"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "expand_inInt" (formula "93"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "38"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "jmod_axiom" (formula "50") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1"))
+ (rule "mul_literals" (formula "38") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "42"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "50"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "39"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption0" (formula "49") (ifseqformula "50"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "1") (ifseqformula "59"))
+ (rule "leq_literals" (formula "87") (term "0,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_leqRight" (formula "87"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (term "0,0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "4") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "56") (term "2,0") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "1"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "47"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "1"))
+ (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "8"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "8"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "42"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "46"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "47"))
+ (rule "times_zero_1" (formula "51") (term "0,0"))
+ (rule "add_zero_left" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,1,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0"))
+ (rule "add_zero_right" (formula "45") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "27"))
+ (rule "mul_literals" (formula "39") (term "0,0"))
+ (rule "add_zero_left" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "39") (term "0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "67"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,0"))
+ (rule "mul_literals" (formula "30") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "mul_literals" (formula "30") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "44"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "50"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "1,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0"))
+ (rule "add_zero_right" (formula "14") (term "0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "14") (ifseqformula "52"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "times_zero_1" (formula "14") (term "1,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "50"))
+ (rule "times_zero_1" (formula "43") (term "0,0"))
+ (rule "add_zero_left" (formula "43") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "43"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "5"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1"))
+ (rule "mul_literals" (formula "10") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0"))
+ (rule "qeq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "31") (ifseqformula "53"))
+ (rule "times_zero_1" (formula "31") (term "1,1,0"))
+ (rule "greater_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "40"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "40") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "closeFalse" (formula "40"))
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "93"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "94"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (rule "andRight" (formula "93"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "88")))
+ (rule "closeTrue" (formula "93"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "18")))
+ (rule "closeTrue" (formula "93"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "93"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "94"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "expand_inInt" (formula "67") (term "1,0,0,0,1,1,1,1,1"))
+ (rule "expand_inInt" (formula "67") (term "1,0,1,0"))
+ (rule "expand_inInt" (formula "67") (term "0,0,1,0"))
+ (rule "expand_inInt" (formula "67") (term "0,0,0,1,1,1,1,1,1"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,0,0,1,1,1,1,1"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,0,0,1,1,1,1,1"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,0,0,0,1,1,1,1,1,1"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,0,0,0,1,1,1,1,1,1"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "70"))
+ (rule "notLeft" (formula "69"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "79"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,1,0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "87") (term "2,1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "78") (term "0,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "83") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "83") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "82") (term "1"))
+ (rule "translateJavaSubInt" (formula "82") (term "2,1,0,1,0,0"))
+ (rule "eqSymm" (formula "84") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "81") (term "2,1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "85") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "86") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "79") (term "2,1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "80") (term "2,1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "83") (term "2,1,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1"))
+ (rule "translateJavaSubInt" (formula "84") (term "2,1,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "4,0,1,0"))
+ (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "polySimp_elimSub" (formula "113") (term "2,1,0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "113") (term "1,2,1,0,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "86") (term "2,1,0,1,0,0"))
+ (rule "mul_literals" (formula "86") (term "1,2,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "69") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "82") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "82") (term "1,2,1,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "81") (term "2,1,0,1,0,0"))
+ (rule "mul_literals" (formula "81") (term "1,2,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "80") (term "2,1,0,1,0,0"))
+ (rule "mul_literals" (formula "80") (term "1,2,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "84") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "84") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "85") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "85") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "78") (term "2,1,0,1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,2,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "79") (term "2,1,0,1,0,0"))
+ (rule "mul_literals" (formula "79") (term "1,2,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "82") (term "2,1,0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "82") (term "1,2,1,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "81") (term "1"))
+ (rule "polySimp_elimSub" (formula "83") (term "2,1,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "83") (term "1,2,1,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "113") (term "2,1,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "2,1,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "2,1,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "1"))
+ (rule "polySimp_addComm0" (formula "83") (term "2,1,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "72"))
+ (rule "inEqSimp_commuteLeq" (formula "74"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "83") (term "1,0,0"))
+ (rule "applyEq" (formula "82") (term "1,1,0,0,0") (ifseqformula "39"))
+ (rule "commuteUnion_2" (formula "113") (term "1,0,1,1,0"))
+ (rule "commuteUnion" (formula "86") (term "1,0,0"))
+ (rule "commuteUnion_2" (formula "68") (term "1,0"))
+ (rule "commuteUnion" (formula "69") (term "1,0"))
+ (rule "commuteUnion_2" (formula "82") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "81") (term "1,0,0"))
+ (rule "commuteUnion" (formula "80") (term "1,0,0"))
+ (rule "commuteUnion_2" (formula "84") (term "1,0"))
+ (rule "commuteUnion_2" (formula "85") (term "1,0"))
+ (rule "commuteUnion_2" (formula "78") (term "1,0,0"))
+ (rule "commuteUnion" (formula "79") (term "1,0,0"))
+ (rule "commuteUnion" (formula "82") (term "1,0,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "83") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "113") (term "0,1,0,1,1,0"))
+ (rule "commuteUnion" (formula "68") (term "0,1,0"))
+ (rule "commuteUnion" (formula "82") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "84") (term "0,1,0"))
+ (rule "commuteUnion" (formula "85") (term "0,1,0"))
+ (rule "commuteUnion" (formula "78") (term "0,1,0,0"))
+ (rule "commute_and" (formula "83") (term "0,0"))
+ (rule "commute_and" (formula "82") (term "1,0,0"))
+ (rule "commute_and" (formula "82") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "69") (term "1,0"))
+ (rule "ifUnfold" (formula "113") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "113") (term "1") (newnames "x_8"))
+ (rule "shift_paren_and" (formula "82") (term "0,0"))
+ (rule "commute_and_2" (formula "82") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "86") (term "1,0,0"))
+ (rule "associativeLawUnion" (formula "81") (term "1,0,0"))
+ (rule "associativeLawUnion" (formula "80") (term "1,0,0"))
+ (rule "associativeLawUnion" (formula "79") (term "1,0,0"))
+ (rule "inequality_comparison_simple" (formula "113") (term "1"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "replace_known_left" (formula "113") (term "0,0,1,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "associativeLawUnion" (formula "83") (term "1,0,0,1,0"))
+ (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "113") (term "0,0,1,0,0,1")) (contract "de.wiesler.Buffers[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "86") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "86") (term "0,1,0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "110")) (ifInst "" (formula "31")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "14")))
+ (rule "disjointDefinition" (formula "86") (term "1,0"))
+ (rule "distributeIntersection_2" (formula "86") (term "0,1,0"))
+ (rule "unionEqualsEmpty" (formula "86") (term "1,0"))
+ (rule "disjointArrayRangeAllFields2" (formula "86") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "distributeIntersection_2" (formula "86") (term "0,0,1,0"))
+ (rule "unionEqualsEmpty" (formula "86") (term "0,1,0"))
+ (rule "disjointArrayRangeAllFields2" (formula "86") (term "1,0,1,0"))
+ (rule "eqSymm" (formula "86") (term "0,0,1,0,1,0"))
+ (rule "replace_known_right" (formula "86") (term "0,0,1,0,1,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "distributeIntersection_2" (formula "86") (term "0,0,1,0"))
+ (rule "unionEqualsEmpty" (formula "86") (term "0,1,0"))
+ (rule "disjointArrayRangeAllFields2" (formula "86") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "86") (term "0,0,0,0,1,0"))
+ (rule "replace_known_right" (formula "86") (term "0,0,0,0,1,0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "disjointArrayRangeAllFields2" (formula "86") (term "0,1,0"))
+ (rule "eqSymm" (formula "86") (term "0,0,0,1,0"))
+ (rule "replace_known_right" (formula "86") (term "0,0,0,1,0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "114") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0"))
+ (rule "replace_known_right" (formula "87") (term "0,0,0,0,0,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "33")) (ifInst "" (formula "15")) (ifInst "" (formula "33")))
+ (rule "true_left" (formula "87"))
+ (rule "associativeLawUnion" (formula "82") (term "1,0,0,0,0,1,0"))
+ (rule "ifSplit" (formula "114"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "114") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "114") (newnames "result_24,exc_28,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "32")) (ifInst "" (formula "19")) (ifInst "" (formula "110")) (ifInst "" (formula "18")))
+ (rule "eqSymm" (formula "115") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "115") (term "1"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "exc_28_1"))
+ (rule "assignment" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "emptyStatement" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "emptyStatement" (formula "115") (term "1"))
+ (rule "tryEmpty" (formula "115") (term "1"))
+ (rule "blockEmptyLabel" (formula "115") (term "1"))
+ (rule "blockEmpty" (formula "115") (term "1"))
+ (rule "methodCallEmpty" (formula "115") (term "1"))
+ (rule "emptyModality" (formula "115") (term "1"))
+ (rule "andRight" (formula "115"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "closeTrue" (formula "115"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "closeTrue" (formula "115"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "114"))
+ (branch "Case 1"
+ (rule "andRight" (formula "114"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "32")))
+ (rule "closeTrue" (formula "114"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "wellFormedAnon" (formula "114"))
+ (rule "wellFormedAnon" (formula "114") (term "0"))
+ (rule "replace_known_left" (formula "114") (term "1") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "114"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "114"))
+ (branch "Case 1"
+ (rule "andRight" (formula "114"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "109")))
+ (rule "closeTrue" (formula "114"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "18")))
+ (rule "closeTrue" (formula "114"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "114"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "expand_inInt" (formula "87") (term "1"))
+ (rule "expand_inInt" (formula "87") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "88"))
+ (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_commuteLeq" (formula "91"))
+ (rule "inEqSimp_commuteLeq" (formula "89"))
+ (rule "elim_double_block_2" (formula "119") (term "1"))
+ (rule "ifUnfold" (formula "119") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "119") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "119") (term "1"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "replace_known_left" (formula "119") (term "0,0,1,0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "ifSplit" (formula "119"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "119") (term "1"))
+ (builtin "Use Operation Contract" (formula "119") (newnames "heapBefore_push,exc_29,heapAfter_push,anon_heap_push") (contract "de.wiesler.Buffers[de.wiesler.Buffers::push(int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (push)"
+ (builtin "One Step Simplification" (formula "93"))
+ (builtin "One Step Simplification" (formula "121"))
+ (builtin "Block Contract (Internal)" (formula "121") (newnames "result_25,exc_30,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "122"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "32")) (ifInst "" (formula "19")) (ifInst "" (formula "117")))
+ (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "18")))
+ (rule "true_left" (formula "96"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "97"))
+ (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "61") (term "2,0") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "97") (term "1,0,1,1,1,0") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "90") (term "0") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "91") (term "0") (ifseqformula "95"))
+ (rule "hideAuxiliaryEq" (formula "95"))
+ (rule "eqSymm" (formula "128") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "93") (term "0,1,1,1,0"))
+ (rule "eqSymm" (formula "94"))
+ (rule "eqSymm" (formula "95"))
+ (rule "eqSymm" (formula "96") (term "1,0"))
+ (rule "translateJavaMulInt" (formula "93") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "94") (term "0"))
+ (rule "translateJavaAddInt" (formula "95") (term "0"))
+ (rule "translateJavaAddInt" (formula "96") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "96") (term "1,0,0"))
+ (rule "variableDeclarationAssign" (formula "128") (term "1"))
+ (rule "variableDeclaration" (formula "128") (term "1") (newnames "exc_30_1"))
+ (rule "assignment" (formula "128") (term "1"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "emptyStatement" (formula "128") (term "1"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "emptyStatement" (formula "128") (term "1"))
+ (rule "applyEq" (formula "95") (term "1,0") (ifseqformula "81"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0"))
+ (rule "eqSymm" (formula "95"))
+ (rule "commute_and" (formula "96") (term "0,0"))
+ (rule "tryEmpty" (formula "128") (term "1"))
+ (rule "blockEmptyLabel" (formula "128") (term "1"))
+ (rule "blockEmpty" (formula "128") (term "1"))
+ (rule "methodCallEmpty" (formula "128") (term "1"))
+ (rule "emptyModality" (formula "128") (term "1"))
+ (rule "andRight" (formula "128"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "closeTrue" (formula "128"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "closeTrue" (formula "128"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "32")))
+ (rule "closeTrue" (formula "121"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "93"))
+ (rule "wellFormedAnonEQ" (formula "122") (ifseqformula "93"))
+ (rule "wellFormedAnon" (formula "122") (term "0"))
+ (rule "wellFormedAnon" (formula "122") (term "0,0"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "97"))
+ (rule "applyEqReverse" (formula "61") (term "2,0") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "91") (term "0") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "97") (term "1,0,1,1,1,0") (ifseqformula "95"))
+ (rule "applyEqReverse" (formula "90") (term "0") (ifseqformula "95"))
+ (rule "hideAuxiliaryEq" (formula "95"))
+ (rule "translateJavaAddInt" (formula "93") (term "0,1,1,1,0"))
+ (rule "eqSymm" (formula "94"))
+ (rule "eqSymm" (formula "95"))
+ (rule "eqSymm" (formula "96") (term "1,0"))
+ (rule "translateJavaMulInt" (formula "93") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "94") (term "0"))
+ (rule "translateJavaAddInt" (formula "95") (term "0"))
+ (rule "translateJavaAddInt" (formula "96") (term "0,1,0"))
+ (rule "replace_known_left" (formula "127") (term "1,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "17")) (ifInst "" (formula "70")) (ifInst "" (formula "92")))
+ (rule "closeTrue" (formula "127"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "116")))
+ (rule "closeTrue" (formula "121"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "18")))
+ (rule "closeTrue" (formula "122"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "121"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "94"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "94") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "94") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "94") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "95") (term "1,1,1,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "100"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "98"))
+ (rule "applyEqReverse" (formula "61") (term "2,0") (ifseqformula "96"))
+ (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "96"))
+ (rule "applyEqReverse" (formula "91") (term "0") (ifseqformula "96"))
+ (rule "applyEqReverse" (formula "98") (term "1,0,1,1,1,0") (ifseqformula "96"))
+ (rule "applyEqReverse" (formula "90") (term "0") (ifseqformula "96"))
+ (rule "hideAuxiliaryEq" (formula "96"))
+ (rule "translateJavaAddInt" (formula "93") (term "0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,3,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "2,0"))
+ (rule "eqSymm" (formula "95"))
+ (rule "eqSymm" (formula "96"))
+ (rule "eqSymm" (formula "97") (term "1,0"))
+ (rule "translateJavaMulInt" (formula "93") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "95") (term "0"))
+ (rule "translateJavaAddInt" (formula "96") (term "0"))
+ (rule "translateJavaAddInt" (formula "97") (term "0,1,0"))
+ (rule "replace_known_left" (formula "103") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "polySimp_addComm1" (formula "104") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,3,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102"))
+ (rule "inEqSimp_commuteLeq" (formula "97") (term "1,0,0"))
+ (rule "applyEq" (formula "96") (term "1,0") (ifseqformula "81"))
+ (rule "polySimp_addAssoc" (formula "96") (term "0"))
+ (rule "polySimp_addAssoc" (formula "96") (term "0,0"))
+ (rule "eqSymm" (formula "96"))
+ (rule "commute_and" (formula "97") (term "0,0"))
+ (rule "elim_double_block_2" (formula "132") (term "1"))
+ (rule "ifUnfold" (formula "132") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "132") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "replace_known_left" (formula "132") (term "0,0,1,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "ifSplit" (formula "132"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "133"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "133"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "132") (term "1"))
+ (rule "emptyStatement" (formula "132") (term "1"))
+ (rule "blockEmpty" (formula "132") (term "1"))
+ (rule "preincrement" (formula "132") (term "1"))
+ (rule "compound_int_cast_expression" (formula "132") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "132") (term "1"))
+ (rule "variableDeclaration" (formula "132") (term "1") (newnames "x_11"))
+ (rule "remove_parentheses_right" (formula "132") (term "1"))
+ (rule "assignmentAdditionInt" (formula "132") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "expand_inInt" (formula "132"))
+ (rule "replace_int_MIN" (formula "132") (term "0,1"))
+ (rule "replace_int_MAX" (formula "132") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "97") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "95"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "132") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "132") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0"))
+ (rule "mul_literals" (formula "95") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "0,1,0"))
+ (rule "mul_literals" (formula "86") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "86") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "38"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "132") (term "0"))
+ (rule "polySimp_mulComm0" (formula "132") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "132") (term "1,0,0"))
+ (rule "mul_literals" (formula "132") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "132") (term "0,0"))
+ (rule "add_literals" (formula "132") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "132") (term "1"))
+ (rule "mul_literals" (formula "132") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "132") (term "0,1"))
+ (rule "add_literals" (formula "132") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "50") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "97") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "95"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0"))
+ (rule "polySimp_elimOne" (formula "95") (term "0"))
+ (rule "applyEq" (formula "93") (term "1,0,1,1,1,0") (ifseqformula "95"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0,1,1,1,0"))
+ (rule "applyEq" (formula "61") (term "3,2,0") (ifseqformula "95"))
+ (rule "applyEq" (formula "91") (term "3,0") (ifseqformula "95"))
+ (rule "applyEq" (formula "105") (term "0") (ifseqformula "95"))
+ (rule "polySimp_homoEq" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "mul_literals" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0"))
+ (rule "add_literals" (formula "105") (term "0,0"))
+ (rule "applyEq" (formula "90") (term "3,0") (ifseqformula "95"))
+ (rule "applyEq" (formula "97") (term "3,1,0,0,1,0") (ifseqformula "95"))
+ (rule "applyEq" (formula "3") (term "3,1") (ifseqformula "95"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "86") (term "0,1,0"))
+ (rule "mul_literals" (formula "86") (term "1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1"))
+ (rule "mul_literals" (formula "38") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "132") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "132") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "132") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "132") (term "1"))
+ (rule "mul_literals" (formula "132") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "54"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "49"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (term "0,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "eqSymm" (formula "3"))
+ (rule "applyEq" (formula "57") (term "2,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "86") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "93") (term "1,0,0,1,0") (ifseqformula "3"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "127") (term "1") (ifseqformula "7"))
+ (rule "leq_literals" (formula "127") (term "0,1"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "inEqSimp_leqRight" (formula "127"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "39"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0"))
+ (rule "applyEq" (formula "63") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "63") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "77") (term "1,2,1,1,0,1,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "77") (term "2,1,1,0,1,0,1,0"))
+ (rule "applyEq" (formula "80") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "77") (term "1,2,1,0,0,1,0,0,1,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "77") (term "2,1,0,0,1,0,0,1,0,1,0"))
+ (rule "applyEq" (formula "79") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "79") (term "2,1,1,0"))
+ (rule "applyEq" (formula "73") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "64") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "64") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "76") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "76") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "1"))
+ (rule "applyEq" (formula "74") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "74") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "90") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "90") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "78") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "78") (term "2,1,0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "80") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "80") (term "2,1,1,0"))
+ (rule "applyEq" (formula "78") (term "1,2,1,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "78") (term "2,1,1,0,0,1,0"))
+ (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "applyEq" (formula "88") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "88") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "88") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "88") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "47"))
+ (rule "applyEq" (formula "76") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "76") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "90") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "90") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "75") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "75") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "63") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "63") (term "2,1,1,0"))
+ (rule "applyEq" (formula "64") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "64") (term "2,1,1,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "77") (term "1,2,1,0,0,1,0,0,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "77") (term "2,1,0,0,1,0,0,0,0,0,1,0"))
+ (rule "applyEq" (formula "78") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "78") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "92") (term "1,2,1,1,0,0,1,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "92") (term "2,1,1,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "92") (term "1,2,1,0,0,1,0,0,0,1,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "92") (term "2,1,0,0,1,0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "99") (term "1,0,3,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "99") (term "0,3,0"))
+ (rule "applyEq" (formula "85") (term "0,0,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "86") (term "0,0,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "99") (term "0,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "77") (term "1,2,1,1,0,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "77") (term "2,1,1,0,0,0,0,1,0"))
+ (rule "applyEq" (formula "76") (term "1,0,1") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0,1"))
+ (rule "applyEq" (formula "4") (term "0,0,2,1") (ifseqformula "47"))
+ (rule "applyEq" (formula "91") (term "1,0,1") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "91") (term "0,0,1"))
+ (rule "applyEq" (formula "92") (term "0,0,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "8"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "71"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63"))
+ (rule "times_zero_1" (formula "62") (term "0,0"))
+ (rule "add_zero_left" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "replace_known_left" (formula "84") (term "0,1,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "73"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "8"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "47"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "translateJavaAddInt" (formula "132") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "132") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "132") (term "1"))
+ (rule "assignment" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "blockEmpty" (formula "132") (term "1"))
+ (rule "lsContinue" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "polySimp_homoEq" (formula "97") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "95"))
+ (rule "polySimp_mulComm0" (formula "132") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "132") (term "0,0"))
+ (rule "mul_literals" (formula "132") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0"))
+ (rule "mul_literals" (formula "95") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0"))
+ (rule "precOfInt" (formula "132"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "132") (term "1"))
+ (rule "polySimp_rightDist" (formula "132") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "132") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "132") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "132") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "132") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "132") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "132") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "132") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "132") (term "0,1"))
+ (rule "add_literals" (formula "132") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "132") (term "1,0,1"))
+ (rule "add_zero_right" (formula "132") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "132") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "132") (term "0,0,1"))
+ (rule "add_literals" (formula "132") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "132") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "132") (term "0,1"))
+ (rule "add_literals" (formula "132") (term "1,0,1"))
+ (rule "times_zero_1" (formula "132") (term "0,1"))
+ (rule "leq_literals" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "inEqSimp_leqRight" (formula "132"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "39"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "87") (term "0,1,0"))
+ (rule "times_zero_2" (formula "87") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "87") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0"))
+ (rule "jmod_axiom" (formula "51") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "98") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "98") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "applyEq" (formula "92") (term "3,0") (ifseqformula "96"))
+ (rule "applyEq" (formula "106") (term "0") (ifseqformula "96"))
+ (rule "polySimp_homoEq" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0"))
+ (rule "mul_literals" (formula "106") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0"))
+ (rule "add_literals" (formula "106") (term "0,0"))
+ (rule "applyEq" (formula "91") (term "3,0") (ifseqformula "96"))
+ (rule "applyEq" (formula "62") (term "3,2,0") (ifseqformula "96"))
+ (rule "applyEq" (formula "94") (term "1,0,1,1,1,0") (ifseqformula "96"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0,1,1,1,0"))
+ (rule "applyEq" (formula "98") (term "3,1,0,0,1,0") (ifseqformula "96"))
+ (rule "applyEq" (formula "4") (term "3,1") (ifseqformula "96"))
+ (rule "polySimp_sepNegMonomial" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "87") (term "0,1,0"))
+ (rule "mul_literals" (formula "87") (term "1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "55"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "51"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (push)"
+ (builtin "One Step Simplification" (formula "93"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "andLeft" (formula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "94"))
+ (rule "notLeft" (formula "94"))
+ (rule "close" (formula "97") (ifseqformula "96"))
+ )
+ (branch "Pre (push)"
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "68")) (ifInst "" (formula "31")))
+ (rule "wellFormedAnon" (formula "119") (term "0,0"))
+ (rule "wellFormedAnon" (formula "119") (term "0,0,0"))
+ (rule "expand_inInt" (formula "119") (term "1"))
+ (rule "expand_inInt" (formula "119") (term "1,0"))
+ (rule "replace_int_MIN" (formula "119") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "119") (term "1,0,1"))
+ (rule "replace_int_MAX" (formula "119") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "119") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "119") (term "1,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "90")))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "119") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "119") (term "1"))
+ (rule "replace_known_left" (formula "119") (term "1") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "inEqSimp_homoInEq1" (formula "38"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "0,1,0"))
+ (rule "times_zero_2" (formula "86") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "86") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0"))
+ (rule "jmod_axiom" (formula "50") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1"))
+ (rule "mul_literals" (formula "38") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "86") (term "0,1,0"))
+ (rule "mul_literals" (formula "86") (term "1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "52"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (term "0,0,0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "85") (term "0") (ifseqformula "3"))
+ (rule "applyEqReverse" (formula "86") (term "0") (ifseqformula "3"))
+ (rule "applyEqReverse" (formula "56") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "113") (term "1") (ifseqformula "59"))
+ (rule "leq_literals" (formula "113") (term "0,1"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "inEqSimp_leqRight" (formula "113"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "47"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "1"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "46") (term "1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,1"))
+ (rule "add_zero_left" (formula "46") (term "1,1"))
+ (rule "add_zero_right" (formula "46") (term "1"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46"))
+ (rule "polySimp_homoEq" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1"))
+ (rule "applyEq" (formula "74") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "74") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "72") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "72") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "76") (term "1,2,1,1,0,1,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "76") (term "2,1,1,0,1,0,1,0"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "70") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,0"))
+ (rule "applyEq" (formula "72") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "72") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "47"))
+ (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "applyEq" (formula "63") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "63") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "79") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "79") (term "2,1,1,0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "86") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "86") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "86") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "86") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "78") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "78") (term "2,1,1,0"))
+ (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "73") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "73") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "62") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "62") (term "2,1,1,0"))
+ (rule "applyEq" (formula "77") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "77") (term "2,1,0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "77") (term "1,2,1,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "77") (term "2,1,1,0,0,1,0"))
+ (rule "applyEq" (formula "63") (term "1,2,1,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "63") (term "2,1,1,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "78") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "78") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "1"))
+ (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "applyEq" (formula "76") (term "1,2,1,0,0,1,0,0,1,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "76") (term "2,1,0,0,1,0,0,1,0,1,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "75") (term "1,2,1,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "75") (term "2,1,1,0,0"))
+ (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "84") (term "0,0,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "85") (term "0,0,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "77") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "76") (term "1,2,1,1,0,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "76") (term "2,1,1,0,0,0,0,1,0"))
+ (rule "applyEq" (formula "76") (term "1,2,1,0,0,1,0,0,0,0,0,1,0") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "76") (term "2,1,0,0,1,0,0,0,0,0,1,0"))
+ (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "77") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "75") (term "1,0,1") (ifseqformula "47"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "8"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "70"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "8"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "42"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "71"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "84") (term "0,1,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "84") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26"))
+ (rule "mul_literals" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "48"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "47") (term "0"))
+ (rule "add_literals" (formula "47") (term "1,1,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0"))
+ (rule "add_zero_right" (formula "47") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "47") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "50"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "56"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "51"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "52"))
+ (rule "times_zero_1" (formula "56") (term "0,0"))
+ (rule "add_zero_left" (formula "56") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "48"))
+ (rule "times_zero_1" (formula "42") (term "0,0"))
+ (rule "add_zero_left" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "42"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "80") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "29") (ifseqformula "51"))
+ (rule "greater_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "times_zero_1" (formula "29") (term "1,0"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "46"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "84") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "84") (term "0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "84") (term "0,0"))
+ (rule "add_literals" (formula "84") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0,0"))
+ (rule "add_zero_right" (formula "84") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "84"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "84") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "84") (term "0"))
+ (rule "add_literals" (formula "84") (term "1,1,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0"))
+ (rule "add_zero_right" (formula "84") (term "0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "84") (ifseqformula "53"))
+ (rule "greater_literals" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "times_zero_1" (formula "84") (term "1,0"))
+ (rule "leq_literals" (formula "84") (term "0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "1,1,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0"))
+ (rule "add_zero_right" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "15") (ifseqformula "54"))
+ (rule "greater_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "times_zero_1" (formula "15") (term "1,0"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "52"))
+ (rule "times_zero_1" (formula "44") (term "0,0"))
+ (rule "add_zero_left" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "44"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "5"))
+ (rule "times_zero_1" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1"))
+ (rule "mul_literals" (formula "10") (term "0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "85") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "85") (term "0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "85"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0"))
+ (rule "polySimp_elimOne" (formula "85") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "42"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Null reference (_buffers = null)"
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "115")))
+ (rule "closeTrue" (formula "119"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_5 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "orLeft" (formula "1") (userinteraction))
+ (branch "values.length <= i + j_0"
+ (rule "false_right" (formula "82"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "jmod_axiom" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "49"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption0" (formula "48") (ifseqformula "49"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "44") (term "1,1,1"))
+ (rule "times_zero_1" (formula "44") (term "0,1,1"))
+ (rule "add_zero_left" (formula "44") (term "1,1"))
+ (rule "add_zero_right" (formula "44") (term "1"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44"))
+ (rule "polySimp_homoEq" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "1"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "45"))
+ (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "1") (term "0,1") (ifseqformula "45"))
+ (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "7"))
+ (rule "mul_literals" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "47"))
+ (rule "mul_literals" (formula "51") (term "0,0"))
+ (rule "add_zero_left" (formula "51") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "40") (term "0,0"))
+ (rule "add_zero_left" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26"))
+ (rule "times_zero_1" (formula "38") (term "0,0"))
+ (rule "add_zero_left" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "leq_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "49"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0"))
+ (rule "add_zero_right" (formula "48") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "48") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "48") (term "0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "45"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "i + j_0 < 0"
+ (rule "false_right" (formula "82"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "jmod_axiom" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "48") (ifseqformula "50"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "47"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "44") (term "1,1,1"))
+ (rule "times_zero_1" (formula "44") (term "0,1,1"))
+ (rule "add_zero_left" (formula "44") (term "1,1"))
+ (rule "add_zero_right" (formula "44") (term "1"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44"))
+ (rule "polySimp_homoEq" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "1"))
+ (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "1"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "45"))
+ (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45"))
+ (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "22"))
+ (rule "times_zero_1" (formula "35") (term "0,0"))
+ (rule "add_zero_left" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))"))
+ (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "40"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "23") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(neglit(5(5(4(5(3(4(8(6(2(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "6"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "47"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "48"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "47") (term "0"))
+ (rule "add_literals" (formula "47") (term "1,1,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0"))
+ (rule "add_zero_right" (formula "47") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "47") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "47"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "49"))
+ (rule "times_zero_1" (formula "53") (term "0,0"))
+ (rule "add_zero_left" (formula "53") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "add_zero_left" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "49"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "41"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "7"))
+ (rule "times_zero_1" (formula "39") (term "0,0"))
+ (rule "add_zero_left" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "39") (ifseqformula "48"))
+ (rule "greater_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "closeFalse" (formula "39"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_indices = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_indices != null, but j Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")))
+ (rule "false_right" (formula "82"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "jmod_axiom" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "49"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption0" (formula "49") (ifseqformula "50"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "81") (term "1"))
+ (rule "blockBreak" (formula "81") (term "1"))
+ (rule "lsBreak" (formula "81") (term "1"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "methodCallReturn" (formula "81") (term "1"))
+ (rule "assignment" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "methodCallEmpty" (formula "81") (term "1"))
+ (rule "tryEmpty" (formula "81") (term "1"))
+ (rule "emptyModality" (formula "81") (term "1"))
+ (rule "andRight" (formula "81"))
+ (branch "Case 1"
+ (rule "impRight" (formula "81"))
+ (rule "andRight" (formula "82"))
+ (branch "Case 1"
+ (rule "andRight" (formula "82"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "82"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "82"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "closeTrue" (formula "82"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "81"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Null Reference (_indices = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")))
+ (rule "closeFalse" (formula "1"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..520f58e
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,5134 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Sep 05 21:28:36 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Sep 05 21:28:36 CEST 2022
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "51524")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "15"))
+(rule "translateJavaSubInt" (formula "11") (term "1,1,0,0,0"))
+(rule "translateJavaAddInt" (formula "11") (term "0,2,1,1,0"))
+(rule "translateJavaSubInt" (formula "14") (term "1"))
+(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "3"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "11") (term "1,1,0,0,0"))
+(rule "mul_literals" (formula "11") (term "1,1,1,0,0,0"))
+(rule "polySimp_elimSub" (formula "14") (term "1"))
+(rule "mul_literals" (formula "14") (term "1,1"))
+(rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0"))
+(rule "polySimp_addComm0" (formula "11") (term "1,1,0,0,0"))
+(rule "polySimp_addComm0" (formula "14") (term "1"))
+(rule "disjointDefinition" (formula "12"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "notLeft" (formula "12"))
+(rule "eqSymm" (formula "18"))
+(rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "9"))
+(rule "inEqSimp_commuteLeq" (formula "7"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "assignment" (formula "21") (term "1"))
+ (builtin "One Step Simplification" (formula "21"))
+(rule "applyEq" (formula "10") (term "0") (ifseqformula "16"))
+(rule "inEqSimp_commuteGeq" (formula "10"))
+(rule "commute_and" (formula "11") (term "0,0,0"))
+(rule "commute_and" (formula "11") (term "1,0,0"))
+(rule "shift_paren_and" (formula "11") (term "0,0"))
+(rule "commute_and_2" (formula "11") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "21") (term "1") (newnames "heapBefore_from_sorted_samples,savedHeapBefore_from_sorted_samples,_num_bucketsBefore_from_sorted_samples,_num_splittersBefore_from_sorted_samples,_splittersBefore_from_sorted_samples,_treeBefore_from_sorted_samples"))
+ (builtin "One Step Simplification" (formula "21"))
+(rule "variableDeclarationAssign" (formula "21") (term "1"))
+(rule "variableDeclaration" (formula "21") (term "1") (newnames "use_equal_buckets"))
+(rule "compound_greater_equal_than_comparison_1" (formula "21") (term "1") (inst "#v0=x"))
+(rule "variableDeclarationAssign" (formula "21") (term "1"))
+(rule "variableDeclaration" (formula "21") (term "1") (newnames "x"))
+(rule "remove_parentheses_right" (formula "21") (term "1"))
+(rule "compound_subtraction_1" (formula "21") (term "1") (inst "#v=x_1"))
+(rule "variableDeclarationAssign" (formula "21") (term "1"))
+(rule "variableDeclaration" (formula "21") (term "1") (newnames "x_1"))
+(rule "assignmentSubtractionInt" (formula "21") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,1"))
+ (rule "add_literals" (formula "21") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (term "0") (ifseqformula "6"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_geqRight" (formula "21"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "11"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,1,0"))
+ (rule "assignmentSubtractionInt" (formula "21") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "21") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,1"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "12"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "20") (term "1") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0,1"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "20") (term "0,0,1"))
+ (rule "qeq_literals" (formula "20") (term "0,1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_geqRight" (formula "20"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,1,0"))
+ (rule "greater_equal_than_comparison_simple" (formula "21") (term "1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "variableDeclarationAssign" (formula "21") (term "1"))
+ (rule "variableDeclaration" (formula "21") (term "1") (newnames "log_buckets"))
+ (rule "compound_addition_1" (formula "21") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "21") (term "1"))
+ (rule "variableDeclaration" (formula "21") (term "1") (newnames "x_2"))
+ (builtin "Use Operation Contract" (formula "21") (newnames "heapBefore_log2,result_21,exc_25") (contract "de.wiesler.Constants[de.wiesler.Constants::log2(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (log2)"
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "assignmentAdditionInt" (formula "25") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "12"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "13"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "23") (term "1") (ifseqformula "17"))
+ (rule "leq_literals" (formula "23") (term "0,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_leqRight" (formula "23"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "1"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "15"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "10"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "equal_literals" (formula "15") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "closeFalse" (formula "15"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "Block Contract (Internal)" (formula "25") (newnames "result_22,exc_26,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "8")) (ifInst "" (formula "1")))
+ (rule "true_left" (formula "22"))
+ (rule "eqSymm" (formula "25") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,0"))
+ (rule "variableDeclarationAssign" (formula "25") (term "1"))
+ (rule "variableDeclaration" (formula "25") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "emptyStatement" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "emptyStatement" (formula "25") (term "1"))
+ (rule "tryEmpty" (formula "25") (term "1"))
+ (rule "blockEmptyLabel" (formula "25") (term "1"))
+ (rule "blockEmpty" (formula "25") (term "1"))
+ (rule "methodCallEmpty" (formula "25") (term "1"))
+ (rule "emptyModality" (formula "25") (term "1"))
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "closeTrue" (formula "25"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "closeTrue" (formula "25"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "8")))
+ (rule "closeTrue" (formula "25"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "25"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "22"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaAddInt" (formula "29") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0"))
+ (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "elim_double_block_2" (formula "28") (term "1"))
+ (rule "ifUnfold" (formula "28") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "replace_known_left" (formula "28") (term "0,0,1,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "16") (term "0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthIsAShort" (formula "16") (term "0"))
+ (rule "expand_inShort" (formula "16"))
+ (rule "replace_short_MIN" (formula "16") (term "0,1"))
+ (rule "replace_short_MAX" (formula "16") (term "1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "ifSplit" (formula "28"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "28") (term "1"))
+ (rule "variableDeclarationAssign" (formula "28") (term "1"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "actual_num_buckets"))
+ (rule "assignmentShiftLeftInt" (formula "28") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "0") (userinteraction))
+ (rule "eqTermCut" (formula "28") (term "0,1,0") (inst "s=mod(add(Z(1(#)),
+ result_21<>),
+ Z(2(3(#))))") (userinteraction))
+ (branch "Assume 1 + result_21 = (1 + result_21) % 32"
+ (rule "applyEqReverse" (formula "29") (term "1,0") (ifseqformula "1") (userinteraction))
+ (rule "expand_inInt" (formula "29") (userinteraction))
+ (rule "andRight" (formula "29") (userinteraction))
+ (branch "Case 1"
+ (rule "powSplitFactor" (formula "29") (term "0") (userinteraction))
+ (rule "impLeft" (formula "1") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "30") (term "1"))
+ (rule "greater_literals" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "eqSymm" (formula "1"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "30"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "27"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "mod_axiom" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "17"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "14"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "13"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "1"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "1"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "10"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "elimGcdEq" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,1,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "add_zero_left" (formula "3") (term "0,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "1,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "javaShiftLeftIntConstantDef" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "div_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "times_zero_2" (formula "14") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12"))
+ (rule "mul_literals" (formula "11") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "add_literals" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "div_literals" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "14") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "0"))
+ (rule "translateJavaAddInt" (formula "20") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "20") (term "0,0") (ifseqformula "1"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "22") (term "0") (userinteraction))
+ (builtin "One Step Simplification" (formula "22") (userinteraction))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "translateJavaShiftLeftInt" (formula "24") (term "0") (userinteraction))
+ (rule "javaShiftLeftIntDef" (formula "24") (term "0") (userinteraction))
+ (rule "eqTermCut" (formula "24") (term "0,1,0,0") (inst "s=mod(result_21, Z(2(3(#))))") (userinteraction))
+ (branch "Assume result_21 = result_21 % 32"
+ (rule "shiftLeftDef" (formula "25") (term "0,0") (userinteraction))
+ (rule "ifthenelse_split" (formula "25") (term "0,0") (userinteraction))
+ (branch "result_21 % 32 < 0 TRUE"
+ (rule "replace_int_MAX" (formula "35") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "27") (term "1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "0"))
+ (rule "eqSymm" (formula "24"))
+ (rule "eqSymm" (formula "2"))
+ (rule "translateJavaAddInt" (formula "27") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1,1"))
+ (rule "polySimp_elimNeg" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,1,0,0"))
+ (rule "add_zero_left" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "shiftRightPositiveShiftDef" (formula "26") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "35"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "25"))
+ (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "27") (term "0,1,1,0,0") (ifseqformula "25"))
+ (rule "mod_axiom" (formula "25") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "0,0"))
+ (rule "add_zero_left" (formula "25") (term "0"))
+ (rule "mod_axiom" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "28") (term "0,0") (ifseqformula "32"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_contradInEq0" (formula "23") (ifseqformula "26"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "closeFalse" (formula "23"))
+ )
+ (branch "result_21 % 32 < 0 FALSE"
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "0,0") (userinteraction))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "0,0") (userinteraction))
+ (rule "applyEqReverse" (formula "25") (term "1,0,0") (ifseqformula "24") (userinteraction))
+ (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), result_21), pow(Z(2(#)), Z(0(3(#)))))<>") (userinteraction))
+ (branch "CUT: pow(2, result_21) <= pow(2, 30) TRUE"
+ (rule "replace_int_MAX" (formula "36") (term "1"))
+ (rule "pow_literals" (formula "1") (term "1"))
+ (rule "eqSymm" (formula "25"))
+ (rule "eqSymm" (formula "3"))
+ (rule "translateJavaShiftLeftInt" (formula "27") (term "1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "18") (term "0"))
+ (rule "translateJavaAddInt" (formula "27") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1,1"))
+ (rule "mul_literals" (formula "2") (term "1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,1,0,0"))
+ (rule "add_zero_left" (formula "2") (term "1,0,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "inEqSimp_ltRight" (formula "32"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "27"))
+ (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "3"))
+ (rule "mod_axiom" (formula "26") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "0,0"))
+ (rule "add_zero_left" (formula "26") (term "0"))
+ (rule "mod_axiom" (formula "4") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "28") (term "0,0") (ifseqformula "32"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "25"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "31"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "13"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "13"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "14"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "elimGcdEq" (formula "4") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1"))
+ (rule "add_zero_left" (formula "4") (term "0,1,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "times_zero_1" (formula "4") (term "0,1,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "1,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "elimGcdEq" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(result_21, Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "times_zero_1" (formula "19") (term "1,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "1,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_left" (formula "19") (term "0,0,0"))
+ (rule "qeq_literals" (formula "19") (term "1,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=pow(Z(2(#)), result_21)") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "javaShiftLeftIntConstantDef" (formula "15") (term "0"))
+ (rule "div_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_2" (formula "15") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "15") (term "0,0"))
+ (rule "javaShiftLeftIntDef" (formula "21") (term "0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "applyEq" (formula "21") (term "0,1,1,0,0") (ifseqformula "4"))
+ (rule "times_zero_2" (formula "21") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "1,0,0"))
+ (rule "shiftLeftDef" (formula "21") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "21") (term "2,0,0") (ifseqformula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "0,0,0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "21") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "0,0,0") (ifseqformula "1"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "2") (term "0,1") (ifseqformula "1"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12"))
+ (rule "mul_literals" (formula "11") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "div_literals" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "14") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "expand_moduloInteger" (formula "18") (term "0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "18") (term "1,1,0"))
+ (rule "add_literals" (formula "18") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "mod_axiom" (formula "18") (term "0,1,0"))
+ (rule "div_literals" (formula "18") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "18") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "18") (term "0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeFalse" (formula "8"))
+ )
+ (branch "CUT: pow(2, result_21) <= pow(2, 30) FALSE"
+ (rule "powMonoConcrete" (formula "31") (userinteraction))
+ (rule "replace_int_MAX" (formula "36") (term "1"))
+ (rule "greater_literals" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "22")))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "0"))
+ (rule "eqSymm" (formula "24"))
+ (rule "eqSymm" (formula "2"))
+ (rule "translateJavaShiftLeftInt" (formula "26") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "26") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,1,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,1,0,0"))
+ (rule "add_zero_left" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_ltRight" (formula "32"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "27"))
+ (rule "mod_axiom" (formula "26") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "0,0"))
+ (rule "add_zero_left" (formula "26") (term "0"))
+ (rule "mod_axiom" (formula "4") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "28") (term "0,0") (ifseqformula "32"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "32"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "16"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "17"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "29"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "12"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "13"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeFalse" (formula "24"))
+ )
+ )
+ )
+ (branch "Assume result_21 != result_21 % 32"
+ (rule "replace_int_MAX" (formula "34") (term "1"))
+ (rule "notLeft" (formula "24"))
+ (rule "translateJavaShiftLeftInt" (formula "25") (term "1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "eqSymm" (formula "30"))
+ (rule "translateJavaAddInt" (formula "25") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,1,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,1,0,0"))
+ (rule "add_zero_left" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "34"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "2"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0"))
+ (rule "mod_axiom" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "mod_axiom" (formula "31") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "1,0,0"))
+ (rule "times_zero_1" (formula "31") (term "0,0"))
+ (rule "add_zero_left" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "26") (term "0,0") (ifseqformula "30"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "26") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "12"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "23"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "14"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "27"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "10"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "elimGcdEq" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(result_21, Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1"))
+ (rule "add_zero_left" (formula "24") (term "0,1,0"))
+ (rule "add_literals" (formula "24") (term "1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "times_zero_1" (formula "24") (term "0,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,0,0"))
+ (rule "qeq_literals" (formula "24") (term "1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "elimGcdEq" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,1,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "times_zero_1" (formula "3") (term "0,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "1,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=pow(Z(2(#)), result_21)") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "javaShiftLeftIntConstantDef" (formula "14") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "div_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "14") (term "0,0"))
+ (rule "shiftLeftDef" (formula "18") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,0,0") (ifseqformula "3"))
+ (rule "times_zero_2" (formula "19") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "1,0,0"))
+ (rule "shiftLeftDef" (formula "19") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "19") (term "2,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,0,0") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "19") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12"))
+ (rule "mul_literals" (formula "11") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,0"))
+ (rule "div_literals" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "expand_moduloInteger" (formula "17") (term "0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "17") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "expand_moduloInteger" (formula "18") (term "0"))
+ (rule "replace_int_RANGE" (formula "18") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "mod_axiom" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1"))
+ (rule "mul_literals" (formula "18") (term "0,0,1"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "cut_direct" (formula "21") (term "0"))
+ (branch "CUT: result_22 = null TRUE"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "17"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "arrayLengthNotNegative" (formula "15") (term "0"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or" (formula "9") (term "0,0,0"))
+ (rule "div_axiom" (formula "23") (term "0") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "1") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "equal_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "20") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mod_axiom" (formula "20") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_strengthen1" (formula "19") (ifseqformula "27"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "27") (ifseqformula "19"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "false_right" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "26"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "20"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "CUT: result_22 = null FALSE"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "17"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "arrayLengthNotNegative" (formula "15") (term "0"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "commute_or" (formula "9") (term "0,0,0"))
+ (rule "div_axiom" (formula "24") (term "0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "20") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mod_axiom" (formula "20") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "3"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_strengthen1" (formula "19") (ifseqformula "28"))
+ (rule "add_zero_right" (formula "19") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "28") (ifseqformula "19"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "false_right" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "26"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "20"))
+ (rule "mul_literals" (formula "2") (term "1,1,0"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "powPositive" (formula "29") (term "1") (userinteraction))
+ (rule "replace_int_MIN" (formula "30") (term "0"))
+ (rule "greater_literals" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "mod_axiom" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "12"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "16"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "24"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (term "1") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "notLeft" (formula "2"))
+ (rule "inEqSimp_geqRight" (formula "23"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "12"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "1"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "elimGcdEq" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "add_zero_left" (formula "3") (term "0,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,1,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "times_zero_1" (formula "3") (term "0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "1,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "javaShiftLeftIntConstantDef" (formula "14") (term "0"))
+ (rule "div_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_2" (formula "14") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12"))
+ (rule "mul_literals" (formula "11") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "div_literals" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "14") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "translateJavaAddInt" (formula "20") (term "1,1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "20") (term "0,0") (ifseqformula "1"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Assume 1 + result_21 != (1 + result_21) % 32"
+ (rule "expand_inInt" (formula "29"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1"))
+ (rule "notLeft" (formula "1"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "0"))
+ (rule "eqSymm" (formula "25"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "29") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0"))
+ (rule "mod_axiom" (formula "25") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "0,0"))
+ (rule "add_zero_left" (formula "25") (term "0"))
+ (rule "mod_axiom" (formula "29") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "24"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "9"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "9"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "elimGcdEq" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1"))
+ (rule "add_zero_left" (formula "20") (term "0,1,0"))
+ (rule "add_literals" (formula "20") (term "1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "times_zero_1" (formula "20") (term "0,1,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "javaShiftLeftIntConstantDef" (formula "11") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0"))
+ (rule "div_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "times_zero_2" (formula "11") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0"))
+ (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "expand_moduloInteger" (formula "11") (term "0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "11") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "mod_axiom" (formula "11") (term "0,1,0"))
+ (rule "div_literals" (formula "11") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "11") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "0"))
+ (rule "translateJavaAddInt" (formula "17") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "17") (term "0,0") (ifseqformula "21"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "21"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "14"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "14") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "commute_and" (formula "24"))
+ (rule "commute_or" (formula "6") (term "0,0,0"))
+ (rule "commute_or_2" (formula "6") (term "0,0"))
+ (rule "div_axiom" (formula "20") (term "0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1"))
+ (rule "add_literals" (formula "3") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "18") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "18") (term "0,1,1,1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "27") (term "0,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm1" (formula "27") (term "1,0,0"))
+ (rule "applyEq" (formula "18") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "27") (term "0,1,1,0,1") (ifseqformula "1"))
+ (rule "polySimp_addComm1" (formula "27") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "18") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "mod_axiom" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1"))
+ (rule "mul_literals" (formula "18") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "16") (term "0,0"))
+ (rule "add_zero_left" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_strengthen1" (formula "16") (ifseqformula "24"))
+ (rule "add_zero_right" (formula "16") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "24") (ifseqformula "16"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "false_right" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "17"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "Block Contract (Internal)" (formula "28") (newnames "result_0,exc_0,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "8")) (ifInst "" (formula "1")))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "25"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "0"))
+ (rule "eqSymm" (formula "28") (term "0,0,1,0,1"))
+ (rule "translateJavaShiftLeftInt" (formula "28") (term "0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "28") (term "1"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyStatement" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyStatement" (formula "28") (term "1"))
+ (rule "javaShiftLeftIntConstantDef" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "div_literals" (formula "15") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "15") (term "0,0"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "0,1,0"))
+ (rule "tryEmpty" (formula "28") (term "1"))
+ (rule "blockEmptyLabel" (formula "28") (term "1"))
+ (rule "blockEmpty" (formula "28") (term "1"))
+ (rule "methodCallEmpty" (formula "28") (term "1"))
+ (rule "emptyModality" (formula "28") (term "1"))
+ (rule "andRight" (formula "28"))
+ (branch
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeTrue" (formula "28"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeTrue" (formula "28"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "28"))
+ (branch
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "8")))
+ (rule "closeTrue" (formula "28"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "28"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "26"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "33") (term "0,1,0"))
+ (rule "translateJavaShiftLeftInt" (formula "29") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "28") (term "0"))
+ (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_commuteGeq" (formula "27"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0"))
+ (rule "javaShiftLeftIntDef" (formula "32") (term "0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "28") (term "1"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "0"))
+ (rule "shiftLeftDef" (formula "15") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0"))
+ (rule "shiftLeftDef" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "32") (term "1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "32") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "32") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "32") (term "1,0,0,1,0"))
+ (rule "shiftLeftDef" (formula "28") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1"))
+ (rule "shiftLeftDef" (formula "27") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,0"))
+ (rule "expand_moduloInteger" (formula "15") (term "0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,0"))
+ (rule "expand_moduloInteger" (formula "32") (term "0,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "32") (term "0,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "32") (term "1,1,0,1,0"))
+ (rule "expand_moduloInteger" (formula "28") (term "1"))
+ (rule "replace_int_HALFRANGE" (formula "28") (term "0,0,1,1"))
+ (rule "replace_int_RANGE" (formula "28") (term "1,1,1"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1"))
+ (rule "expand_moduloInteger" (formula "27") (term "0"))
+ (rule "replace_int_MIN" (formula "27") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "27") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "27") (term "1,1,0"))
+ (rule "elim_double_block_2" (formula "32") (term "1"))
+ (rule "ifUnfold" (formula "32") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "replace_known_left" (formula "32") (term "0,0,1,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthNotNegative" (formula "16") (term "0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "arrayLengthIsAShort" (formula "16") (term "0"))
+ (rule "expand_inShort" (formula "16"))
+ (rule "replace_short_MIN" (formula "16") (term "0,1"))
+ (rule "replace_short_MAX" (formula "16") (term "1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "ifSplit" (formula "32"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "33"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "33"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "32") (term "1"))
+ (rule "for_to_while" (formula "32") (term "1") (inst "#outerLabel=_label3") (inst "#innerLabel=_label2"))
+ (rule "variableDeclarationAssign" (formula "32") (term "1"))
+ (rule "variableDeclaration" (formula "32") (term "1") (newnames "i"))
+ (rule "assignment" (formula "32") (term "1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "elim_double_block_3" (formula "32") (term "1"))
+ (rule "loopScopeInvDia" (formula "32") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "32"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0,0,0,0"))
+ (rule "impRight" (formula "33"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "40") (term "2,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "2,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,2,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "0,2,1,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "2,1,0,1,0,1,0"))
+ (rule "add_literals" (formula "40") (term "0,2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "2,1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "add_literals" (formula "4") (term "0,2,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "3") (term "0,2,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "6"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "variableDeclaration" (formula "40") (term "1") (newnames "x_5"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "24"))
+ (rule "inEqSimp_commuteGeq" (formula "6"))
+ (rule "pullOutSelect" (formula "4") (term "1,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "40")) (ifInst "" (formula "11")))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "commute_and" (formula "5") (term "1,0,0"))
+ (rule "commute_and" (formula "5") (term "0,0,0"))
+ (rule "commute_and_2" (formula "5") (term "0,0"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "5") (term "0,0,0"))
+ (rule "ifElseUnfold" (formula "41") (term "1") (inst "#boolv=x_6"))
+ (rule "variableDeclaration" (formula "41") (term "1") (newnames "x_6"))
+ (rule "less_than_comparison_simple" (formula "41") (term "1"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "ifElseSplit" (formula "41"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eval_order_array_access3" (formula "42") (term "1") (inst "#v1=x_7") (inst "#v2=x_6") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_8"))
+ (rule "assignment" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_7"))
+ (rule "eval_order_array_access5" (formula "42") (term "1") (inst "#v1=x_9") (inst "#ar1=x_arr_1"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_arr_1"))
+ (rule "assignment" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_9"))
+ (rule "assignmentSubtractionInt" (formula "42") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "1,1"))
+ (rule "mul_literals" (formula "42") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,1"))
+ (rule "add_literals" (formula "41") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "24") (term "1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,0,1,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,2,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "24") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "24") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "8") (term "1,2,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "8") (term "1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "40") (term "0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_geqRight" (formula "40"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "32"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "18"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "19"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "19"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeFalse" (formula "16"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "translateJavaSubInt" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,1,0"))
+ (rule "assignment_array2" (formula "42"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "replaceKnownSelect_taclet1121121011_0" (formula "42") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "42"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "blockEmpty" (formula "42") (term "1"))
+ (rule "preincrement" (formula "42") (term "1"))
+ (rule "compound_int_cast_expression" (formula "42") (term "1") (inst "#v=x_6"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_10"))
+ (rule "remove_parentheses_right" (formula "42") (term "1"))
+ (rule "assignmentAdditionInt" (formula "42") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "38"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,1"))
+ (rule "add_literals" (formula "41") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "mod_axiom" (formula "24") (term "1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,0,1,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,2,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "24") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "24") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "24") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "8") (term "1,2,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "8") (term "1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "39") (term "0") (ifseqformula "7"))
+ (rule "leq_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_geqRight" (formula "39"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "32"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "20"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "42") (term "1"))
+ (rule "assignment" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "blockEmpty" (formula "42") (term "1"))
+ (rule "lsContinue" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0"))
+ (rule "precOfInt" (formula "42"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "38"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,1,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,1,0,1,1,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,1,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,0,1"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,1,0,1,0,1"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,1,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0,0,1"))
+ (rule "mul_literals" (formula "42") (term "0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "42") (term "0,1"))
+ (rule "add_literals" (formula "42") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "42") (term "1,0,1"))
+ (rule "add_zero_right" (formula "42") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,1"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "42") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "42") (term "0,1"))
+ (rule "add_literals" (formula "42") (term "1,0,1"))
+ (rule "times_zero_1" (formula "42") (term "0,1"))
+ (rule "leq_literals" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "25") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "mod_axiom" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "25") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "mod_axiom" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "9") (term "1,2,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "6") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "6") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "9") (term "1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "38") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "34"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "24"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "23"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "19"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_8 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42")))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "false_right" (formula "43"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,2,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "39"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,1,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "25") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "25") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "25") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "25") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "mod_axiom" (formula "6") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "9") (term "1,2,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "9") (term "1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "6") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "22"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "21"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "31"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "22"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "20"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "15"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "4") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "1"))
+ (rule "add_literals" (formula "3") (term "1"))
+ (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "6") (term "3,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0,0,0,0") (ifseqformula "1"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "closeFalse" (formula "27"))
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but x_9 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42")))
+ (rule "false_right" (formula "43"))
+ (rule "inEqSimp_ltToLeq" (formula "39"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,2,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "add_zero_left" (formula "1") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,1,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "25") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "25") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,0"))
+ (rule "div_literals" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "mod_axiom" (formula "9") (term "1,2,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "6") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "6") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "9") (term "1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "2") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0"))
+ (rule "mul_literals" (formula "1") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "19"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "32"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "19"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "1"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "closeFalse" (formula "14"))
+ )
+ )
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "42") (term "1"))
+ (rule "blockBreak" (formula "42") (term "1"))
+ (rule "lsBreak" (formula "42") (term "1"))
+ (rule "assignment" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "classifier"))
+ (builtin "Use Operation Contract" (formula "42") (newnames "heapBefore_Classifier,self,exc_1,heapAfter_Classifier,anon_heap_Classifier") (contract "de.wiesler.Classifier[de.wiesler.Classifier::Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0"))
+ (branch "Post (Classifier)"
+ (builtin "One Step Simplification" (formula "39"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "andLeft" (formula "39"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,1,0,0,1,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "42"))
+ (rule "notLeft" (formula "41"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "41"))
+ (rule "orRight" (formula "50"))
+ (rule "translateJavaShiftLeftInt" (formula "47") (term "1,1,1"))
+ (rule "translateJavaShiftLeftInt" (formula "47") (term "2,1"))
+ (rule "eqSymm" (formula "46"))
+ (rule "translateJavaMulInt" (formula "47") (term "1,1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "replace_known_right" (formula "41") (term "1,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "50")))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "assignment" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "Block Contract (Internal)" (formula "57") (newnames "result_1,exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "17")))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "eqSymm" (formula "58") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "58") (term "1"))
+ (rule "variableDeclaration" (formula "58") (term "1") (newnames "exc_2_1"))
+ (rule "assignment" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "emptyStatement" (formula "58") (term "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "emptyStatement" (formula "58") (term "1"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "2,0"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "0,1,0"))
+ (rule "shiftLeftDef" (formula "47") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,2,0"))
+ (rule "shiftLeftDef" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,0,1,0"))
+ (rule "expand_moduloInteger" (formula "47") (term "2,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,2,0"))
+ (rule "replace_int_RANGE" (formula "47") (term "1,1,2,0"))
+ (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,2,0"))
+ (rule "expand_moduloInteger" (formula "47") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,0,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,0,1,0"))
+ (rule "replace_int_RANGE" (formula "47") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0"))
+ (rule "tryEmpty" (formula "58") (term "1"))
+ (rule "blockEmptyLabel" (formula "58") (term "1"))
+ (rule "blockEmpty" (formula "58") (term "1"))
+ (rule "methodCallEmpty" (formula "58") (term "1"))
+ (rule "emptyModality" (formula "58") (term "1"))
+ (rule "andRight" (formula "58"))
+ (branch
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "closeTrue" (formula "58"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "closeTrue" (formula "58"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "57"))
+ (branch
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "57"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "wellFormedAnonEQ" (formula "57") (ifseqformula "39"))
+ (rule "wellFormedAnon" (formula "57") (term "0"))
+ (rule "replace_known_left" (formula "57") (term "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "10")) (ifInst "" (formula "9")))
+ (rule "closeTrue" (formula "57"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "58"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,0,1,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,1,1,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "replace_known_left" (formula "52") (term "0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "2,0"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "0,1,0"))
+ (rule "shiftLeftDef" (formula "47") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,2,0"))
+ (rule "shiftLeftDef" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,0,1,0"))
+ (rule "expand_moduloInteger" (formula "47") (term "2,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,2,0"))
+ (rule "replace_int_RANGE" (formula "47") (term "1,1,2,0"))
+ (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,2,0"))
+ (rule "expand_moduloInteger" (formula "47") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,0,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,0,1,0"))
+ (rule "replace_int_RANGE" (formula "47") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0"))
+ (rule "commute_or_2" (formula "51") (term "1"))
+ (rule "shift_paren_or" (formula "51"))
+ (rule "shift_paren_or" (formula "51") (term "0"))
+ (rule "elim_double_block_2" (formula "60") (term "1"))
+ (rule "ifUnfold" (formula "60") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "60") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "replace_known_left" (formula "60") (term "0,0,1,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "ifSplit" (formula "60"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (rule "methodCallReturn" (formula "60") (term "1"))
+ (rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "methodCallEmpty" (formula "60") (term "1"))
+ (rule "tryEmpty" (formula "60") (term "1"))
+ (rule "emptyModality" (formula "60") (term "1"))
+ (rule "andRight" (formula "60"))
+ (branch
+ (rule "impRight" (formula "60"))
+ (rule "andRight" (formula "61"))
+ (branch
+ (rule "andRight" (formula "61"))
+ (branch
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "50")))
+ (rule "closeTrue" (formula "61"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "56")))
+ (rule "closeTrue" (formula "61"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "closeTrue" (formula "61"))
+ )
+ )
+ (branch
+ (rule "impRight" (formula "60"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (Classifier)"
+ (builtin "One Step Simplification" (formula "44"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,1,0,0,1,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "notLeft" (formula "40"))
+ (rule "close" (formula "45") (ifseqformula "44"))
+ )
+ (branch "Pre (Classifier)"
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "41")) (ifInst "" (formula "40")) (ifInst "" (formula "41")) (ifInst "" (formula "11")) (ifInst "" (formula "40")) (ifInst "" (formula "12")))
+ (rule "wellFormedAnon" (formula "42") (term "0"))
+ (rule "expand_inInt" (formula "42") (term "1"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1"))
+ (rule "replace_known_left" (formula "42") (term "1,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "10")))
+ (rule "inEqSimp_ltRight" (formula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,1"))
+ (rule "add_literals" (formula "41") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,0,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "24") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "mod_axiom" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "24") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "0,1,0"))
+ (rule "div_literals" (formula "24") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "24") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "8") (term "1,2,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,1,0,1,2,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,1,1,1,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "8") (term "1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,1,2,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,1,2,1,0,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "3") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,1,1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,0,1,2,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,0,1,2,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "18"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "23"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "39") (term "1") (ifseqformula "26"))
+ (rule "leq_literals" (formula "39") (term "0,1"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_leqRight" (formula "39"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "19"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "30"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "1"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (log2)"
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "close" (formula "20") (ifseqformula "19"))
+ )
+ (branch "Pre (log2)"
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "21"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0"))
+ (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_leqRight" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "10"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "9"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__num_buckets()).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__num_buckets()).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..f9f5949
--- /dev/null
+++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__num_buckets()).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,98 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 21:25:12 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 21:25:12 CEST 2022
+contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:num_buckets()].JML normal_behavior operation contract.0
+name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:num_buckets()].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "13")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "2"))
+(rule "assignment" (formula "8"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_num_buckets,savedHeapBefore_num_buckets"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "returnUnfold" (formula "8") (term "1") (inst "#v0=x"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "x"))
+(rule "assignment_read_attribute_this_final" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallReturn" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "tryEmpty" (formula "8") (term "1"))
+(rule "emptyModality" (formula "8") (term "1"))
+(rule "andRight" (formula "8"))
+(branch "Case 1"
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "5")))
+ (rule "closeTrue" (formula "8"))
+)
+(branch "Case 2"
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeTrue" (formula "8"))
+)
+)
+}
diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__partition((I,int,int,(I,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__partition((I,int,int,(I,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..f353930
--- /dev/null
+++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__partition((I,int,int,(I,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,9307 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 12:52:46 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 12:52:46 CEST 2023
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:partition([I,int,int,[I,de.wiesler.Storage)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:partition([I,int,int,[I,de.wiesler.Storage)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "62593")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "6"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "7"))
+(rule "notLeft" (formula "7"))
+(rule "andLeft" (formula "12"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "19"))
+(rule "translateJavaSubInt" (formula "9") (term "0,0"))
+(rule "translateJavaAddInt" (formula "14") (term "1"))
+(rule "add_literals" (formula "14") (term "1"))
+(rule "translateJavaSubInt" (formula "16") (term "0"))
+(rule "translateJavaSubInt" (formula "17") (term "0"))
+(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "9") (term "0,0"))
+(rule "polySimp_elimSub" (formula "16") (term "0"))
+(rule "polySimp_elimSub" (formula "17") (term "0"))
+(rule "polySimp_addComm0" (formula "9") (term "0,0"))
+(rule "polySimp_addComm0" (formula "16") (term "0"))
+(rule "polySimp_addComm0" (formula "17") (term "0"))
+(rule "disjointDefinition" (formula "21"))
+(rule "disjointDefinition" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "notLeft" (formula "19"))
+(rule "disjointDefinition" (formula "19"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "applyEq" (formula "15") (term "1,1,0,0,0") (ifseqformula "14"))
+(rule "commute_and" (formula "15") (term "1,0,0"))
+(rule "commute_and" (formula "15") (term "0,0,0"))
+(rule "shift_paren_and" (formula "15") (term "0,0"))
+(rule "commute_and_2" (formula "15") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_partition,savedHeapBefore_partition"))
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "Block Contract (Internal)" (formula "25") (newnames "anonOut_heap,result_219,exc_259,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+(branch "Validity"
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "1")))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaSubInt" (formula "21") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "25") (term "1"))
+ (rule "variableDeclaration" (formula "25") (term "1") (newnames "exc_259_1"))
+ (rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "emptyStatement" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "emptyStatement" (formula "25") (term "1"))
+ (rule "tryEmpty" (formula "25") (term "1"))
+ (rule "blockEmptyLabel" (formula "25") (term "1"))
+ (rule "blockEmpty" (formula "25") (term "1"))
+ (rule "methodCallEmpty" (formula "25") (term "1"))
+ (rule "emptyModality" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "closeTrue" (formula "25"))
+)
+(branch "Precondition"
+ (rule "andRight" (formula "25"))
+ (branch
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "close" (formula "25") (ifseqformula "9"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "25"))
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "38"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "eqSymm" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "25"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "69")))
+ (rule "true_left" (formula "24"))
+ (rule "shift_paren_or" (formula "23"))
+ (rule "ifUnfold" (formula "72") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "72") (term "1") (newnames "x"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "arrayLengthNotNegative" (formula "13") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inequality_comparison_simple" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "replace_known_left" (formula "75") (term "0,0,1,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "ifSplit" (formula "75"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "76"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "76"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "75") (term "1"))
+ (rule "variableDeclarationGhostAssign" (formula "75") (term "1"))
+ (rule "variableDeclarationGhost" (formula "75") (term "1") (newnames "oldValues"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationFinalAssign" (formula "75") (term "1"))
+ (rule "variableDeclarationFinal" (formula "75") (term "1") (newnames "sample"))
+ (builtin "Use Operation Contract" (formula "75") (newnames "heapBefore_sample,result_220,exc_260,heapAfter_sample,anon_heap_sample") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0"))
+ (branch "Post (sample)"
+ (builtin "One Step Simplification" (formula "77"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1,0,1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "34"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "34"))
+ (rule "orRight" (formula "37"))
+ (rule "translateJavaSubInt" (formula "28") (term "2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "31") (term "2,0"))
+ (rule "translateJavaAddInt" (formula "32") (term "3,0"))
+ (rule "replace_known_right" (formula "29") (term "1,0,1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "39")) (ifInst "" (formula "37")))
+ (rule "polySimp_elimSub" (formula "28") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "31") (term "2,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "2,0"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "num_samples"))
+ (rule "assignment_read_attribute_final" (formula "88"))
+ (branch "Normal Execution (sample != null)"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "num_buckets"))
+ (rule "assignment_read_attribute_final" (formula "88"))
+ (branch "Normal Execution (sample != null)"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "step"))
+ (rule "assignment_read_attribute_final" (formula "88"))
+ (branch "Normal Execution (sample != null)"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "splitters"))
+ (rule "assignment_read_attribute_final" (formula "88"))
+ (branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationGhostAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationGhost" (formula "88") (term "1") (newnames "before_copy_unique"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "num_splitters"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "88") (term "1"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "var"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_2"))
+ (rule "assignmentAdditionInt" (formula "88") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "expand_inInt" (formula "88"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "1"))
+ (rule "mul_literals" (formula "88") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,1"))
+ (rule "mul_literals" (formula "88") (term "0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "17"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "9"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "translateJavaMulInt" (formula "33") (term "1"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "translateJavaMulInt" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "116")))
+ (rule "true_left" (formula "66"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "114")))
+ (rule "true_left" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "86")))
+ (rule "true_left" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "80")))
+ (rule "true_left" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "78")))
+ (rule "true_left" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "76")))
+ (rule "true_left" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "74")))
+ (rule "true_left" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "70")))
+ (rule "true_left" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "68")))
+ (rule "true_left" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "66")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "63")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "63")))
+ (rule "true_left" (formula "39"))
+ (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "38"))
+ (rule "distributeIntersection" (formula "20") (term "0"))
+ (rule "distributeIntersection" (formula "19") (term "0"))
+ (rule "distributeIntersection" (formula "20") (term "0,0"))
+ (rule "distributeIntersection" (formula "20") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "distributeIntersection" (formula "21") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "21") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "21") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "21") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "20") (term "0"))
+ (rule "distributeIntersection" (formula "19") (term "0"))
+ (rule "unionEqualsEmpty" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "unionEqualsEmpty" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "distributeIntersection" (formula "19") (term "0,0"))
+ (rule "distributeIntersection" (formula "19") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "distributeIntersection" (formula "21") (term "0"))
+ (rule "distributeIntersection" (formula "20") (term "0"))
+ (rule "unionEqualsEmpty" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "47"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "47"))
+ (rule "eqSymm" (formula "46"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "46"))
+ (rule "eqSymm" (formula "45"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "45"))
+ (rule "eqSymm" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "eqSymm" (formula "43"))
+ (rule "eqSymm" (formula "42"))
+ (rule "unionEqualsEmpty" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "19"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "19"))
+ (rule "eqSymm" (formula "41"))
+ (rule "eqSymm" (formula "40"))
+ (rule "commuteUnion_2" (formula "36") (term "0,1"))
+ (rule "commuteUnion" (formula "36") (term "1,1,1"))
+ (rule "commuteUnion" (formula "23") (term "1,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "23") (term "0,0,1,0"))
+ (rule "commuteUnion" (formula "36") (term "0,0,1"))
+ (rule "commuteUnion" (formula "23") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "36") (term "0,1"))
+ (rule "commuteUnion_2" (formula "23") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "36") (term "1"))
+ (rule "commuteUnion_2" (formula "23") (term "0,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "28")) (ifInst "" (formula "29")) (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35")))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "114")))
+ (rule "true_left" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "112")))
+ (rule "true_left" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "84")))
+ (rule "true_left" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "78")))
+ (rule "true_left" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "76")))
+ (rule "true_left" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "74")))
+ (rule "true_left" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "25"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "70")))
+ (rule "true_left" (formula "24"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "68")))
+ (rule "true_left" (formula "23"))
+ (rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "66")))
+ (rule "true_left" (formula "22"))
+ (rule "disjointDefinition" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "64")))
+ (rule "true_left" (formula "21"))
+ (rule "disjointDefinition" (formula "19"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "61")))
+ (rule "true_left" (formula "19"))
+ (rule "disjointDefinition" (formula "19"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "61")))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "36"))
+ (rule "commuteUnion_2" (formula "36") (term "0,0"))
+ (rule "commuteUnion" (formula "36") (term "1,1,0"))
+ (rule "commuteUnion" (formula "36") (term "0,0,0"))
+ (rule "commuteUnion_2" (formula "36") (term "0,0"))
+ (rule "commuteUnion_2" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "translateJavaSubInt" (formula "33") (term "0"))
+ (rule "translateJavaMod" (formula "32") (term "0"))
+ (rule "translateJavaDivInt" (formula "27") (term "1"))
+ (rule "translateJavaMulInt" (formula "33") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "33") (term "0"))
+ (rule "mul_literals" (formula "33") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "28"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "jmod_axiom" (formula "32") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1"))
+ (rule "mul_literals" (formula "28") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "newSym_eq" (formula "32") (inst "newSymDef=mul(int::final(result_220,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "32") (term "1,1"))
+ (rule "add_zero_right" (formula "32") (term "1"))
+ (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "33"))
+ (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "33"))
+ (rule "polySimp_mulAssoc" (formula "34") (term "0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "33"))
+ (rule "elimGcdGeq_antec" (formula "30") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "28"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "mul_literals" (formula "26") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "27"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "0,0"))
+ (rule "expand_inInt" (formula "46") (term "1,0"))
+ (rule "expand_inInt" (formula "46") (term "1"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "34"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "34"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "30"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "27"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_subsumption6" (formula "49") (ifseqformula "31"))
+ (rule "mul_literals" (formula "49") (term "1,1,0"))
+ (rule "greater_literals" (formula "49") (term "0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "elimGcdLeq_antec" (formula "48") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "leq_literals" (formula "48") (term "0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "neg_literal" (formula "48") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "48") (term "0,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0"))
+ (rule "qeq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "45"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "45"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "46"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "45"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "45"))
+ (rule "notLeft" (formula "44"))
+ (rule "commute_and" (formula "107"))
+ (rule "commute_or" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption3" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "cut_direct" (formula "20") (term "0,0"))
+ (branch "CUT: result_219 = null TRUE"
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "43") (term "0"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "arrayLengthIsAShort" (formula "43") (term "0"))
+ (rule "expand_inShort" (formula "43"))
+ (rule "replace_short_MAX" (formula "43") (term "1,0"))
+ (rule "replace_short_MIN" (formula "43") (term "0,1"))
+ (rule "andLeft" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "45"))
+ (rule "leq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "arrayLengthNotNegative" (formula "42") (term "0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "qeq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "arrayLengthIsAShort" (formula "42") (term "0"))
+ (rule "expand_inShort" (formula "42"))
+ (rule "replace_short_MAX" (formula "42") (term "1,0"))
+ (rule "replace_short_MIN" (formula "42") (term "0,1"))
+ (rule "andLeft" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "44"))
+ (rule "leq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "qeq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "arrayLengthNotNegative" (formula "41") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthIsAShort" (formula "41") (term "0"))
+ (rule "expand_inShort" (formula "41"))
+ (rule "replace_short_MAX" (formula "41") (term "1,0"))
+ (rule "replace_short_MIN" (formula "41") (term "0,1"))
+ (rule "andLeft" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "leq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthNotNegative" (formula "40") (term "0"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "39") (term "0"))
+ (rule "expand_inShort" (formula "39"))
+ (rule "replace_short_MIN" (formula "39") (term "0,1"))
+ (rule "replace_short_MAX" (formula "39") (term "1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39"))
+ (rule "closeFalse" (formula "39"))
+ )
+ (branch "CUT: result_219 = null FALSE"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "43") (term "0"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "arrayLengthIsAShort" (formula "43") (term "0"))
+ (rule "expand_inShort" (formula "43"))
+ (rule "replace_short_MIN" (formula "43") (term "0,1"))
+ (rule "replace_short_MAX" (formula "43") (term "1,0"))
+ (rule "andLeft" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "45"))
+ (rule "qeq_literals" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "leq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "arrayLengthNotNegative" (formula "42") (term "0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "qeq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "arrayLengthIsAShort" (formula "42") (term "0"))
+ (rule "expand_inShort" (formula "42"))
+ (rule "replace_short_MIN" (formula "42") (term "0,1"))
+ (rule "replace_short_MAX" (formula "42") (term "1,0"))
+ (rule "andLeft" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "arrayLengthIsAShort" (formula "41") (term "0"))
+ (rule "expand_inShort" (formula "41"))
+ (rule "replace_short_MAX" (formula "41") (term "1,0"))
+ (rule "replace_short_MIN" (formula "41") (term "0,1"))
+ (rule "andLeft" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthNotNegative" (formula "41") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "42"))
+ (rule "leq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthNotNegative" (formula "40") (term "0"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "39") (term "0"))
+ (rule "expand_inShort" (formula "39"))
+ (rule "replace_short_MAX" (formula "39") (term "1,0"))
+ (rule "replace_short_MIN" (formula "39") (term "0,1"))
+ (rule "andLeft" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "41"))
+ (rule "leq_literals" (formula "39"))
+ (rule "closeFalse" (formula "39"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "translateJavaAddInt" (formula "88") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_3"))
+ (rule "assignmentSubtractionInt" (formula "88") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "expand_inInt" (formula "88"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "88") (term "1,1"))
+ (rule "mul_literals" (formula "88") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "88") (term "0,0"))
+ (rule "mul_literals" (formula "88") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "1"))
+ (rule "mul_literals" (formula "88") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1"))
+ (rule "add_literals" (formula "88") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0"))
+ (rule "add_literals" (formula "88") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1"))
+ (rule "mul_literals" (formula "88") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "13"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "33"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "translateJavaMulInt" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "122")))
+ (rule "true_left" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "120")))
+ (rule "true_left" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "92")))
+ (rule "true_left" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "86")))
+ (rule "true_left" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "84")))
+ (rule "true_left" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "82")))
+ (rule "true_left" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "80")))
+ (rule "true_left" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "78")))
+ (rule "true_left" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "76")))
+ (rule "true_left" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "74")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "70")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "68")))
+ (rule "true_left" (formula "38"))
+ (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "24") (term "0,1,0") (ifseqformula "37"))
+ (rule "distributeIntersection" (formula "19") (term "0"))
+ (rule "distributeIntersection" (formula "18") (term "0"))
+ (rule "unionEqualsEmpty" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "distributeIntersection" (formula "18") (term "0,0"))
+ (rule "distributeIntersection" (formula "18") (term "1,0"))
+ (rule "distributeIntersection" (formula "20") (term "0"))
+ (rule "distributeIntersection" (formula "19") (term "0"))
+ (rule "distributeIntersection" (formula "18") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "18") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "18") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "18") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "20") (term "0,0"))
+ (rule "distributeIntersection" (formula "20") (term "1,0"))
+ (rule "distributeIntersection" (formula "19") (term "1,0"))
+ (rule "distributeIntersection" (formula "19") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "unionEqualsEmpty" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "unionEqualsEmpty" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "unionEqualsEmpty" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "unionEqualsEmpty" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "46"))
+ (rule "eqSymm" (formula "45"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "45"))
+ (rule "eqSymm" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "22"))
+ (rule "eqSymm" (formula "43"))
+ (rule "eqSymm" (formula "42"))
+ (rule "unionEqualsEmpty" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "eqSymm" (formula "41"))
+ (rule "eqSymm" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "eqSymm" (formula "40"))
+ (rule "eqSymm" (formula "39"))
+ (rule "unionEqualsEmpty" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "38"))
+ (rule "commuteUnion" (formula "35") (term "0,0,1"))
+ (rule "commuteUnion" (formula "35") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "22") (term "0,0,1,0"))
+ (rule "commuteUnion" (formula "22") (term "1,1,0,1,0"))
+ (rule "commuteUnion" (formula "35") (term "0,1"))
+ (rule "commuteUnion" (formula "22") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "22") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "22") (term "0,1,0"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaMulInt" (formula "32") (term "0,0"))
+ (rule "translateJavaMod" (formula "31") (term "0"))
+ (rule "translateJavaDivInt" (formula "26") (term "1"))
+ (rule "translateJavaSubInt" (formula "32") (term "0"))
+ (rule "polySimp_elimSub" (formula "32") (term "0"))
+ (rule "mul_literals" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "27"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0"))
+ (rule "jmod_axiom" (formula "31") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,1"))
+ (rule "mul_literals" (formula "27") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "104") (term "1") (ifseqformula "29"))
+ (rule "leq_literals" (formula "104") (term "0,1"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "inEqSimp_leqRight" (formula "104"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "1"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "newSym_eq" (formula "31") (inst "newSymDef=mul(int::final(result_220,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "31") (term "1,1"))
+ (rule "add_zero_right" (formula "31") (term "1"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "31"))
+ (rule "eqSymm" (formula "32"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "32"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0"))
+ (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "32"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(5(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "27"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "29"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "35") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "35") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (term "0,0"))
+ (rule "expand_inInt" (formula "45") (term "1,0"))
+ (rule "expand_inInt" (formula "45") (term "1"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "33"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "27"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "30"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_contradInEq5" (formula "47") (ifseqformula "1"))
+ (rule "mul_literals" (formula "47") (term "1,1,0"))
+ (rule "greater_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "qeq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "closeFalse" (formula "47"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "translateJavaSubInt" (formula "88") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "88") (term "0,1,0"))
+ (rule "mul_literals" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_4"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_5"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (builtin "Use Operation Contract" (formula "88") (newnames "heapBefore_copy_unique,result_221,exc_261,heapAfter_copy_unique,anon_heap_copy_unique") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_unique)"
+ (builtin "One Step Simplification" (formula "90"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1,0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "38") (term "0,1,0,1"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,0,1,1,1,0,1"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "38") (term "2,1,0"))
+ (rule "translateJavaSubInt" (formula "42") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "2,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "2,1,0"))
+ (rule "add_literals" (formula "38") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "assignment" (formula "97") (term "1"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "blockEmpty" (formula "97") (term "1"))
+ (rule "variableDeclarationGhostAssign" (formula "97") (term "1"))
+ (rule "variableDeclarationGhost" (formula "97") (term "1") (newnames "before_from_sorted_samples"))
+ (rule "assignment" (formula "97") (term "1"))
+ (builtin "One Step Simplification" (formula "97"))
+ (builtin "Block Contract (Internal)" (formula "97") (newnames "anonOut_heap_0,result_222,exc_262,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "98"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "translateJavaSubInt" (formula "46") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "98") (term "2,0,1,0") (ifseqformula "46") (ifseqformula "97"))
+ (rule "variableDeclarationAssign" (formula "98") (term "1"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "exc_262_1"))
+ (rule "assignment" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "emptyStatement" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "emptyStatement" (formula "98") (term "1"))
+ (rule "commute_and" (formula "41") (term "1,0,0"))
+ (rule "commute_and" (formula "41") (term "0,0,0"))
+ (rule "commute_and" (formula "42") (term "0,0,0"))
+ (rule "commute_and" (formula "42") (term "1,0,0"))
+ (rule "commute_and" (formula "41") (term "1,0,0,1,0"))
+ (rule "commute_and" (formula "41") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "41") (term "0,0,1,0"))
+ (rule "shift_paren_and" (formula "41") (term "0,0"))
+ (rule "commute_and_2" (formula "41") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "42") (term "0,0"))
+ (rule "commute_and_2" (formula "42") (term "0,0,0"))
+ (rule "tryEmpty" (formula "98") (term "1"))
+ (rule "blockEmptyLabel" (formula "98") (term "1"))
+ (rule "blockEmpty" (formula "98") (term "1"))
+ (rule "methodCallEmpty" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "emptyModality" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "closeTrue" (formula "98"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "97"))
+ (branch
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "translateJavaSubInt" (formula "97") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "close" (formula "97") (ifseqformula "9"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "wellFormedAnonEQ" (formula "97") (ifseqformula "38"))
+ (rule "wellFormedAnonEQ" (formula "97") (term "0") (ifseqformula "28"))
+ (rule "wellFormedAnon" (formula "97") (term "0,0"))
+ (rule "replace_known_left" (formula "97") (term "1,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "1")) (ifInst "" (formula "25")) (ifInst "" (formula "37")))
+ (rule "closeTrue" (formula "97"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "98"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,1,0,1,0") (ifseqformula "38"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,1,1,1,0") (ifseqformula "38"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,0,1,1,1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,0,1,0,1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "46"))
+ (rule "eqSymm" (formula "50"))
+ (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "commute_or_2" (formula "48") (term "1"))
+ (rule "shift_paren_or" (formula "48"))
+ (rule "commute_or_2" (formula "48") (term "1,0"))
+ (rule "shift_paren_or" (formula "48") (term "0"))
+ (rule "shift_paren_or" (formula "48") (term "0,0"))
+ (rule "commute_and" (formula "41") (term "1,0,0"))
+ (rule "commute_and" (formula "41") (term "0,0,0"))
+ (rule "commute_and" (formula "42") (term "0,0,0"))
+ (rule "commute_and" (formula "42") (term "1,0,0"))
+ (rule "shift_paren_or" (formula "48") (term "0,0,0"))
+ (rule "commute_or_2" (formula "48"))
+ (rule "commute_and" (formula "41") (term "1,0,0,1,0"))
+ (rule "commute_and" (formula "41") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "41") (term "0,0,1,0"))
+ (rule "shift_paren_and" (formula "41") (term "0,0"))
+ (rule "commute_and_2" (formula "41") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "42") (term "0,0"))
+ (rule "commute_and_2" (formula "42") (term "0,0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "0") (ifseqformula "1") (ifseqformula "8"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "67") (term "0") (ifseqformula "2") (ifseqformula "9"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "3") (ifseqformula "10"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0") (ifseqformula "4") (ifseqformula "11"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "84") (term "1") (ifseqformula "5") (ifseqformula "12"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "87") (term "0") (ifseqformula "6") (ifseqformula "13"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "76") (term "1") (ifseqformula "7") (ifseqformula "14"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "99") (term "1") (ifseqformula "8") (ifseqformula "15"))
+ (rule "shift_paren_and" (formula "49") (term "0,0,0,1,0"))
+ (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_1"))
+ (rule "inequality_comparison_simple" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "ifSplit" (formula "109"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "109") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "109") (newnames "anonOut_heap_1,result_223,exc_263,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "translateJavaSubInt" (formula "58") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "110") (term "1"))
+ (rule "variableDeclaration" (formula "110") (term "1") (newnames "exc_263_1"))
+ (rule "assignment" (formula "110") (term "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "emptyStatement" (formula "110") (term "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "emptyStatement" (formula "110") (term "1"))
+ (rule "tryEmpty" (formula "110") (term "1"))
+ (rule "blockEmptyLabel" (formula "110") (term "1"))
+ (rule "blockEmpty" (formula "110") (term "1"))
+ (rule "methodCallEmpty" (formula "110") (term "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "emptyModality" (formula "110") (term "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "closeTrue" (formula "110"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "109"))
+ (branch
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "translateJavaSubInt" (formula "109") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "109") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,0"))
+ (rule "close" (formula "109") (ifseqformula "17"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "wellFormedAnon" (formula "109"))
+ (rule "wellFormedAnonEQ" (formula "109") (term "0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "109") (term "0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "109") (term "0,0,0"))
+ (rule "replace_known_left" (formula "109") (term "1,0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "9")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,1,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,1,1,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,0,1,1,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,0,1,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "58"))
+ (rule "replace_known_left" (formula "61") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "shift_paren_or" (formula "60"))
+ (rule "commute_or_2" (formula "60") (term "1,0"))
+ (rule "shift_paren_or" (formula "60") (term "0"))
+ (rule "commute_or_2" (formula "60") (term "1,0,0"))
+ (rule "shift_paren_or" (formula "60") (term "0,0"))
+ (rule "shift_paren_or" (formula "60") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "60") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "60"))
+ (rule "commute_or_2" (formula "60") (term "0"))
+ (rule "commute_or_2" (formula "60"))
+ (rule "ifUnfold" (formula "113") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "113") (term "1") (newnames "x_2"))
+ (rule "inequality_comparison_simple" (formula "113") (term "1"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "replace_known_left" (formula "113") (term "0,0,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "equalityToSeqGetAndSeqLenLeft" (formula "57") (inst "iv=iv"))
+ (rule "andLeft" (formula "57"))
+ (rule "getOfSeqDef" (formula "58") (term "1,1,0"))
+ (rule "castDel" (formula "58") (term "1,1,1,0"))
+ (rule "castDel" (formula "58") (term "2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "1,1,0,1,1,0"))
+ (rule "lenOfSeqDef" (formula "57") (term "0"))
+ (rule "eqSymm" (formula "57"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "57") (term "1,1"))
+ (rule "getOfSeqDef" (formula "58") (term "0,1,0"))
+ (rule "castDel" (formula "58") (term "2,0,1,0"))
+ (rule "castDel" (formula "58") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "1,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "1,1,0,0,1,0"))
+ (rule "lenOfSeqDef" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "1,1,1,0,0"))
+ (rule "lenOfSeqDef" (formula "57") (term "0"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "1,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,1,0"))
+ (rule "commute_and" (formula "57") (term "0,0"))
+ (rule "commute_and" (formula "57") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "57") (term "1,0"))
+ (rule "commute_and" (formula "57") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "57") (term "1,0"))
+ (builtin "Use Dependency Contract" (formula "42") (ifInst "" (formula "114") (term "0,0,1")) (ifInst "" (formula "36")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "63") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "replace_known_left" (formula "63") (term "0,1,0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "112")) (ifInst "" (formula "16")) (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "18")) (ifInst "" (formula "42")) (ifInst "" (formula "18")))
+ (rule "true_left" (formula "63"))
+ (rule "ifSplit" (formula "114"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "114") (term "1"))
+ (rule "ifUnfold" (formula "114") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_3"))
+ (rule "less_equal_than_comparison_simple" (formula "114") (term "1"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "ifSplit" (formula "114"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "blockReturn" (formula "115") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "52") (ifseqformula "1"))
+ (rule "applyEq" (formula "50") (term "1,0,0,0,0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "116") (term "0,1,0,0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "51") (term "1,1,0,1,0") (ifseqformula "52"))
+ (rule "add_literals" (formula "51") (term "1,0,1,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "52"))
+ (rule "qeq_literals" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "52"))
+ (rule "qeq_literals" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "51"))
+ (rule "leq_literals" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "50"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "48") (term "1,0,0,0,0,0") (ifseqformula "49"))
+ (rule "methodCallReturn" (formula "112") (term "1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "assignment" (formula "112") (term "1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "methodCallEmpty" (formula "112") (term "1"))
+ (rule "tryEmpty" (formula "112") (term "1"))
+ (rule "emptyModality" (formula "112") (term "1"))
+ (rule "andRight" (formula "112"))
+ (branch
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0,0,1,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "48") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "55") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "eqSymm" (formula "55") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,1,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "55") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "53") (term "0,1,1,0,0,0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,1,1,0,0,0"))
+ (rule "qeq_literals" (formula "53") (term "0,0,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "polySimp_addAssoc" (formula "53") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "21"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "25"))
+ (rule "mul_literals" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "18"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,0"))
+ (rule "mul_literals" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "24"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_and_antiSymm0" (formula "44") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "exLeft" (formula "44") (inst "sk=j_0"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "eqSymm" (formula "48"))
+ (rule "inEqSimp_homoInEq0" (formula "44"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,1"))
+ (rule "mul_literals" (formula "44") (term "0,0,1"))
+ (rule "pullOutSelect" (formula "48") (term "1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "113")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "10")))
+ (rule "simplifySelectOfAnonEQ" (formula "49") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "49") (term "0,1,1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0"))
+ (rule "eqSymm" (formula "48") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "48") (term "0,0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "113")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "49") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "leq_literals" (formula "49") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0,0,0"))
+ (rule "times_zero_2" (formula "49") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0"))
+ (rule "replace_known_left" (formula "49") (term "0,0,0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "applyEqReverse" (formula "48") (term "1") (ifseqformula "49"))
+ (rule "hideAuxiliaryEq" (formula "49"))
+ (rule "elementOfUnion" (formula "48") (term "0,0"))
+ (rule "disjointAllFields" (formula "48") (term "0,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0"))
+ (rule "replace_known_left" (formula "48") (term "0,0,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "47") (ifseqformula "23"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "pullOutSelect" (formula "48") (term "2,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "48"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "113")) (ifInst "" (formula "10")))
+ (rule "applyEqReverse" (formula "49") (term "2,0") (ifseqformula "48"))
+ (rule "hideAuxiliaryEq" (formula "48"))
+ (rule "inEqSimp_and_antiSymm0" (formula "49") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "replaceKnownSelect_taclet0012120110000012_1" (formula "49") (term "1,1,1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012120110000012_3" (formula "49") (term "1,1,1,1"))
+ (rule "add_literals" (formula "49") (term "0,2,0,1,1"))
+ (rule "leq_literals" (formula "49") (term "0,1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "nnf_imp2or" (formula "55") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "112"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "15"))
+ (rule "close" (formula "112") (ifseqformula "15"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "closeTrue" (formula "112"))
+ )
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "variableDeclarationFinalAssign" (formula "115") (term "1"))
+ (rule "variableDeclarationFinal" (formula "115") (term "1") (newnames "classifier"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "115") (term "1"))
+ (rule "variableDeclarationAssign" (formula "115") (term "1"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_6"))
+ (rule "assignment" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "variableDeclarationAssign" (formula "115") (term "1"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_7"))
+ (rule "assignment_read_attribute_final" (formula "115"))
+ (branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "variableDeclarationAssign" (formula "115") (term "1"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_8"))
+ (rule "assignment" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "variableDeclarationAssign" (formula "115") (term "1"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_9"))
+ (rule "assignment" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "Use Operation Contract" (formula "115") (newnames "heapBefore_from_sorted_samples,result_224,exc_264,heapAfter_from_sorted_samples,anon_heap_from_sorted_samples") (contract "de.wiesler.Classifier[de.wiesler.Classifier::from_sorted_samples([I,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (from_sorted_samples)"
+ (builtin "One Step Simplification" (formula "64"))
+ (builtin "One Step Simplification" (formula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,0,0,0,1,1,0,1") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,0,0,0,0,1,1,0,1") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0,1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,1,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,0,1,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "68"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "69"))
+ (rule "notLeft" (formula "67"))
+ (rule "notLeft" (formula "66"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "69"))
+ (rule "orRight" (formula "73"))
+ (rule "andLeft" (formula "70"))
+ (rule "orRight" (formula "74"))
+ (rule "andLeft" (formula "70"))
+ (rule "notLeft" (formula "72"))
+ (rule "orRight" (formula "75"))
+ (rule "orRight" (formula "75"))
+ (rule "orRight" (formula "75"))
+ (rule "eqSymm" (formula "67"))
+ (rule "translateJavaMod" (formula "69") (term "0"))
+ (rule "eqSymm" (formula "71"))
+ (rule "eqSymm" (formula "70"))
+ (rule "eqSymm" (formula "74"))
+ (rule "replace_known_right" (formula "65") (term "1,0,0,1") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "81")) (ifInst "" (formula "75")) (ifInst "" (formula "76")) (ifInst "" (formula "77")) (ifInst "" (formula "78")) (ifInst "" (formula "80")))
+ (rule "assignment" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "blockEmpty" (formula "134") (term "1"))
+ (rule "variableDeclarationFinalAssign" (formula "134") (term "1"))
+ (rule "variableDeclarationFinal" (formula "134") (term "1") (newnames "r"))
+ (rule "applyEq" (formula "71") (term "1,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "70") (term "1,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "46") (term "0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "95") (term "0") (ifseqformula "67"))
+ (rule "applyEq" (formula "102") (term "1") (ifseqformula "67"))
+ (rule "applyEq" (formula "109") (term "0") (ifseqformula "67"))
+ (rule "eqSymm" (formula "109"))
+ (rule "applyEq" (formula "70") (term "1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "113") (term "1") (ifseqformula "67"))
+ (rule "applyEq" (formula "4") (term "1,0,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "64") (term "0,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "111") (term "0") (ifseqformula "67"))
+ (rule "eqSymm" (formula "111"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "67"))
+ (rule "applyEq" (formula "114") (term "0") (ifseqformula "67"))
+ (rule "eqSymm" (formula "114"))
+ (rule "applyEq" (formula "50") (term "1,1,1,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "110") (term "0") (ifseqformula "67"))
+ (rule "eqSymm" (formula "110"))
+ (rule "applyEq" (formula "50") (term "1,0,1,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "49") (term "1,1,1,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "74") (term "1,2,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "74") (term "1,2,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "4") (term "0,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "112") (term "1") (ifseqformula "67"))
+ (rule "pullOutSelect" (formula "71") (term "1") (inst "selectSK=arr_0"))
+ (rule "applyEq" (formula "75") (term "2,0") (ifseqformula "71"))
+ (rule "simplifySelectOfAnon" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,0,1,0,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,0,0,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "simplifySelectOfAnonEQ" (formula "71") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "replaceKnownSelect_taclet00112120110000012_0" (formula "71") (term "2,0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,0,1,1,0,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,0,0,1,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "eqSymm" (formula "75"))
+ (rule "elementOfUnion" (formula "71") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "applyEqReverse" (formula "75") (term "2,1") (ifseqformula "71"))
+ (rule "applyEqReverse" (formula "72") (term "1") (ifseqformula "71"))
+ (rule "hideAuxiliaryEq" (formula "71"))
+ (rule "pullOutSelect" (formula "70") (term "1") (inst "selectSK=arr_1"))
+ (rule "applyEq" (formula "75") (term "2,0") (ifseqformula "70"))
+ (rule "simplifySelectOfAnon" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,1,0,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,0,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "simplifySelectOfAnonEQ" (formula "70") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "replaceKnownSelect_taclet00112120110000012_3" (formula "70") (term "2,0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,0,0,1,1,0,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,0,0,0,1,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "eqSymm" (formula "75"))
+ (rule "elementOfUnion" (formula "70") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "70"))
+ (rule "applyEqReverse" (formula "75") (term "2,1") (ifseqformula "70"))
+ (rule "hideAuxiliaryEq" (formula "70"))
+ (rule "pullOutSelect" (formula "71") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,1,0,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,1,0,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,0,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "pullOutSelect" (formula "72") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "72") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,1,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "leq_literals" (formula "72") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnonEQ" (formula "70") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,1,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "elementOfArrayRangeConcrete" (formula "70") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "leq_literals" (formula "70") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "pullOutSelect" (formula "73") (term "2,0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfAnonEQ" (formula "73") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "elementOfUnion" (formula "73") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "73") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "73") (term "0,0,1,0,0,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnonEQ" (formula "70") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "elementOfUnion" (formula "70") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "70") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "70") (term "0,0,1,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "pullOutSelect" (formula "74") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnon" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "commute_or_2" (formula "79") (term "0,1,0,0"))
+ (rule "commute_or_2" (formula "74") (term "0,1,0,0"))
+ (rule "commute_or_2" (formula "78") (term "0,1,0,0"))
+ (rule "commute_or_2" (formula "73") (term "0,1,0,0"))
+ (rule "commute_or_2" (formula "79") (term "0,0,1,0,0"))
+ (rule "commute_or_2" (formula "79") (term "0,1,0,0"))
+ (rule "commute_or_2" (formula "74") (term "0,0,1,0,0"))
+ (rule "commute_or_2" (formula "74") (term "0,1,0,0"))
+ (rule "instanceCreationAssignmentUnfoldArguments" (formula "142") (term "1"))
+ (rule "variableDeclarationAssign" (formula "142") (term "1"))
+ (rule "variableDeclaration" (formula "142") (term "1") (newnames "var_10"))
+ (builtin "Use Operation Contract" (formula "142") (newnames "heapBefore_num_buckets,result_225,exc_265") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0"))
+ (branch "Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "66")) (ifInst "" (formula "80")))
+ (rule "expand_inInt" (formula "82") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "eqSymm" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "83"))
+ (rule "assignment" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "variableDeclarationAssign" (formula "146") (term "1"))
+ (rule "variableDeclaration" (formula "146") (term "1") (newnames "var_11"))
+ (rule "applyEq" (formula "69") (term "0,0") (ifseqformula "84"))
+ (builtin "Use Operation Contract" (formula "146") (newnames "heapBefore_equal_buckets,result_226,exc_266") (contract "de.wiesler.Classifier[de.wiesler.Classifier::equal_buckets()].JML normal_behavior operation contract.0"))
+ (branch "Post (equal_buckets)"
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "66")) (ifInst "" (formula "80")))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "eqSymm" (formula "86"))
+ (rule "assignment" (formula "148") (term "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (builtin "Use Operation Contract" (formula "148") (newnames "heapBefore_PartitionResult,self_259,exc_267,heapAfter_PartitionResult,anon_heap_PartitionResult") (contract "de.wiesler.PartitionResult[de.wiesler.PartitionResult::PartitionResult(int,boolean)].JML normal_behavior operation contract.0"))
+ (branch "Post (PartitionResult)"
+ (builtin "One Step Simplification" (formula "150"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,1,0,0,1,0,1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,1,0,0,1,0") (ifseqformula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,1,0,0,1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,1,1,0,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,0,1,1,0,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "92"))
+ (rule "notLeft" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "orRight" (formula "97"))
+ (rule "orRight" (formula "97"))
+ (rule "orRight" (formula "97"))
+ (rule "orRight" (formula "97"))
+ (rule "orRight" (formula "97"))
+ (rule "orRight" (formula "97"))
+ (rule "replace_known_right" (formula "91") (term "1,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "97")) (ifInst "" (formula "98")) (ifInst "" (formula "99")) (ifInst "" (formula "100")) (ifInst "" (formula "101")) (ifInst "" (formula "102")))
+ (rule "assignment" (formula "165") (term "1"))
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "blockEmpty" (formula "165") (term "1"))
+ (rule "variableDeclarationGhostAssign" (formula "165") (term "1"))
+ (rule "variableDeclarationGhost" (formula "165") (term "1") (newnames "valuesBeforePartition"))
+ (rule "assignment" (formula "165") (term "1"))
+ (builtin "One Step Simplification" (formula "165"))
+ (builtin "Block Contract (Internal)" (formula "165") (newnames "anonOut_heap_2,result_227,exc_268,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "97"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "andLeft" (formula "97"))
+ (rule "translateJavaSubInt" (formula "97") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "166") (term "2,0,1,0") (ifseqformula "97") (ifseqformula "165"))
+ (rule "variableDeclarationAssign" (formula "166") (term "1"))
+ (rule "variableDeclaration" (formula "166") (term "1") (newnames "exc_268_1"))
+ (rule "assignment" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "emptyStatement" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "emptyStatement" (formula "166") (term "1"))
+ (rule "tryEmpty" (formula "166") (term "1"))
+ (rule "blockEmptyLabel" (formula "166") (term "1"))
+ (rule "blockEmpty" (formula "166") (term "1"))
+ (rule "methodCallEmpty" (formula "166") (term "1"))
+ (rule "emptyModality" (formula "166") (term "1"))
+ (rule "andRight" (formula "166"))
+ (branch
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "closeTrue" (formula "166"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "inEqSimp_leqRight" (formula "114"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73") (term "0,0,0"))
+ (rule "times_zero_2" (formula "73") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "73") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "53"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "jmod_axiom" (formula "70") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73") (term "0,0,0"))
+ (rule "mul_literals" (formula "73") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1"))
+ (rule "mul_literals" (formula "53") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "57") (term "0,1,1,0,0,0") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "57") (term "0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "1,1,0,0,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,1,1,0,0,0"))
+ (rule "qeq_literals" (formula "57") (term "0,0,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "polySimp_addAssoc" (formula "57") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "20"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "1"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "1"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "newSym_eq" (formula "65") (inst "newSymDef=mul(result_225, Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "65") (term "1,1"))
+ (rule "add_zero_right" (formula "65") (term "1"))
+ (rule "applyEq" (formula "66") (term "0,0") (ifseqformula "65"))
+ (rule "eqSymm" (formula "66"))
+ (rule "applyEq" (formula "80") (term "0") (ifseqformula "66"))
+ (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "79") (term "0") (ifseqformula "66"))
+ (rule "applyEq" (formula "81") (term "1") (ifseqformula "66"))
+ (rule "applyEq" (formula "90") (term "1") (ifseqformula "66"))
+ (rule "elimGcdLeq_antec" (formula "79") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "neg_literal" (formula "79") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "79") (term "0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "79") (term "0,0,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_zero_right" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "elimGcdGeq_antec" (formula "80") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "80") (term "0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "80") (term "0,0,0,0"))
+ (rule "add_literals" (formula "80") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0"))
+ (rule "add_literals" (formula "80") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0"))
+ (rule "add_zero_right" (formula "80") (term "0,0"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "26"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "19"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "25"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "23") (term "0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_and_subsumption3" (formula "47") (term "0,0,0"))
+ (rule "leq_literals" (formula "47") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "nnf_imp2or" (formula "53") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "64") (term "1,1"))
+ (rule "eqSymm" (formula "67"))
+ (rule "eqSymm" (formula "64"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,2,1"))
+ (rule "mul_literals" (formula "67") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,2,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "applyEq" (formula "64") (term "0,0,0") (ifseqformula "89"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "87"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "87"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "87"))
+ (rule "elimGcdLeq_antec" (formula "63") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "neg_literal" (formula "63") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "63") (term "0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "63") (term "0,0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "elimGcdGeq_antec" (formula "62") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "62") (term "0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "62") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "85") (ifseqformula "62"))
+ (rule "leq_literals" (formula "85") (term "0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "true_left" (formula "85"))
+ (rule "pullOutSelect" (formula "66") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,0,0,1,1,0,0") (ifseqformula "44"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,0,0,0,1,1,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "eqSymm" (formula "67"))
+ (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "67") (term "0,0,0,1,1,0,0") (ifseqformula "44"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "67") (term "0,0,0,0,1,1,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfUnion" (formula "66") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "66"))
+ (rule "hideAuxiliaryEq" (formula "66"))
+ (rule "elementOfUnion" (formula "66") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "eqSymm" (formula "66"))
+ (rule "nnf_imp2or" (formula "47") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "53") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "53") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "53") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "53") (term "1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "47") (term "1,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "47") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaMulInt" (formula "44") (term "0,0"))
+ (rule "translateJavaMod" (formula "43") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "42") (term "1"))
+ (rule "translateJavaDivInt" (formula "38") (term "1"))
+ (rule "translateJavaSubInt" (formula "44") (term "0"))
+ (rule "polySimp_elimSub" (formula "44") (term "0"))
+ (rule "mul_literals" (formula "44") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "39"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "replace_known_left" (formula "81") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "applyEqReverse" (formula "82") (term "2,0") (ifseqformula "81"))
+ (rule "hideAuxiliaryEq" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_homoInEq0" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "jmod_axiom" (formula "43") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1"))
+ (rule "mul_literals" (formula "39") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "javaShiftLeftIntConstantDef" (formula "42") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1"))
+ (rule "div_literals" (formula "42") (term "0,1,1,0,1"))
+ (rule "times_zero_2" (formula "42") (term "1,1,0,1"))
+ (rule "add_zero_right" (formula "42") (term "1,0,1"))
+ (rule "shiftleft_literals" (formula "42") (term "0,1"))
+ (rule "newSym_eq" (formula "43") (inst "l=l_1") (inst "newSymDef=mul(int::final(result_220,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "43") (term "1,1"))
+ (rule "add_zero_right" (formula "43") (term "1"))
+ (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "43"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "52") (term "1,2,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "86") (term "0,0,0,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "44"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "44"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "44"))
+ (rule "inEqSimp_homoInEq1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "41") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "elimGcdGeq" (formula "86") (term "0,0,0") (inst "elimGcdRightDiv=Z(2(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "86") (term "0,0,0,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,1,0,0,0,0,0,0,0,0,0"))
+ (rule "sub_literals" (formula "86") (term "0,0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,0,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "86") (term "1,0,0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "86") (term "0,0,0,1,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "86") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "86") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "86") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "86") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "86") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "86") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "86") (term "0,1,0,0,0,0"))
+ (rule "leq_literals" (formula "86") (term "1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "polySimp_pullOutFactor0" (formula "86") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "86") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "86") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "86") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "39"))
+ (rule "mul_literals" (formula "37") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "38"))
+ (rule "mul_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "57"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(2(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_left" (formula "88") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "applyEqReverse" (formula "89") (term "2,0") (ifseqformula "88"))
+ (rule "hideAuxiliaryEq" (formula "88"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "1"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "expand_moduloInteger" (formula "43") (term "0"))
+ (rule "replace_int_RANGE" (formula "43") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "43") (term "0,0,1,0"))
+ (rule "add_literals" (formula "43") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "mod_axiom" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0"))
+ (rule "div_literals" (formula "43") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "1,0,1,0"))
+ (rule "add_literals" (formula "43") (term "0,1,0"))
+ (rule "mul_literals" (formula "43") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "elimGcdLeq_antec" (formula "43") (inst "elimGcdRightDiv=Z(8(2(1(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "43") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0"))
+ (rule "qeq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "114") (term "1"))
+ (rule "eqSymm" (formula "114"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "74") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "expand_inInt" (formula "74") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "74") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "173"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "translateJavaMulInt" (formula "30") (term "1"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "204")))
+ (rule "true_left" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "202")))
+ (rule "true_left" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "139"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "138"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "137"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "136"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "135"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "134"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "133"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "132"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "131"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "130"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "129"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "128"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "127"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "125"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "124"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "168")))
+ (rule "true_left" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "166")))
+ (rule "true_left" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "164")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "162")))
+ (rule "true_left" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "160")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "158")))
+ (rule "true_left" (formula "37"))
+ (rule "applyEq" (formula "36") (term "0,1,0,0,1") (ifseqformula "85"))
+ (rule "applyEq" (formula "29") (term "0,0") (ifseqformula "85"))
+ (rule "applyEq" (formula "120") (term "0") (ifseqformula "85"))
+ (rule "eqSymm" (formula "120"))
+ (rule "applyEq" (formula "119") (term "1") (ifseqformula "85"))
+ (rule "applyEq" (formula "116") (term "0") (ifseqformula "85"))
+ (rule "eqSymm" (formula "116"))
+ (rule "applyEq" (formula "116") (term "0") (ifseqformula "85"))
+ (rule "eqSymm" (formula "116"))
+ (rule "applyEq" (formula "115") (term "0") (ifseqformula "85"))
+ (rule "eqSymm" (formula "115"))
+ (rule "applyEq" (formula "114") (term "1") (ifseqformula "85"))
+ (rule "applyEq" (formula "114") (term "1") (ifseqformula "85"))
+ (rule "applyEq" (formula "43") (term "0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "94") (term "2,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "90") (term "2,0,0,0") (ifseqformula "36"))
+ (rule "elementOfUnion" (formula "94") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "37") (term "0"))
+ (rule "distributeIntersection" (formula "38") (term "0"))
+ (rule "elementOfUnion" (formula "90") (term "0,0,0"))
+ (rule "elementOfUnion" (formula "94") (term "1,0,0,0"))
+ (rule "elementOfUnion" (formula "94") (term "0,0,0,0"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "elementOfUnion" (formula "92") (term "0,0,0,0"))
+ (rule "elementOfUnion" (formula "92") (term "1,0,0,0"))
+ (rule "elementOfUnion" (formula "96") (term "1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "eqSymm" (formula "96") (term "1,1,1,0,0,0"))
+ (rule "eqSymm" (formula "96") (term "0,1,1,0,0,0"))
+ (rule "replace_known_right" (formula "96") (term "1,1,1,0,0,0") (ifseqformula "163"))
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "162")))
+ (rule "distributeIntersection" (formula "37") (term "0"))
+ (rule "distributeIntersection" (formula "38") (term "0"))
+ (rule "distributeIntersection" (formula "40") (term "0"))
+ (rule "distributeIntersection" (formula "39") (term "0"))
+ (rule "elementOfUnion" (formula "92") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "hideAuxiliaryEq" (formula "92"))
+ (rule "elementOfUnion" (formula "95") (term "1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "eqSymm" (formula "95") (term "0,1,0,0,0,0"))
+ (rule "eqSymm" (formula "95") (term "1,1,0,0,0,0"))
+ (rule "replace_known_right" (formula "95") (term "0,1,0,0,0,0") (ifseqformula "157"))
+ (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "158")))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "distributeIntersection" (formula "39") (term "0,0"))
+ (rule "distributeIntersection" (formula "39") (term "1,0"))
+ (rule "distributeIntersection" (formula "41") (term "0,0"))
+ (rule "distributeIntersection" (formula "41") (term "1,0"))
+ (rule "distributeIntersection" (formula "40") (term "1,0"))
+ (rule "distributeIntersection" (formula "40") (term "0,0"))
+ (rule "elementOfUnion" (formula "96") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "hideAuxiliaryEq" (formula "96"))
+ (rule "distributeIntersection" (formula "38") (term "0"))
+ (rule "distributeIntersection" (formula "37") (term "0"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "unionEqualsEmpty" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "118"))
+ (rule "eqSymm" (formula "117"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "117"))
+ (rule "eqSymm" (formula "116"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "116"))
+ (rule "eqSymm" (formula "115"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "115"))
+ (rule "eqSymm" (formula "114"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "114"))
+ (rule "eqSymm" (formula "113"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "113"))
+ (rule "eqSymm" (formula "112"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "112"))
+ (rule "eqSymm" (formula "111"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "111"))
+ (rule "eqSymm" (formula "110"))
+ (rule "commuteUnion" (formula "36") (term "1,1,1"))
+ (rule "commuteUnion" (formula "36") (term "0,0,1"))
+ (rule "commuteUnion" (formula "41") (term "0,0,0,1,0"))
+ (rule "commuteUnion" (formula "41") (term "1,1,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "53") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "notLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "notLeft" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEq" (formula "109") (term "0") (ifseqformula "82"))
+ (rule "replace_known_right" (formula "90") (term "0,0,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "replace_known_right" (formula "91") (term "0,0,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "replace_known_right" (formula "89") (term "0,0,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "replace_known_right" (formula "87") (term "0,0,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "replace_known_right" (formula "86") (term "0,0,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "replace_known_right" (formula "88") (term "0,0,0,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_left" (formula "86") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "hideAuxiliaryEq" (formula "86"))
+ (rule "replace_known_left" (formula "87") (term "0,0,0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "eqSymm" (formula "87"))
+ (rule "applyEqReverse" (formula "86") (term "1") (ifseqformula "87"))
+ (rule "hideAuxiliaryEq" (formula "87"))
+ (rule "replace_known_left" (formula "87") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "hideAuxiliaryEq" (formula "87"))
+ (rule "replace_known_left" (formula "88") (term "0,0,0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "replace_known_left" (formula "86") (term "0,0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "replace_known_left" (formula "87") (term "0,0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEqReverse" (formula "88") (term "0") (ifseqformula "87"))
+ (rule "hideAuxiliaryEq" (formula "87"))
+ (rule "eqSymm" (formula "86"))
+ (rule "eqSymm" (formula "87"))
+ (rule "replace_known_right" (formula "180") (term "0,1") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "180"))
+ (rule "notRight" (formula "180"))
+ (rule "applyEq" (formula "84") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "78") (term "0,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "81") (term "0,1,0,2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "79") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "81") (term "0,1,0,2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "80") (term "0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "80") (term "0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "82") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "122") (term "2,0") (ifseqformula "87"))
+ (rule "applyEq" (formula "78") (term "0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "122") (term "2,1") (ifseqformula "88"))
+ (rule "Class_invariant_axiom_for_de_wiesler_PartitionResult" (formula "104"))
+ (rule "true_left" (formula "104"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_PartitionResult" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "55"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "29")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "36")))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "translateJavaMulInt" (formula "57") (term "1"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "translateJavaMulInt" (formula "56") (term "1"))
+ (rule "mul_literals" (formula "56") (term "1"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "203")))
+ (rule "true_left" (formula "84"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "201")))
+ (rule "true_left" (formula "83"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "eqSymm" (formula "130"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "eqSymm" (formula "129"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "eqSymm" (formula "128"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "127"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "eqSymm" (formula "126"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "125"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "124"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "eqSymm" (formula "123"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "eqSymm" (formula "122"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "eqSymm" (formula "121"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "120"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "eqSymm" (formula "119"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "118"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "116"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "115"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "167")))
+ (rule "true_left" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "165")))
+ (rule "true_left" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "163")))
+ (rule "true_left" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "161")))
+ (rule "true_left" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "159")))
+ (rule "true_left" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "157")))
+ (rule "true_left" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "applyEq" (formula "111") (term "0") (ifseqformula "84"))
+ (rule "eqSymm" (formula "111"))
+ (rule "applyEq" (formula "108") (term "0") (ifseqformula "84"))
+ (rule "eqSymm" (formula "108"))
+ (rule "applyEq" (formula "108") (term "1") (ifseqformula "84"))
+ (rule "applyEq" (formula "108") (term "1") (ifseqformula "84"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "56"))
+ (rule "applyEq" (formula "105") (term "1") (ifseqformula "84"))
+ (rule "applyEq" (formula "106") (term "0") (ifseqformula "84"))
+ (rule "eqSymm" (formula "106"))
+ (rule "applyEq" (formula "105") (term "0") (ifseqformula "84"))
+ (rule "eqSymm" (formula "105"))
+ (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "84"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1") (ifseqformula "83"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,0") (ifseqformula "83"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "37"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "56") (term "1"))
+ (rule "expand_inInt" (formula "56") (term "0,0"))
+ (rule "expand_inInt" (formula "56") (term "1,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "52"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "46"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "49"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_subsumption4" (formula "58") (ifseqformula "50"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "greater_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "2"))
+ (rule "greater_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "mul_literals" (formula "58") (term "1,0"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "20"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "20"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "18"))
+ (rule "applyEq" (formula "104") (term "0") (ifseqformula "83"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "notLeft" (formula "90"))
+ (rule "notLeft" (formula "89"))
+ (rule "close" (formula "103") (ifseqformula "1"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "165"))
+ (branch
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "translateJavaSubInt" (formula "165") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "165") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "165") (term "0,0"))
+ (rule "close" (formula "165") (ifseqformula "17"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "wellFormedAnonEQ" (formula "165") (ifseqformula "89"))
+ (rule "wellFormedAnonEQ" (formula "165") (term "0") (ifseqformula "64"))
+ (rule "wellFormedAnon" (formula "165") (term "0,0"))
+ (rule "wellFormedAnon" (formula "165") (term "0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "165") (term "0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "165") (term "1,0,0,0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")) (ifInst "" (formula "63")) (ifInst "" (formula "88")))
+ (rule "closeTrue" (formula "165"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "166"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,1,0,1,0") (ifseqformula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,1,1,1,0") (ifseqformula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,1,0,1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,1,1,1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "97"))
+ (rule "eqSymm" (formula "102"))
+ (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "shift_paren_or" (formula "100"))
+ (rule "commute_or_2" (formula "100") (term "1,0"))
+ (rule "shift_paren_or" (formula "100") (term "0"))
+ (rule "shift_paren_or" (formula "100") (term "0,0"))
+ (rule "shift_paren_or" (formula "100") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "100") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "100") (term "0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "100") (term "0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "100") (term "0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "100"))
+ (rule "commute_or_2" (formula "100") (term "0"))
+ (rule "commute_or_2" (formula "100") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "100") (term "0,0,0"))
+ (rule "commute_or_2" (formula "100") (term "0,0"))
+ (rule "commute_or_2" (formula "100") (term "0"))
+ (rule "commute_or_2" (formula "100") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "100") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "100") (term "0,0,0"))
+ (rule "commute_or_2" (formula "100") (term "0,0"))
+ (rule "commute_or_2" (formula "100") (term "0"))
+ (rule "commute_or_2" (formula "100"))
+ (builtin "Use Dependency Contract" (formula "42") (ifInst "" (formula "171") (term "0,0,1")) (ifInst "" (formula "36")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "103") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "103") (term "0,1,1,0,0,0"))
+ (rule "replace_known_left" (formula "103") (term "0,1") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "169")) (ifInst "" (formula "16")) (ifInst "" (formula "9")) (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "18")) (ifInst "" (formula "18")))
+ (rule "true_left" (formula "103"))
+ (rule "ifUnfold" (formula "171") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "171") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "171") (term "1"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "replace_known_left" (formula "171") (term "0,0,1,0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "46") (term "0,1,0") (ifseqformula "63") (ifseqformula "65"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0,0") (ifseqformula "64") (ifseqformula "66"))
+ (rule "ifSplit" (formula "173"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "174"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "174"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "173") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "173") (newnames "anonOut_heap_3,result_228,exc_269,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "174"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "translateJavaSubInt" (formula "105") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "105") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "174") (term "1"))
+ (rule "variableDeclaration" (formula "174") (term "1") (newnames "exc_269_1"))
+ (rule "assignment" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "emptyStatement" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "emptyStatement" (formula "174") (term "1"))
+ (rule "tryEmpty" (formula "174") (term "1"))
+ (rule "blockEmptyLabel" (formula "174") (term "1"))
+ (rule "blockEmpty" (formula "174") (term "1"))
+ (rule "methodCallEmpty" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "emptyModality" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "closeTrue" (formula "174"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "173"))
+ (branch
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "translateJavaSubInt" (formula "173") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "173") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "173") (term "0,0"))
+ (rule "close" (formula "173") (ifseqformula "17"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "wellFormedAnon" (formula "173"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0") (ifseqformula "91"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0,0") (ifseqformula "65"))
+ (rule "wellFormedAnon" (formula "173") (term "0,0,0"))
+ (rule "wellFormedAnon" (formula "173") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "173") (term "0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "173") (term "1,0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "56")) (ifInst "" (formula "61")) (ifInst "" (formula "64")) (ifInst "" (formula "101")))
+ (rule "closeTrue" (formula "173"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "105"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,1,0,1,0") (ifseqformula "91"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,1,1,1,0") (ifseqformula "91"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,1,1,1,0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,1,0,1,0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "expand_inInt" (formula "105") (term "1,0,0,1,1"))
+ (rule "expand_inInt" (formula "105") (term "1,0,0,1,0,1,1"))
+ (rule "replace_int_MIN" (formula "105") (term "0,1,1,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "105") (term "1,0,1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "105") (term "0,1,1,0,0,1,0,1,1"))
+ (rule "replace_int_MAX" (formula "105") (term "1,0,1,0,0,1,0,1,1"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "105"))
+ (rule "exLeft" (formula "110") (inst "sk=i_0"))
+ (rule "andLeft" (formula "110"))
+ (rule "andLeft" (formula "110"))
+ (rule "andLeft" (formula "111"))
+ (rule "andLeft" (formula "110"))
+ (rule "exLeft" (formula "114") (inst "sk=j_0"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "notLeft" (formula "116"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "114"))
+ (rule "eqSymm" (formula "118"))
+ (rule "replace_known_left" (formula "108") (term "0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "true_left" (formula "108"))
+ (rule "inEqSimp_commuteLeq" (formula "112"))
+ (rule "inEqSimp_commuteLeq" (formula "109"))
+ (rule "inEqSimp_commuteLeq" (formula "116"))
+ (rule "inEqSimp_commuteLeq" (formula "113"))
+ (rule "pullOutSelect" (formula "117") (term "2,1") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "92"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "92"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "139"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "140")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")) (ifInst "" (formula "11")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "118") (term "2,0") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "141")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")) (ifInst "" (formula "12")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "188")) (ifInst "" (formula "13")))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "188")) (ifInst "" (formula "13")))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "shift_paren_or" (formula "109"))
+ (rule "shift_paren_or" (formula "109") (term "0"))
+ (rule "commute_or_2" (formula "109") (term "1,0,0"))
+ (rule "shift_paren_or" (formula "109") (term "0,0"))
+ (rule "ifUnfold" (formula "188") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "188") (term "1") (newnames "x_5"))
+ (rule "shift_paren_or" (formula "109") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "109") (term "0,0,0,0"))
+ (rule "equalityToSeqGetAndSeqLenLeft" (formula "105") (inst "iv=iv"))
+ (rule "andLeft" (formula "105"))
+ (rule "lenOfSeqDef" (formula "105") (term "0"))
+ (rule "eqSymm" (formula "105"))
+ (rule "polySimp_elimSub" (formula "105") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "105") (term "1,1"))
+ (rule "getOfSeqDef" (formula "106") (term "1,1,0"))
+ (rule "castDel" (formula "106") (term "2,1,1,0"))
+ (rule "castDel" (formula "106") (term "1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "106") (term "1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "1,1,0,1,1,0"))
+ (rule "lenOfSeqDefEQ" (formula "106") (term "1,1,0,0") (ifseqformula "61"))
+ (rule "polySimp_elimSub" (formula "106") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "1,1,1,0,0"))
+ (rule "getOfSeqDef" (formula "106") (term "0,1,0"))
+ (rule "castDel" (formula "106") (term "2,0,1,0"))
+ (rule "castDel" (formula "106") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "106") (term "1,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "1,1,0,0,1,0"))
+ (rule "lenOfSeqDef" (formula "105") (term "0"))
+ (rule "polySimp_elimSub" (formula "105") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "1,0"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "true_left" (formula "105"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "0,1,1,0,0"))
+ (rule "replace_known_left" (formula "105") (term "0,1,1,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0,1,0"))
+ (rule "commute_and" (formula "105") (term "0,0"))
+ (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0"))
+ (rule "inequality_comparison_simple" (formula "189") (term "1"))
+ (builtin "One Step Simplification" (formula "189"))
+ (rule "replace_known_left" (formula "189") (term "0,0,1,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "189"))
+ (rule "commute_and" (formula "105") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "105") (term "1,0"))
+ (rule "commute_and" (formula "105") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "105") (term "1,0"))
+ (rule "commute_or_2" (formula "110") (term "1,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0"))
+ (rule "commute_or_2" (formula "110"))
+ (rule "commute_or_2" (formula "110") (term "0,0"))
+ (rule "commute_or_2" (formula "110") (term "0"))
+ (rule "commute_or_2" (formula "110") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0,0"))
+ (rule "commute_or_2" (formula "110") (term "0"))
+ (rule "commute_or_2" (formula "110"))
+ (rule "commute_or_2" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0,0,0"))
+ (rule "commute_or_2" (formula "110") (term "0,0"))
+ (builtin "Use Dependency Contract" (formula "44") (ifInst "" (formula "189") (term "0,0,1")) (ifInst "" (formula "38")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "120") (term "1,1,0,0,0") (ifseqformula "38"))
+ (rule "wellFormedAnon" (formula "120") (term "0,1,1,0,0,0"))
+ (rule "replace_known_left" (formula "120") (term "0,1") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "187")) (ifInst "" (formula "18")) (ifInst "" (formula "11")) (ifInst "" (formula "11")) (ifInst "" (formula "35")) (ifInst "" (formula "37")) (ifInst "" (formula "20")) (ifInst "" (formula "20")))
+ (rule "true_left" (formula "120"))
+ (rule "ifSplit" (formula "189"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "190"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "190"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "189") (term "1"))
+ (builtin "Use Operation Contract" (formula "189") (newnames "heapBefore_partition_0,exc_270,heapAfter_partition,anon_heap_partition") (contract "de.wiesler.Partition[de.wiesler.Partition::partition([I,int,int,[I,de.wiesler.Classifier,de.wiesler.Storage)].JML normal_behavior operation contract.0"))
+ (branch "Post (partition)"
+ (builtin "One Step Simplification" (formula "191"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "andLeft" (formula "121"))
+ (rule "andLeft" (formula "122"))
+ (rule "andLeft" (formula "122"))
+ (rule "andLeft" (formula "124"))
+ (rule "andLeft" (formula "123"))
+ (rule "andLeft" (formula "125"))
+ (rule "andLeft" (formula "124"))
+ (rule "andLeft" (formula "125"))
+ (rule "andLeft" (formula "126"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "128"))
+ (rule "translateJavaSubInt" (formula "121") (term "2,0,0,0,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "125") (term "1"))
+ (rule "polySimp_elimSub" (formula "121") (term "2,0,0,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "121") (term "1,2,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "125") (term "1"))
+ (rule "polySimp_addComm0" (formula "121") (term "2,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "125") (term "1"))
+ (rule "variableDeclarationGhostAssign" (formula "201") (term "1"))
+ (rule "variableDeclarationGhost" (formula "201") (term "1") (newnames "valuesAfterPartition"))
+ (rule "assignment" (formula "201") (term "1"))
+ (builtin "One Step Simplification" (formula "201"))
+ (builtin "Block Contract (Internal)" (formula "201") (newnames "anonOut_heap_4,result_229,exc_271,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "132"))
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "andLeft" (formula "132"))
+ (rule "translateJavaSubInt" (formula "132") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "132") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "132") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "123") (term "2,0") (ifseqformula "132") (ifseqformula "201"))
+ (rule "narrowSelectArrayType" (formula "202") (term "2,0,1,0") (ifseqformula "132") (ifseqformula "201"))
+ (rule "variableDeclarationAssign" (formula "202") (term "1"))
+ (rule "variableDeclaration" (formula "202") (term "1") (newnames "exc_271_1"))
+ (rule "assignment" (formula "202") (term "1"))
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "emptyStatement" (formula "202") (term "1"))
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "emptyStatement" (formula "202") (term "1"))
+ (rule "applyEq" (formula "127") (term "7,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "125") (term "0,2,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "124") (term "2,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "127") (term "5,0") (ifseqformula "88"))
+ (rule "pullOutSelect" (formula "125") (term "0") (inst "selectSK=arr_14"))
+ (rule "simplifySelectOfAnonEQ" (formula "125") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "201")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,1,0,0") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,0,1,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "17")))
+ (rule "elementOfUnion" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "eqSymm" (formula "125") (term "1,0,0"))
+ (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "170"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "elementOfUnion" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "eqSymm" (formula "125") (term "1,0,0"))
+ (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "169"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "elementOfUnion" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "eqSymm" (formula "125") (term "1,0,0"))
+ (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "168"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "elementOfUnion" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "eqSymm" (formula "125") (term "1,0,0"))
+ (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "167"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "elementOfUnion" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "eqSymm" (formula "125") (term "1,0,0"))
+ (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "166"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "elementOfUnion" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "eqSymm" (formula "125") (term "1,0,0"))
+ (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "165"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "elementOfUnion" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "applyEqReverse" (formula "126") (term "0") (ifseqformula "125"))
+ (rule "hideAuxiliaryEq" (formula "125"))
+ (rule "commuteUnion_2" (formula "121") (term "1,0"))
+ (rule "commuteUnion_2" (formula "121") (term "0,1,0"))
+ (rule "commuteUnion" (formula "121") (term "0,0,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "121") (term "0,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "121") (term "0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "121") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "121") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "121") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "121") (term "1,0"))
+ (rule "tryEmpty" (formula "202") (term "1"))
+ (rule "blockEmptyLabel" (formula "202") (term "1"))
+ (rule "blockEmpty" (formula "202") (term "1"))
+ (rule "methodCallEmpty" (formula "202") (term "1"))
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "emptyModality" (formula "202") (term "1"))
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "closeTrue" (formula "202"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "201"))
+ (branch
+ (builtin "One Step Simplification" (formula "201"))
+ (rule "translateJavaSubInt" (formula "201") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "201") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "201") (term "0,0"))
+ (rule "close" (formula "201") (ifseqformula "19"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "201"))
+ (rule "wellFormedAnonEQ" (formula "201") (ifseqformula "121"))
+ (rule "wellFormedAnon" (formula "201") (term "0"))
+ (rule "wellFormedAnon" (formula "201") (term "0,0"))
+ (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0") (ifseqformula "93"))
+ (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0,0") (ifseqformula "67"))
+ (rule "wellFormedAnon" (formula "201") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "201") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0,0,0,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0,0,0,0,0,0") (ifseqformula "38"))
+ (rule "wellFormedAnon" (formula "201") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "201") (term "1,0,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "201") (ifInst "" (formula "11")) (ifInst "" (formula "35")) (ifInst "" (formula "37")) (ifInst "" (formula "47")) (ifInst "" (formula "58")) (ifInst "" (formula "63")) (ifInst "" (formula "66")) (ifInst "" (formula "92")) (ifInst "" (formula "109")) (ifInst "" (formula "120")))
+ (rule "closeTrue" (formula "201"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "132"))
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,1,1,1,0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,1,0,1,0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,1,0,1,0") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,1,1,1,0") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "expand_inInt" (formula "132") (term "1,0,0,1,1"))
+ (rule "expand_inInt" (formula "132") (term "1,0,0,1,0,1,1"))
+ (rule "replace_int_MAX" (formula "132") (term "1,0,1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "132") (term "0,1,1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "132") (term "0,1,1,0,0,1,0,1,1"))
+ (rule "replace_int_MAX" (formula "132") (term "1,0,1,0,0,1,0,1,1"))
+ (rule "andLeft" (formula "132"))
+ (rule "andLeft" (formula "132"))
+ (rule "andLeft" (formula "134"))
+ (rule "andLeft" (formula "132"))
+ (rule "andLeft" (formula "134"))
+ (rule "exLeft" (formula "137") (inst "sk=i_1"))
+ (rule "andLeft" (formula "137"))
+ (rule "andLeft" (formula "137"))
+ (rule "andLeft" (formula "137"))
+ (rule "andLeft" (formula "139"))
+ (rule "exLeft" (formula "141") (inst "sk=j_1"))
+ (rule "andLeft" (formula "141"))
+ (rule "notLeft" (formula "142"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "142"))
+ (rule "andLeft" (formula "141"))
+ (rule "translateJavaSubInt" (formula "136") (term "3,0"))
+ (rule "eqSymm" (formula "145"))
+ (rule "translateJavaCastInt" (formula "145") (term "2,1"))
+ (rule "translateJavaCastInt" (formula "145") (term "2,0"))
+ (rule "replace_known_left" (formula "135") (term "0") (ifseqformula "132"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "true_left" (formula "135"))
+ (rule "polySimp_elimSub" (formula "135") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "135") (term "3,0"))
+ (rule "lenOfSeqDef" (formula "137") (term "1"))
+ (rule "polySimp_elimSub" (formula "137") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "137") (term "1,1"))
+ (rule "lenOfSeqDef" (formula "141") (term "1"))
+ (rule "polySimp_elimSub" (formula "141") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "141") (term "1,1"))
+ (rule "getOfSeqDef" (formula "144") (term "0,2,1"))
+ (rule "castDel" (formula "144") (term "1,0,2,1"))
+ (rule "castDel" (formula "144") (term "2,0,2,1"))
+ (rule "replace_known_left" (formula "144") (term "0,0,0,2,1") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "polySimp_elimSub" (formula "144") (term "1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "144") (term "0,2,1,0,2,1"))
+ (rule "polySimp_addComm0" (formula "144") (term "1,0,0,2,1"))
+ (rule "castedGetAny" (formula "144") (term "2,0"))
+ (rule "getOfSeqDef" (formula "144") (term "2,0"))
+ (rule "replace_known_left" (formula "144") (term "0,0,2,0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "polySimp_elimSub" (formula "144") (term "1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "144") (term "0,2,0,1,2,0"))
+ (rule "polySimp_addComm0" (formula "144") (term "1,0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "136"))
+ (rule "inEqSimp_commuteLeq" (formula "139"))
+ (rule "inEqSimp_commuteLeq" (formula "143"))
+ (rule "inEqSimp_commuteLeq" (formula "140"))
+ (rule "applyEq" (formula "127") (term "7,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "127") (term "5,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "135") (term "2,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "125") (term "0,2,0") (ifseqformula "88"))
+ (rule "applyEq" (formula "124") (term "2,0") (ifseqformula "88"))
+ (rule "pullOutSelect" (formula "144") (term "1,0,2,1") (inst "selectSK=arr_14"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "122"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "214")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "94"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "13")))
+ (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "121") (ifseqformula "214"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "174"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "173"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "172"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "171"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "169"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "211")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "145") (term "0,1,2,0") (inst "selectSK=arr_15"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "215")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "14")))
+ (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "122") (ifseqformula "215"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "175"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "174"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "173"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "172"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "171"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "212")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "127") (term "0") (inst "selectSK=arr_16"))
+ (rule "simplifySelectOfAnonEQ" (formula "127") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "215")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,1,0,0") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,0,1,0,0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "19")))
+ (rule "elementOfUnion" (formula "127") (term "0,0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "eqSymm" (formula "127") (term "1,0,0"))
+ (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "184"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "elementOfUnion" (formula "127") (term "0,0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "eqSymm" (formula "127") (term "1,0,0"))
+ (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "183"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "elementOfUnion" (formula "127") (term "0,0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "eqSymm" (formula "127") (term "1,0,0"))
+ (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "182"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "elementOfUnion" (formula "127") (term "0,0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "eqSymm" (formula "127") (term "1,0,0"))
+ (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "181"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "elementOfUnion" (formula "127") (term "0,0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "eqSymm" (formula "127") (term "1,0,0"))
+ (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "180"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "elementOfUnion" (formula "127") (term "0,0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "eqSymm" (formula "127") (term "1,0,0"))
+ (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "179"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "elementOfUnion" (formula "127") (term "0,0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "applyEqReverse" (formula "128") (term "0") (ifseqformula "127"))
+ (rule "hideAuxiliaryEq" (formula "127"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_17"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "96"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15")))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "96"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15")))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15")))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,1,0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,1,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15")))
+ (rule "narrowSelectArrayType" (formula "2") (term "1,0") (ifseqformula "69") (ifseqformula "216"))
+ (rule "elementOfUnion" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "eqSymm" (formula "2") (term "1,0,0"))
+ (rule "eqSymm" (formula "2") (term "0,0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0") (ifseqformula "170"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "169")))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15")))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15")))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,1,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (rule "eqSymm" (formula "2") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "170"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")) (ifInst "" (formula "15")))
+ (rule "narrowSelectArrayType" (formula "2") (term "1,0") (ifseqformula "40") (ifseqformula "216"))
+ (rule "elementOfUnion" (formula "2") (term "0,0"))
+ (rule "disjointAllFields" (formula "2") (term "0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_18"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")))
+ (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "70") (ifseqformula "217"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "170"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "171")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "171"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")) (ifInst "" (formula "16")))
+ (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "41") (ifseqformula "217"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_19"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "218")) (ifInst "" (formula "17")))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "narrowSelectArrayType" (formula "3") (term "2,0") (ifseqformula "15") (ifseqformula "217"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_20"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "218")) (ifInst "" (formula "17")))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "15") (ifseqformula "217"))
+ (rule "commuteUnion_2" (formula "125") (term "1,0"))
+ (rule "commuteUnion_2" (formula "125") (term "0,1,0"))
+ (rule "commuteUnion" (formula "125") (term "0,0,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "125") (term "0,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "125") (term "0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "125") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "125") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "125") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "125") (term "1,0"))
+ (rule "commute_or_2" (formula "138") (term "1"))
+ (rule "ifUnfold" (formula "218") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "218") (term "1") (newnames "x_6"))
+ (builtin "Use Dependency Contract" (formula "149") (term "1") (ifInst "" (formula "149") (term "0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "166")) (ifInst "" (formula "106")))
+ (rule "wellFormedAnon" (formula "148") (term "1,1,0,0"))
+ (rule "wellFormedAnon" (formula "148") (term "0,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "0,0,0,0") (ifseqformula "97"))
+ (rule "wellFormedAnon" (formula "148") (term "0,1,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "0,0,0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "72")) (ifInst "" (formula "107")) (ifInst "" (formula "107")) (ifInst "" (formula "113")))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0,0") (ifseqformula "97"))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0") (ifseqformula "71"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0,0,0"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0,0,0,0") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "148") (term "1,0"))
+ (rule "replace_int_MAX" (formula "148") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "148") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "148") (term "1,0,0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70")))
+ (rule "inEqSimp_commuteLeq" (formula "148") (term "1,0"))
+ (builtin "Use Dependency Contract" (formula "150") (term "0") (ifInst "" (formula "150") (term "0,0")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "167")) (ifInst "" (formula "106")))
+ (rule "wellFormedAnon" (formula "149") (term "0,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0,0,0") (ifseqformula "97"))
+ (rule "wellFormedAnon" (formula "149") (term "1,1,0,0"))
+ (rule "wellFormedAnon" (formula "149") (term "0,1,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0,0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "72")) (ifInst "" (formula "107")) (ifInst "" (formula "107")) (ifInst "" (formula "113")))
+ (rule "wellFormedAnonEQ" (formula "149") (term "0,0") (ifseqformula "97"))
+ (rule "wellFormedAnonEQ" (formula "149") (term "0,0,0") (ifseqformula "71"))
+ (rule "wellFormedAnon" (formula "149") (term "0,0,0,0"))
+ (rule "wellFormedAnon" (formula "149") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "149") (term "0,0,0,0,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "149") (term "0,0,0,0,0,0,0") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "149") (term "0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "149") (term "1,0"))
+ (rule "replace_int_MAX" (formula "149") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "149") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "149") (term "1,0,0,0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70")) (ifInst "" (formula "96")))
+ (rule "inEqSimp_commuteLeq" (formula "149") (term "1,0"))
+ (rule "shift_paren_or" (formula "138"))
+ (rule "commute_and" (formula "148") (term "0"))
+ (rule "shift_paren_or" (formula "138") (term "0"))
+ (rule "commute_and" (formula "149") (term "0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0"))
+ (builtin "Use Dependency Contract" (formula "48") (ifInst "" (formula "220") (term "0,0,1")) (ifInst "" (formula "42")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "150") (term "1,1,0,0,0") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "150") (term "0,1,1,0,0,0"))
+ (rule "replace_known_left" (formula "150") (term "0,1,0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "218")) (ifInst "" (formula "22")) (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "24")) (ifInst "" (formula "48")) (ifInst "" (formula "24")))
+ (rule "true_left" (formula "150"))
+ (rule "commute_or_2" (formula "138") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0"))
+ (rule "inequality_comparison_simple" (formula "220") (term "1"))
+ (builtin "One Step Simplification" (formula "220"))
+ (rule "replace_known_left" (formula "220") (term "0,0,1,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "220"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0,0,0"))
+ (builtin "Use Dependency Contract" (formula "150") (term "1") (ifInst "" (formula "150") (term "0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "150") (term "1,1,0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "1,0,0,0,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "168")) (ifInst "" (formula "137")) (ifInst "" (formula "135")))
+ (rule "wellFormedAnonEQ" (formula "150") (term "1,0,0") (ifseqformula "125"))
+ (rule "wellFormedAnon" (formula "150") (term "0,1,0,0"))
+ (rule "wellFormedAnon" (formula "150") (term "0,0,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,1,0,0") (ifseqformula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0,0,0,0,0") (ifseqformula "97"))
+ (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,0,1,0,0") (ifseqformula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0,0,0,0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "72")) (ifInst "" (formula "70")) (ifInst "" (formula "96")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "124")))
+ (rule "wellFormedAnon" (formula "150") (term "0,0"))
+ (rule "wellFormedAnon" (formula "150") (term "0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,0,0") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "150") (term "0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "150") (term "1,0"))
+ (rule "replace_int_MIN" (formula "150") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "150") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "150") (term "1,0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")))
+ (rule "inEqSimp_commuteLeq" (formula "150") (term "1,0"))
+ (rule "commute_and" (formula "150") (term "0"))
+ (builtin "Use Dependency Contract" (formula "151") (term "0") (ifInst "" (formula "151") (term "0,0")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "151") (term "1,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,1,0,0,0") (ifseqformula "125"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (term "1,0,0,0,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "169")) (ifInst "" (formula "124")) (ifInst "" (formula "137")) (ifInst "" (formula "135")))
+ (rule "wellFormedAnon" (formula "151") (term "0,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "1,1,0,0") (ifseqformula "125"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,1,0,0"))
+ (rule "wellFormedAnon" (formula "151") (term "0,1,1,0,0"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,1,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,1,0,0") (ifseqformula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (term "0,0,0,0,0,0") (ifseqformula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (term "0,0,0,0,0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "72")) (ifInst "" (formula "96")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "124")))
+ (rule "wellFormedAnonEQ" (formula "151") (term "1,0,0") (ifseqformula "97"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0") (ifseqformula "71"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,1,0,0") (ifseqformula "71"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,1,0,0"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,0,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,1,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,0,0,0") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,0,1,0,0") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "151") (term "0,0,0,0,0,0,1,0,0"))
+ (rule "expand_inInt" (formula "151") (term "1,0"))
+ (rule "replace_int_MIN" (formula "151") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "151") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "151") (term "1,1,0,0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70")) (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70")))
+ (rule "inEqSimp_commuteLeq" (formula "151") (term "1,0"))
+ (rule "commute_and" (formula "151") (term "0"))
+ (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0"))
+ (rule "commute_or_2" (formula "138") (term "0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0"))
+ (rule "commute_or_2" (formula "138") (term "0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0,0"))
+ (rule "commute_or_2" (formula "138") (term "0,0"))
+ (rule "commute_or_2" (formula "138") (term "0"))
+ (rule "commute_or_2" (formula "138"))
+ (rule "ifSplit" (formula "222"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "223"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "222") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "222") (newnames "anonOut_heap_5,result_230,exc_272,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "152"))
+ (builtin "One Step Simplification" (formula "223"))
+ (rule "andLeft" (formula "152"))
+ (rule "translateJavaSubInt" (formula "152") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "152") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "152") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "223") (term "1"))
+ (rule "variableDeclaration" (formula "223") (term "1") (newnames "exc_272_1"))
+ (rule "assignment" (formula "223") (term "1"))
+ (builtin "One Step Simplification" (formula "223"))
+ (rule "emptyStatement" (formula "223") (term "1"))
+ (builtin "One Step Simplification" (formula "223"))
+ (rule "emptyStatement" (formula "223") (term "1"))
+ (rule "tryEmpty" (formula "223") (term "1"))
+ (rule "blockEmptyLabel" (formula "223") (term "1"))
+ (rule "blockEmpty" (formula "223") (term "1"))
+ (rule "methodCallEmpty" (formula "223") (term "1"))
+ (builtin "One Step Simplification" (formula "223"))
+ (rule "emptyModality" (formula "223") (term "1"))
+ (builtin "One Step Simplification" (formula "223"))
+ (rule "closeTrue" (formula "223"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "222"))
+ (branch
+ (builtin "One Step Simplification" (formula "222"))
+ (rule "translateJavaSubInt" (formula "222") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "222") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "222") (term "0,0"))
+ (rule "close" (formula "222") (ifseqformula "23"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "222"))
+ (rule "wellFormedAnon" (formula "222"))
+ (rule "wellFormedAnonEQ" (formula "222") (term "0") (ifseqformula "125"))
+ (rule "wellFormedAnon" (formula "222") (term "0,0"))
+ (rule "wellFormedAnon" (formula "222") (term "0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0") (ifseqformula "97"))
+ (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0,0") (ifseqformula "71"))
+ (rule "wellFormedAnon" (formula "222") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "222") (term "0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0,0,0,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "222") (term "0,0,0,0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "222") (term "1,0,0,0,0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "222") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "70")) (ifInst "" (formula "96")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "124")) (ifInst "" (formula "137")))
+ (rule "closeTrue" (formula "222"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "152"))
+ (builtin "One Step Simplification" (formula "223"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,1,0,1,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,1,1,1,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "97"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "expand_inInt" (formula "152") (term "1,0,0,1,0,0,1"))
+ (rule "expand_inInt" (formula "152") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "152") (term "0,1,1,0,0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "152") (term "1,0,1,0,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "152") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "152") (term "1,0,1,0,0,0,1"))
+ (rule "andLeft" (formula "152"))
+ (rule "andLeft" (formula "152"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "152"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "157"))
+ (rule "exLeft" (formula "156") (inst "sk=i_2"))
+ (rule "andLeft" (formula "156"))
+ (rule "andLeft" (formula "156"))
+ (rule "andLeft" (formula "157"))
+ (rule "andLeft" (formula "156"))
+ (rule "exLeft" (formula "160") (inst "sk=j_2"))
+ (rule "andLeft" (formula "160"))
+ (rule "andLeft" (formula "160"))
+ (rule "notLeft" (formula "162"))
+ (rule "andLeft" (formula "161"))
+ (rule "andLeft" (formula "160"))
+ (rule "eqSymm" (formula "166"))
+ (rule "replace_known_left" (formula "155") (term "0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "true_left" (formula "155"))
+ (rule "inEqSimp_commuteLeq" (formula "158"))
+ (rule "inEqSimp_commuteLeq" (formula "155"))
+ (rule "inEqSimp_commuteLeq" (formula "162"))
+ (rule "inEqSimp_commuteLeq" (formula "159"))
+ (rule "pullOutSelect" (formula "165") (term "2,0") (inst "selectSK=arr_21"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "236")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "98"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "54"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "236")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "98"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0") (ifseqformula "54"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "236")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "98"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "54"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17")))
+ (rule "eqSymm" (formula "166"))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "160"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "195"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "194"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "196"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "193"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "192"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "233")))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "191"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "166") (term "2,0") (inst "selectSK=arr_22"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "237")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "99"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "55"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "237")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "99"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0") (ifseqformula "55"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "237")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "99"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "55"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "157"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "196"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "195"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "197"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "194"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "193"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfUnion" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "234")))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "192"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_23"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "100"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "56"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19")))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "100"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "56"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19")))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0") (ifseqformula "56"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19")))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,1,0,0") (ifseqformula "56"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,1,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19")))
+ (rule "elementOfUnion" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "eqSymm" (formula "2") (term "0,0,0"))
+ (rule "eqSymm" (formula "2") (term "1,0,0"))
+ (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "191"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "192")))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "56"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19")))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "56"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19")))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,1,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (rule "eqSymm" (formula "2") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "192"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")) (ifInst "" (formula "19")))
+ (rule "elementOfUnion" (formula "2") (term "0,0"))
+ (rule "disjointAllFields" (formula "2") (term "0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "162"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_24"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "192"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "193")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "193"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")) (ifInst "" (formula "20")))
+ (rule "elementOfUnion" (formula "1") (term "0,0"))
+ (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "159"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_25"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "240")) (ifInst "" (formula "21")))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_26"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "240")) (ifInst "" (formula "21")))
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "shift_paren_or" (formula "158"))
+ (rule "ifUnfold" (formula "240") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "240") (term "1") (newnames "x_7"))
+ (rule "commute_or_2" (formula "158") (term "1,0"))
+ (rule "shift_paren_or" (formula "158") (term "0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0"))
+ (builtin "Use Dependency Contract" (formula "152") (term "1,1") (ifInst "" (formula "152") (term "0,1,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "169") (term "1,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0,1,0,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "169") (term "1,0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0,1,1,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0,0,1,0,0,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "169") (term "0,1,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "188")) (ifInst "" (formula "76")) (ifInst "" (formula "74")) (ifInst "" (formula "100")) (ifInst "" (formula "100")) (ifInst "" (formula "111")))
+ (rule "wellFormedAnon" (formula "169") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "1,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "169") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "169") (term "0,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "169") (term "0,0,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,1,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "169") (term "0,0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,0,1,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "169") (term "0,0,0,0,0,1,0,0,0"))
+ (rule "expand_inInt" (formula "169") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "169") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "169") (term "0,1,1,0,0"))
+ (rule "replace_known_left" (formula "169") (term "1,0,0,0,0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")))
+ (rule "inEqSimp_commuteLeq" (formula "169") (term "1,0,0"))
+ (builtin "Use Dependency Contract" (formula "152") (term "0,1") (ifInst "" (formula "152") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "189")) (ifInst "" (formula "110")))
+ (rule "wellFormedAnon" (formula "170") (term "1,1,0,0"))
+ (rule "wellFormedAnon" (formula "170") (term "0,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "170") (term "0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnon" (formula "170") (term "0,1,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "170") (term "0,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "76")) (ifInst "" (formula "111")) (ifInst "" (formula "111")) (ifInst "" (formula "117")))
+ (rule "wellFormedAnonEQ" (formula "170") (term "0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "170") (term "0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "170") (term "0,0,0,0"))
+ (rule "wellFormedAnon" (formula "170") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "170") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "170") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "170") (term "0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "170") (term "1,0"))
+ (rule "replace_int_MAX" (formula "170") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "170") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "170") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "100")))
+ (rule "inEqSimp_commuteLeq" (formula "170") (term "1,0"))
+ (builtin "Use Dependency Contract" (formula "153") (term "1,1") (ifInst "" (formula "153") (term "0,1,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "171") (term "1,1,0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "1,0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,1,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,1,1,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,1,0,0,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,1,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "190")) (ifInst "" (formula "76")) (ifInst "" (formula "74")) (ifInst "" (formula "100")) (ifInst "" (formula "100")) (ifInst "" (formula "111")))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "1,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "171") (term "0,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,1,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,1,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0,1,0,0,0"))
+ (rule "expand_inInt" (formula "171") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "171") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "171") (term "0,1,1,0,0"))
+ (rule "replace_known_left" (formula "171") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")))
+ (rule "inEqSimp_commuteLeq" (formula "171") (term "1,0,0"))
+ (builtin "Use Dependency Contract" (formula "153") (term "0,1") (ifInst "" (formula "153") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "191")) (ifInst "" (formula "110")))
+ (rule "wellFormedAnon" (formula "172") (term "0,1,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "1,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnon" (formula "172") (term "0,1,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,1,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "111")) (ifInst "" (formula "117")))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "1,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,1,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,1,0,0"))
+ (rule "expand_inInt" (formula "172") (term "1,0"))
+ (rule "replace_int_MAX" (formula "172") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "172") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "172") (term "1,1,0,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")))
+ (rule "inEqSimp_commuteLeq" (formula "172") (term "1,0"))
+ (builtin "Use Dependency Contract" (formula "52") (ifInst "" (formula "244") (term "0,0,1")) (ifInst "" (formula "46")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "1,1,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "173") (term "0,1,1,0,0,0"))
+ (rule "replace_known_left" (formula "173") (term "1,1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "242")) (ifInst "" (formula "26")) (ifInst "" (formula "19")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "28")) (ifInst "" (formula "52")))
+ (rule "true_left" (formula "173"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0"))
+ (rule "commute_and_2" (formula "169") (term "0"))
+ (rule "commute_and" (formula "170") (term "0"))
+ (builtin "Use Dependency Contract" (formula "154") (term "0,1") (ifInst "" (formula "154") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "172") (term "1,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0,0") (ifseqformula "129"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "1,0,0,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "191")) (ifInst "" (formula "128")) (ifInst "" (formula "141")) (ifInst "" (formula "139")))
+ (rule "wellFormedAnon" (formula "172") (term "0,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "1,1,0,0") (ifseqformula "129"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,1,1,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,1,1,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,1,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")))
+ (rule "wellFormedAnonEQ" (formula "172") (term "1,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,1,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,1,0,0"))
+ (rule "expand_inInt" (formula "172") (term "1,0"))
+ (rule "replace_int_MIN" (formula "172") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "172") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "172") (term "1,0,0,1,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "74")) (ifInst "" (formula "100")))
+ (rule "inEqSimp_commuteLeq" (formula "172") (term "1,0"))
+ (rule "commute_and_2" (formula "170") (term "0"))
+ (rule "inequality_comparison_simple" (formula "244") (term "1"))
+ (builtin "One Step Simplification" (formula "244"))
+ (rule "replace_known_left" (formula "244") (term "0,0,1,0") (ifseqformula "156"))
+ (builtin "One Step Simplification" (formula "244"))
+ (builtin "Use Dependency Contract" (formula "155") (term "0,1") (ifInst "" (formula "155") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "173") (term "1,1,0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "1,0,0,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "192")) (ifInst "" (formula "141")) (ifInst "" (formula "139")))
+ (rule "wellFormedAnonEQ" (formula "173") (term "1,0,0") (ifseqformula "129"))
+ (rule "wellFormedAnon" (formula "173") (term "0,1,0,0"))
+ (rule "wellFormedAnon" (formula "173") (term "0,0,1,0,0"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,1,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "173") (term "0,0,0"))
+ (rule "wellFormedAnon" (formula "173") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "173") (term "0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "173") (term "1,0"))
+ (rule "replace_int_MIN" (formula "173") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "173") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "173") (term "1,0,0,0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")))
+ (rule "inEqSimp_commuteLeq" (formula "173") (term "1,0"))
+ (rule "commute_and" (formula "171") (term "0"))
+ (rule "commute_and" (formula "169") (term "0,0"))
+ (rule "commute_and" (formula "171") (term "0"))
+ (rule "commute_or_2" (formula "158") (term "1,0,0,0,0"))
+ (rule "commute_and" (formula "170") (term "0,0"))
+ (rule "commute_and" (formula "171") (term "0"))
+ (rule "commute_and_2" (formula "169") (term "0"))
+ (rule "commute_and_2" (formula "170") (term "0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0"))
+ (builtin "Use Dependency Contract" (formula "171") (term "1") (ifInst "" (formula "171") (term "0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "190")))
+ (rule "wellFormedAnon" (formula "171") (term "1,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "171") (term "0,1,0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,0,0,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "141")) (ifInst "" (formula "157")))
+ (rule "wellFormedAnon" (formula "171") (term "1,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,1,0,0,0") (ifseqformula "129"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,1,1,0,0,0") (ifseqformula "129"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,1,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,1,1,0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,0,0,0,0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,1,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,1,1,0,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "141")))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,0"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "171") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "171") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "171") (term "1,0,1,0,0"))
+ (rule "replace_known_left" (formula "171") (term "1,0,0,0,0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")))
+ (rule "inEqSimp_commuteLeq" (formula "171") (term "1,0,0"))
+ (rule "commute_and_2" (formula "171") (term "0"))
+ (rule "commute_and" (formula "171") (term "0,0"))
+ (rule "commute_and_2" (formula "171") (term "0"))
+ (builtin "Use Dependency Contract" (formula "172") (term "0") (ifInst "" (formula "172") (term "0,0")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "191")))
+ (rule "wellFormedAnon" (formula "172") (term "1,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,1,0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "141")) (ifInst "" (formula "157")))
+ (rule "wellFormedAnon" (formula "172") (term "1,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0,0") (ifseqformula "129"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,1,1,0,0,0") (ifseqformula "129"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,1,1,0,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,1,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,0,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,1,0,0,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "141")))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "172") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "172") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "172") (term "1,0,1,0,0"))
+ (rule "replace_known_left" (formula "172") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")))
+ (rule "inEqSimp_commuteLeq" (formula "172") (term "1,0,0"))
+ (rule "commute_or_2" (formula "158") (term "1,0,0,0,0,0"))
+ (rule "commute_and_2" (formula "172") (term "0"))
+ (rule "commute_and" (formula "172") (term "0,0"))
+ (rule "commute_and_2" (formula "172") (term "0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0"))
+ (rule "ifSplit" (formula "244"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "245"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "244") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "244") (newnames "anonOut_heap_6,result_231,exc_273,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "173"))
+ (builtin "One Step Simplification" (formula "245"))
+ (rule "andLeft" (formula "173"))
+ (rule "translateJavaSubInt" (formula "173") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "173") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "173") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "245") (term "1"))
+ (rule "variableDeclaration" (formula "245") (term "1") (newnames "exc_273_1"))
+ (rule "assignment" (formula "245") (term "1"))
+ (builtin "One Step Simplification" (formula "245"))
+ (rule "emptyStatement" (formula "245") (term "1"))
+ (builtin "One Step Simplification" (formula "245"))
+ (rule "emptyStatement" (formula "245") (term "1"))
+ (rule "tryEmpty" (formula "245") (term "1"))
+ (rule "blockEmptyLabel" (formula "245") (term "1"))
+ (rule "blockEmpty" (formula "245") (term "1"))
+ (rule "methodCallEmpty" (formula "245") (term "1"))
+ (builtin "One Step Simplification" (formula "245"))
+ (rule "emptyModality" (formula "245") (term "1"))
+ (builtin "One Step Simplification" (formula "245"))
+ (rule "closeTrue" (formula "245"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "244"))
+ (branch
+ (builtin "One Step Simplification" (formula "244"))
+ (rule "translateJavaSubInt" (formula "244") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "244") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "244") (term "0,0"))
+ (rule "close" (formula "244") (ifseqformula "27"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "244"))
+ (rule "wellFormedAnon" (formula "244"))
+ (rule "wellFormedAnon" (formula "244") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "244") (term "0,0") (ifseqformula "129"))
+ (rule "wellFormedAnon" (formula "244") (term "0,0,0"))
+ (rule "wellFormedAnon" (formula "244") (term "0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0") (ifseqformula "101"))
+ (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "244") (term "0,0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "244") (term "0,0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "57"))
+ (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0,0,0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "244") (term "0,0,0,0,0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "244") (term "1,0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "244") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "157")))
+ (rule "closeTrue" (formula "244"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "173"))
+ (builtin "One Step Simplification" (formula "245"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,1,1,1,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,1,0,1,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "andLeft" (formula "173"))
+ (rule "andLeft" (formula "174"))
+ (rule "andLeft" (formula "173"))
+ (rule "andLeft" (formula "174"))
+ (rule "andLeft" (formula "173"))
+ (rule "translateJavaSubInt" (formula "177") (term "3,0"))
+ (rule "replace_known_left" (formula "176") (term "0") (ifseqformula "173"))
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "true_left" (formula "176"))
+ (rule "polySimp_elimSub" (formula "176") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "176") (term "3,0"))
+ (rule "applyEq" (formula "176") (term "2,0") (ifseqformula "96"))
+ (rule "shift_paren_or" (formula "175"))
+ (rule "shift_paren_or" (formula "175") (term "0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "1,0,0,0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "1,0,0,0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "ifUnfold" (formula "249") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "249") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "249") (term "1"))
+ (builtin "One Step Simplification" (formula "249"))
+ (rule "replace_known_left" (formula "249") (term "0,0,1,0") (ifseqformula "173"))
+ (builtin "One Step Simplification" (formula "249"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "1,0,0,0,0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0"))
+ (rule "commute_or_2" (formula "158") (term "0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0"))
+ (rule "commute_or_2" (formula "158") (term "0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0"))
+ (rule "commute_or_2" (formula "158") (term "0"))
+ (rule "commute_or_2" (formula "158"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "158") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0,0,0"))
+ (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0"))
+ (rule "commute_or_2" (formula "175") (term "0"))
+ (rule "commute_or_2" (formula "175"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0"))
+ (rule "commute_or_2" (formula "175") (term "0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0"))
+ (rule "commute_or_2" (formula "175") (term "0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0,0"))
+ (rule "commute_or_2" (formula "175") (term "0,0"))
+ (rule "commute_or_2" (formula "175") (term "0"))
+ (rule "commute_or_2" (formula "175"))
+ (builtin "Use Dependency Contract" (formula "52") (ifInst "" (formula "249") (term "0,0,1")) (ifInst "" (formula "46")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "178") (term "1,1,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnon" (formula "178") (term "0,1,1,0,0,0"))
+ (rule "replace_known_left" (formula "178") (term "1,0,0,0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "178") (ifInst "" (formula "247")) (ifInst "" (formula "19")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "28")) (ifInst "" (formula "52")) (ifInst "" (formula "28")))
+ (rule "true_left" (formula "178"))
+ (rule "ifSplit" (formula "249"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "250"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "249") (term "1"))
+ (rule "methodCallReturn" (formula "249") (term "1"))
+ (rule "assignment" (formula "249") (term "1"))
+ (builtin "One Step Simplification" (formula "249"))
+ (rule "methodCallEmpty" (formula "249") (term "1"))
+ (rule "tryEmpty" (formula "249") (term "1"))
+ (rule "emptyModality" (formula "249") (term "1"))
+ (rule "andRight" (formula "249"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "249"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "249") (userinteraction))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "52") (userinteraction))
+ (rule "close" (formula "249") (ifseqformula "52"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "249"))
+ (rule "closeTrue" (formula "249"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (partition)"
+ (builtin "One Step Simplification" (formula "121"))
+ (builtin "One Step Simplification" (formula "191"))
+ (rule "andLeft" (formula "121"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "1,0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,1,0") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,0,1,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,0,0,0,0,1,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,0,0,0,0,0,1,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "andLeft" (formula "122"))
+ (rule "andLeft" (formula "122"))
+ (rule "andLeft" (formula "124"))
+ (rule "notLeft" (formula "122"))
+ (rule "close" (formula "125") (ifseqformula "124"))
+ )
+ (branch "Pre (partition)"
+ (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "188")) (ifInst "" (formula "187")) (ifInst "" (formula "136")) (ifInst "" (formula "186")) (ifInst "" (formula "188")) (ifInst "" (formula "187")) (ifInst "" (formula "136")) (ifInst "" (formula "186")))
+ (rule "andRight" (formula "189"))
+ (branch "Case 1"
+ (rule "andRight" (formula "189"))
+ (branch "Case 1"
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "189") (userinteraction))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "44") (userinteraction))
+ (rule "close" (formula "189") (ifseqformula "44"))
+ )
+ (branch "Case 2"
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "189") (userinteraction))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "84") (userinteraction))
+ (rule "close" (formula "189") (ifseqformula "84"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "189"))
+ (branch
+ (rule "andRight" (formula "189"))
+ (branch
+ (rule "andRight" (formula "189"))
+ (branch
+ (rule "andRight" (formula "189"))
+ (branch
+ (rule "andRight" (formula "189"))
+ (branch
+ (rule "andRight" (formula "189"))
+ (branch
+ (rule "wellFormedAnon" (formula "189"))
+ (rule "wellFormedAnon" (formula "189") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "189") (term "0,0") (ifseqformula "93"))
+ (rule "wellFormedAnonEQ" (formula "189") (term "0,0,0") (ifseqformula "67"))
+ (rule "wellFormedAnon" (formula "189") (term "0,0,0,0"))
+ (rule "wellFormedAnon" (formula "189") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "189") (term "0,0,0,0,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "189") (term "0,0,0,0,0,0,0") (ifseqformula "38"))
+ (rule "wellFormedAnon" (formula "189") (term "0,0,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "189") (term "1,0,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "11")) (ifInst "" (formula "35")) (ifInst "" (formula "37")) (ifInst "" (formula "47")) (ifInst "" (formula "58")) (ifInst "" (formula "63")) (ifInst "" (formula "66")) (ifInst "" (formula "103")) (ifInst "" (formula "109")))
+ (rule "closeTrue" (formula "189"))
+ )
+ (branch
+ (rule "orRight" (formula "189"))
+ (rule "orRight" (formula "189"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "189"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "189"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "189"))
+ (rule "replace_int_MAX" (formula "189") (term "1,0"))
+ (rule "replace_int_MIN" (formula "189") (term "0,1"))
+ (rule "replace_known_left" (formula "189") (term "0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "189"))
+ (rule "inEqSimp_leqRight" (formula "137"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "189"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "115"))
+ (rule "polySimp_mulComm0" (formula "115") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "119"))
+ (rule "polySimp_mulComm0" (formula "119") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,0"))
+ (rule "jmod_axiom" (formula "75") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "115"))
+ (rule "polySimp_mulComm0" (formula "115") (term "1"))
+ (rule "polySimp_rightDist" (formula "115") (term "1"))
+ (rule "mul_literals" (formula "115") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "115") (term "1,1"))
+ (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "122") (term "2,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "eqSymm" (formula "121"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "118"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1"))
+ (rule "polySimp_rightDist" (formula "118") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "1,1"))
+ (rule "mul_literals" (formula "118") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "118") (term "1,1"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "118"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "121") (term "2,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "eqSymm" (formula "120"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76") (term "0,0,0"))
+ (rule "mul_literals" (formula "76") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "mul_literals" (formula "55") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "0,0,0"))
+ (rule "mul_literals" (formula "81") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "189"))
+ (rule "replace_int_MAX" (formula "189") (term "1,0"))
+ (rule "replace_int_MIN" (formula "189") (term "0,1"))
+ (rule "replace_known_left" (formula "189") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "189"))
+ (rule "inEqSimp_leqRight" (formula "137"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "189"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "119"))
+ (rule "polySimp_mulComm0" (formula "119") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "115"))
+ (rule "polySimp_mulComm0" (formula "115") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "eqSymm" (formula "107") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,0"))
+ (rule "jmod_axiom" (formula "75") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "119"))
+ (rule "polySimp_mulComm0" (formula "119") (term "1"))
+ (rule "polySimp_rightDist" (formula "119") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "1,1"))
+ (rule "mul_literals" (formula "119") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "119") (term "1,1"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "122") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "114"))
+ (rule "polySimp_mulComm0" (formula "114") (term "1"))
+ (rule "polySimp_rightDist" (formula "114") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,1"))
+ (rule "mul_literals" (formula "114") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,1"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "121") (term "2,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "mul_literals" (formula "55") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76") (term "0,0,0"))
+ (rule "mul_literals" (formula "76") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "0,0,0"))
+ (rule "mul_literals" (formula "81") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "53"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "189"))
+ (rule "orRight" (formula "189"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "189"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "189"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "189"))
+ (rule "orRight" (formula "189"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "68")))
+ (rule "closeTrue" (formula "189"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "189"))
+ (rule "orRight" (formula "189"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "189"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "18")))
+ (rule "closeTrue" (formula "189"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (PartitionResult)"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,1,0,0,1,0,1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,0,0") (ifseqformula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,1,0,0,1,0") (ifseqformula "89"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,1,0,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,1,0,0,1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,0,1,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,1,1,0,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,0,1,1,0,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "92"))
+ (rule "notLeft" (formula "90"))
+ (rule "close" (formula "95") (ifseqformula "94"))
+ )
+ (branch "Pre (PartitionResult)"
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0") (ifseqformula "64"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "148") (term "1"))
+ (rule "replace_int_MAX" (formula "148") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "148") (term "0,1,1"))
+ (rule "replace_known_left" (formula "148") (term "0,0,0,0,0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")) (ifInst "" (formula "63")) (ifInst "" (formula "82")))
+ (rule "inEqSimp_leqRight" (formula "96"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "148"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "59") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "eqSymm" (formula "59") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "54"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74") (term "0,0,0"))
+ (rule "times_zero_2" (formula "74") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0,0,0"))
+ (rule "jmod_axiom" (formula "71") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "0,0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1"))
+ (rule "mul_literals" (formula "54") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74") (term "0,0,0"))
+ (rule "mul_literals" (formula "74") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "53"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "55") (term "0,1,1,0,0,0") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "55") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,1,1,0,0,0"))
+ (rule "qeq_literals" (formula "55") (term "0,0,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "polySimp_addAssoc" (formula "55") (term "1,0,0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "81") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "closeFalse" (formula "81"))
+ )
+ )
+ (branch "Exceptional Post (equal_buckets)"
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "80")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,0,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "close" (formula "88") (ifseqformula "87"))
+ )
+ (branch "Pre (equal_buckets)"
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "80")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "146") (term "1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "65")))
+ (rule "wellFormedAnonEQ" (formula "146") (ifseqformula "64"))
+ (rule "wellFormedAnon" (formula "146") (term "0"))
+ (rule "wellFormedAnon" (formula "146") (term "0,0"))
+ (rule "wellFormedAnonEQ" (formula "146") (term "0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "146") (term "0,0,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "146") (term "0,0,0,0,0"))
+ (rule "replace_known_left" (formula "146") (term "1") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")))
+ (rule "closeTrue" (formula "146"))
+ )
+ (branch "Null reference (classifier = null)"
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "93")))
+ (rule "closeTrue" (formula "146"))
+ )
+ )
+ (branch "Exceptional Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "80")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,0,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,0,0,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "close" (formula "84") (ifseqformula "83"))
+ )
+ (branch "Pre (num_buckets)"
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "80")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (term "1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "65")))
+ (rule "wellFormedAnonEQ" (formula "142") (ifseqformula "64"))
+ (rule "wellFormedAnon" (formula "142") (term "0"))
+ (rule "wellFormedAnon" (formula "142") (term "0,0"))
+ (rule "wellFormedAnonEQ" (formula "142") (term "0,0,0") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "142") (term "0,0,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnon" (formula "142") (term "0,0,0,0,0"))
+ (rule "replace_known_left" (formula "142") (term "1,0,0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")) (ifInst "" (formula "63")))
+ (rule "closeTrue" (formula "142"))
+ )
+ (branch "Null reference (classifier = null)"
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "89")))
+ (rule "closeTrue" (formula "142"))
+ )
+ )
+ (branch "Exceptional Post (from_sorted_samples)"
+ (builtin "One Step Simplification" (formula "117"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "67"))
+ (rule "notLeft" (formula "65"))
+ (rule "close" (formula "69") (ifseqformula "68"))
+ )
+ (branch "Pre (from_sorted_samples)"
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "wellFormedAnon" (formula "115") (term "0,0,0,0,1"))
+ (rule "wellFormedAnon" (formula "115") (term "0,0,0,0,0,1"))
+ (rule "wellFormedAnonEQ" (formula "115") (term "0,0,0,0,0,0,1") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,1,1,0,0,1") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,1,1,0,0,0,1") (ifseqformula "46"))
+ (rule "wellFormedAnonEQ" (formula "115") (term "0,0,0,0,0,0,0,1") (ifseqformula "36"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,0,1,1,0,0,1") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")))
+ (rule "wellFormedAnon" (formula "115") (term "0,0,0,0,1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,0,1,1,0,0,0,1") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "9")) (ifInst "" (formula "33")))
+ (rule "expand_inInt" (formula "115") (term "1,0,1"))
+ (rule "expand_inInt" (formula "115") (term "1,1"))
+ (rule "replace_int_MAX" (formula "115") (term "1,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "115") (term "0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "115") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "115") (term "1,0,1,1"))
+ (rule "replace_known_left" (formula "115") (term "0,1,0,1") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "inEqSimp_leqRight" (formula "63"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "1,0,1"))
+ (rule "replace_known_left" (formula "115") (term "1,0,1") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "inEqSimp_homoInEq0" (formula "53"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,0,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_rightDist" (formula "53") (term "1"))
+ (rule "mul_literals" (formula "53") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "1"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "20"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "54") (term "0,1,1,0,0,0") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0,0,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0,0,1,1,0,0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0,0,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0,0,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,1,1,0,0,0"))
+ (rule "qeq_literals" (formula "54") (term "0,0,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_addAssoc" (formula "54") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "1"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "25"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "21"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "26"))
+ (rule "mul_literals" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "18"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_and_subsumption3" (formula "47") (term "0,0,0"))
+ (rule "leq_literals" (formula "47") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_and_subsumption3" (formula "23") (term "0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "nnf_imp2or" (formula "53") (term "0"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaMulInt" (formula "44") (term "0,0"))
+ (rule "translateJavaMod" (formula "43") (term "0"))
+ (rule "translateJavaDivInt" (formula "38") (term "1"))
+ (rule "translateJavaSubInt" (formula "44") (term "0"))
+ (rule "polySimp_elimSub" (formula "44") (term "0"))
+ (rule "mul_literals" (formula "44") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "39"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_homoInEq0" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "jmod_axiom" (formula "43") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "polySimp_rightDist" (formula "39") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1"))
+ (rule "mul_literals" (formula "39") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "117") (term "1,1,1") (ifseqformula "41"))
+ (rule "leq_literals" (formula "117") (term "0,1,1,1"))
+ (builtin "One Step Simplification" (formula "117"))
+ (rule "newSym_eq" (formula "43") (inst "newSymDef=mul(int::final(result_220,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "43") (term "1,1"))
+ (rule "add_zero_right" (formula "43") (term "1"))
+ (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "43"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "52") (term "1,2,1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "118") (term "0,1,1") (ifseqformula "44"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "44"))
+ (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "44"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "44"))
+ (rule "inEqSimp_homoInEq1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "elimGcdLeq" (formula "118") (term "1,1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "1,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "0,0,0,0,1,0,1,1"))
+ (rule "sub_literals" (formula "118") (term "0,0,0,0,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "118") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "mul_literals" (formula "118") (term "0,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "118") (term "0,0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "118") (term "0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "118") (term "0,0,0,0,0,1,1"))
+ (rule "add_zero_left" (formula "118") (term "0,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "118") (term "0,1,0,1,1"))
+ (rule "add_literals" (formula "118") (term "1,1,0,1,0,1,1"))
+ (rule "times_zero_1" (formula "118") (term "1,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "118") (term "0,1,0,1,1"))
+ (rule "qeq_literals" (formula "118") (term "1,0,1,1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "polySimp_pullOutFactor0" (formula "118") (term "0,0,1,1"))
+ (rule "add_literals" (formula "118") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "118") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "118") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "38"))
+ (rule "mul_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "40"))
+ (rule "mul_literals" (formula "38") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "mul_literals" (formula "38") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "38") (term "0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "57"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "1"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "47") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "47") (term "1,0") (ifseqformula "35"))
+ (rule "wellFormedAnon" (formula "47") (term "0,1,0"))
+ (rule "replace_known_right" (formula "47") (term "0,0,0") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "11")) (ifInst "" (formula "32")) (ifInst "" (formula "34")) (ifInst "" (formula "48")))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "translateJavaMulInt" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "translateJavaMulInt" (formula "51") (term "1"))
+ (rule "mul_literals" (formula "51") (term "1"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "151")))
+ (rule "true_left" (formula "85"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "149")))
+ (rule "true_left" (formula "84"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "notLeft" (formula "83"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "121")))
+ (rule "true_left" (formula "70"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "115")))
+ (rule "true_left" (formula "67"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "113")))
+ (rule "true_left" (formula "66"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "111")))
+ (rule "true_left" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "109")))
+ (rule "true_left" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "107")))
+ (rule "true_left" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "105")))
+ (rule "true_left" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "103")))
+ (rule "true_left" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "101")))
+ (rule "true_left" (formula "60"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "98")))
+ (rule "true_left" (formula "58"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "98")))
+ (rule "true_left" (formula "58"))
+ (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "35") (term "0,1,0") (ifseqformula "57"))
+ (rule "distributeIntersection" (formula "30") (term "0"))
+ (rule "distributeIntersection" (formula "29") (term "0"))
+ (rule "distributeIntersection" (formula "30") (term "0,0"))
+ (rule "distributeIntersection" (formula "30") (term "1,0"))
+ (rule "distributeIntersection" (formula "29") (term "1,0"))
+ (rule "distributeIntersection" (formula "29") (term "0,0"))
+ (rule "distributeIntersection" (formula "30") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "30") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "30") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "30") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "29") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "29") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "29") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "29") (term "0,0,0"))
+ (rule "unionEqualsEmpty" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "83"))
+ (rule "eqSymm" (formula "82"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "82"))
+ (rule "eqSymm" (formula "81"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "81"))
+ (rule "eqSymm" (formula "80"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "80"))
+ (rule "eqSymm" (formula "79"))
+ (rule "unionEqualsEmpty" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "79"))
+ (rule "eqSymm" (formula "78"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "eqSymm" (formula "78"))
+ (rule "eqSymm" (formula "77"))
+ (rule "unionEqualsEmpty" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "77"))
+ (rule "eqSymm" (formula "76"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "eqSymm" (formula "76"))
+ (rule "eqSymm" (formula "75"))
+ (rule "commuteUnion" (formula "55") (term "1,1,1"))
+ (rule "commuteUnion" (formula "55") (term "0,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "47")) (ifInst "" (formula "48")) (ifInst "" (formula "51")) (ifInst "" (formula "52")) (ifInst "" (formula "53")) (ifInst "" (formula "54")))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "translateJavaMulInt" (formula "28") (term "1"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "translateJavaMulInt" (formula "28") (term "1"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "149")))
+ (rule "true_left" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "147")))
+ (rule "true_left" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "119")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "113")))
+ (rule "true_left" (formula "38"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "111")))
+ (rule "true_left" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "109")))
+ (rule "true_left" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "107")))
+ (rule "true_left" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "105")))
+ (rule "true_left" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "103")))
+ (rule "true_left" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "101")))
+ (rule "true_left" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "99")))
+ (rule "true_left" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "97")))
+ (rule "true_left" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "95")))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "55"))
+ (rule "eqSymm" (formula "28"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "28"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "17"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_left" (formula "133") (term "0,0,0,0,0,1,1,0,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "75")) (ifInst "" (formula "74")) (ifInst "" (formula "75")) (ifInst "" (formula "6")) (ifInst "" (formula "74")))
+ (rule "inEqSimp_leqRight" (formula "133"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "1"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "45") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "45") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "45") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "57"))
+ (rule "notLeft" (formula "56"))
+ (rule "notLeft" (formula "55"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55") (term "1"))
+ (rule "expand_inInt" (formula "55") (term "1,0"))
+ (rule "expand_inInt" (formula "55") (term "0,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,0,0"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "39"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "36"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "1"))
+ (rule "mul_literals" (formula "58") (term "1,1,0"))
+ (rule "greater_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_contradInEq5" (formula "57") (ifseqformula "1"))
+ (rule "mul_literals" (formula "57") (term "1,1,0"))
+ (rule "greater_literals" (formula "57") (term "0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "qeq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "closeFalse" (formula "57"))
+ )
+ )
+ (branch "Null Reference (_storage = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "113")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_unique)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "andLeft" (formula "38"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "1,0") (ifseqformula "38"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "0,1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "close" (formula "41") (ifseqformula "40"))
+ )
+ (branch "Pre (copy_unique)"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "87")) (ifInst "" (formula "87")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,1,1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,0,0,0,0,1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "2")))
+ (rule "wellFormedAnonEQ" (formula "88") (term "0,0,0,0,0,1") (ifseqformula "28"))
+ (rule "wellFormedAnon" (formula "88") (term "0,0,0,0,0,0,1"))
+ (rule "expand_inInt" (formula "88") (term "1,0,1"))
+ (rule "expand_inInt" (formula "88") (term "1,0,0,0,0,1"))
+ (rule "expand_inInt" (formula "88") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "88") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,0,1"))
+ (rule "replace_known_left" (formula "88") (term "0,0,0,0,0,0,0,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "25")) (ifInst "" (formula "27")) (ifInst "" (formula "3")))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "88") (term "0,0,0,0,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "1,0,0,0,1"))
+ (rule "mul_literals" (formula "88") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0,1,0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0,1,0,0,1"))
+ (rule "add_literals" (formula "88") (term "0,0,0,1,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "88") (term "1,0,1,1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,1,0,0,1"))
+ (rule "add_literals" (formula "88") (term "0,0,1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "88") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "13"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "0,0"))
+ (rule "expand_inInt" (formula "32") (term "1,0"))
+ (rule "expand_inInt" (formula "32") (term "1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "34"))
+ (rule "replace_known_left" (formula "90") (term "0,1,0,1") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "replace_known_left" (formula "90") (term "1,0,1") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_subsumption0" (formula "90") (term "0,1,0,1") (ifseqformula "36"))
+ (rule "leq_literals" (formula "90") (term "0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "translateJavaMulInt" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "translateJavaMulInt" (formula "20") (term "1"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "121")))
+ (rule "true_left" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "119")))
+ (rule "true_left" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "91")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "85")))
+ (rule "true_left" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "83")))
+ (rule "true_left" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "81")))
+ (rule "true_left" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "79")))
+ (rule "true_left" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "77")))
+ (rule "true_left" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "75")))
+ (rule "true_left" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "73")))
+ (rule "true_left" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "71")))
+ (rule "true_left" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "69")))
+ (rule "true_left" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "67")))
+ (rule "true_left" (formula "27"))
+ (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "26"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "26"))
+ (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "26"))
+ (rule "distributeIntersection" (formula "28") (term "0"))
+ (rule "distributeIntersection" (formula "27") (term "0"))
+ (rule "distributeIntersection" (formula "28") (term "0,0"))
+ (rule "distributeIntersection" (formula "28") (term "1,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,0"))
+ (rule "distributeIntersection" (formula "28") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "28") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "28") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "28") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "53"))
+ (rule "eqSymm" (formula "52"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "52"))
+ (rule "eqSymm" (formula "51"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "51"))
+ (rule "eqSymm" (formula "50"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "50"))
+ (rule "eqSymm" (formula "49"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "49"))
+ (rule "eqSymm" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "47"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "47"))
+ (rule "eqSymm" (formula "46"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "46"))
+ (rule "eqSymm" (formula "45"))
+ (rule "commuteUnion_2" (formula "26") (term "0,1"))
+ (rule "commuteUnion" (formula "26") (term "1,1,1"))
+ (rule "commuteUnion" (formula "31") (term "0,0,0,1,0"))
+ (rule "commuteUnion" (formula "31") (term "1,1,0,1,0"))
+ (rule "commuteUnion" (formula "26") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "31") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "26") (term "0,1"))
+ (rule "commuteUnion" (formula "31") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "26") (term "1"))
+ (rule "commuteUnion_2" (formula "31") (term "0,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "22")) (ifInst "" (formula "23")) (ifInst "" (formula "24")) (ifInst "" (formula "25")))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "translateJavaMulInt" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "1"))
+ (rule "translateJavaMulInt" (formula "36") (term "1"))
+ (rule "mul_literals" (formula "36") (term "1"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "119")))
+ (rule "true_left" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "117")))
+ (rule "true_left" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "89")))
+ (rule "true_left" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "83")))
+ (rule "true_left" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "81")))
+ (rule "true_left" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "79")))
+ (rule "true_left" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "77")))
+ (rule "true_left" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "75")))
+ (rule "true_left" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "73")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "71")))
+ (rule "true_left" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "69")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "67")))
+ (rule "true_left" (formula "38"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "65")))
+ (rule "true_left" (formula "37"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "26"))
+ (rule "eqSymm" (formula "36"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "replace_known_right" (formula "103") (term "0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "44")))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "translateJavaMulInt" (formula "40") (term "0,0"))
+ (rule "translateJavaMod" (formula "39") (term "0"))
+ (rule "translateJavaDivInt" (formula "34") (term "1"))
+ (rule "translateJavaSubInt" (formula "40") (term "0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0"))
+ (rule "mul_literals" (formula "40") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "35"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "jmod_axiom" (formula "39") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1"))
+ (rule "mul_literals" (formula "35") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "110") (term "1,0") (ifseqformula "37"))
+ (rule "leq_literals" (formula "110") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "33"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "36"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "37"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "newSym_eq" (formula "39") (inst "newSymDef=mul(int::final(result_220,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "39") (term "1,1"))
+ (rule "add_zero_right" (formula "39") (term "1"))
+ (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "39"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "applyEq" (formula "39") (term "0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "40"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "37") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "elimGcdLeq_antec" (formula "47") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))"))
+ (rule "neg_literal" (formula "47") (term "0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0"))
+ (rule "qeq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "35"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "mul_literals" (formula "33") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "34"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "43") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "43") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "commuteUnion_2" (formula "44") (term "0,0"))
+ (rule "commuteUnion" (formula "44") (term "1,1,0"))
+ (rule "commuteUnion" (formula "44") (term "0,0,0"))
+ (rule "commuteUnion_2" (formula "44") (term "0,0"))
+ (rule "commuteUnion_2" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "commute_or" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption3" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "cut_direct" (formula "28") (term "0,0"))
+ (branch "CUT: result_219 = null TRUE"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "nnf_notAnd" (formula "43") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "26"))
+ (rule "leq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "22") (term "0"))
+ (rule "expand_inShort" (formula "22"))
+ (rule "replace_short_MIN" (formula "22") (term "0,1"))
+ (rule "replace_short_MAX" (formula "22") (term "1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "24"))
+ (rule "leq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "arrayLengthNotNegative" (formula "22") (term "0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "23"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ (branch "CUT: result_219 = null FALSE"
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "nnf_notAnd" (formula "43") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "26"))
+ (rule "qeq_literals" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "22") (term "0"))
+ (rule "expand_inShort" (formula "22"))
+ (rule "replace_short_MIN" (formula "22") (term "0,1"))
+ (rule "replace_short_MAX" (formula "22") (term "1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "arrayLengthNotNegative" (formula "22") (term "0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "23"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_storage = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (sample = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (sample = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (sample = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (sample)"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "andLeft" (formula "28"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "29"))
+ (rule "close" (formula "33") (ifseqformula "32"))
+ )
+ (branch "Pre (sample)"
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "74")) (ifInst "" (formula "72")) (ifInst "" (formula "74")) (ifInst "" (formula "2")) (ifInst "" (formula "72")) (ifInst "" (formula "8")))
+ (rule "wellFormedAnon" (formula "75") (term "0,0,1,0"))
+ (rule "expand_inInt" (formula "75") (term "1,0,1,0"))
+ (rule "expand_inInt" (formula "75") (term "1,1,0"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,1,0"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "75") (term "0,0,1"))
+ (rule "replace_known_left" (formula "75") (term "0,1,1,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "1")) (ifInst "" (formula "25")) (ifInst "" (formula "3")))
+ (rule "polySimp_elimSub" (formula "75") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,1"))
+ (rule "measuredByCheck" (formula "75") (term "1") (ifseqformula "9"))
+ (rule "precOfPair" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "precOfInt" (formula "75") (term "0,1"))
+ (rule "precOfInt" (formula "75") (term "1,1"))
+ (rule "leq_literals" (formula "75") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "less_literals" (formula "75") (term "1,1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1"))
+ (rule "replace_known_left" (formula "75") (term "1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1"))
+ (rule "replace_known_left" (formula "75") (term "1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "translateJavaMulInt" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "translateJavaMulInt" (formula "20") (term "1"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "103")))
+ (rule "true_left" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "101")))
+ (rule "true_left" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "48"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "47"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "46"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "45"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "73")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "43"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "42"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "67")))
+ (rule "true_left" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "65")))
+ (rule "true_left" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "63")))
+ (rule "true_left" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "61")))
+ (rule "true_left" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "59")))
+ (rule "true_left" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "57")))
+ (rule "true_left" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "55")))
+ (rule "true_left" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "53")))
+ (rule "true_left" (formula "29"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "50")))
+ (rule "true_left" (formula "27"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "50")))
+ (rule "true_left" (formula "27"))
+ (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "26"))
+ (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "26"))
+ (rule "distributeIntersection" (formula "27") (term "0"))
+ (rule "distributeIntersection" (formula "28") (term "0"))
+ (rule "distributeIntersection" (formula "27") (term "0,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "distributeIntersection" (formula "27") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "28") (term "0"))
+ (rule "distributeIntersection" (formula "29") (term "0"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "distributeIntersection" (formula "29") (term "0,0"))
+ (rule "distributeIntersection" (formula "29") (term "1,0"))
+ (rule "distributeIntersection" (formula "30") (term "0,0"))
+ (rule "distributeIntersection" (formula "30") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "unionEqualsEmpty" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "38"))
+ (rule "eqSymm" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "eqSymm" (formula "37"))
+ (rule "eqSymm" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "36"))
+ (rule "eqSymm" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "35"))
+ (rule "eqSymm" (formula "34"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "34"))
+ (rule "eqSymm" (formula "33"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "33"))
+ (rule "eqSymm" (formula "32"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "32"))
+ (rule "eqSymm" (formula "31"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "31"))
+ (rule "eqSymm" (formula "30"))
+ (rule "commuteUnion" (formula "26") (term "0,0,1"))
+ (rule "commuteUnion" (formula "26") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "26") (term "0,1"))
+ (rule "commuteUnion" (formula "26") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "26") (term "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "notLeft" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "85"))
+ (rule "replace_known_right" (formula "85") (term "0,1,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "30")) (ifInst "" (formula "29")) (ifInst "" (formula "31")) (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "36")))
+ (rule "closeTrue" (formula "85"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..1d42530
--- /dev/null
+++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,3713 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 21:45:21 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 21:45:21 CEST 2022
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "5899")
+
+(branch "dummy ID"
+(rule "eqSymm" (formula "1") (term "1,0,0,1,0,1,1") (newnames "heapAtPre_0,o,f"))
+ (builtin "One Step Simplification" (formula "1"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "6"))
+(rule "notLeft" (formula "6"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "3"))
+(rule "translateJavaSubInt" (formula "8") (term "0,0"))
+(rule "translateJavaSubInt" (formula "13") (term "1"))
+(rule "translateJavaSubInt" (formula "14") (term "0"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "8") (term "0,0"))
+(rule "polySimp_elimSub" (formula "13") (term "1"))
+(rule "polySimp_elimSub" (formula "14") (term "0"))
+(rule "polySimp_addComm0" (formula "8") (term "0,0"))
+(rule "polySimp_addComm0" (formula "13") (term "1"))
+(rule "polySimp_addComm0" (formula "14") (term "0"))
+(rule "disjointDefinition" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "commuteIntersection" (formula "16") (term "0"))
+(rule "methodBodyExpand" (formula "19") (term "1") (newnames "heapBefore_sample,savedHeapBefore_sample,savedHeapBefore_sample_0"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "variableDeclarationAssign" (formula "19") (term "1"))
+(rule "variableDeclaration" (formula "19") (term "1") (newnames "parameters"))
+(rule "instanceCreationAssignmentUnfoldArguments" (formula "19") (term "1"))
+(rule "variableDeclarationAssign" (formula "19") (term "1"))
+(rule "variableDeclaration" (formula "19") (term "1") (newnames "var"))
+(rule "assignmentSubtractionInt" (formula "19") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "17") (term "1") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,1"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,1"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,1"))
+ (rule "qeq_literals" (formula "17") (term "0,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_leqRight" (formula "17"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (ifseqformula "1"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "1,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0"))
+ (rule "add_zero_right" (formula "13") (term "0"))
+ (rule "leq_literals" (formula "13"))
+ (rule "closeFalse" (formula "13"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_SampleParameters,self_77,exc_77,heapAfter_SampleParameters,anon_heap_SampleParameters") (contract "de.wiesler.SampleParameters[de.wiesler.SampleParameters::SampleParameters(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (SampleParameters)"
+ (builtin "One Step Simplification" (formula "18"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,1,0,0,1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "replace_known_right" (formula "20") (term "0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "blockEmpty" (formula "30") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "30") (newnames "anonOut_heap,result_65,exc_78,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "26"))
+ (rule "translateJavaSubInt" (formula "26") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "31") (term "1"))
+ (rule "variableDeclaration" (formula "31") (term "1") (newnames "exc_78_1"))
+ (rule "assignment" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "emptyStatement" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "emptyStatement" (formula "31") (term "1"))
+ (rule "tryEmpty" (formula "31") (term "1"))
+ (rule "blockEmptyLabel" (formula "31") (term "1"))
+ (rule "blockEmpty" (formula "31") (term "1"))
+ (rule "methodCallEmpty" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "emptyModality" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeTrue" (formula "31"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "translateJavaSubInt" (formula "30") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0"))
+ (rule "close" (formula "30") (ifseqformula "8"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "wellFormedAnonEQ" (formula "30") (ifseqformula "18"))
+ (rule "replace_known_left" (formula "30") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "30"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (term "0,1,1,1,0") (ifseqformula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (term "0,1,0,1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "26"))
+ (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "narrowSelectArrayType" (formula "29") (term "2,1") (ifseqformula "1") (ifseqformula "33"))
+ (rule "shift_paren_or" (formula "28"))
+ (rule "shift_paren_or" (formula "28") (term "0"))
+ (rule "commute_or_2" (formula "28"))
+ (rule "ifUnfold" (formula "34") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "replace_known_left" (formula "34") (term "0,0,1,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "13") (term "0"))
+ (rule "expand_inShort" (formula "13"))
+ (rule "replace_short_MIN" (formula "13") (term "0,1"))
+ (rule "replace_short_MAX" (formula "13") (term "1,0"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "ifSplit" (formula "37"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "37") (term "1"))
+ (rule "methodCallUnfoldArguments" (formula "37") (term "1"))
+ (rule "variableDeclarationAssign" (formula "37") (term "1"))
+ (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "37") (term "1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "variableDeclarationAssign" (formula "37") (term "1"))
+ (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_2"))
+ (rule "assignment" (formula "37") (term "1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "variableDeclarationAssign" (formula "37") (term "1"))
+ (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "37") (term "1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "variableDeclarationAssign" (formula "37") (term "1"))
+ (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_4"))
+ (rule "assignment_read_attribute_final" (formula "37"))
+ (branch "Normal Execution (parameters != null)"
+ (builtin "One Step Simplification" (formula "37"))
+ (builtin "Use Operation Contract" (formula "37") (newnames "heapBefore_select_n,exc_79,heapAfter_select_n,anon_heap_select_n") (contract "de.wiesler.Functions[de.wiesler.Functions::select_n([I,int,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (select_n)"
+ (builtin "One Step Simplification" (formula "39"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaSubInt" (formula "34") (term "2,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "2,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "2,1,0"))
+ (rule "blockEmpty" (formula "41") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "41") (newnames "anonOut_heap_0,result_66,exc_80,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "37"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaSubInt" (formula "37") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "35") (term "2,0") (ifseqformula "37") (ifseqformula "41"))
+ (rule "variableDeclarationAssign" (formula "42") (term "1"))
+ (rule "variableDeclaration" (formula "42") (term "1") (newnames "exc_80_1"))
+ (rule "assignment" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "emptyStatement" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "emptyStatement" (formula "42") (term "1"))
+ (rule "tryEmpty" (formula "42") (term "1"))
+ (rule "blockEmptyLabel" (formula "42") (term "1"))
+ (rule "blockEmpty" (formula "42") (term "1"))
+ (rule "methodCallEmpty" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "emptyModality" (formula "42") (term "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "closeTrue" (formula "42"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "41"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,0"))
+ (rule "close" (formula "41") (ifseqformula "8"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "wellFormedAnonEQ" (formula "41") (ifseqformula "34"))
+ (rule "wellFormedAnon" (formula "41") (term "0"))
+ (rule "replace_known_left" (formula "41") (term "1,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "33")))
+ (rule "wellFormedAnonEQ" (formula "41") (ifseqformula "21"))
+ (rule "replace_known_left" (formula "41") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "41"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "37"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,1,1,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,1,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,0,0,1,1,1,0") (ifseqformula "21"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,0,0,1,0,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "39"))
+ (rule "replace_known_left" (formula "40") (term "0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "narrowSelectArrayType" (formula "40") (term "2,1") (ifseqformula "1") (ifseqformula "44"))
+ (rule "shift_paren_or" (formula "39"))
+ (rule "shift_paren_or" (formula "39") (term "0"))
+ (rule "commute_or_2" (formula "39") (term "1,0,0"))
+ (rule "shift_paren_or" (formula "39") (term "0,0"))
+ (rule "shift_paren_or" (formula "39") (term "0,0,0"))
+ (rule "commute_or_2" (formula "39"))
+ (rule "commute_or_2" (formula "39") (term "0"))
+ (rule "ifUnfold" (formula "45") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_1"))
+ (rule "inequality_comparison_simple" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "replace_known_left" (formula "45") (term "0,0,1,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "ifSplit" (formula "45"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "46"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "46"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "45") (term "1"))
+ (rule "variableDeclarationGhostAssign" (formula "45") (term "1"))
+ (rule "variableDeclarationGhost" (formula "45") (term "1") (newnames "before_sort"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "methodCallUnfoldArguments" (formula "45") (term "1"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_5"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_6"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_7"))
+ (rule "compound_addition_2" (formula "45") (term "1") (inst "#v1=x_1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_3"))
+ (rule "assignment_read_attribute_final" (formula "45"))
+ (branch "Normal Execution (parameters != null)"
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "assignmentAdditionInt" (formula "45") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (userinteraction))
+ (rule "andRight" (formula "45") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "45") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "45"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "17"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "15"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "14"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "translateJavaSubInt" (formula "29") (term "0"))
+ (rule "translateJavaMod" (formula "28") (term "0"))
+ (rule "translateJavaDivInt" (formula "23") (term "1"))
+ (rule "translateJavaMulInt" (formula "29") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "0"))
+ (rule "mul_literals" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "24"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0"))
+ (rule "jmod_axiom" (formula "28") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1"))
+ (rule "mul_literals" (formula "24") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "newSym_eq" (formula "28") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "28") (term "1,1"))
+ (rule "add_zero_right" (formula "28") (term "1"))
+ (rule "applyEq" (formula "29") (term "0,0") (ifseqformula "28"))
+ (rule "eqSymm" (formula "29"))
+ (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "29"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "29"))
+ (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "24"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "24"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "11"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "45") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "15"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "14"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaMulInt" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "24"))
+ (rule "distributeIntersection" (formula "25") (term "0"))
+ (rule "distributeIntersection" (formula "25") (term "1,0"))
+ (rule "distributeIntersection" (formula "25") (term "0,0"))
+ (rule "distributeIntersection" (formula "25") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "25") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "25") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "25") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "50"))
+ (rule "eqSymm" (formula "49"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "49"))
+ (rule "eqSymm" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "47"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "47"))
+ (rule "eqSymm" (formula "46"))
+ (rule "commuteUnion_2" (formula "24") (term "0,1"))
+ (rule "commuteUnion" (formula "24") (term "1,1,1"))
+ (rule "commuteUnion" (formula "24") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "24") (term "0,1"))
+ (rule "commuteUnion_2" (formula "24") (term "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "30") (term "1,0"))
+ (rule "expand_inInt" (formula "30") (term "0,0"))
+ (rule "expand_inInt" (formula "30") (term "1"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,1"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1"))
+ (rule "mul_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "31"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_contradInEq1" (formula "30") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "closeFalse" (formula "30"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "translateJavaAddInt" (formula "45") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_8"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "Use Operation Contract" (formula "45") (newnames "heapBefore_sort,exc_81,heapAfter_sort,anon_heap_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0"))
+ (branch "Post (sort)"
+ (builtin "One Step Simplification" (formula "47"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaSubInt" (formula "42") (term "2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "42") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "1,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,0,1,0"))
+ (rule "blockEmpty" (formula "52") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "52") (newnames "anonOut_heap_1,result_67,exc_82,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "53"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "44") (term "2,0") (ifseqformula "48") (ifseqformula "52"))
+ (rule "variableDeclarationAssign" (formula "53") (term "1"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "exc_82_1"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "emptyStatement" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "emptyStatement" (formula "53") (term "1"))
+ (rule "commuteUnion" (formula "42") (term "1,0"))
+ (rule "tryEmpty" (formula "53") (term "1"))
+ (rule "blockEmptyLabel" (formula "53") (term "1"))
+ (rule "blockEmpty" (formula "53") (term "1"))
+ (rule "methodCallEmpty" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "emptyModality" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "closeTrue" (formula "53"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "52"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaSubInt" (formula "52") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "close" (formula "52") (ifseqformula "8"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "wellFormedAnonEQ" (formula "52") (ifseqformula "42"))
+ (rule "wellFormedAnon" (formula "52") (term "0"))
+ (rule "replace_known_left" (formula "52") (term "1,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "41")))
+ (rule "wellFormedAnonEQ" (formula "52") (ifseqformula "34"))
+ (rule "wellFormedAnon" (formula "52") (term "0"))
+ (rule "replace_known_left" (formula "52") (term "1,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "33")))
+ (rule "wellFormedAnonEQ" (formula "52") (ifseqformula "21"))
+ (rule "replace_known_left" (formula "52") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "20")))
+ (rule "closeTrue" (formula "52"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "48"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,0,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,1,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,1,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,1,1,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "21"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "48"))
+ (rule "replace_known_left" (formula "51") (term "0") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "commuteUnion" (formula "42") (term "1,0"))
+ (rule "shift_paren_or" (formula "50"))
+ (rule "shift_paren_or" (formula "50") (term "0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0,0,0,0"))
+ (rule "commute_or_2" (formula "50"))
+ (rule "commute_or_2" (formula "50") (term "0,0"))
+ (rule "commute_or_2" (formula "50") (term "0"))
+ (rule "commute_or_2" (formula "50") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "50") (term "0,0,0"))
+ (rule "commute_or_2" (formula "50") (term "0,0"))
+ (rule "ifUnfold" (formula "56") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "ifSplit" (formula "56"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "56") (term "1"))
+ (rule "methodCallReturn" (formula "56") (term "1"))
+ (rule "assignment" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "methodCallEmpty" (formula "56") (term "1"))
+ (rule "tryEmpty" (formula "56") (term "1"))
+ (rule "emptyModality" (formula "56") (term "1"))
+ (rule "andRight" (formula "56"))
+ (branch "Case 1"
+ (rule "andRight" (formula "56"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "Contract_axiom_for_isValidForLen_in_SampleParameters" (formula "22") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (term "1,0,0") (ifseqformula "18"))
+ (rule "replace_known_left" (formula "22") (term "0,0,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "49")) (ifInst "" (formula "20")) (ifInst "" (formula "50")) (ifInst "" (formula "25")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "translateJavaMulInt" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "translateJavaMulInt" (formula "43") (term "1"))
+ (rule "mul_literals" (formula "43") (term "1"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "37") (term "0,1,0") (ifseqformula "49"))
+ (rule "distributeIntersection" (formula "15") (term "0"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "distributeIntersection" (formula "16") (term "0"))
+ (rule "distributeIntersection" (formula "15") (term "0"))
+ (rule "distributeIntersection" (formula "16") (term "1,0"))
+ (rule "distributeIntersection" (formula "16") (term "0,0"))
+ (rule "distributeIntersection" (formula "15") (term "1,0"))
+ (rule "distributeIntersection" (formula "15") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "unionEqualsEmpty" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "eqSymm" (formula "58"))
+ (rule "eqSymm" (formula "57"))
+ (rule "unionEqualsEmpty" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "17"))
+ (rule "eqSymm" (formula "57"))
+ (rule "eqSymm" (formula "56"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "56"))
+ (rule "eqSymm" (formula "55"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "55"))
+ (rule "eqSymm" (formula "54"))
+ (rule "commuteUnion" (formula "48") (term "0,1"))
+ (rule "commuteUnion" (formula "48") (term "1,1,1"))
+ (rule "commuteUnion" (formula "36") (term "1,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "36") (term "0,0,1,0"))
+ (rule "commuteUnion" (formula "48") (term "1,0,1"))
+ (rule "commuteUnion" (formula "36") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "36") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "36") (term "0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "102"))
+ (rule "replace_known_right" (formula "102") (term "0,1") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "91")) (ifInst "" (formula "90")) (ifInst "" (formula "92")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "96")))
+ (rule "closeTrue" (formula "102"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "56"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "14"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "9"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Contract_axiom_for_isValidForLen_in_SampleParameters" (formula "22") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (term "1,0,0") (ifseqformula "18"))
+ (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "26")) (ifInst "" (formula "50")) (ifInst "" (formula "20")) (ifInst "" (formula "51")) (ifInst "" (formula "25")))
+ (rule "true_left" (formula "22"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1"))
+ (rule "expand_inInt" (formula "22") (term "1,0"))
+ (rule "expand_inInt" (formula "22") (term "0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,0,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaMulInt" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "translateJavaMulInt" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "applyEq" (formula "51") (term "0,1,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "23") (term "1,0") (ifseqformula "22"))
+ (rule "distributeIntersection" (formula "23") (term "0"))
+ (rule "distributeIntersection" (formula "23") (term "1,0"))
+ (rule "distributeIntersection" (formula "23") (term "0,0"))
+ (rule "distributeIntersection" (formula "23") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "23") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "23") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "23") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "64"))
+ (rule "eqSymm" (formula "63"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "63"))
+ (rule "eqSymm" (formula "62"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "62"))
+ (rule "eqSymm" (formula "61"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "61"))
+ (rule "eqSymm" (formula "60"))
+ (rule "commuteUnion" (formula "22") (term "1,1,1"))
+ (rule "commuteUnion" (formula "22") (term "0,1"))
+ (rule "commuteUnion_2" (formula "50") (term "0,0,1,0"))
+ (rule "commuteUnion" (formula "50") (term "1,1,0,1,0"))
+ (rule "commuteUnion" (formula "22") (term "1,0,1"))
+ (rule "commuteUnion" (formula "50") (term "0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "50") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "50") (term "0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "53") (term "0"))
+ (rule "replace_known_right" (formula "53") (term "0,0,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "54")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "54"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "14")) (ifInst "" (formula "15")) (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "21")))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "translateJavaMulInt" (formula "54") (term "1"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "translateJavaMulInt" (formula "54") (term "1"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "122")))
+ (rule "true_left" (formula "82"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "120")))
+ (rule "true_left" (formula "81"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "92")))
+ (rule "true_left" (formula "67"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "86")))
+ (rule "true_left" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "84")))
+ (rule "true_left" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "82")))
+ (rule "true_left" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "80")))
+ (rule "true_left" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "78")))
+ (rule "true_left" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "76")))
+ (rule "true_left" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "74")))
+ (rule "true_left" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "69")))
+ (rule "true_left" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "69")))
+ (rule "true_left" (formula "55"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "22"))
+ (rule "eqSymm" (formula "54"))
+ (rule "commuteUnion" (formula "54") (term "0,0,0"))
+ (rule "commuteUnion" (formula "54") (term "1,1,0"))
+ (rule "commuteUnion_2" (formula "54") (term "0,0"))
+ (rule "commuteUnion" (formula "54") (term "0,0,0"))
+ (rule "commuteUnion_2" (formula "54") (term "0"))
+ (rule "eqSymm" (formula "54"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "54"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "53") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "translateJavaSubInt" (formula "35") (term "0"))
+ (rule "translateJavaMod" (formula "34") (term "0"))
+ (rule "translateJavaDivInt" (formula "29") (term "1"))
+ (rule "translateJavaMulInt" (formula "35") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0"))
+ (rule "mul_literals" (formula "35") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0"))
+ (rule "jmod_axiom" (formula "34") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1"))
+ (rule "mul_literals" (formula "30") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "32"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "28"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "31"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "newSym_eq" (formula "34") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "34") (term "1,1"))
+ (rule "add_zero_right" (formula "34") (term "1"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "34"))
+ (rule "eqSymm" (formula "35"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "applyEq" (formula "34") (term "0,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "35"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "35"))
+ (rule "elimGcdGeq_antec" (formula "32") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "leq_literals" (formula "39") (term "0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0"))
+ (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "30"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "29"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "112") (term "0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "expand_inInt" (formula "112") (term "1,0"))
+ (rule "expand_inInt" (formula "112") (term "1"))
+ (rule "expand_inInt" (formula "112") (term "0,0"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,0,0"))
+ (rule "replace_known_left" (formula "112") (term "0,1,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "38")))
+ (rule "inEqSimp_commuteLeq" (formula "112") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "112") (term "1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "112") (term "0,0"))
+ (rule "applyEq" (formula "112") (term "0,1,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "112") (term "0,0,1") (ifseqformula "36"))
+ (rule "inEqSimp_subsumption1" (formula "112") (term "0,0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "112") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "inEqSimp_subsumption1" (formula "112") (term "0") (ifseqformula "32"))
+ (rule "leq_literals" (formula "112") (term "0,0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "inEqSimp_subsumption6" (formula "112") (term "1") (ifseqformula "33"))
+ (rule "mul_literals" (formula "112") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "112") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "leq_literals" (formula "112") (term "0,1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "inEqSimp_leqRight" (formula "112"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "41"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53")))
+ (rule "closeTrue" (formula "56"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "closeTrue" (formula "56"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (sort)"
+ (builtin "One Step Simplification" (formula "47"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,0,0,0,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "close" (formula "46") (ifseqformula "45"))
+ )
+ (branch "Pre (sort)"
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "44")) (ifInst "" (formula "43")) (ifInst "" (formula "44")) (ifInst "" (formula "43")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,1,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "wellFormedAnon" (formula "45") (term "0,0,0,0,1,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,1,1,0") (ifseqformula "21"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,1,0,0,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "38")) (ifInst "" (formula "7")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,1,0,0,1,0") (ifseqformula "21"))
+ (rule "expand_inInt" (formula "45") (term "1,1,0"))
+ (rule "expand_inInt" (formula "45") (term "1,0,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,0,1"))
+ (rule "replace_known_left" (formula "45") (term "0,1,0,1,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "2")))
+ (rule "polySimp_elimSub" (formula "45") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "45") (term "0,0,0,1"))
+ (rule "add_literals" (formula "45") (term "1,0,0,0,1"))
+ (rule "times_zero_1" (formula "45") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0"))
+ (rule "measuredByCheck" (formula "45") (term "1") (ifseqformula "8"))
+ (rule "precOfPair" (formula "45") (term "1"))
+ (rule "precOfInt" (formula "45") (term "1,1,1"))
+ (rule "less_literals" (formula "45") (term "1,1,1,1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "precOfInt" (formula "45") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "45") (term "1,0,1,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,1,1"))
+ (rule "mul_literals" (formula "45") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Contract_axiom_for_isValidForLen_in_SampleParameters" (formula "22") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (term "1,0,0") (ifseqformula "18"))
+ (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "26")) (ifInst "" (formula "39")) (ifInst "" (formula "20")) (ifInst "" (formula "40")) (ifInst "" (formula "25")))
+ (rule "true_left" (formula "22"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "notLeft" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaMulInt" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "translateJavaMulInt" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "applyEq" (formula "23") (term "1,0") (ifseqformula "22"))
+ (rule "distributeIntersection" (formula "23") (term "0"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "distributeIntersection" (formula "23") (term "0"))
+ (rule "distributeIntersection" (formula "24") (term "0"))
+ (rule "distributeIntersection" (formula "23") (term "1,0"))
+ (rule "distributeIntersection" (formula "23") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "distributeIntersection" (formula "26") (term "0"))
+ (rule "distributeIntersection" (formula "25") (term "0"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "46"))
+ (rule "eqSymm" (formula "45"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "45"))
+ (rule "eqSymm" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "43"))
+ (rule "eqSymm" (formula "42"))
+ (rule "commuteUnion" (formula "22") (term "0,0,1"))
+ (rule "commuteUnion" (formula "22") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "22") (term "0,1"))
+ (rule "commuteUnion" (formula "22") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "22") (term "1"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "translateJavaSubInt" (formula "35") (term "0"))
+ (rule "translateJavaMod" (formula "34") (term "0"))
+ (rule "translateJavaDivInt" (formula "29") (term "1"))
+ (rule "translateJavaMulInt" (formula "35") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0"))
+ (rule "mul_literals" (formula "35") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0"))
+ (rule "jmod_axiom" (formula "34") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1"))
+ (rule "mul_literals" (formula "30") (term "0,0,1"))
+ (rule "replace_known_left" (formula "97") (term "1,1") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "97") (term "1") (ifseqformula "28"))
+ (rule "leq_literals" (formula "97") (term "0,1"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "newSym_eq" (formula "34") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "34") (term "1,1"))
+ (rule "add_zero_right" (formula "34") (term "1"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "34"))
+ (rule "eqSymm" (formula "35"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "34") (term "0,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "35"))
+ (rule "polySimp_mulAssoc" (formula "36") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "32") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "32") (term "0,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "30"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "29"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0"))
+ (rule "expand_inInt" (formula "38") (term "1"))
+ (rule "expand_inInt" (formula "38") (term "0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,0,0"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "29"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption6" (formula "42") (ifseqformula "33"))
+ (rule "greater_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "mul_literals" (formula "42") (term "1,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "32"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "elimGcdLeq_antec" (formula "40") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "neg_literal" (formula "40") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "40") (term "0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,0"))
+ (rule "qeq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "cut_direct" (formula "51") (term "0,0,0,0,0"))
+ (branch "CUT: result_66 = null TRUE"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "cut_direct" (formula "43") (term "0,0,0"))
+ (branch "CUT: result_65 = null TRUE"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "101") (term "0"))
+ (rule "replace_known_right" (formula "101") (term "0,1,0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "89")) (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "96")))
+ (rule "associativeLawUnion" (formula "22") (term "0,1"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ (branch "CUT: result_65 = null FALSE"
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "102") (term "0"))
+ (rule "replace_known_right" (formula "102") (term "0,1,0,0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "97")))
+ (rule "associativeLawUnion" (formula "22") (term "0,1"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ )
+ (branch "CUT: result_66 = null FALSE"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "cut_direct" (formula "43") (term "0,0,0"))
+ (branch "CUT: result_65 = null TRUE"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "102") (term "0"))
+ (rule "replace_known_right" (formula "102") (term "0,1,0,0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "97")))
+ (rule "associativeLawUnion" (formula "22") (term "0,1"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "23"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ (branch "CUT: result_65 = null FALSE"
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "103") (term "0"))
+ (rule "replace_known_right" (formula "103") (term "0,1,0,0,0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "96")) (ifInst "" (formula "97")) (ifInst "" (formula "98")))
+ (rule "associativeLawUnion" (formula "22") (term "0,1"))
+ (rule "arrayLengthIsAShort" (formula "21") (term "0"))
+ (rule "expand_inShort" (formula "21"))
+ (rule "replace_short_MAX" (formula "21") (term "1,0"))
+ (rule "replace_short_MIN" (formula "21") (term "0,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "23"))
+ (rule "leq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17"))
+ (rule "closeFalse" (formula "17"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (parameters = null)"
+ (rule "false_right" (formula "46"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (select_n)"
+ (builtin "One Step Simplification" (formula "39"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (term "1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (term "0,0,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "close" (formula "37") (ifseqformula "36"))
+ )
+ (branch "Pre (select_n)"
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "36")) (ifInst "" (formula "36")))
+ (rule "wellFormedAnon" (formula "37") (term "0,0,0,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,1,0,0,0") (ifseqformula "21"))
+ (rule "expand_inInt" (formula "37") (term "1"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0"))
+ (rule "expand_inInt" (formula "37") (term "1,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "37") (term "1,0,0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "5")))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0"))
+ (rule "replace_known_left" (formula "37") (term "1,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0"))
+ (rule "replace_known_left" (formula "37") (term "1,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "translateJavaMulInt" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "48"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "applyEq" (formula "24") (term "1,0") (ifseqformula "23"))
+ (rule "distributeIntersection" (formula "24") (term "0"))
+ (rule "distributeIntersection" (formula "24") (term "1,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,0,0"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "41"))
+ (rule "eqSymm" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "40"))
+ (rule "eqSymm" (formula "39"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "38"))
+ (rule "eqSymm" (formula "37"))
+ (rule "commuteUnion" (formula "23") (term "0,0,1"))
+ (rule "commuteUnion" (formula "23") (term "1,1,1"))
+ (rule "commuteUnion" (formula "23") (term "0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "translateJavaSubInt" (formula "36") (term "0"))
+ (rule "translateJavaMod" (formula "35") (term "0"))
+ (rule "translateJavaDivInt" (formula "30") (term "1"))
+ (rule "translateJavaMulInt" (formula "36") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0"))
+ (rule "mul_literals" (formula "36") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0"))
+ (rule "jmod_axiom" (formula "35") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,1"))
+ (rule "mul_literals" (formula "31") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "83") (term "1,1") (ifseqformula "29"))
+ (rule "leq_literals" (formula "83") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "newSym_eq" (formula "35") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77,
+ de.wiesler.SampleParameters::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "35") (term "1,1"))
+ (rule "add_zero_right" (formula "35") (term "1"))
+ (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "36"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "36"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "elimGcdGeq_antec" (formula "33") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "33") (term "0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "31"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "30"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0"))
+ (rule "expand_inInt" (formula "38") (term "1"))
+ (rule "expand_inInt" (formula "38") (term "0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,0,0"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "38"))
+ (rule "replace_known_left" (formula "96") (term "1") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "wellFormedAnonEQ" (formula "96") (ifseqformula "24"))
+ (rule "replace_known_left" (formula "96") (term "1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "96"))
+ )
+ )
+ (branch "Null Reference (parameters = null)"
+ (rule "false_right" (formula "38"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (SampleParameters)"
+ (builtin "One Step Simplification" (formula "21"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0,0") (ifseqformula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,1,0,0,1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "21"))
+ (rule "notLeft" (formula "19"))
+ (rule "close" (formula "26") (ifseqformula "25"))
+ )
+ (branch "Pre (SampleParameters)"
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "19"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (term "1") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0,1"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,1"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "19") (term "0,0,1"))
+ (rule "qeq_literals" (formula "19") (term "0,1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_leqRight" (formula "19"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (ifseqformula "1"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "1,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0"))
+ (rule "add_zero_right" (formula "12") (term "0"))
+ (rule "leq_literals" (formula "12"))
+ (rule "closeFalse" (formula "12"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..630c320
--- /dev/null
+++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,10928 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 12:54:41 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 12:54:41 CEST 2023
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "99441")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "12"))
+(rule "notLeft" (formula "6"))
+(rule "notLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "12"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "3"))
+(rule "translateJavaSubInt" (formula "8") (term "0,0"))
+(rule "translateJavaSubInt" (formula "13") (term "0"))
+(rule "translateJavaSubInt" (formula "14") (term "0"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "8") (term "0,0"))
+(rule "polySimp_elimSub" (formula "13") (term "0"))
+(rule "polySimp_elimSub" (formula "14") (term "0"))
+(rule "polySimp_addComm0" (formula "8") (term "0,0"))
+(rule "polySimp_addComm0" (formula "13") (term "0"))
+(rule "polySimp_addComm0" (formula "14") (term "0"))
+(rule "disjointDefinition" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "commuteIntersection" (formula "16") (term "0"))
+(rule "methodBodyExpand" (formula "19") (term "1") (newnames "heapBefore_sample_sort,savedHeapBefore_sample_sort,_beginBefore_sample_sort,_endBefore_sample_sort,_storageBefore_sample_sort,_valuesBefore_sample_sort,bucket_startsBefore_sample_sort,equal_bucketsBefore_sample_sort,num_bucketsBefore_sample_sort,num_bucketsBefore_sample_sort_0"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "variableDeclarationAssign" (formula "19") (term "1"))
+(rule "variableDeclaration" (formula "19") (term "1") (newnames "bucket_starts"))
+(rule "methodCallWithAssignmentUnfoldArguments" (formula "19") (term "1"))
+(rule "variableDeclarationAssign" (formula "19") (term "1"))
+(rule "variableDeclaration" (formula "19") (term "1") (newnames "var"))
+(rule "assignmentAdditionInt" (formula "19") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_literals" (formula "19") (term "0"))
+ (rule "expand_inInt" (formula "19"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0"))
+ (rule "leq_literals" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "leq_literals" (formula "19"))
+ (rule "closeTrue" (formula "19"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_createArray,result_241,exc_285,heapAfter_createArray,anon_heap_createArray") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (createArray)"
+ (builtin "One Step Simplification" (formula "21"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0,1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "replace_known_right" (formula "19") (term "0,1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "24")))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "assignment" (formula "27") (term "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "blockEmpty" (formula "27") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "27") (newnames "anonOut_heap,exc_286,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "28") (term "1"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "exc_286_1"))
+ (rule "assignment" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyStatement" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyStatement" (formula "28") (term "1"))
+ (rule "commute_and" (formula "21") (term "1,0,0"))
+ (rule "commute_and" (formula "21") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "21") (term "0,0"))
+ (rule "commute_and_2" (formula "21") (term "0,0,0"))
+ (rule "tryEmpty" (formula "28") (term "1"))
+ (rule "blockEmptyLabel" (formula "28") (term "1"))
+ (rule "blockEmpty" (formula "28") (term "1"))
+ (rule "methodCallEmpty" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "emptyModality" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeTrue" (formula "28"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "27"))
+ (branch
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaSubInt" (formula "27") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0"))
+ (rule "close" (formula "27") (ifseqformula "8"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "wellFormedAnonEQ" (formula "27") (ifseqformula "18"))
+ (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "27"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "0,1,1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "disjointDefinition" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "narrowSelectArrayType" (formula "25") (term "2,1") (ifseqformula "1") (ifseqformula "32"))
+ (rule "commute_and" (formula "21") (term "1,0,0"))
+ (rule "commute_and" (formula "21") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "21") (term "0,0"))
+ (rule "commute_and_2" (formula "21") (term "0,0,0"))
+ (rule "ifUnfold" (formula "33") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "replace_known_left" (formula "33") (term "0,0,1,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "13") (term "0"))
+ (rule "expand_inShort" (formula "13"))
+ (rule "replace_short_MAX" (formula "13") (term "1,0"))
+ (rule "replace_short_MIN" (formula "13") (term "0,1"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "ifSplit" (formula "36"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "36") (term "1"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "partition"))
+ (builtin "Use Operation Contract" (formula "36") (newnames "heapBefore_partition,result_242,exc_287,heapAfter_partition,anon_heap_partition") (contract "de.wiesler.Sorter[de.wiesler.Sorter::partition([I,int,int,[I,de.wiesler.Storage)].JML normal_behavior operation contract.0"))
+ (branch "Post (partition)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1,0,1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "0,0,1,0,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaSubInt" (formula "32") (term "2,0,0,1,0"))
+ (rule "translateJavaMod" (formula "35") (term "0,0,0,0,0,0,0,1"))
+ (rule "translateJavaSubInt" (formula "35") (term "3,0,1,1"))
+ (rule "translateJavaSubInt" (formula "35") (term "7,0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "35") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_elimSub" (formula "32") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "3,0,1,1"))
+ (rule "polySimp_elimSub" (formula "35") (term "7,0,1,1,0,1"))
+ (rule "mul_literals" (formula "35") (term "1,7,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "32") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "3,0,1,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "7,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "1,1,0,0,0,0,1"))
+ (rule "assignment" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "pullOutSelect" (formula "35") (term "0,1,0,0,0,0,1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "35") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "42")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (term "0,0,1,0,0") (ifseqformula "21"))
+ (rule "replace_known_right" (formula "35") (term "0,0,0,1,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "22")))
+ (rule "elementOfUnion" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "applyEqReverse" (formula "36") (term "0,1,0,0,0,0,1") (ifseqformula "35"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "commuteUnion_2" (formula "32") (term "1,0"))
+ (rule "commuteUnion" (formula "32") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "32") (term "1,0"))
+ (rule "shift_paren_or" (formula "33"))
+ (rule "shift_paren_or" (formula "33") (term "0"))
+ (rule "shift_paren_or" (formula "33") (term "0,0"))
+ (rule "commute_or_2" (formula "33") (term "0"))
+ (rule "commute_and_2" (formula "35") (term "0,0,0,1"))
+ (rule "commute_and_2" (formula "35") (term "0,0,1"))
+ (rule "commute_and" (formula "35") (term "0,0,0,0,0,1"))
+ (rule "commute_and_2" (formula "35") (term "0,0,0,0,1"))
+ (rule "commute_and_2" (formula "35") (term "0,0,0,1"))
+ (rule "ifUnfold" (formula "44") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_1"))
+ (rule "equality_comparison_simple" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "ifSplit" (formula "44"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "replace_known_left" (formula "36") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "replace_known_left" (formula "34") (term "0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "applyEq" (formula "43") (term "0,1,0") (ifseqformula "1"))
+ (builtin "Use Operation Contract" (formula "43") (newnames "heapBefore_fallback_sort,exc_288,heapAfter_fallback_sort,anon_heap_fallback_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::fallback_sort([I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (fallback_sort)"
+ (builtin "One Step Simplification" (formula "39"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "39") (term "0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "41"))
+ (rule "translateJavaSubInt" (formula "39") (term "2,1,0"))
+ (rule "eqSymm" (formula "41") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "2,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,0"))
+ (rule "blockReturnNoValue" (formula "49") (term "1"))
+ (rule "commute_and" (formula "41") (term "0,0"))
+ (rule "methodCallEmptyReturn" (formula "49") (term "1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "tryEmpty" (formula "49") (term "1"))
+ (rule "emptyModality" (formula "49") (term "1"))
+ (rule "andRight" (formula "49"))
+ (branch
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "inEqSimp_gtToGeq" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "15"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,0"))
+ (rule "mul_literals" (formula "14") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "14"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaMulInt" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "24"))
+ (rule "distributeIntersection" (formula "25") (term "0"))
+ (rule "distributeIntersection" (formula "36") (term "0"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "distributeIntersection" (formula "25") (term "0,0"))
+ (rule "distributeIntersection" (formula "25") (term "1,0"))
+ (rule "distributeIntersection" (formula "36") (term "0,0"))
+ (rule "distributeIntersection" (formula "36") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "distributeIntersection" (formula "25") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "25") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "25") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "25") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "37") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "37") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "37") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "37") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "36") (term "0"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "distributeIntersection" (formula "37") (term "0,0"))
+ (rule "distributeIntersection" (formula "37") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "distributeIntersection" (formula "39") (term "0"))
+ (rule "distributeIntersection" (formula "38") (term "0"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "58"))
+ (rule "eqSymm" (formula "57"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "57"))
+ (rule "eqSymm" (formula "56"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "56"))
+ (rule "eqSymm" (formula "55"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "55"))
+ (rule "eqSymm" (formula "54"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "40"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "54"))
+ (rule "eqSymm" (formula "53"))
+ (rule "sortsDisjointModuloNull" (formula "54"))
+ (rule "replace_known_right" (formula "54") (term "1") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "false_right" (formula "54"))
+ (rule "sortsDisjointModuloNull" (formula "53"))
+ (rule "replace_known_right" (formula "53") (term "1") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "false_right" (formula "53"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "53"))
+ (rule "eqSymm" (formula "52"))
+ (rule "sortsDisjointModuloNull" (formula "53"))
+ (rule "replace_known_right" (formula "53") (term "1") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "false_right" (formula "53"))
+ (rule "sortsDisjointModuloNull" (formula "52"))
+ (rule "replace_known_right" (formula "52") (term "1") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "false_right" (formula "52"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "40"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "52"))
+ (rule "eqSymm" (formula "51"))
+ (rule "sortsDisjointModuloNull" (formula "52"))
+ (rule "replace_known_right" (formula "52") (term "1") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "false_right" (formula "52"))
+ (rule "sortsDisjointModuloNull" (formula "51"))
+ (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "false_right" (formula "51"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "51"))
+ (rule "eqSymm" (formula "50"))
+ (rule "sortsDisjointModuloNull" (formula "51"))
+ (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "false_right" (formula "51"))
+ (rule "sortsDisjointModuloNull" (formula "50"))
+ (rule "replace_known_right" (formula "50") (term "1") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "false_right" (formula "50"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "50"))
+ (rule "eqSymm" (formula "49"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "49"))
+ (rule "eqSymm" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "47"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "47"))
+ (rule "eqSymm" (formula "46"))
+ (rule "commuteUnion" (formula "24") (term "0,0,1"))
+ (rule "commuteUnion" (formula "24") (term "1,1,1"))
+ (rule "commuteUnion" (formula "35") (term "0,1,0,1,0"))
+ (rule "commuteUnion" (formula "35") (term "1,1,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "24") (term "0,1"))
+ (rule "commuteUnion" (formula "35") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "24") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "24") (term "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "95"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "44") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "44") (term "1,0") (ifseqformula "41"))
+ (rule "replace_known_left" (formula "44") (term "0,1") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "95")) (ifInst "" (formula "40")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7"))
+ (rule "close" (formula "96") (ifseqformula "7"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "closeTrue" (formula "49"))
+ )
+ )
+ (branch "Exceptional Post (fallback_sort)"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0") (ifseqformula "39"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,0,0,1,0") (ifseqformula "22"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "close" (formula "42") (ifseqformula "41"))
+ )
+ (branch "Pre (fallback_sort)"
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "42")) (ifInst "" (formula "42")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,0,1,0,0") (ifseqformula "22"))
+ (rule "expand_inInt" (formula "43") (term "1"))
+ (rule "expand_inInt" (formula "43") (term "1,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "43") (term "0,0,0,1,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "4")) (ifInst "" (formula "6")))
+ (rule "inEqSimp_gtToGeq" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1"))
+ (rule "replace_known_left" (formula "43") (term "1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1"))
+ (rule "replace_known_left" (formula "43") (term "1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "wellFormedAnonEQ" (formula "43") (ifseqformula "33"))
+ (rule "wellFormedAnon" (formula "43") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "43") (term "0,0") (ifseqformula "22"))
+ (rule "replace_known_left" (formula "43") (term "1") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "2")) (ifInst "" (formula "21")) (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "43"))
+ )
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_right" (formula "35") (term "0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "replace_known_right" (formula "33") (term "0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "num_buckets"))
+ (rule "assignment_read_attribute_final" (formula "51"))
+ (branch "Normal Execution (partition != null)"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "equal_buckets"))
+ (rule "assignment_read_attribute_final" (formula "51"))
+ (branch "Normal Execution (partition != null)"
+ (builtin "One Step Simplification" (formula "51"))
+ (builtin "Block Contract (Internal)" (formula "51") (newnames "anonOut_heap_0,exc_288,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f,f,anonOut_bucket"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "50")) (ifInst "" (formula "51")))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "1,0,1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,1,0,1,0") (ifseqformula "21"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,0,0,1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "2")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "1,0,0,0,1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,1,0,0,0,1,0") (ifseqformula "21"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,0,0,0,1,0") (ifseqformula "21"))
+ (rule "expand_inInt" (formula "45") (term "1,0,1,0"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "45") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,1,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,1,0"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "49"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,0"))
+ (rule "replace_known_left" (formula "47") (term "1,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "61")))
+ (rule "true_left" (formula "47"))
+ (rule "replace_known_left" (formula "47") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "disjointDefinition" (formula "55"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "56")))
+ (rule "true_left" (formula "50"))
+ (rule "disjointDefinition" (formula "50"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "narrowSelectArrayType" (formula "34") (term "2,0") (ifseqformula "45") (ifseqformula "58"))
+ (rule "sortsDisjointModuloNull" (formula "52"))
+ (rule "replace_known_right" (formula "52") (term "1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "57")))
+ (rule "false_right" (formula "52"))
+ (rule "sortsDisjointModuloNull" (formula "51"))
+ (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "56")))
+ (rule "false_right" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "variableDeclarationAssign" (formula "55") (term "1"))
+ (rule "variableDeclaration" (formula "55") (term "1") (newnames "exc_288_1"))
+ (rule "assignment" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "jmod_axiom" (formula "38") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "newSym_eq" (formula "35") (inst "l=l_0") (inst "newSymDef=mul(int::final(result_242,
+ de.wiesler.PartitionResult::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "35") (term "1,1"))
+ (rule "add_zero_right" (formula "35") (term "1"))
+ (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "36"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "39") (term "2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "33") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36"))
+ (rule "elimGcdLeq_antec" (formula "44") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "neg_literal" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "44") (term "0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0"))
+ (rule "qeq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "45") (term "0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "14"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "9"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "commuteIntersection" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "for_to_while" (formula "52") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "bucket"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "commute_or" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption3" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "8") (term "0"))
+ (rule "expand_inShort" (formula "8"))
+ (rule "replace_short_MIN" (formula "8") (term "0,1"))
+ (rule "replace_short_MAX" (formula "8") (term "1,0"))
+ (rule "andLeft" (formula "8"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "9"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "arrayLengthNotNegative" (formula "11") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "elim_double_block_3" (formula "52") (term "1"))
+ (rule "jdiv_axiom" (formula "35") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "35"))
+ (rule "applyEqRigid" (formula "35") (term "1") (ifseqformula "36"))
+ (rule "polyDiv_pullOut" (formula "35") (term "1,0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,2,1,0"))
+ (rule "equal_literals" (formula "35") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "polySimp_pullOutFactor0" (formula "35") (term "0,0,1,0"))
+ (rule "add_literals" (formula "35") (term "1,0,0,1,0"))
+ (rule "times_zero_1" (formula "35") (term "0,0,1,0"))
+ (rule "div_literals" (formula "35") (term "0,1,0"))
+ (rule "add_zero_left" (formula "35") (term "1,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "polySimp_homoEq" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "35") (term "1"))
+ (rule "polyDiv_pullOut" (formula "35") (term "0,1") (inst "polyDivCoeff=mul(l_0, Z(neglit(1(#))))"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,2,0,1"))
+ (rule "equal_literals" (formula "35") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "35") (term "1"))
+ (rule "polySimp_pullOutFactor0" (formula "35") (term "0,0,0,1,0,1"))
+ (rule "add_literals" (formula "35") (term "1,0,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "35") (term "0,0,0,1,0,1"))
+ (rule "div_literals" (formula "35") (term "0,0,1,0,1"))
+ (rule "add_zero_left" (formula "35") (term "0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1"))
+ (rule "polySimp_pullOutFactor2" (formula "35") (term "0,1"))
+ (rule "add_literals" (formula "35") (term "1,0,1"))
+ (rule "times_zero_1" (formula "35") (term "0,1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "loopScopeInvDia" (formula "52") (term "1") (newnames "bucket_0,o_0,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "52"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "impRight" (formula "53"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "2,0,1,0,1,0,1,0"))
+ (rule "eqSymm" (formula "8") (term "0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "8") (term "7,0,1,1"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,0,1,0,0,1,1"))
+ (rule "translateJavaMod" (formula "8") (term "0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "8") (term "6,0,1,1"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,6,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,7,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,0,1,0,2,0"))
+ (rule "translateJavaMod" (formula "3") (term "0,1"))
+ (rule "translateJavaSubInt" (formula "8") (term "0,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "2,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,2,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "7,0,1,1"))
+ (rule "mul_literals" (formula "8") (term "1,7,0,1,1"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,0,1,0,0,1,1"))
+ (rule "mul_literals" (formula "8") (term "1,2,0,1,0,0,1,1"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,6,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,6,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,7,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,7,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,0,1,0,2,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,0,1,0,2,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "0,0,1,0,1"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,1"))
+ (rule "eqSymm" (formula "8") (term "0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "8") (term "6,0,1,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "2,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "7,0,1,1"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,0,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,6,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,7,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,0,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,6,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "1,0,0,0,0,6,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0,6,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0,0,6,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,7,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "1,0,0,0,0,7,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0,7,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,7,0"))
+ (rule "narrowSelectArrayType" (formula "4") (term "2,1") (ifseqformula "10") (ifseqformula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_2"))
+ (rule "jmod_axiom" (formula "8") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "8") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,6,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,6,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,6,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,6,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,6,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,7,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,7,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,7,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,7,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,7,0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "1"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "commuteUnion" (formula "9") (term "1,0,0,1,1"))
+ (rule "commuteUnion" (formula "8") (term "1,0,0"))
+ (rule "commuteUnion" (formula "7") (term "1,0,0"))
+ (rule "commuteUnion" (formula "6") (term "1,0,0"))
+ (rule "commuteUnion" (formula "5") (term "1,0,2,0"))
+ (rule "commuteUnion" (formula "61") (term "1,0,1,0,1,0"))
+ (rule "commute_or" (formula "8") (term "0,6,0"))
+ (rule "commute_or" (formula "6") (term "0,7,0"))
+ (rule "commute_and" (formula "9") (term "0,1"))
+ (rule "commute_and_2" (formula "9") (term "1"))
+ (rule "commute_and" (formula "9") (term "0,1"))
+ (rule "ifElseUnfold" (formula "61") (term "1") (inst "#boolv=x_3"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_3"))
+ (rule "less_than_comparison_simple" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0"))
+ (rule "jdiv_axiom" (formula "4") (term "0,0,1"))
+ (rule "eqSymm" (formula "4"))
+ (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "eqSymm" (formula "4"))
+ (rule "applyEqRigid" (formula "5") (term "0,0,1") (ifseqformula "4"))
+ (rule "applyEqRigid" (formula "10") (term "0,0,1,1") (ifseqformula "4"))
+ (rule "div_axiom" (formula "4") (term "1") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "4") (term "0,1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "andLeft" (formula "4"))
+ (rule "andLeft" (formula "4"))
+ (rule "polySimp_addComm1" (formula "6") (term "1"))
+ (rule "add_literals" (formula "6") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "applyEqRigid" (formula "8") (term "0,0,1") (ifseqformula "4"))
+ (rule "eqSymm" (formula "8") (term "1"))
+ (rule "applyEqRigid" (formula "13") (term "0,0,1,1") (ifseqformula "4"))
+ (rule "eqSymm" (formula "13") (term "1,1"))
+ (rule "applyEq" (formula "7") (term "1") (ifseqformula "4"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "6"))
+ (rule "times_zero_1" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "4"))
+ (rule "polySimp_mulAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcdRightDiv=quotient_0") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "6") (term "0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "applyEq_and_gen3" (formula "16") (term "1"))
+ (rule "polySimp_homoEq" (formula "16") (term "0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "16") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,1"))
+ (rule "elimGcdEq" (formula "16") (term "0,1,0,1") (inst "elimGcdRightDiv=add(Z(0(#)), quotient_0)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,1,0,1"))
+ (rule "add_zero_left" (formula "16") (term "1,1,1,0,1,0,1"))
+ (rule "add_literals" (formula "16") (term "1,0,0,0,1,0,1"))
+ (rule "add_zero_left" (formula "16") (term "1,1,0,0,1,0,1,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,1,0,0,1,0,1"))
+ (rule "add_zero_left" (formula "16") (term "1,1,0,1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0,1"))
+ (rule "add_zero_left" (formula "16") (term "1,1,0,0,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,1,0,1,0,1"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,1,0,1,0,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,1,0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,1,0,1"))
+ (rule "equal_literals" (formula "16") (term "0,1,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,1,0,0,1,0,1"))
+ (rule "add_literals" (formula "16") (term "1,1,0,1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,1,0,0,1,0,1"))
+ (rule "add_zero_right" (formula "16") (term "0,1,0,0,1,0,1"))
+ (rule "qeq_literals" (formula "16") (term "1,0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,1"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,1"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "ifElseSplit" (formula "68"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "69"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_left" (formula "14") (term "1,0,7,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "replace_known_left" (formula "16") (term "1,0,6,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "4"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "1"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=add(Z(1(#)), quotient_0)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (builtin "Use Operation Contract" (formula "68") (newnames "heapBefore_sample_sort_recurse_on,exc_0,heapAfter_sample_sort_recurse_on,anon_heap_sample_sort_recurse_on") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (sample_sort_recurse_on)"
+ (builtin "One Step Simplification" (formula "70"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "69"))
+ (rule "translateJavaSubInt" (formula "63") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "66") (term "7,0"))
+ (rule "translateJavaAddInt" (formula "68") (term "6,0"))
+ (rule "translateJavaAddInt" (formula "69") (term "6,0,1"))
+ (rule "translateJavaSubInt" (formula "69") (term "7,0,1"))
+ (rule "polySimp_elimSub" (formula "63") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "63") (term "1,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "7,0,1"))
+ (rule "mul_literals" (formula "69") (term "1,7,0,1"))
+ (rule "polySimp_addComm0" (formula "66") (term "7,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "6,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "6,0,1"))
+ (rule "polySimp_addComm0" (formula "63") (term "2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "7,0,1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "commuteUnion" (formula "63") (term "1,0"))
+ (rule "compound_assignment_op_plus" (formula "78") (term "1"))
+ (rule "compound_int_cast_expression" (formula "78") (term "1") (inst "#v=x_3"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_4"))
+ (rule "remove_parentheses_right" (formula "78") (term "1"))
+ (rule "compound_addition_2" (formula "78") (term "1") (inst "#v1=x_6") (inst "#v0=x_5"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_5"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_6"))
+ (rule "remove_parentheses_right" (formula "78") (term "1"))
+ (rule "compound_addition_2" (formula "78") (term "1") (inst "#v1=x_8") (inst "#v0=x_7"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_7"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_8"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "78") (term "1") (inst "#v0=x_9"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_9"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "b"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_toInt,savedHeapBefore_toInt"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "returnUnfold" (formula "78") (term "1") (inst "#v0=x_10"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_10"))
+ (rule "condition_simple" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallReturn" (formula "78") (term "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "assignmentAdditionInt" (formula "78") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "expand_inInt" (formula "78"))
+ (rule "replace_int_MAX" (formula "78") (term "1,0"))
+ (rule "replace_int_MIN" (formula "78") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,1"))
+ (rule "add_literals" (formula "78") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "1,1"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "50") (term "0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "translateJavaMulInt" (formula "60") (term "1"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "translateJavaMulInt" (formula "59") (term "1"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "disjointDefinition" (formula "93"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "notLeft" (formula "93"))
+ (rule "disjointDefinition" (formula "92"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "notLeft" (formula "92"))
+ (rule "disjointDefinition" (formula "91"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "eqSymm" (formula "105"))
+ (rule "disjointDefinition" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "eqSymm" (formula "104"))
+ (rule "disjointDefinition" (formula "89"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "notLeft" (formula "89"))
+ (rule "eqSymm" (formula "103"))
+ (rule "disjointDefinition" (formula "88"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "87"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "notLeft" (formula "87"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "notLeft" (formula "85"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "notLeft" (formula "84"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "notLeft" (formula "83"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "applyEq" (formula "14") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "73") (term "0,1,0,2,1") (ifseqformula "65"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "13") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "71") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,0,1") (ifseqformula "65"))
+ (rule "distributeIntersection" (formula "43") (term "0"))
+ (rule "distributeIntersection" (formula "44") (term "0"))
+ (rule "distributeIntersection" (formula "33") (term "0"))
+ (rule "distributeIntersection" (formula "43") (term "0,0"))
+ (rule "distributeIntersection" (formula "43") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "distributeIntersection" (formula "44") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "44") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "44") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "44") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "45") (term "0"))
+ (rule "distributeIntersection" (formula "46") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "distributeIntersection" (formula "33") (term "0"))
+ (rule "unionEqualsEmpty" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "distributeIntersection" (formula "46") (term "1,0"))
+ (rule "distributeIntersection" (formula "46") (term "0,0"))
+ (rule "distributeIntersection" (formula "47") (term "0,0"))
+ (rule "distributeIntersection" (formula "47") (term "1,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,0"))
+ (rule "distributeIntersection" (formula "33") (term "0,0"))
+ (rule "distributeIntersection" (formula "33") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "89"))
+ (rule "eqSymm" (formula "88"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "88"))
+ (rule "eqSymm" (formula "87"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "87"))
+ (rule "eqSymm" (formula "86"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "86"))
+ (rule "eqSymm" (formula "85"))
+ (rule "unionEqualsEmpty" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "85"))
+ (rule "eqSymm" (formula "84"))
+ (rule "sortsDisjointModuloNull" (formula "85"))
+ (rule "replace_known_right" (formula "85") (term "1") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "false_right" (formula "85"))
+ (rule "sortsDisjointModuloNull" (formula "84"))
+ (rule "replace_known_right" (formula "84") (term "1") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "false_right" (formula "84"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "84"))
+ (rule "eqSymm" (formula "83"))
+ (rule "sortsDisjointModuloNull" (formula "84"))
+ (rule "replace_known_right" (formula "84") (term "1") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "false_right" (formula "84"))
+ (rule "sortsDisjointModuloNull" (formula "83"))
+ (rule "replace_known_right" (formula "83") (term "1") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "false_right" (formula "83"))
+ (rule "unionEqualsEmpty" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "83"))
+ (rule "eqSymm" (formula "82"))
+ (rule "sortsDisjointModuloNull" (formula "83"))
+ (rule "replace_known_right" (formula "83") (term "1") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "false_right" (formula "83"))
+ (rule "sortsDisjointModuloNull" (formula "82"))
+ (rule "replace_known_right" (formula "82") (term "1") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "false_right" (formula "82"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "82"))
+ (rule "eqSymm" (formula "81"))
+ (rule "sortsDisjointModuloNull" (formula "82"))
+ (rule "replace_known_right" (formula "82") (term "1") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "false_right" (formula "82"))
+ (rule "sortsDisjointModuloNull" (formula "81"))
+ (rule "replace_known_right" (formula "81") (term "1") (ifseqformula "122"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "false_right" (formula "81"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "81"))
+ (rule "eqSymm" (formula "80"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "80"))
+ (rule "eqSymm" (formula "79"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "79"))
+ (rule "eqSymm" (formula "78"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "78"))
+ (rule "eqSymm" (formula "77"))
+ (rule "commuteUnion_2" (formula "62") (term "0,1"))
+ (rule "commuteUnion" (formula "62") (term "1,1,1"))
+ (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "70") (term "0,0,1,0,2,1"))
+ (rule "commuteUnion" (formula "70") (term "1,1,0,1,0,2,1"))
+ (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "15") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "43") (term "1,1,1,0,1,0"))
+ (rule "commuteUnion" (formula "68") (term "1,1,0,1,0"))
+ (rule "commuteUnion" (formula "68") (term "0,0,1,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "13") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "68") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "68") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,0,1"))
+ (rule "commuteUnion" (formula "16") (term "0,0,1,0,0,0,1"))
+ (rule "commuteUnion" (formula "62") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "70") (term "1,0,0,1,0,2,1"))
+ (rule "commuteUnion" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "43") (term "0,1,0,1,0"))
+ (rule "commuteUnion" (formula "68") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "12") (term "0,0,0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "13") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "68") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "16") (term "1,0,0,1,0,0,0,1"))
+ (rule "commuteUnion_2" (formula "62") (term "0,1"))
+ (rule "commuteUnion_2" (formula "14") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "68") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "62") (term "1"))
+ (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "43") (term "1,0,1,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "13") (term "0,1,0,0"))
+ (rule "commuteUnion_2" (formula "68") (term "0,1,0,0"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "73") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "expand_inInt" (formula "73") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "73") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "73") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "73") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "73") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "74") (term "0,1") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "expand_inInt" (formula "74") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "74") (term "2,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "74") (term "3,0,1,0,1"))
+ (rule "translateJavaMod" (formula "74") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "74") (term "0,2,1,3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "74") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "74") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "74") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "74") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,0,1"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "71") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "expand_inInt" (formula "71") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "71") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "71") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "71") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "71") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "71") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "71") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "32"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "54")) (ifInst "" (formula "55")) (ifInst "" (formula "58")) (ifInst "" (formula "59")) (ifInst "" (formula "60")) (ifInst "" (formula "61")))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaMulInt" (formula "33") (term "1"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "translateJavaMulInt" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "148")))
+ (rule "true_left" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "146")))
+ (rule "true_left" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "118")))
+ (rule "true_left" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "112")))
+ (rule "true_left" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "110")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "108")))
+ (rule "true_left" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "106")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "104")))
+ (rule "true_left" (formula "38"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "102")))
+ (rule "true_left" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "100")))
+ (rule "true_left" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "98")))
+ (rule "true_left" (formula "35"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "96")))
+ (rule "true_left" (formula "33"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "94")))
+ (rule "true_left" (formula "33"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "32"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "64"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "64"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "64"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "64"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "64"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "64"))
+ (rule "notLeft" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "73"))
+ (builtin "One Step Simplification" (formula "73") (ifInst "" (formula "53")) (ifInst "" (formula "54")) (ifInst "" (formula "57")) (ifInst "" (formula "58")) (ifInst "" (formula "59")) (ifInst "" (formula "60")))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "translateJavaMulInt" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "1"))
+ (rule "translateJavaMulInt" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "1"))
+ (rule "disjointDefinition" (formula "101"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "154")))
+ (rule "true_left" (formula "101"))
+ (rule "disjointDefinition" (formula "100"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "152")))
+ (rule "true_left" (formula "100"))
+ (rule "disjointDefinition" (formula "99"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "notLeft" (formula "99"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "98"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "notLeft" (formula "98"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "97"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "notLeft" (formula "97"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "96"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "notLeft" (formula "96"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "95"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "notLeft" (formula "95"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "94"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "notLeft" (formula "94"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "93"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "notLeft" (formula "93"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "92"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "notLeft" (formula "92"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "91"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "89"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "notLeft" (formula "89"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "88"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "87"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "notLeft" (formula "87"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "124")))
+ (rule "true_left" (formula "86"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "notLeft" (formula "85"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "notLeft" (formula "84"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "118")))
+ (rule "true_left" (formula "83"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "116")))
+ (rule "true_left" (formula "82"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "114")))
+ (rule "true_left" (formula "81"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "112")))
+ (rule "true_left" (formula "80"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "110")))
+ (rule "true_left" (formula "79"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "108")))
+ (rule "true_left" (formula "78"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "106")))
+ (rule "true_left" (formula "77"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "104")))
+ (rule "true_left" (formula "76"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "102")))
+ (rule "true_left" (formula "74"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "100")))
+ (rule "true_left" (formula "74"))
+ (rule "applyEq" (formula "73") (term "1") (ifseqformula "31"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "52") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "52") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,0,0,1,1,0"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "47") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "70") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "expand_inInt" (formula "70") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "70") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "70") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "73"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "74"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "75"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "75"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "75"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "75"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "75"))
+ (rule "notLeft" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaAddInt" (formula "47") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "35"))
+ (rule "inEqSimp_homoInEq1" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "45") (ifseqformula "3"))
+ (rule "mul_literals" (formula "45") (term "1,1,0"))
+ (rule "greater_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "elimGcdLeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "neg_literal" (formula "45") (term "0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "45") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "qeq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "45"))
+ (rule "leq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "pullOutSelect" (formula "47") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "47") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "130")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,0,1,0,0") (ifseqformula "33"))
+ (rule "replace_known_left" (formula "47") (term "1,0,0,1,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "129")))
+ (rule "applyEqRigid" (formula "47") (term "1") (ifseqformula "48"))
+ (rule "ifEqualsInteger" (formula "47"))
+ (rule "elementOfUnion" (formula "47") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "47") (term "1,0,0"))
+ (rule "eqSymm" (formula "47") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "47") (term "0,0,1,0,0") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "elementOfUnion" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "elementOfUnion" (formula "47") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "47") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "47") (term "0,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "47") (term "0,0,1,0,0,1") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "elementOfUnion" (formula "47") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "54") (term "0,1") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "expand_inInt" (formula "54") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,1,3,0,1,0,1"))
+ (rule "translateJavaMod" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "2,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "54") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "54") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,0,1"))
+ (rule "Definition_axiom_for_isBucketPartitioned_in_de_wiesler_Sorter" (formula "49") (term "0,1,0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,0,0,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "commute_and" (formula "133"))
+ (rule "commuteUnion" (formula "31") (term "0,0"))
+ (rule "commuteUnion" (formula "31") (term "1,1,0"))
+ (rule "nnf_imp2or" (formula "73") (term "0"))
+ (rule "nnf_imp2or" (formula "74") (term "0,1"))
+ (rule "nnf_imp2or" (formula "71") (term "0"))
+ (rule "cut_direct" (formula "11") (term "0"))
+ (branch "CUT: result_242.equal_buckets = TRUE TRUE"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "replace_known_left" (formula "17") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12")))
+ (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "11")))
+ (rule "qeq_literals" (formula "134") (term "0"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "leq_literals" (formula "134"))
+ (rule "closeTrue" (formula "134"))
+ )
+ (branch "CUT: result_242.equal_buckets = TRUE FALSE"
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "replace_known_right" (formula "133") (term "0,0,1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "74")))
+ (rule "leq_literals" (formula "133") (term "1"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "qeq_literals" (formula "133"))
+ (rule "closeTrue" (formula "133"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "translateJavaAddInt" (formula "78") (term "0,1,0"))
+ (rule "assignmentAdditionInt" (formula "78") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "expand_inInt" (formula "78"))
+ (rule "replace_int_MIN" (formula "78") (term "0,1"))
+ (rule "replace_int_MAX" (formula "78") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,1"))
+ (rule "add_literals" (formula "78") (term "0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,1"))
+ (rule "mul_literals" (formula "78") (term "0,1,1"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "16") (term "0,0,1") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "translateJavaMod" (formula "16") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "16") (term "2,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "16") (term "3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "16") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "16") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "nnf_imp2or" (formula "16") (term "0,0,1"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0,1"))
+ (rule "nnf_notAnd" (formula "16") (term "1,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0,0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0,0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,1,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "15") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "14") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "65") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "expand_inInt" (formula "65") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "65") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "65") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "65") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "65") (term "0"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "55") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "55") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,0,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "notLeft" (formula "59"))
+ (rule "notLeft" (formula "58"))
+ (rule "andLeft" (formula "57"))
+ (rule "notLeft" (formula "58"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "notLeft" (formula "59"))
+ (rule "andLeft" (formula "57"))
+ (rule "notLeft" (formula "59"))
+ (rule "andLeft" (formula "57"))
+ (rule "notLeft" (formula "59"))
+ (rule "notLeft" (formula "58"))
+ (rule "notLeft" (formula "57"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "13") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "66") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "66") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "66") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "translateJavaAddInt" (formula "50") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_homoInEq1" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0"))
+ (rule "add_literals" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "48") (ifseqformula "3"))
+ (rule "mul_literals" (formula "48") (term "1,1,0"))
+ (rule "greater_literals" (formula "48") (term "0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "elimGcdLeq_antec" (formula "48") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "48") (term "0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "48") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "48") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0"))
+ (rule "qeq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_subsumption0" (formula "61") (ifseqformula "48"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "50") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "83")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0,0,1,0,0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "50") (term "1,0,0,1,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "82")))
+ (rule "applyEq" (formula "50") (term "1") (ifseqformula "51"))
+ (rule "ifEqualsInteger" (formula "50"))
+ (rule "elementOfUnion" (formula "50") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "50") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "50") (term "0,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "50") (term "0,0,1,0,0,1") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "elementOfUnion" (formula "50") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "elementOfUnion" (formula "50"))
+ (rule "elementOfArrayRangeConcrete" (formula "50") (term "1"))
+ (rule "eqSymm" (formula "50") (term "0,0,1"))
+ (rule "replace_known_right" (formula "50") (term "0,0,1") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "elementOfUnion" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "translateJavaMulInt" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "translateJavaMulInt" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "disjointDefinition" (formula "95"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "notLeft" (formula "95"))
+ (rule "disjointDefinition" (formula "94"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "notLeft" (formula "94"))
+ (rule "disjointDefinition" (formula "93"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "notLeft" (formula "93"))
+ (rule "eqSymm" (formula "105"))
+ (rule "disjointDefinition" (formula "92"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "notLeft" (formula "92"))
+ (rule "eqSymm" (formula "104"))
+ (rule "disjointDefinition" (formula "91"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "eqSymm" (formula "103"))
+ (rule "disjointDefinition" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "89"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "notLeft" (formula "89"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "88"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "87"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "notLeft" (formula "87"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "notLeft" (formula "85"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "notLeft" (formula "84"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "notLeft" (formula "83"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "14") (term "0,1,0,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "16") (term "0,1,0,1,3,0,1,0,0,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "13") (term "0,1,0,1,2,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "71") (term "0,1,0,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "16") (term "0,1,0,1,2,0,1,0,0,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "32") (term "1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "73") (term "0,1,0,2,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "15") (term "0,1,0,4,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "13") (term "0,1,0,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "15") (term "0,1,0,5,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "45") (term "1,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "14") (term "0,1,0,4,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "13") (term "0,1,0,1,3,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "14") (term "0,1,0,5,0,1,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0,1,0") (ifseqformula "67"))
+ (rule "distributeIntersection" (formula "42") (term "0"))
+ (rule "distributeIntersection" (formula "43") (term "0"))
+ (rule "distributeIntersection" (formula "32") (term "0"))
+ (rule "unionEqualsEmpty" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "distributeIntersection" (formula "44") (term "0,0"))
+ (rule "distributeIntersection" (formula "44") (term "1,0"))
+ (rule "distributeIntersection" (formula "32") (term "1,0"))
+ (rule "distributeIntersection" (formula "32") (term "0,0"))
+ (rule "distributeIntersection" (formula "43") (term "0"))
+ (rule "distributeIntersection" (formula "42") (term "0"))
+ (rule "distributeIntersection" (formula "44") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "44") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "44") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "44") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "32") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "32") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "32") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "32") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "43") (term "1,0"))
+ (rule "distributeIntersection" (formula "43") (term "0,0"))
+ (rule "distributeIntersection" (formula "42") (term "1,0"))
+ (rule "distributeIntersection" (formula "42") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "unionEqualsEmpty" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "89"))
+ (rule "eqSymm" (formula "88"))
+ (rule "unionEqualsEmpty" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "88"))
+ (rule "eqSymm" (formula "87"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "87"))
+ (rule "eqSymm" (formula "86"))
+ (rule "unionEqualsEmpty" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "86"))
+ (rule "eqSymm" (formula "85"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "85"))
+ (rule "eqSymm" (formula "84"))
+ (rule "sortsDisjointModuloNull" (formula "85"))
+ (rule "replace_known_right" (formula "85") (term "0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "134")))
+ (rule "false_right" (formula "85"))
+ (rule "sortsDisjointModuloNull" (formula "84"))
+ (rule "replace_known_right" (formula "84") (term "0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "133")))
+ (rule "false_right" (formula "84"))
+ (rule "unionEqualsEmpty" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "notLeft" (formula "48"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "84"))
+ (rule "eqSymm" (formula "83"))
+ (rule "sortsDisjointModuloNull" (formula "84"))
+ (rule "replace_known_right" (formula "84") (term "0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "133")))
+ (rule "false_right" (formula "84"))
+ (rule "sortsDisjointModuloNull" (formula "83"))
+ (rule "replace_known_right" (formula "83") (term "0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "132")))
+ (rule "false_right" (formula "83"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "47"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "83"))
+ (rule "eqSymm" (formula "82"))
+ (rule "sortsDisjointModuloNull" (formula "83"))
+ (rule "replace_known_right" (formula "83") (term "0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "132")))
+ (rule "false_right" (formula "83"))
+ (rule "sortsDisjointModuloNull" (formula "82"))
+ (rule "replace_known_right" (formula "82") (term "0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "131")))
+ (rule "false_right" (formula "82"))
+ (rule "unionEqualsEmpty" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "82"))
+ (rule "eqSymm" (formula "81"))
+ (rule "sortsDisjointModuloNull" (formula "82"))
+ (rule "replace_known_right" (formula "82") (term "1") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "119")))
+ (rule "false_right" (formula "82"))
+ (rule "sortsDisjointModuloNull" (formula "81"))
+ (rule "replace_known_right" (formula "81") (term "1") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "119")))
+ (rule "false_right" (formula "81"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "81"))
+ (rule "eqSymm" (formula "80"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "80"))
+ (rule "eqSymm" (formula "79"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "79"))
+ (rule "eqSymm" (formula "78"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "78"))
+ (rule "eqSymm" (formula "77"))
+ (rule "commuteUnion_2" (formula "64") (term "0,1"))
+ (rule "commuteUnion" (formula "64") (term "1,1,1"))
+ (rule "commuteUnion" (formula "16") (term "0,0,1,0,0,1,0,0,1"))
+ (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,1,0,0,1"))
+ (rule "commuteUnion" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "54") (term "0,1") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "expand_inInt" (formula "54") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1"))
+ (rule "translateJavaMod" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "2,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,1,3,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "54") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "54") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "56")) (ifInst "" (formula "57")) (ifInst "" (formula "60")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63")))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "148")))
+ (rule "true_left" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "146")))
+ (rule "true_left" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "118")))
+ (rule "true_left" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "112")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "110")))
+ (rule "true_left" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "108")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "106")))
+ (rule "true_left" (formula "38"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "104")))
+ (rule "true_left" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "102")))
+ (rule "true_left" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "100")))
+ (rule "true_left" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "98")))
+ (rule "true_left" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "96")))
+ (rule "true_left" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "94")))
+ (rule "true_left" (formula "32"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "64"))
+ (rule "eqSymm" (formula "31"))
+ (rule "applyEq" (formula "15") (term "0,1,0,5,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "68") (term "0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "13") (term "0,1,0,1,2,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "14") (term "0,1,0,4,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "42") (term "1,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "15") (term "0,1,0,4,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "13") (term "0,1,0,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "14") (term "0,1,0,5,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "16") (term "0,1,0,1,3,0,1,0,0,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "16") (term "0,1,0,1,2,0,1,0,0,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "13") (term "0,1,0,1,3,0,1,0") (ifseqformula "31"))
+ (rule "applyEq" (formula "70") (term "0,1,0,2,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "68") (term "0,1,0,0") (ifseqformula "31"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "72") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "expand_inInt" (formula "72") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "72") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "72") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "72") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "notLeft" (formula "77"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "notLeft" (formula "78"))
+ (rule "andLeft" (formula "76"))
+ (rule "notLeft" (formula "78"))
+ (rule "andLeft" (formula "76"))
+ (rule "notLeft" (formula "78"))
+ (rule "andLeft" (formula "76"))
+ (rule "notLeft" (formula "78"))
+ (rule "notLeft" (formula "77"))
+ (rule "andLeft" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "74") (term "0,1") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "expand_inInt" (formula "74") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "74") (term "0,2,1,3,0,1,0,1"))
+ (rule "translateJavaMod" (formula "74") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "74") (term "2,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "74") (term "3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "74") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "74") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "74") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "74") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "75"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "56")) (ifInst "" (formula "57")) (ifInst "" (formula "60")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63")))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "78"))
+ (rule "translateJavaMulInt" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "translateJavaMulInt" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "disjointDefinition" (formula "103"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "147")))
+ (rule "true_left" (formula "103"))
+ (rule "disjointDefinition" (formula "102"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "145")))
+ (rule "true_left" (formula "102"))
+ (rule "disjointDefinition" (formula "101"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "notLeft" (formula "101"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "100"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "notLeft" (formula "100"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "99"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "notLeft" (formula "99"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "98"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "notLeft" (formula "98"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "97"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "notLeft" (formula "97"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "96"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "notLeft" (formula "96"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "95"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "notLeft" (formula "95"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "94"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "notLeft" (formula "94"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "93"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "notLeft" (formula "93"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "92"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "notLeft" (formula "92"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "91"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "89"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "notLeft" (formula "89"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "88"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "117")))
+ (rule "true_left" (formula "88"))
+ (rule "disjointDefinition" (formula "87"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "notLeft" (formula "87"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "111")))
+ (rule "true_left" (formula "85"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "109")))
+ (rule "true_left" (formula "84"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "107")))
+ (rule "true_left" (formula "83"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "105")))
+ (rule "true_left" (formula "82"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "103")))
+ (rule "true_left" (formula "81"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "101")))
+ (rule "true_left" (formula "80"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "99")))
+ (rule "true_left" (formula "79"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "97")))
+ (rule "true_left" (formula "78"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "95")))
+ (rule "true_left" (formula "77"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "93")))
+ (rule "true_left" (formula "76"))
+ (rule "applyEq" (formula "75") (term "0") (ifseqformula "64"))
+ (rule "eqSymm" (formula "75"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "49") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "71") (term "0,0"))
+ (rule "nnf_imp2or" (formula "55") (term "0"))
+ (rule "commute_and" (formula "133"))
+ (rule "nnf_imp2or" (formula "73") (term "0"))
+ (rule "commuteUnion" (formula "64") (term "0,0,1"))
+ (rule "commuteUnion" (formula "16") (term "1,0,0,1,0,0,1,0,0,1"))
+ (rule "commuteUnion" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "commute_or" (formula "16") (term "1,0,0,0,1"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "71") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "expand_inInt" (formula "71") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "71") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "71") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "71") (term "1,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "71") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "71") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,2,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "71") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "71") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "71") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "cut_direct" (formula "11") (term "0"))
+ (branch "CUT: result_242.equal_buckets = TRUE TRUE"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "11")))
+ (rule "replace_known_left" (formula "17") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12")))
+ (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_homoInEq0" (formula "134") (term "1"))
+ (rule "mul_literals" (formula "134") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "134") (term "0,1"))
+ (rule "add_literals" (formula "134") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "134") (term "0"))
+ (rule "mul_literals" (formula "134") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "134") (term "0,0"))
+ (rule "add_literals" (formula "134") (term "0,0,0"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "12"))
+ (rule "applyEqRigid" (formula "72") (term "1,1,0,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEq" (formula "74") (term "1,1,0,0,0,0,0") (ifseqformula "12"))
+ (rule "applyEqRigid" (formula "14") (term "1,1,1,0,0,0") (ifseqformula "12"))
+ (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "1,0"))
+ (rule "times_zero_1" (formula "8") (term "0"))
+ (rule "leq_literals" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "applyEq" (formula "9") (term "0,0") (ifseqformula "11"))
+ (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "1,1,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0"))
+ (rule "add_zero_right" (formula "8") (term "0"))
+ (rule "qeq_literals" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "applyEqRigid" (formula "5") (term "0,0") (ifseqformula "10"))
+ (rule "applyEqRigid" (formula "14") (term "1,1,0,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "15") (term "1,0,0,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "73") (term "1,1,0,0,0,0,0") (ifseqformula "10"))
+ (rule "applyEqRigid" (formula "132") (term "0,1,0,0") (ifseqformula "10"))
+ (rule "polySimp_mulLiterals" (formula "132") (term "1,0,0"))
+ (rule "applyEqRigid" (formula "132") (term "0,1,0,1") (ifseqformula "10"))
+ (rule "polySimp_mulLiterals" (formula "132") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "132") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "132") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "132") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "132") (term "0,1"))
+ (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "4") (term "1,1,0"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption6" (formula "1") (ifseqformula "6"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "130") (term "0") (ifseqformula "1"))
+ (rule "greater_literals" (formula "130") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "times_zero_1" (formula "130") (term "1,0,0"))
+ (rule "leq_literals" (formula "130") (term "0,0"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "inEqSimp_leqRight" (formula "130"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "5"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "CUT: result_242.equal_buckets = TRUE FALSE"
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "replace_known_right" (formula "73") (term "0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "replace_known_right" (formula "132") (term "0,0,1") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "132") (ifInst "" (formula "73")))
+ (rule "replace_known_right" (formula "53") (term "0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "130") (term "1"))
+ (rule "times_zero_2" (formula "130") (term "1,0,1"))
+ (rule "add_zero_right" (formula "130") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "130") (term "0"))
+ (rule "times_zero_2" (formula "130") (term "1,0,0"))
+ (rule "add_zero_right" (formula "130") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "130") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "130") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "130") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "130") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "130") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "130") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "130") (term "0") (ifseqformula "4"))
+ (rule "leq_literals" (formula "130") (term "0,0"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "inEqSimp_leqRight" (formula "130"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "44"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "translateJavaAddInt" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,1,0"))
+ (rule "widening_identity_cast_5" (formula "78") (term "1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "lsContinue" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0"))
+ (rule "precOfInt" (formula "78"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,0,1"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "78") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0,1"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0,1"))
+ (rule "add_zero_left" (formula "78") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "78") (term "0,0,1"))
+ (rule "add_literals" (formula "78") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "78") (term "0,0,1"))
+ (rule "add_zero_left" (formula "78") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "times_zero_2" (formula "78") (term "1,0,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "78") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1"))
+ (rule "times_zero_2" (formula "78") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "66") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "66") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "66") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "66") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "66") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "66") (term "0"))
+ (rule "nnf_notAnd" (formula "66") (term "0,0"))
+ (rule "nnf_notAnd" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "66") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "66") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "66") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "66") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "66") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "66") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "50") (term "0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "59"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "60"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "60"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "60"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "60"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "60"))
+ (rule "notLeft" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "55") (term "0,1") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "55") (term "3,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "55") (term "2,0,1,0,1"))
+ (rule "translateJavaMod" (formula "55") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "55") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "55") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "55") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0,1"))
+ (rule "nnf_imp2or" (formula "55") (term "0,1"))
+ (rule "nnf_notAnd" (formula "55") (term "0,0,1"))
+ (rule "nnf_notAnd" (formula "55") (term "0,0,0,1"))
+ (rule "nnf_notAnd" (formula "55") (term "1,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "55") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "1,0,1,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "55") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,1,1,0,0,1"))
+ (rule "add_literals" (formula "55") (term "0,0,1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "1,1,1,0,0,1"))
+ (rule "nnf_notAnd" (formula "55") (term "0,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "55") (term "0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "55") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "55") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "translateJavaMulInt" (formula "35") (term "1"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "translateJavaMulInt" (formula "34") (term "1"))
+ (rule "mul_literals" (formula "34") (term "1"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "104"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "103"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "applyEq" (formula "52") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "72") (term "0,1,0,2,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "51") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "54") (term "1,0,1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "70") (term "0,1,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,0,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "14") (term "0,1,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "13") (term "0,1,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "40"))
+ (rule "distributeIntersection" (formula "52") (term "0"))
+ (rule "distributeIntersection" (formula "51") (term "0"))
+ (rule "distributeIntersection" (formula "41") (term "0"))
+ (rule "distributeIntersection" (formula "52") (term "0,0"))
+ (rule "distributeIntersection" (formula "52") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "distributeIntersection" (formula "41") (term "1,0"))
+ (rule "distributeIntersection" (formula "41") (term "0,0"))
+ (rule "distributeIntersection" (formula "53") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "53") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "53") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "53") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "52") (term "0"))
+ (rule "distributeIntersection" (formula "51") (term "0"))
+ (rule "distributeIntersection" (formula "41") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "41") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "41") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "41") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "distributeIntersection" (formula "52") (term "0,0"))
+ (rule "distributeIntersection" (formula "52") (term "1,0"))
+ (rule "distributeIntersection" (formula "51") (term "0,0"))
+ (rule "distributeIntersection" (formula "51") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "unionEqualsEmpty" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "unionEqualsEmpty" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "unionEqualsEmpty" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "88"))
+ (rule "eqSymm" (formula "87"))
+ (rule "sortsDisjointModuloNull" (formula "88"))
+ (rule "replace_known_right" (formula "88") (term "1") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "123")))
+ (rule "false_right" (formula "88"))
+ (rule "sortsDisjointModuloNull" (formula "87"))
+ (rule "replace_known_right" (formula "87") (term "0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "128")))
+ (rule "false_right" (formula "87"))
+ (rule "unionEqualsEmpty" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "87"))
+ (rule "eqSymm" (formula "86"))
+ (rule "sortsDisjointModuloNull" (formula "87"))
+ (rule "replace_known_right" (formula "87") (term "1") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "120")))
+ (rule "false_right" (formula "87"))
+ (rule "sortsDisjointModuloNull" (formula "86"))
+ (rule "replace_known_right" (formula "86") (term "1") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "120")))
+ (rule "false_right" (formula "86"))
+ (rule "unionEqualsEmpty" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "86"))
+ (rule "eqSymm" (formula "85"))
+ (rule "sortsDisjointModuloNull" (formula "86"))
+ (rule "replace_known_right" (formula "86") (term "0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "127")))
+ (rule "false_right" (formula "86"))
+ (rule "sortsDisjointModuloNull" (formula "85"))
+ (rule "replace_known_right" (formula "85") (term "0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "126")))
+ (rule "false_right" (formula "85"))
+ (rule "unionEqualsEmpty" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "85"))
+ (rule "eqSymm" (formula "84"))
+ (rule "sortsDisjointModuloNull" (formula "85"))
+ (rule "replace_known_right" (formula "85") (term "0") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "126")))
+ (rule "false_right" (formula "85"))
+ (rule "sortsDisjointModuloNull" (formula "84"))
+ (rule "replace_known_right" (formula "84") (term "1") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "113")))
+ (rule "false_right" (formula "84"))
+ (rule "unionEqualsEmpty" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "84"))
+ (rule "eqSymm" (formula "83"))
+ (rule "unionEqualsEmpty" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "notLeft" (formula "57"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "83"))
+ (rule "eqSymm" (formula "82"))
+ (rule "unionEqualsEmpty" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "82"))
+ (rule "eqSymm" (formula "81"))
+ (rule "unionEqualsEmpty" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "notLeft" (formula "55"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "81"))
+ (rule "eqSymm" (formula "80"))
+ (rule "unionEqualsEmpty" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "80"))
+ (rule "eqSymm" (formula "79"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "79"))
+ (rule "eqSymm" (formula "78"))
+ (rule "unionEqualsEmpty" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "78"))
+ (rule "eqSymm" (formula "77"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "77"))
+ (rule "eqSymm" (formula "76"))
+ (rule "commuteUnion_2" (formula "40") (term "0,1"))
+ (rule "commuteUnion" (formula "40") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "69") (term "0,0,1,0,2,1"))
+ (rule "commuteUnion" (formula "69") (term "1,1,0,1,0,2,1"))
+ (rule "commuteUnion" (formula "51") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "51") (term "1,1,1,0,1,0"))
+ (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "67") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "67") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "16") (term "0,0,0,1,0,0,0,1"))
+ (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,0,1"))
+ (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "13") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "13") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "67") (term "1,1,0,1,0"))
+ (rule "commuteUnion" (formula "67") (term "0,0,1,0"))
+ (rule "commuteUnion" (formula "40") (term "0,0,1"))
+ (rule "commuteUnion" (formula "69") (term "0,0,0,1,0,2,1"))
+ (rule "commuteUnion" (formula "51") (term "0,1,0,1,0"))
+ (rule "commuteUnion" (formula "15") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "67") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "16") (term "0,0,1,0,0,0,1"))
+ (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "12") (term "0,0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "67") (term "1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "40") (term "0,1"))
+ (rule "commuteUnion_2" (formula "69") (term "0,0,1,0,2,1"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "72") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "expand_inInt" (formula "72") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "72") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "72") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "72") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "translateJavaAddInt" (formula "56") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "44"))
+ (rule "inEqSimp_homoInEq1" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "54") (ifseqformula "3"))
+ (rule "mul_literals" (formula "54") (term "1,1,0"))
+ (rule "greater_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "elimGcdLeq_antec" (formula "54") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "neg_literal" (formula "54") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_subsumption0" (formula "67") (ifseqformula "54"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "pullOutSelect" (formula "56") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "56") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "133")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "0,0,1,0,0") (ifseqformula "42"))
+ (rule "replace_known_right" (formula "56") (term "0,0,0,1,0,0") (ifseqformula "132"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "43")))
+ (rule "applyEq" (formula "56") (term "1") (ifseqformula "57"))
+ (rule "ifEqualsInteger" (formula "56"))
+ (rule "elementOfUnion" (formula "56") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "56") (term "1,0,0"))
+ (rule "eqSymm" (formula "56") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "56") (term "0,0,1,0,0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "elementOfUnion" (formula "56") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "56") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "56") (term "0,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "56") (term "0,0,1,0,0,1") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "elementOfUnion" (formula "56") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "elementOfUnion" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "75") (term "0,1") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "expand_inInt" (formula "75") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "75") (term "2,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "75") (term "3,0,1,0,1"))
+ (rule "translateJavaMod" (formula "75") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "75") (term "0,2,1,3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "75") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "75") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "75") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "75") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "75") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "75") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "75") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "75") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,0,0,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "77"))
+ (rule "andLeft" (formula "77"))
+ (rule "notLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "notLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "notLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "77"))
+ (rule "notLeft" (formula "79"))
+ (rule "notLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "77"))
+ (rule "notLeft" (formula "79"))
+ (rule "notLeft" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "76"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "38")) (ifInst "" (formula "39")))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "translateJavaMulInt" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "translateJavaMulInt" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "disjointDefinition" (formula "104"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "148")))
+ (rule "true_left" (formula "104"))
+ (rule "disjointDefinition" (formula "103"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "146")))
+ (rule "true_left" (formula "103"))
+ (rule "disjointDefinition" (formula "102"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "notLeft" (formula "102"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "101"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "notLeft" (formula "101"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "100"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "notLeft" (formula "100"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "99"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "notLeft" (formula "99"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "98"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "notLeft" (formula "98"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "97"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "notLeft" (formula "97"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "96"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "notLeft" (formula "96"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "95"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "notLeft" (formula "95"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "94"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "notLeft" (formula "94"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "93"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "notLeft" (formula "93"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "92"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "notLeft" (formula "92"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "91"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "89"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "118")))
+ (rule "true_left" (formula "89"))
+ (rule "disjointDefinition" (formula "88"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "87"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "notLeft" (formula "87"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "112")))
+ (rule "true_left" (formula "86"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "110")))
+ (rule "true_left" (formula "85"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "108")))
+ (rule "true_left" (formula "84"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "106")))
+ (rule "true_left" (formula "83"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "104")))
+ (rule "true_left" (formula "82"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "102")))
+ (rule "true_left" (formula "81"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "100")))
+ (rule "true_left" (formula "80"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "98")))
+ (rule "true_left" (formula "79"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "96")))
+ (rule "true_left" (formula "78"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "94")))
+ (rule "true_left" (formula "77"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "40"))
+ (rule "eqSymm" (formula "76"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "59") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "expand_inInt" (formula "59") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "73") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "expand_inInt" (formula "73") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "73") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "73") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "73") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "73") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "65"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "38")) (ifInst "" (formula "39")))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "translateJavaMulInt" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "translateJavaMulInt" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "disjointDefinition" (formula "93"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "148")))
+ (rule "true_left" (formula "93"))
+ (rule "disjointDefinition" (formula "92"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "146")))
+ (rule "true_left" (formula "92"))
+ (rule "disjointDefinition" (formula "91"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "eqSymm" (formula "102"))
+ (rule "disjointDefinition" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "eqSymm" (formula "101"))
+ (rule "disjointDefinition" (formula "89"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "notLeft" (formula "89"))
+ (rule "eqSymm" (formula "100"))
+ (rule "disjointDefinition" (formula "88"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "eqSymm" (formula "99"))
+ (rule "disjointDefinition" (formula "87"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "notLeft" (formula "87"))
+ (rule "eqSymm" (formula "98"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "notLeft" (formula "85"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "notLeft" (formula "84"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "notLeft" (formula "83"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "118")))
+ (rule "true_left" (formula "78"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "112")))
+ (rule "true_left" (formula "75"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "110")))
+ (rule "true_left" (formula "74"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73") (ifInst "" (formula "108")))
+ (rule "true_left" (formula "73"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "106")))
+ (rule "true_left" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "104")))
+ (rule "true_left" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "102")))
+ (rule "true_left" (formula "70"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "100")))
+ (rule "true_left" (formula "69"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "98")))
+ (rule "true_left" (formula "68"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "96")))
+ (rule "true_left" (formula "67"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "94")))
+ (rule "true_left" (formula "66"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "65"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "75"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "63") (term "0") (inst "b=b_1"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "expand_inInt" (formula "63") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "63") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "63") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "commuteUnion_2" (formula "67") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "16") (term "0,1,0,0,0,1"))
+ (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "69") (term "0,1,0,2,1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "70") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "expand_inInt" (formula "70") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "70") (term "1,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "70") (term "0,2,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "70") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "70") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,2,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "commute_and" (formula "133"))
+ (rule "Definition_axiom_for_isBucketPartitioned_in_de_wiesler_Sorter" (formula "56") (term "0,1,0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0,1,0,1,0"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "1,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,1,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,1,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isEqualityBucket_in_de_wiesler_Sorter" (formula "61") (term "0,1,0,1") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0,1"))
+ (rule "eqSymm" (formula "61") (term "1,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "61") (term "1,1,0,0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "61") (term "0,2,0,1,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "1,1,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "61") (term "1,1,1,0,0,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,2,0,1,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "61") (term "1,1,0,0,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,0,0,1,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "61") (term "0,0,1,0,0,1,0,0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0,0,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,0,0,1,0,1"))
+ (rule "add_literals" (formula "61") (term "0,0,0,0,1,0,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "61") (term "0,0,1,1,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,1,1,0,0,0,1,0,1"))
+ (rule "cut_direct" (formula "11") (term "0"))
+ (branch "CUT: result_242.equal_buckets = TRUE TRUE"
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "replace_known_left" (formula "17") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12")))
+ (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "11")))
+ (rule "qeq_literals" (formula "134") (term "0"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "replace_known_left" (formula "74") (term "0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "inEqSimp_leqRight" (formula "134"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "75") (term "1,1,0,0,0,0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "17") (term "6,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "72") (term "1,1,1,0,0,0") (ifseqformula "13"))
+ (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_zero_right" (formula "10") (term "0"))
+ (rule "qeq_literals" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "12"))
+ (rule "applyEqRigid" (formula "1") (term "1,0") (ifseqformula "12"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEqRigid" (formula "9") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,0"))
+ (rule "times_zero_1" (formula "9") (term "0"))
+ (rule "leq_literals" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "applyEq" (formula "9") (term "0,0") (ifseqformula "11"))
+ (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEqRigid" (formula "13") (term "7,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "72") (term "1,1,0,0,0,0") (ifseqformula "11"))
+ (rule "applyEqRigid" (formula "6") (term "0,0") (ifseqformula "11"))
+ (rule "applyEq" (formula "16") (term "1,6,0") (ifseqformula "11"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "inEqSimp_subsumption6" (formula "5") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "5") (term "1,1,0"))
+ (rule "greater_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption6" (formula "2") (ifseqformula "7"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (ifseqformula "6"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "CUT: result_242.equal_buckets = TRUE FALSE"
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "replace_known_right" (formula "72") (term "0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "true_left" (formula "72"))
+ (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "replace_known_right" (formula "59") (term "0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "replace_known_right" (formula "130") (term "0,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "71")))
+ (rule "qeq_literals" (formula "130") (term "0"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "inEqSimp_leqRight" (formula "130"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (sample_sort_recurse_on)"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "andLeft" (formula "63"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,1,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,0,0,1,0") (ifseqformula "35"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "66"))
+ (rule "notLeft" (formula "64"))
+ (rule "close" (formula "67") (ifseqformula "66"))
+ )
+ (branch "Pre (sample_sort_recurse_on)"
+ (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "67")) (ifInst "" (formula "66")) (ifInst "" (formula "65")) (ifInst "" (formula "67")) (ifInst "" (formula "66")) (ifInst "" (formula "65")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,0,0,1,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,0,0,0,1,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,1,0") (ifseqformula "35"))
+ (rule "wellFormedAnon" (formula "68") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,0,1,0") (ifseqformula "35"))
+ (rule "wellFormedAnonEQ" (formula "68") (term "0,0,0,0,0,0,0,0,1,0") (ifseqformula "46"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,0,0,0,0,0,0,1,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "45")) (ifInst "" (formula "17")) (ifInst "" (formula "21")) (ifInst "" (formula "64")) (ifInst "" (formula "36")))
+ (rule "wellFormedAnon" (formula "68") (term "0,0,0,0,0,1,0"))
+ (rule "wellFormedAnonEQ" (formula "68") (term "0,0,0,0,0,0,1,0") (ifseqformula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,0,0,1,0") (ifseqformula "35"))
+ (rule "expand_inInt" (formula "68") (term "1,0,1,0"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "68") (term "1,1,0"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,1,0"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,1,0"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,0,1"))
+ (rule "replace_known_left" (formula "68") (term "0,0,0,0,0,0,0,1,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "34")) (ifInst "" (formula "41")) (ifInst "" (formula "19")))
+ (rule "polySimp_elimSub" (formula "68") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0,1"))
+ (rule "measuredByCheck" (formula "68") (term "1") (ifseqformula "22"))
+ (rule "precOfPair" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "precOfInt" (formula "68") (term "0,1"))
+ (rule "precOfInt" (formula "68") (term "1,1"))
+ (rule "leq_literals" (formula "68") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "less_literals" (formula "68") (term "1,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0,1"))
+ (rule "replace_known_left" (formula "68") (term "1,1,0,0,1") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0,0,0,1"))
+ (rule "inEqSimp_subsumption4" (formula "68") (term "0,1,0,1") (ifseqformula "61"))
+ (rule "mul_literals" (formula "68") (term "0,1,0,0,1,0,1"))
+ (rule "greater_literals" (formula "68") (term "0,0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "leq_literals" (formula "68") (term "0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_subsumption1" (formula "68") (term "1,0,0,0,1") (ifseqformula "24"))
+ (rule "leq_literals" (formula "68") (term "0,1,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_subsumption0" (formula "68") (term "0,0,0,1") (ifseqformula "29"))
+ (rule "leq_literals" (formula "68") (term "0,0,0,0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_subsumption6" (formula "68") (term "1,0,1") (ifseqformula "3"))
+ (rule "greater_literals" (formula "68") (term "0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0,1,0,1"))
+ (rule "leq_literals" (formula "68") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_subsumption0" (formula "68") (term "0,1") (ifseqformula "27"))
+ (rule "leq_literals" (formula "68") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_subsumption1" (formula "68") (term "1,1") (ifseqformula "4"))
+ (rule "leq_literals" (formula "68") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "15") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "56") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "56") (term "0"))
+ (rule "nnf_notAnd" (formula "56") (term "0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "56") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "56") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "56") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "56") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "translateJavaMulInt" (formula "60") (term "1"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "translateJavaMulInt" (formula "59") (term "1"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "disjointDefinition" (formula "93"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "notLeft" (formula "93"))
+ (rule "disjointDefinition" (formula "92"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "notLeft" (formula "92"))
+ (rule "disjointDefinition" (formula "91"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "89"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "notLeft" (formula "89"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "88"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "87"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "notLeft" (formula "87"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "notLeft" (formula "85"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "notLeft" (formula "84"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "notLeft" (formula "83"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "applyEq" (formula "15") (term "0,1,0,5,0,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "14") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "15") (term "0,1,0,4,0,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "13") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "16") (term "0,1,0,0,0,1") (ifseqformula "65"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "104") (term "0,1,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "15") (term "0,1,0,0,1,0") (ifseqformula "65"))
+ (rule "distributeIntersection" (formula "33") (term "0"))
+ (rule "distributeIntersection" (formula "44") (term "0"))
+ (rule "distributeIntersection" (formula "43") (term "0"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "unionEqualsEmpty" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "distributeIntersection" (formula "44") (term "1,0"))
+ (rule "distributeIntersection" (formula "44") (term "0,0"))
+ (rule "distributeIntersection" (formula "33") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "distributeIntersection" (formula "45") (term "0"))
+ (rule "distributeIntersection" (formula "46") (term "0"))
+ (rule "distributeIntersection" (formula "44") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "44") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "44") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "44") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "distributeIntersection" (formula "35") (term "1,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0"))
+ (rule "distributeIntersection" (formula "46") (term "0,0"))
+ (rule "distributeIntersection" (formula "46") (term "1,0"))
+ (rule "distributeIntersection" (formula "47") (term "1,0"))
+ (rule "distributeIntersection" (formula "47") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "distributeIntersection" (formula "33") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "unionEqualsEmpty" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "79"))
+ (rule "eqSymm" (formula "78"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "78"))
+ (rule "eqSymm" (formula "77"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "77"))
+ (rule "eqSymm" (formula "76"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "76"))
+ (rule "eqSymm" (formula "75"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "75"))
+ (rule "eqSymm" (formula "74"))
+ (rule "sortsDisjointModuloNull" (formula "75"))
+ (rule "replace_known_right" (formula "75") (term "1") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "false_right" (formula "75"))
+ (rule "sortsDisjointModuloNull" (formula "74"))
+ (rule "replace_known_right" (formula "74") (term "1") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "false_right" (formula "74"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "74"))
+ (rule "eqSymm" (formula "73"))
+ (rule "sortsDisjointModuloNull" (formula "74"))
+ (rule "replace_known_right" (formula "74") (term "1") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "false_right" (formula "74"))
+ (rule "sortsDisjointModuloNull" (formula "73"))
+ (rule "replace_known_right" (formula "73") (term "1") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "false_right" (formula "73"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "73"))
+ (rule "eqSymm" (formula "72"))
+ (rule "sortsDisjointModuloNull" (formula "73"))
+ (rule "replace_known_right" (formula "73") (term "1") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "false_right" (formula "73"))
+ (rule "sortsDisjointModuloNull" (formula "72"))
+ (rule "replace_known_right" (formula "72") (term "1") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "72"))
+ (rule "eqSymm" (formula "71"))
+ (rule "sortsDisjointModuloNull" (formula "72"))
+ (rule "replace_known_right" (formula "72") (term "1") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "sortsDisjointModuloNull" (formula "71"))
+ (rule "replace_known_right" (formula "71") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "false_right" (formula "71"))
+ (rule "unionEqualsEmpty" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "45"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "71"))
+ (rule "eqSymm" (formula "70"))
+ (rule "unionEqualsEmpty" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "70"))
+ (rule "eqSymm" (formula "69"))
+ (rule "unionEqualsEmpty" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "notLeft" (formula "44"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "69"))
+ (rule "eqSymm" (formula "68"))
+ (rule "unionEqualsEmpty" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "notLeft" (formula "43"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "68"))
+ (rule "eqSymm" (formula "67"))
+ (rule "commuteUnion" (formula "62") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "62") (term "0,1"))
+ (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,5,0,1,0"))
+ (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,5,0,1,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "12") (term "1,1,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,4,0,1,0"))
+ (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,4,0,1,0"))
+ (rule "commuteUnion_2" (formula "13") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "13") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "43") (term "1,1,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "16") (term "0,0,1,0,0,0,1"))
+ (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,0,1"))
+ (rule "commuteUnion_2" (formula "117") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "117") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "62") (term "0,0,1"))
+ (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,5,0,1,0"))
+ (rule "commuteUnion" (formula "12") (term "0,0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,4,0,1,0"))
+ (rule "commuteUnion" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "43") (term "0,1,0,1,0"))
+ (rule "commuteUnion" (formula "16") (term "0,0,0,1,0,0,0,1"))
+ (rule "commuteUnion" (formula "117") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "15") (term "0,0,1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "62") (term "0,1"))
+ (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,5,0,1,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,4,0,1,0"))
+ (rule "commuteUnion_2" (formula "13") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "43") (term "1,0,1,0"))
+ (rule "commuteUnion_2" (formula "16") (term "0,0,1,0,0,0,1"))
+ (rule "commuteUnion_2" (formula "117") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "62") (term "1"))
+ (rule "commuteUnion_2" (formula "15") (term "0,1,0,5,0,1,0"))
+ (rule "commuteUnion_2" (formula "12") (term "0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "14") (term "0,1,0,0"))
+ (rule "commuteUnion_2" (formula "15") (term "0,1,0,4,0,1,0"))
+ (rule "commuteUnion_2" (formula "13") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "16") (term "0,1,0,0,0,1"))
+ (rule "commuteUnion_2" (formula "117") (term "0,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "47") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaAddInt" (formula "47") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "35"))
+ (rule "inEqSimp_homoInEq1" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46"))
+ (rule "mul_literals" (formula "46") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "45") (ifseqformula "3"))
+ (rule "mul_literals" (formula "45") (term "1,1,0"))
+ (rule "greater_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "elimGcdLeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "45") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "45") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "qeq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_subsumption0" (formula "67") (ifseqformula "45"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "pullOutSelect" (formula "47") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "47") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "123")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,0,1,0,0") (ifseqformula "33"))
+ (rule "replace_known_left" (formula "47") (term "1,0,0,1,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "122")))
+ (rule "applyEqRigid" (formula "47") (term "1") (ifseqformula "48"))
+ (rule "ifEqualsInteger" (formula "47"))
+ (rule "elementOfUnion" (formula "47") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "47") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "47") (term "0,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "47") (term "0,0,1,0,0,1") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "elementOfUnion" (formula "47") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "elementOfUnion" (formula "47"))
+ (rule "elementOfArrayRangeConcrete" (formula "47") (term "1"))
+ (rule "eqSymm" (formula "47") (term "0,0,1"))
+ (rule "replace_known_right" (formula "47") (term "0,0,1") (ifseqformula "122"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "elementOfUnion" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "49") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "67"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "67"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "67"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "67"))
+ (rule "notLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "54") (term "0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "expand_inInt" (formula "54") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1"))
+ (rule "translateJavaMod" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,1,3,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "2,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "54") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "54") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "56")) (ifInst "" (formula "57")) (ifInst "" (formula "60")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63")))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "translateJavaMulInt" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "146")))
+ (rule "true_left" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "144")))
+ (rule "true_left" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "116")))
+ (rule "true_left" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "110")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "108")))
+ (rule "true_left" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "106")))
+ (rule "true_left" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "104")))
+ (rule "true_left" (formula "38"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "102")))
+ (rule "true_left" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "100")))
+ (rule "true_left" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "98")))
+ (rule "true_left" (formula "35"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "96")))
+ (rule "true_left" (formula "34"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "94")))
+ (rule "true_left" (formula "32"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "92")))
+ (rule "true_left" (formula "32"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "64"))
+ (rule "eqSymm" (formula "31"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "cut_direct" (formula "16") (term "0"))
+ (branch "CUT: result_242.equal_buckets = TRUE TRUE"
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "18")))
+ (rule "true_left" (formula "11"))
+ (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "applyEqRigid" (formula "16") (term "1,6,0") (ifseqformula "17"))
+ (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "1,0"))
+ (rule "times_zero_1" (formula "8") (term "0"))
+ (rule "leq_literals" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "applyEq" (formula "13") (term "1,1,0,0,0,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "11") (term "7,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "1,1,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0"))
+ (rule "add_zero_right" (formula "8") (term "0"))
+ (rule "qeq_literals" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "15"))
+ (rule "applyEqRigid" (formula "124") (term "0,1") (ifseqformula "15"))
+ (rule "applyEqRigid" (formula "8") (term "0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "5") (term "0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "4") (term "1,1,0"))
+ (rule "greater_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption4" (formula "123") (term "1") (ifseqformula "5"))
+ (rule "greater_literals" (formula "123") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "mul_literals" (formula "123") (term "0,0,1"))
+ (rule "leq_literals" (formula "123") (term "0,1"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "inEqSimp_subsumption6" (formula "1") (ifseqformula "6"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "polyDiv_pullOut" (formula "3") (term "0") (inst "polyDivCoeff=quotient_0"))
+ (rule "equal_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "3"))
+ (rule "polySimp_pullOutFactor0" (formula "3") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "3") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "commute_or_2" (formula "51") (term "0,0"))
+ (rule "commuteUnion" (formula "27") (term "0,0"))
+ (rule "commuteUnion" (formula "27") (term "1,1,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "cut_direct" (formula "39") (term "0,0,0"))
+ (branch "CUT: result_242. = TRUE TRUE"
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "commuteUnion" (formula "27") (term "1,0,0"))
+ (rule "applyEq" (formula "9") (term "0,1,0,0,1,0") (ifseqformula "27"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "8") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "expand_inInt" (formula "8") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,1,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "59") (term "0"))
+ (rule "expand_inShort" (formula "59"))
+ (rule "replace_short_MAX" (formula "59") (term "1,0"))
+ (rule "replace_short_MIN" (formula "59") (term "0,1"))
+ (rule "andLeft" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "61"))
+ (rule "qeq_literals" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "leq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthNotNegative" (formula "59") (term "0"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthIsAShort" (formula "58") (term "0"))
+ (rule "expand_inShort" (formula "58"))
+ (rule "replace_short_MAX" (formula "58") (term "1,0"))
+ (rule "replace_short_MIN" (formula "58") (term "0,1"))
+ (rule "andLeft" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "leq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthNotNegative" (formula "58") (term "0"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "qeq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthIsAShort" (formula "57") (term "0"))
+ (rule "expand_inShort" (formula "57"))
+ (rule "replace_short_MAX" (formula "57") (term "1,0"))
+ (rule "replace_short_MIN" (formula "57") (term "0,1"))
+ (rule "andLeft" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "qeq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "leq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "arrayLengthNotNegative" (formula "57") (term "0"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "qeq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "arrayLengthIsAShort" (formula "56") (term "0"))
+ (rule "expand_inShort" (formula "56"))
+ (rule "replace_short_MAX" (formula "56") (term "1,0"))
+ (rule "replace_short_MIN" (formula "56") (term "0,1"))
+ (rule "andLeft" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "qeq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "57"))
+ (rule "leq_literals" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "arrayLengthNotNegative" (formula "56") (term "0"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "57"))
+ (rule "qeq_literals" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "arrayLengthNotNegative" (formula "55") (term "0"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "56"))
+ (rule "qeq_literals" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "arrayLengthIsAShort" (formula "55") (term "0"))
+ (rule "expand_inShort" (formula "55"))
+ (rule "replace_short_MIN" (formula "55") (term "0,1"))
+ (rule "replace_short_MAX" (formula "55") (term "1,0"))
+ (rule "andLeft" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "57"))
+ (rule "leq_literals" (formula "55"))
+ (rule "closeFalse" (formula "55"))
+ )
+ (branch "CUT: result_242. = TRUE FALSE"
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "commuteUnion" (formula "27") (term "1,0,0"))
+ (rule "applyEq" (formula "9") (term "0,1,0,0,1,0") (ifseqformula "27"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "8") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "expand_inInt" (formula "8") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "59") (term "0"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthIsAShort" (formula "59") (term "0"))
+ (rule "expand_inShort" (formula "59"))
+ (rule "replace_short_MAX" (formula "59") (term "1,0"))
+ (rule "replace_short_MIN" (formula "59") (term "0,1"))
+ (rule "andLeft" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "61"))
+ (rule "qeq_literals" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "leq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthNotNegative" (formula "58") (term "0"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "qeq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthIsAShort" (formula "58") (term "0"))
+ (rule "expand_inShort" (formula "58"))
+ (rule "replace_short_MAX" (formula "58") (term "1,0"))
+ (rule "replace_short_MIN" (formula "58") (term "0,1"))
+ (rule "andLeft" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "leq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthNotNegative" (formula "57") (term "0"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "qeq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "arrayLengthIsAShort" (formula "57") (term "0"))
+ (rule "expand_inShort" (formula "57"))
+ (rule "replace_short_MAX" (formula "57") (term "1,0"))
+ (rule "replace_short_MIN" (formula "57") (term "0,1"))
+ (rule "andLeft" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "qeq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "leq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "arrayLengthIsAShort" (formula "56") (term "0"))
+ (rule "expand_inShort" (formula "56"))
+ (rule "replace_short_MIN" (formula "56") (term "0,1"))
+ (rule "replace_short_MAX" (formula "56") (term "1,0"))
+ (rule "andLeft" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "qeq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "57"))
+ (rule "leq_literals" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "arrayLengthNotNegative" (formula "56") (term "0"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "57"))
+ (rule "qeq_literals" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "arrayLengthNotNegative" (formula "55") (term "0"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "56"))
+ (rule "qeq_literals" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "arrayLengthIsAShort" (formula "55") (term "0"))
+ (rule "expand_inShort" (formula "55"))
+ (rule "replace_short_MAX" (formula "55") (term "1,0"))
+ (rule "replace_short_MIN" (formula "55") (term "0,1"))
+ (rule "andLeft" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "57"))
+ (rule "leq_literals" (formula "55"))
+ (rule "closeFalse" (formula "55"))
+ )
+ )
+ (branch "CUT: result_242.equal_buckets = TRUE FALSE"
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "replace_known_right" (formula "11") (term "0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "replace_known_right" (formula "52") (term "0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "commute_or_2" (formula "52") (term "0,0"))
+ (rule "commuteUnion" (formula "29") (term "0,0,0"))
+ (rule "commuteUnion" (formula "29") (term "1,1,0"))
+ (rule "commuteUnion" (formula "29") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,0,0,1,0") (ifseqformula "29"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "cut_direct" (formula "41") (term "0,0,0"))
+ (branch "CUT: result_242. = TRUE TRUE"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "cut_direct" (formula "123") (term "1"))
+ (branch "CUT: bucket_0 <= 2147483647 TRUE"
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "9") (ifseqformula "7"))
+ (rule "greater_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "14") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "13") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "61") (term "0"))
+ (rule "expand_inShort" (formula "61"))
+ (rule "replace_short_MAX" (formula "61") (term "1,0"))
+ (rule "replace_short_MIN" (formula "61") (term "0,1"))
+ (rule "andLeft" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "63"))
+ (rule "qeq_literals" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "62"))
+ (rule "leq_literals" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "arrayLengthNotNegative" (formula "61") (term "0"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "62"))
+ (rule "qeq_literals" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "arrayLengthIsAShort" (formula "60") (term "0"))
+ (rule "expand_inShort" (formula "60"))
+ (rule "replace_short_MAX" (formula "60") (term "1,0"))
+ (rule "replace_short_MIN" (formula "60") (term "0,1"))
+ (rule "andLeft" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "62"))
+ (rule "qeq_literals" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "61"))
+ (rule "leq_literals" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "arrayLengthNotNegative" (formula "60") (term "0"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "61"))
+ (rule "qeq_literals" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "arrayLengthNotNegative" (formula "59") (term "0"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthIsAShort" (formula "59") (term "0"))
+ (rule "expand_inShort" (formula "59"))
+ (rule "replace_short_MIN" (formula "59") (term "0,1"))
+ (rule "replace_short_MAX" (formula "59") (term "1,0"))
+ (rule "andLeft" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "61"))
+ (rule "leq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthIsAShort" (formula "58") (term "0"))
+ (rule "expand_inShort" (formula "58"))
+ (rule "replace_short_MAX" (formula "58") (term "1,0"))
+ (rule "replace_short_MIN" (formula "58") (term "0,1"))
+ (rule "andLeft" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "leq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthNotNegative" (formula "58") (term "0"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "qeq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthNotNegative" (formula "57") (term "0"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "qeq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "arrayLengthIsAShort" (formula "57") (term "0"))
+ (rule "expand_inShort" (formula "57"))
+ (rule "replace_short_MIN" (formula "57") (term "0,1"))
+ (rule "replace_short_MAX" (formula "57") (term "1,0"))
+ (rule "andLeft" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "59"))
+ (rule "leq_literals" (formula "57"))
+ (rule "closeFalse" (formula "57"))
+ )
+ (branch "CUT: bucket_0 <= 2147483647 FALSE"
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "false_right" (formula "124"))
+ (rule "inEqSimp_leqRight" (formula "123"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "44"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "CUT: result_242. = TRUE FALSE"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "cut_direct" (formula "124") (term "1"))
+ (branch "CUT: bucket_0 <= 2147483647 TRUE"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "9") (ifseqformula "7"))
+ (rule "greater_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "14") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "13") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "61") (term "0"))
+ (rule "expand_inShort" (formula "61"))
+ (rule "replace_short_MIN" (formula "61") (term "0,1"))
+ (rule "replace_short_MAX" (formula "61") (term "1,0"))
+ (rule "andLeft" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "63"))
+ (rule "leq_literals" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "62"))
+ (rule "qeq_literals" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "arrayLengthNotNegative" (formula "61") (term "0"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "62"))
+ (rule "qeq_literals" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "arrayLengthIsAShort" (formula "60") (term "0"))
+ (rule "expand_inShort" (formula "60"))
+ (rule "replace_short_MIN" (formula "60") (term "0,1"))
+ (rule "replace_short_MAX" (formula "60") (term "1,0"))
+ (rule "andLeft" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "62"))
+ (rule "leq_literals" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "61"))
+ (rule "qeq_literals" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "arrayLengthNotNegative" (formula "60") (term "0"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "61"))
+ (rule "qeq_literals" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "arrayLengthIsAShort" (formula "59") (term "0"))
+ (rule "expand_inShort" (formula "59"))
+ (rule "replace_short_MIN" (formula "59") (term "0,1"))
+ (rule "replace_short_MAX" (formula "59") (term "1,0"))
+ (rule "andLeft" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "61"))
+ (rule "leq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthNotNegative" (formula "59") (term "0"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "arrayLengthIsAShort" (formula "58") (term "0"))
+ (rule "expand_inShort" (formula "58"))
+ (rule "replace_short_MIN" (formula "58") (term "0,1"))
+ (rule "replace_short_MAX" (formula "58") (term "1,0"))
+ (rule "andLeft" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "60"))
+ (rule "leq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "qeq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthNotNegative" (formula "58") (term "0"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "59"))
+ (rule "qeq_literals" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "arrayLengthNotNegative" (formula "57") (term "0"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "58"))
+ (rule "qeq_literals" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "arrayLengthIsAShort" (formula "57") (term "0"))
+ (rule "expand_inShort" (formula "57"))
+ (rule "replace_short_MAX" (formula "57") (term "1,0"))
+ (rule "replace_short_MIN" (formula "57") (term "0,1"))
+ (rule "andLeft" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "59"))
+ (rule "leq_literals" (formula "57"))
+ (rule "closeFalse" (formula "57"))
+ )
+ (branch "CUT: bucket_0 <= 2147483647 FALSE"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "false_right" (formula "125"))
+ (rule "inEqSimp_leqRight" (formula "124"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "9"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "7"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "69"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_right" (formula "15") (term "1,0,6,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "replace_known_right" (formula "13") (term "1,0,7,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "ifthenelse_negated" (formula "15") (term "6,0"))
+ (rule "ifthenelse_negated" (formula "13") (term "7,0"))
+ (rule "inEqSimp_leqRight" (formula "62"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "5"))
+ (rule "applyEq" (formula "18") (term "0,1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "70") (term "0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "70") (term "0,1,1,0"))
+ (rule "add_literals" (formula "70") (term "1,0,1,1,0"))
+ (rule "times_zero_1" (formula "70") (term "0,1,1,0"))
+ (rule "applyEqRigid" (formula "17") (term "2,6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,0"))
+ (rule "times_zero_1" (formula "6") (term "0"))
+ (rule "qeq_literals" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "applyEqRigid" (formula "12") (term "0,1") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "6") (term "0,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "9") (term "0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "17") (term "1,6,0,0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "69") (term "0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "11") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "14") (term "2,7,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "52"))
+ (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "leq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "67") (term "0,0,1,0,0,0,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "49") (term "0,5,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "12") (term "0,1,1,7,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "55") (term "0,2,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "14") (term "0,5,0") (ifseqformula "9"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "12") (term "0,2,7,0") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "15") (term "0,5,0,0,1") (ifseqformula "9"))
+ (rule "applyEqRigid" (formula "7") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "leq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0"))
+ (rule "add_zero_right" (formula "7") (term "0"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "13") (term "0,0,1,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "applyEqRigid" (formula "5") (term "0,0,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "12") (term "0,2,6,0") (ifseqformula "7"))
+ (rule "applyEqRigid" (formula "4") (term "0,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "8") (term "0,0,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "applyEqRigid" (formula "9") (term "0,5,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "47") (term "0,5,0") (ifseqformula "7"))
+ (rule "applyEqRigid" (formula "45") (term "0,2,0") (ifseqformula "7"))
+ (rule "applyEq" (formula "63") (term "0,0,0,0,1,0") (ifseqformula "7"))
+ (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "7"))
+ (rule "applyEq" (formula "10") (term "0,7,0") (ifseqformula "6"))
+ (rule "applyEq" (formula "46") (term "0,7,0") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "10") (term "0,1,1,6,0") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "50") (term "0,5,0,1") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "47") (term "0,0,0") (ifseqformula "6"))
+ (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "50") (term "0,1,7,0,1") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "49") (term "0,0,2,0") (ifseqformula "6"))
+ (rule "applyEq" (formula "11") (term "0,1,6,0,1") (ifseqformula "6"))
+ (rule "applyEqRigid" (formula "11") (term "0,1,7,0,1") (ifseqformula "6"))
+ (rule "applyEq" (formula "1") (term "0,1") (ifseqformula "6"))
+ (rule "applyEq" (formula "47") (term "1") (ifseqformula "6"))
+ (rule "applyEq" (formula "48") (term "0,1") (ifseqformula "6"))
+ (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "3") (term "1,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "polyDiv_pullOut" (formula "3") (term "0") (inst "polyDivCoeff=quotient_0"))
+ (rule "equal_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "3"))
+ (rule "polySimp_pullOutFactor0" (formula "3") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "3") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "blockBreak" (formula "60") (term "1"))
+ (rule "lsBreak" (formula "60") (term "1"))
+ (rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "jdiv_axiom" (formula "45") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "45"))
+ (rule "applyEq" (formula "45") (term "1") (ifseqformula "46"))
+ (rule "inEqSimp_subsumption6" (formula "45") (term "0,0") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "45") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "45") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "leq_literals" (formula "45") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "polyDiv_pullOut" (formula "45") (term "0") (inst "polyDivCoeff=quotient_0"))
+ (rule "equal_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "45"))
+ (rule "polySimp_pullOutFactor0" (formula "45") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "45") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "45") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "45") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,0"))
+ (rule "times_zero_1" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "ifSplit" (formula "60"))
+ (branch "if equal_buckets true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_left" (formula "7") (term "0,7,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_left" (formula "9") (term "0,6,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "replace_known_left" (formula "10") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "applyEq" (formula "61") (term "0,1,0,0,0,0") (ifseqformula "1"))
+ (rule "methodCallUnfoldArguments" (formula "61") (term "1"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_2"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_4"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_5"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_6"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_7"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_8"))
+ (rule "assignmentSubtractionInt" (formula "61") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "expand_inInt" (formula "61"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "1,1"))
+ (rule "mul_literals" (formula "61") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,1"))
+ (rule "add_literals" (formula "61") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_subsumption6" (formula "61") (term "1") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "61") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "61") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "leq_literals" (formula "61") (term "0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_leqRight" (formula "61"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "5"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "61") (newnames "heapBefore_sample_sort_recurse_on,exc_0,heapAfter_sample_sort_recurse_on,anon_heap_sample_sort_recurse_on") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (sample_sort_recurse_on)"
+ (builtin "One Step Simplification" (formula "56"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "62"))
+ (rule "translateJavaSubInt" (formula "56") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "7,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "6,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "7,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "6,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "1,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "7,0"))
+ (rule "mul_literals" (formula "62") (term "1,7,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "7,0"))
+ (rule "add_literals" (formula "59") (term "0,7,0"))
+ (rule "add_zero_left" (formula "59") (term "7,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "6,0"))
+ (rule "add_literals" (formula "61") (term "0,6,0"))
+ (rule "add_zero_left" (formula "61") (term "6,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "6,0"))
+ (rule "add_literals" (formula "62") (term "0,6,0"))
+ (rule "add_zero_left" (formula "62") (term "6,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "7,0"))
+ (rule "commuteUnion" (formula "56") (term "1,0"))
+ (rule "tryEmpty" (formula "71") (term "1"))
+ (rule "blockEmptyLabel" (formula "71") (term "1"))
+ (rule "blockEmpty" (formula "71") (term "1"))
+ (rule "methodCallEmpty" (formula "71") (term "1"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "emptyModality" (formula "71") (term "1"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "closeTrue" (formula "71"))
+ )
+ (branch "Exceptional Post (sample_sort_recurse_on)"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "1,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "0,0,1,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "0,0,0,0,1,0") (ifseqformula "29"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "57"))
+ (rule "close" (formula "60") (ifseqformula "59"))
+ )
+ (branch "Pre (sample_sort_recurse_on)"
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "60")) (ifInst "" (formula "59")) (ifInst "" (formula "58")) (ifInst "" (formula "60")) (ifInst "" (formula "59")) (ifInst "" (formula "58")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,1,0,0,1,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,1,0,0,0,1,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,0,0,1,0,0,1,0") (ifseqformula "29"))
+ (rule "wellFormedAnon" (formula "61") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,0,0,1,0,0,0,1,0") (ifseqformula "29"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,1,0,0,0,0,0,0,1,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "54")) (ifInst "" (formula "11")) (ifInst "" (formula "15")) (ifInst "" (formula "57")) (ifInst "" (formula "30")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,0,0,0,0,0,0,1,0") (ifseqformula "29"))
+ (rule "expand_inInt" (formula "61") (term "1,0,1,0"))
+ (rule "expand_inInt" (formula "61") (term "1,1,0"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,0,1"))
+ (rule "replace_known_left" (formula "61") (term "0,0,0,0,0,0,0,0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,1"))
+ (rule "measuredByCheck" (formula "61") (term "1") (ifseqformula "16"))
+ (rule "precOfPair" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "precOfInt" (formula "61") (term "0,1"))
+ (rule "precOfInt" (formula "61") (term "1,1"))
+ (rule "leq_literals" (formula "61") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "less_literals" (formula "61") (term "1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0,1"))
+ (rule "replace_known_left" (formula "61") (term "1,1,0,0,1") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,1"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1"))
+ (rule "add_literals" (formula "61") (term "0,0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "1,1,1"))
+ (rule "mul_literals" (formula "61") (term "1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,1,1,1"))
+ (rule "add_literals" (formula "61") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,1,1"))
+ (rule "mul_literals" (formula "61") (term "1,1,1,1"))
+ (rule "inEqSimp_subsumption4" (formula "61") (term "0,1,0,1") (ifseqformula "4"))
+ (rule "greater_literals" (formula "61") (term "0,0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "0,0,0,1,0,1"))
+ (rule "leq_literals" (formula "61") (term "0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption6" (formula "61") (term "1,1,1") (ifseqformula "3"))
+ (rule "greater_literals" (formula "61") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "times_zero_1" (formula "61") (term "1,0,1,1,1"))
+ (rule "leq_literals" (formula "61") (term "0,1,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption4" (formula "61") (term "1,1") (ifseqformula "4"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,1,1"))
+ (rule "greater_literals" (formula "61") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "leq_literals" (formula "61") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption0" (formula "61") (term "1,0,1") (ifseqformula "21"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption1" (formula "61") (term "1,0,1") (ifseqformula "18"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption6" (formula "61") (term "1,1") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "61") (term "1,1,0,1,1"))
+ (rule "greater_literals" (formula "61") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "leq_literals" (formula "61") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption0" (formula "61") (term "1") (ifseqformula "23"))
+ (rule "leq_literals" (formula "61") (term "0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "49") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "translateJavaMod" (formula "49") (term "0,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "jmod_axiom" (formula "49") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,0"))
+ (rule "nnf_imp2or" (formula "49") (term "0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "49") (term "0,0,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaMulInt" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "translateJavaMulInt" (formula "28") (term "1"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "applyEq" (formula "7") (term "0,1,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "97") (term "0,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "6") (term "0,1,0,2,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "10") (term "0,1,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "9") (term "0,1,0,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "48") (term "1,0,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "8") (term "0,1,0,0") (ifseqformula "34"))
+ (rule "distributeIntersection" (formula "45") (term "0"))
+ (rule "distributeIntersection" (formula "46") (term "0"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "unionEqualsEmpty" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "distributeIntersection" (formula "47") (term "0,0"))
+ (rule "distributeIntersection" (formula "47") (term "1,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0"))
+ (rule "distributeIntersection" (formula "46") (term "0"))
+ (rule "distributeIntersection" (formula "45") (term "0"))
+ (rule "distributeIntersection" (formula "47") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "47") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "47") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "47") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,1,0"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "distributeIntersection" (formula "45") (term "1,0"))
+ (rule "distributeIntersection" (formula "45") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "distributeIntersection" (formula "47") (term "0"))
+ (rule "distributeIntersection" (formula "48") (term "0"))
+ (rule "unionEqualsEmpty" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "unionEqualsEmpty" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "unionEqualsEmpty" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "72"))
+ (rule "eqSymm" (formula "71"))
+ (rule "unionEqualsEmpty" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "71"))
+ (rule "eqSymm" (formula "70"))
+ (rule "unionEqualsEmpty" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "andLeft" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "70"))
+ (rule "eqSymm" (formula "69"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "69"))
+ (rule "eqSymm" (formula "68"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "68"))
+ (rule "eqSymm" (formula "67"))
+ (rule "sortsDisjointModuloNull" (formula "68"))
+ (rule "replace_known_right" (formula "68") (term "1") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "false_right" (formula "68"))
+ (rule "sortsDisjointModuloNull" (formula "67"))
+ (rule "replace_known_right" (formula "67") (term "1") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "false_right" (formula "67"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "67"))
+ (rule "eqSymm" (formula "66"))
+ (rule "sortsDisjointModuloNull" (formula "67"))
+ (rule "replace_known_right" (formula "67") (term "1") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "false_right" (formula "67"))
+ (rule "sortsDisjointModuloNull" (formula "66"))
+ (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "false_right" (formula "66"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "66"))
+ (rule "eqSymm" (formula "65"))
+ (rule "sortsDisjointModuloNull" (formula "66"))
+ (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "false_right" (formula "66"))
+ (rule "sortsDisjointModuloNull" (formula "65"))
+ (rule "replace_known_right" (formula "65") (term "1") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "false_right" (formula "65"))
+ (rule "unionEqualsEmpty" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "65"))
+ (rule "eqSymm" (formula "64"))
+ (rule "sortsDisjointModuloNull" (formula "65"))
+ (rule "replace_known_right" (formula "65") (term "1") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "false_right" (formula "65"))
+ (rule "sortsDisjointModuloNull" (formula "64"))
+ (rule "replace_known_right" (formula "64") (term "1") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "false_right" (formula "64"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "64"))
+ (rule "eqSymm" (formula "63"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "63"))
+ (rule "eqSymm" (formula "62"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "62"))
+ (rule "eqSymm" (formula "61"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "61"))
+ (rule "eqSymm" (formula "60"))
+ (rule "commuteUnion" (formula "34") (term "1,1,1"))
+ (rule "commuteUnion" (formula "34") (term "0,1"))
+ (rule "commuteUnion" (formula "7") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "7") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "110") (term "0,0,1,0"))
+ (rule "commuteUnion" (formula "110") (term "1,1,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,1,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "6") (term "0,0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "10") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "10") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "9") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "45") (term "1,1,1,0,1,0"))
+ (rule "commuteUnion" (formula "45") (term "0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "8") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "8") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "34") (term "1,0,1"))
+ (rule "commuteUnion" (formula "7") (term "1,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "110") (term "1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "6") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "9") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "6") (term "0,0,0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "8") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "6") (term "0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "8") (term "0,1,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "translateJavaAddInt" (formula "50") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq1" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0"))
+ (rule "add_literals" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49"))
+ (rule "mul_literals" (formula "49") (term "1"))
+ (rule "elimGcdLeq_antec" (formula "49") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "49") (term "0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "neg_literal" (formula "49") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "qeq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "49"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "elimGcdGeq_antec" (formula "47") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "47") (term "0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "47") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "47"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "pullOutSelect" (formula "49") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "49") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "109")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "49") (term "0,0,1,0,0") (ifseqformula "34"))
+ (rule "replace_known_right" (formula "49") (term "0,0,0,1,0,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "35")))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "50"))
+ (rule "ifEqualsInteger" (formula "49"))
+ (rule "elementOfUnion" (formula "49") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "49") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "49") (term "0,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "49") (term "0,0,1,0,0,1") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "elementOfUnion" (formula "49") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "49") (term "1,0,0"))
+ (rule "eqSymm" (formula "49") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "49") (term "0,0,1,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "elementOfUnion" (formula "49") (term "0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "elementOfUnion" (formula "49") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "57") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,0,1,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "58"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "24")) (ifInst "" (formula "25")) (ifInst "" (formula "28")) (ifInst "" (formula "29")) (ifInst "" (formula "30")) (ifInst "" (formula "31")))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "translateJavaMulInt" (formula "58") (term "1"))
+ (rule "mul_literals" (formula "58") (term "1"))
+ (rule "translateJavaMulInt" (formula "58") (term "1"))
+ (rule "mul_literals" (formula "58") (term "1"))
+ (rule "disjointDefinition" (formula "86"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "133")))
+ (rule "true_left" (formula "86"))
+ (rule "disjointDefinition" (formula "85"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "131")))
+ (rule "true_left" (formula "85"))
+ (rule "disjointDefinition" (formula "84"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "notLeft" (formula "84"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "83"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "notLeft" (formula "83"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "82"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "notLeft" (formula "82"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "81"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "80"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "79"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "notLeft" (formula "79"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "78"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "notLeft" (formula "78"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "77"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "notLeft" (formula "77"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "76"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "103")))
+ (rule "true_left" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "97")))
+ (rule "true_left" (formula "68"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "95")))
+ (rule "true_left" (formula "67"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "93")))
+ (rule "true_left" (formula "66"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "91")))
+ (rule "true_left" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "89")))
+ (rule "true_left" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "87")))
+ (rule "true_left" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "85")))
+ (rule "true_left" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "83")))
+ (rule "true_left" (formula "61"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "81")))
+ (rule "true_left" (formula "59"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "79")))
+ (rule "true_left" (formula "59"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "58"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "61"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "61"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "61"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "61"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "61"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "61"))
+ (rule "notLeft" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "17"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "51") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "expand_inInt" (formula "51") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isEqualityBucket_in_de_wiesler_Sorter" (formula "55") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "eqSymm" (formula "55") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "57") (term "0,0,0"))
+ (rule "commuteUnion" (formula "57") (term "1,1,0"))
+ (rule "cut_direct" (formula "43") (term "0,0,0"))
+ (branch "CUT: result_242. = TRUE TRUE"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "commuteUnion" (formula "57") (term "0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "nnf_imp2or" (formula "56") (term "0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "5") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "expand_inInt" (formula "5") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "5") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "5") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "5") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "5") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "5") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "117"))
+ (rule "replace_known_right" (formula "117") (term "0,1,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "60")) (ifInst "" (formula "59")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63")) (ifInst "" (formula "65")) (ifInst "" (formula "66")))
+ (rule "closeTrue" (formula "117"))
+ )
+ (branch "CUT: result_242. = TRUE FALSE"
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "commuteUnion_2" (formula "57") (term "0,0"))
+ (rule "commuteUnion_2" (formula "57") (term "0"))
+ (rule "eqSymm" (formula "57"))
+ (rule "applyEq" (formula "119") (term "0,1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "8") (term "0,1,0,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "42") (term "1,0,1,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "31") (term "1") (ifseqformula "57"))
+ (rule "applyEq" (formula "5") (term "0,1,0,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "7") (term "0,1,0,0") (ifseqformula "57"))
+ (rule "commuteUnion" (formula "57") (term "0,0,1"))
+ (rule "commuteUnion" (formula "119") (term "0,0,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "42") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "31") (term "0,0,1"))
+ (rule "commuteUnion" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "7") (term "0,0,0,1,0,0"))
+ (rule "nnf_imp2or" (formula "56") (term "0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "6") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "expand_inInt" (formula "6") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "6") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "6") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "6") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "47") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "30") (term "0"))
+ (rule "expand_inShort" (formula "30"))
+ (rule "replace_short_MAX" (formula "30") (term "1,0"))
+ (rule "replace_short_MIN" (formula "30") (term "0,1"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthNotNegative" (formula "30") (term "0"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "31"))
+ (rule "qeq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthIsAShort" (formula "29") (term "0"))
+ (rule "expand_inShort" (formula "29"))
+ (rule "replace_short_MAX" (formula "29") (term "1,0"))
+ (rule "replace_short_MIN" (formula "29") (term "0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "31"))
+ (rule "qeq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "leq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthNotNegative" (formula "29") (term "0"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthIsAShort" (formula "28") (term "0"))
+ (rule "expand_inShort" (formula "28"))
+ (rule "replace_short_MAX" (formula "28") (term "1,0"))
+ (rule "replace_short_MIN" (formula "28") (term "0,1"))
+ (rule "andLeft" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "28") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "26") (term "0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "arrayLengthIsAShort" (formula "26") (term "0"))
+ (rule "expand_inShort" (formula "26"))
+ (rule "replace_short_MAX" (formula "26") (term "1,0"))
+ (rule "replace_short_MIN" (formula "26") (term "0,1"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "26"))
+ (rule "closeFalse" (formula "26"))
+ )
+ )
+ )
+ )
+ (branch "if equal_buckets false"
+ (builtin "One Step Simplification" (formula "61"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_right" (formula "6") (term "0,7,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "8") (term "0,6,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "48") (term "0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "tryEmpty" (formula "59") (term "1"))
+ (rule "blockEmptyLabel" (formula "59") (term "1"))
+ (rule "blockEmpty" (formula "59") (term "1"))
+ (rule "methodCallEmpty" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "emptyModality" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "closeTrue" (formula "59"))
+ )
+ )
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "51"))
+ (branch
+ (rule "andRight" (formula "51"))
+ (branch
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0"))
+ (rule "close" (formula "51") (ifseqformula "8"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "wellFormedAnonEQ" (formula "51") (ifseqformula "32"))
+ (rule "wellFormedAnon" (formula "51") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "51") (term "0,0") (ifseqformula "21"))
+ (rule "replace_known_left" (formula "51") (term "1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "1")) (ifInst "" (formula "20")) (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "51"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "51"))
+ (branch
+ (rule "andRight" (formula "51"))
+ (branch
+ (rule "andRight" (formula "51"))
+ (branch
+ (rule "andRight" (formula "51"))
+ (branch
+ (rule "andRight" (formula "51"))
+ (branch
+ (rule "orRight" (formula "51"))
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "48")))
+ (rule "false_right" (formula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (term "0,0") (ifseqformula "21"))
+ (rule "orRight" (formula "51"))
+ (rule "orRight" (formula "51"))
+ (rule "orRight" (formula "51"))
+ (rule "close" (formula "51") (ifseqformula "22"))
+ )
+ (branch
+ (rule "orRight" (formula "51"))
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "49")))
+ (rule "false_right" (formula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (term "0,0") (ifseqformula "21"))
+ (rule "orRight" (formula "51"))
+ (rule "orRight" (formula "51"))
+ (rule "orRight" (formula "51"))
+ (rule "close" (formula "51") (ifseqformula "7"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "expand_inInt" (formula "51"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1"))
+ (rule "replace_known_left" (formula "51") (term "0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "inEqSimp_leqRight" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "jmod_axiom" (formula "39") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "expand_inInt" (formula "51"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1"))
+ (rule "inEqSimp_gtToGeq" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "jmod_axiom" (formula "38") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "newSym_eq" (formula "35") (inst "newSymDef=mul(int::final(result_242,
+ de.wiesler.PartitionResult::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "35") (term "1,1"))
+ (rule "add_zero_right" (formula "35") (term "1"))
+ (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "36"))
+ (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "inEqSimp_geqRight" (formula "49"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "40") (term "2,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "35") (term "5,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "50")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (term "0,0") (ifseqformula "21"))
+ (rule "orRight" (formula "51"))
+ (rule "orRight" (formula "51"))
+ (rule "orRight" (formula "51"))
+ (rule "close" (formula "51") (ifseqformula "2"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "expand_inInt" (formula "51"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1"))
+ (rule "inEqSimp_gtToGeq" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "jmod_axiom" (formula "38") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "newSym_eq" (formula "35") (inst "l=l_0") (inst "newSymDef=mul(int::final(result_242,
+ de.wiesler.PartitionResult::$num_buckets),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "35") (term "1,1"))
+ (rule "add_zero_right" (formula "35") (term "1"))
+ (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "36"))
+ (rule "applyEq" (formula "33") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "49") (term "0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "39") (term "2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36"))
+ (rule "elimGcdGeq" (formula "49") (term "1") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0,1,0,1"))
+ (rule "sub_literals" (formula "49") (term "0,0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,1"))
+ (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "49") (term "0,0,1,0,1"))
+ (rule "add_zero_right" (formula "49") (term "0,0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "49") (term "0,1,0,1"))
+ (rule "add_literals" (formula "49") (term "1,0,1,0,1"))
+ (rule "times_zero_1" (formula "49") (term "0,1,0,1"))
+ (rule "leq_literals" (formula "49") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0,1"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0,1"))
+ (rule "add_literals" (formula "49") (term "0,0,1"))
+ (rule "qeq_literals" (formula "49") (term "0,1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "elimGcdLeq" (formula "49") (term "0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0,0"))
+ (rule "sub_literals" (formula "49") (term "0,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,1,0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "49") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_pullOutFactor0" (formula "49") (term "0,0,0"))
+ (rule "add_literals" (formula "49") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "49") (term "0,0,0"))
+ (rule "leq_literals" (formula "49") (term "0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "43"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "43"))
+ (rule "notLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "43"))
+ (rule "notLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "translateJavaMulInt" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "applyEq" (formula "24") (term "1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "37") (term "1,0,1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "23"))
+ (rule "distributeIntersection" (formula "24") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "distributeIntersection" (formula "24") (term "0,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "59"))
+ (rule "eqSymm" (formula "58"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "58"))
+ (rule "eqSymm" (formula "57"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "57"))
+ (rule "eqSymm" (formula "56"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "56"))
+ (rule "eqSymm" (formula "55"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "55"))
+ (rule "eqSymm" (formula "54"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "54"))
+ (rule "eqSymm" (formula "53"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "53"))
+ (rule "eqSymm" (formula "52"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "52"))
+ (rule "eqSymm" (formula "51"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "51"))
+ (rule "eqSymm" (formula "50"))
+ (rule "sortsDisjointModuloNull" (formula "51"))
+ (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "102")))
+ (rule "false_right" (formula "51"))
+ (rule "sortsDisjointModuloNull" (formula "50"))
+ (rule "replace_known_right" (formula "50") (term "0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "107")))
+ (rule "false_right" (formula "50"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "50"))
+ (rule "eqSymm" (formula "49"))
+ (rule "sortsDisjointModuloNull" (formula "50"))
+ (rule "replace_known_right" (formula "50") (term "0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "107")))
+ (rule "false_right" (formula "50"))
+ (rule "sortsDisjointModuloNull" (formula "49"))
+ (rule "replace_known_right" (formula "49") (term "0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "106")))
+ (rule "false_right" (formula "49"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "49"))
+ (rule "eqSymm" (formula "48"))
+ (rule "sortsDisjointModuloNull" (formula "49"))
+ (rule "replace_known_right" (formula "49") (term "1") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "95")))
+ (rule "false_right" (formula "49"))
+ (rule "sortsDisjointModuloNull" (formula "48"))
+ (rule "replace_known_right" (formula "48") (term "0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "105")))
+ (rule "false_right" (formula "48"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "47"))
+ (rule "sortsDisjointModuloNull" (formula "48"))
+ (rule "replace_known_right" (formula "48") (term "0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "105")))
+ (rule "false_right" (formula "48"))
+ (rule "sortsDisjointModuloNull" (formula "47"))
+ (rule "replace_known_right" (formula "47") (term "1") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "95")))
+ (rule "false_right" (formula "47"))
+ (rule "commuteUnion_2" (formula "23") (term "0,1"))
+ (rule "commuteUnion" (formula "23") (term "1,1,1"))
+ (rule "commuteUnion" (formula "34") (term "1,1,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "34") (term "0,1,0,1,0"))
+ (rule "commuteUnion" (formula "23") (term "0,0,1"))
+ (rule "commuteUnion" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "23") (term "0,1"))
+ (rule "commuteUnion_2" (formula "34") (term "0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "23") (term "1"))
+ (rule "commuteUnion_2" (formula "34") (term "1,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "notLeft" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "14")) (ifInst "" (formula "15")) (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "21")))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "translateJavaMulInt" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "translateJavaMulInt" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "117")))
+ (rule "true_left" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "115")))
+ (rule "true_left" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "87")))
+ (rule "true_left" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "81")))
+ (rule "true_left" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "79")))
+ (rule "true_left" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "77")))
+ (rule "true_left" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "75")))
+ (rule "true_left" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "73")))
+ (rule "true_left" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "71")))
+ (rule "true_left" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "69")))
+ (rule "true_left" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "67")))
+ (rule "true_left" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "64")))
+ (rule "true_left" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "64")))
+ (rule "true_left" (formula "45"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "22"))
+ (rule "eqSymm" (formula "44"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "37") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "translateJavaAddInt" (formula "38") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "0"))
+ (rule "polySimp_addComm0" (formula "38") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1"))
+ (rule "elimGcdLeq_antec" (formula "37") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "37") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_subsumption0" (formula "107") (term "0") (ifseqformula "37"))
+ (rule "leq_literals" (formula "107") (term "0,0"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "inEqSimp_geqRight" (formula "107"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "37") (ifseqformula "1"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "greater_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "closeFalse" (formula "37"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,1,1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,1,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaSubInt" (formula "57") (term "2,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "2,0,1,0,2,0"))
+ (rule "translateJavaSubInt" (formula "49") (term "2,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "50") (term "2,0,1,0,0"))
+ (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "polySimp_elimSub" (formula "56") (term "2,0,1,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "1,2,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,2,0,1,0,2,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "2,0,1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,2,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "2,0,1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,2,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "2,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "2,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "2,0,1,0,0"))
+ (rule "narrowSelectArrayType" (formula "47") (term "2,1") (ifseqformula "1") (ifseqformula "55"))
+ (rule "commuteUnion" (formula "56") (term "1,0,1,0"))
+ (rule "commuteUnion" (formula "47") (term "1,0,2,0"))
+ (rule "commuteUnion" (formula "48") (term "1,0,0"))
+ (rule "commuteUnion" (formula "49") (term "1,0,0"))
+ (rule "ifUnfold" (formula "56") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_2"))
+ (rule "inequality_comparison_simple" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "ifSplit" (formula "56"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "56") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "56") (newnames "anonOut_heap_1,exc_289,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "translateJavaSubInt" (formula "50") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "50") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "47") (term "2,0") (ifseqformula "50") (ifseqformula "56"))
+ (rule "variableDeclarationAssign" (formula "57") (term "1"))
+ (rule "variableDeclaration" (formula "57") (term "1") (newnames "exc_289_1"))
+ (rule "assignment" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "emptyStatement" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "emptyStatement" (formula "57") (term "1"))
+ (rule "tryEmpty" (formula "57") (term "1"))
+ (rule "blockEmptyLabel" (formula "57") (term "1"))
+ (rule "blockEmpty" (formula "57") (term "1"))
+ (rule "methodCallEmpty" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "emptyModality" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "closeTrue" (formula "57"))
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "56"))
+ (branch
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "close" (formula "56") (ifseqformula "8"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedAnon" (formula "56"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "32"))
+ (rule "wellFormedAnon" (formula "56") (term "0,0"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0,0,0") (ifseqformula "21"))
+ (rule "replace_known_left" (formula "56") (term "1,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "1")) (ifInst "" (formula "20")) (ifInst "" (formula "31")) (ifInst "" (formula "46")))
+ (rule "closeTrue" (formula "56"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0,0,1,1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0,0,0,0,1,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "replace_known_left" (formula "52") (term "0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "ifUnfold" (formula "59") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "59") (term "1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "replace_known_left" (formula "59") (term "0,0,1,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "ifSplit" (formula "59"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "methodCallEmpty" (formula "59") (term "1"))
+ (rule "tryEmpty" (formula "59") (term "1"))
+ (rule "emptyModality" (formula "59") (term "1"))
+ (rule "andRight" (formula "59"))
+ (branch
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_gtToGeq" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "jmod_axiom" (formula "38") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "newSym_eq" (formula "35") (inst "newSymDef=mul(int::final(result_242,
+ de.wiesler.PartitionResult::$num_buckets),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "35") (term "1,1"))
+ (rule "add_zero_right" (formula "35") (term "1"))
+ (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "36"))
+ (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "39") (term "2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36"))
+ (rule "applyEq" (formula "33") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "50") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "46") (term "7,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "46") (term "5,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "47") (term "5,0") (ifseqformula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "notLeft" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "translateJavaMulInt" (formula "42") (term "1"))
+ (rule "mul_literals" (formula "42") (term "1"))
+ (rule "translateJavaMulInt" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1"))
+ (rule "disjointDefinition" (formula "75"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "notLeft" (formula "75"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "applyEq" (formula "52") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "53") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "51") (term "0,1,0,2,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "99") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "47"))
+ (rule "applyEq" (formula "28") (term "1,0,1,0") (ifseqformula "47"))
+ (rule "distributeIntersection" (formula "26") (term "0"))
+ (rule "distributeIntersection" (formula "15") (term "0"))
+ (rule "distributeIntersection" (formula "25") (term "0"))
+ (rule "distributeIntersection" (formula "26") (term "0,0"))
+ (rule "distributeIntersection" (formula "26") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "distributeIntersection" (formula "26") (term "0,0"))
+ (rule "distributeIntersection" (formula "26") (term "1,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "15") (term "0"))
+ (rule "distributeIntersection" (formula "16") (term "0"))
+ (rule "distributeIntersection" (formula "26") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "26") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "26") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "26") (term "0,1,0"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "distributeIntersection" (formula "15") (term "0,0"))
+ (rule "distributeIntersection" (formula "15") (term "1,0"))
+ (rule "distributeIntersection" (formula "16") (term "1,0"))
+ (rule "distributeIntersection" (formula "16") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "unionEqualsEmpty" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "66"))
+ (rule "eqSymm" (formula "65"))
+ (rule "sortsDisjointModuloNull" (formula "66"))
+ (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "102")))
+ (rule "false_right" (formula "66"))
+ (rule "sortsDisjointModuloNull" (formula "65"))
+ (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "106")))
+ (rule "false_right" (formula "65"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "65"))
+ (rule "eqSymm" (formula "64"))
+ (rule "sortsDisjointModuloNull" (formula "65"))
+ (rule "replace_known_right" (formula "65") (term "1") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "98")))
+ (rule "false_right" (formula "65"))
+ (rule "sortsDisjointModuloNull" (formula "64"))
+ (rule "replace_known_right" (formula "64") (term "0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "105")))
+ (rule "false_right" (formula "64"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "64"))
+ (rule "eqSymm" (formula "63"))
+ (rule "sortsDisjointModuloNull" (formula "64"))
+ (rule "replace_known_right" (formula "64") (term "0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "105")))
+ (rule "false_right" (formula "64"))
+ (rule "sortsDisjointModuloNull" (formula "63"))
+ (rule "replace_known_right" (formula "63") (term "1") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "95")))
+ (rule "false_right" (formula "63"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "63"))
+ (rule "eqSymm" (formula "62"))
+ (rule "sortsDisjointModuloNull" (formula "63"))
+ (rule "replace_known_right" (formula "63") (term "1") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "93")))
+ (rule "false_right" (formula "63"))
+ (rule "sortsDisjointModuloNull" (formula "62"))
+ (rule "replace_known_right" (formula "62") (term "1") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "91")))
+ (rule "false_right" (formula "62"))
+ (rule "unionEqualsEmpty" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "17"))
+ (rule "notLeft" (formula "16"))
+ (rule "eqSymm" (formula "62"))
+ (rule "eqSymm" (formula "61"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "61"))
+ (rule "eqSymm" (formula "60"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "60"))
+ (rule "eqSymm" (formula "59"))
+ (rule "unionEqualsEmpty" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "59"))
+ (rule "eqSymm" (formula "58"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "58"))
+ (rule "eqSymm" (formula "57"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "57"))
+ (rule "eqSymm" (formula "56"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "56"))
+ (rule "eqSymm" (formula "55"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "55"))
+ (rule "eqSymm" (formula "54"))
+ (rule "commuteUnion" (formula "44") (term "1,1,1"))
+ (rule "commuteUnion" (formula "44") (term "0,0,1"))
+ (rule "commuteUnion" (formula "49") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "49") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "53") (term "1,1,0,1,0,0,0"))
+ (rule "commuteUnion" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "commuteUnion" (formula "50") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "50") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "48") (term "1,1,0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "48") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "112") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "112") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "25") (term "1,1,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "44") (term "0,1"))
+ (rule "commuteUnion_2" (formula "49") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "53") (term "0,0,1,0,0,0"))
+ (rule "commuteUnion" (formula "50") (term "1,0,0,1,0,0"))
+ (rule "commuteUnion" (formula "48") (term "0,0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "112") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "25") (term "0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "44") (term "1"))
+ (rule "commuteUnion_2" (formula "49") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "53") (term "0,0,0,1,0,0,0"))
+ (rule "commuteUnion_2" (formula "48") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "112") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "25") (term "1,0,1,0"))
+ (rule "commuteUnion" (formula "44") (term "0,0,1"))
+ (rule "commuteUnion" (formula "49") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "53") (term "0,1,0,0,0"))
+ (rule "commuteUnion_2" (formula "48") (term "0,1,0,2,0"))
+ (rule "commuteUnion_2" (formula "112") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "14"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "40")) (ifInst "" (formula "41")) (ifInst "" (formula "42")) (ifInst "" (formula "43")))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "translateJavaMulInt" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "translateJavaMulInt" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "125")))
+ (rule "true_left" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "123")))
+ (rule "true_left" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "95")))
+ (rule "true_left" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "89")))
+ (rule "true_left" (formula "24"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "87")))
+ (rule "true_left" (formula "23"))
+ (rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "85")))
+ (rule "true_left" (formula "22"))
+ (rule "disjointDefinition" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "83")))
+ (rule "true_left" (formula "21"))
+ (rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "81")))
+ (rule "true_left" (formula "20"))
+ (rule "disjointDefinition" (formula "19"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "79")))
+ (rule "true_left" (formula "19"))
+ (rule "disjointDefinition" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "77")))
+ (rule "true_left" (formula "18"))
+ (rule "disjointDefinition" (formula "17"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "75")))
+ (rule "true_left" (formula "17"))
+ (rule "disjointDefinition" (formula "16"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "16"))
+ (rule "disjointDefinition" (formula "15"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "15"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "44"))
+ (rule "eqSymm" (formula "14"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "30") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "30") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "30") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "35") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "35") (term "0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,0,1,1,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "34") (term "0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1"))
+ (rule "translateJavaMod" (formula "34") (term "0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "34") (term "3,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "34") (term "2,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "34") (term "0,2,1,3,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,1,3,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,1"))
+ (rule "jmod_axiom" (formula "34") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "34") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "34") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,1"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "29") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "29") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "translateJavaAddInt" (formula "30") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "29") (term "0"))
+ (rule "polySimp_addComm0" (formula "30") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))"))
+ (rule "neg_literal" (formula "29") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "29") (term "0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "elimGcdGeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "30") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "112")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (term "0,0,1,0,0") (ifseqformula "16"))
+ (rule "replace_known_right" (formula "30") (term "0,0,0,1,0,0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "17")))
+ (rule "applyEqRigid" (formula "30") (term "1") (ifseqformula "31"))
+ (rule "ifEqualsInteger" (formula "30"))
+ (rule "elementOfUnion" (formula "30") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "30") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "30") (term "0,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "30") (term "0,0,1,0,0,1") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "elementOfUnion" (formula "30") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "elementOfUnion" (formula "30"))
+ (rule "elementOfArrayRangeConcrete" (formula "30") (term "1"))
+ (rule "eqSymm" (formula "30") (term "0,0,1"))
+ (rule "replace_known_right" (formula "30") (term "0,0,1") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "elementOfUnion" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "commuteUnion" (formula "14") (term "1,1,0"))
+ (rule "commuteUnion_2" (formula "14") (term "0,0"))
+ (rule "commuteUnion" (formula "14") (term "0,0,0"))
+ (rule "commuteUnion_2" (formula "14") (term "0,0"))
+ (rule "commuteUnion_2" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "nnf_imp2or" (formula "31") (term "0"))
+ (rule "nnf_imp2or" (formula "36") (term "0,1"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,1"))
+ (rule "nnf_notAnd" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "32") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "37") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0,1"))
+ (rule "nnf_notAnd" (formula "36") (term "1,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0,1"))
+ (rule "add_literals" (formula "36") (term "0,0,1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,0,0,1"))
+ (rule "nnf_notAnd" (formula "36") (term "0,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "36") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,0,1"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,0,1"))
+ (rule "Contract_axiom_for_sortednessFromPartitionSorted_in_Sorter" (formula "55") (term "0"))
+ (rule "wellFormedAnon" (formula "55") (term "1,0"))
+ (rule "wellFormedAnon" (formula "55") (term "0,1,0"))
+ (rule "wellFormedAnonEQ" (formula "55") (term "0,0,1,0") (ifseqformula "24"))
+ (rule "wellFormedAnon" (formula "55") (term "0,0,0,1,0"))
+ (rule "wellFormedAnonEQ" (formula "55") (term "0,0,0,0,1,0") (ifseqformula "15"))
+ (rule "translateJavaSubInt" (formula "55") (term "1,0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "55") (term "3,0,0,1,1,1,1,1,0,0"))
+ (rule "replace_known_left" (formula "55") (term "1,1,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "114")) (ifInst "" (formula "112")) (ifInst "" (formula "1")) (ifInst "" (formula "14")) (ifInst "" (formula "21")) (ifInst "" (formula "23")) (ifInst "" (formula "49")) (ifInst "" (formula "56")))
+ (rule "true_left" (formula "55"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "51") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "expand_inInt" (formula "51") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "51") (term "0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_sortednessFromPartitionSorted_in_de_wiesler_Sorter" (formula "55") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "expand_inInt" (formula "28") (term "1,0,0"))
+ (rule "expand_inInt" (formula "28") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "114"))
+ (rule "replace_known_right" (formula "114") (term "0,1") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "101")) (ifInst "" (formula "100")) (ifInst "" (formula "102")) (ifInst "" (formula "103")) (ifInst "" (formula "104")) (ifInst "" (formula "105")) (ifInst "" (formula "106")))
+ (rule "closeTrue" (formula "114"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "closeTrue" (formula "59"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (partition = null)"
+ (rule "false_right" (formula "52"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "46")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (partition = null)"
+ (rule "false_right" (formula "52"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "46")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Exceptional Post (partition)"
+ (builtin "One Step Simplification" (formula "32"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "32"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "0,0,1,0") (ifseqformula "21"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "close" (formula "36") (ifseqformula "35"))
+ )
+ (branch "Pre (partition)"
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "35")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "33")) (ifInst "" (formula "34")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "0,1,1,0") (ifseqformula "21"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "0,1,0,1,0") (ifseqformula "21"))
+ (rule "wellFormedAnon" (formula "36") (term "0,0,0,0,0,1,0"))
+ (rule "wellFormedAnonEQ" (formula "36") (term "0,0,0,0,0,0,1,0") (ifseqformula "21"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "0,1,0,0,0,0,1,0") (ifseqformula "21"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0,0,1,0"))
+ (rule "expand_inInt" (formula "36") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,0,1"))
+ (rule "replace_known_left" (formula "36") (term "0,0,1,1,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "1")) (ifInst "" (formula "20")) (ifInst "" (formula "27")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "5")) (ifInst "" (formula "32")) (ifInst "" (formula "22")))
+ (rule "polySimp_elimSub" (formula "36") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0,1"))
+ (rule "measuredByCheck" (formula "36") (term "1") (ifseqformula "8"))
+ (rule "precOfPair" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_gtToGeq" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "precOfInt" (formula "36") (term "1,1"))
+ (rule "less_literals" (formula "36") (term "1,1,1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "leq_literals" (formula "36") (term "1,1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1"))
+ (rule "replace_known_left" (formula "36") (term "1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "1"))
+ (rule "replace_known_left" (formula "36") (term "1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "translateJavaMulInt" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "47"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "46"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "24") (term "1,0") (ifseqformula "23"))
+ (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "23"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "distributeIntersection" (formula "24") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "distributeIntersection" (formula "36") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "36") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "36") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "36") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "24") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "24") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "distributeIntersection" (formula "36") (term "1,0"))
+ (rule "distributeIntersection" (formula "36") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "distributeIntersection" (formula "38") (term "0"))
+ (rule "distributeIntersection" (formula "37") (term "0"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "45"))
+ (rule "eqSymm" (formula "44"))
+ (rule "sortsDisjointModuloNull" (formula "45"))
+ (rule "replace_known_right" (formula "45") (term "1") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "false_right" (formula "45"))
+ (rule "sortsDisjointModuloNull" (formula "44"))
+ (rule "replace_known_right" (formula "44") (term "1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "false_right" (formula "44"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "43"))
+ (rule "sortsDisjointModuloNull" (formula "44"))
+ (rule "replace_known_right" (formula "44") (term "1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "false_right" (formula "44"))
+ (rule "sortsDisjointModuloNull" (formula "43"))
+ (rule "replace_known_right" (formula "43") (term "1") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "false_right" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "43"))
+ (rule "eqSymm" (formula "42"))
+ (rule "sortsDisjointModuloNull" (formula "43"))
+ (rule "replace_known_right" (formula "43") (term "1") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "false_right" (formula "43"))
+ (rule "sortsDisjointModuloNull" (formula "42"))
+ (rule "replace_known_right" (formula "42") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "false_right" (formula "42"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "41"))
+ (rule "sortsDisjointModuloNull" (formula "42"))
+ (rule "replace_known_right" (formula "42") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "false_right" (formula "42"))
+ (rule "sortsDisjointModuloNull" (formula "41"))
+ (rule "replace_known_right" (formula "41") (term "1") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "false_right" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "41"))
+ (rule "eqSymm" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "40"))
+ (rule "eqSymm" (formula "39"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "eqSymm" (formula "38"))
+ (rule "eqSymm" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "37"))
+ (rule "eqSymm" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "36"))
+ (rule "eqSymm" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "35"))
+ (rule "eqSymm" (formula "34"))
+ (rule "unionEqualsEmpty" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "34"))
+ (rule "eqSymm" (formula "33"))
+ (rule "commuteUnion" (formula "23") (term "0,1"))
+ (rule "commuteUnion" (formula "23") (term "1,1,1"))
+ (rule "commuteUnion" (formula "23") (term "1,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "7"))
+ (rule "notLeft" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "89"))
+ (rule "replace_known_right" (formula "89") (term "0,1,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "39")))
+ (rule "closeTrue" (formula "89"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (createArray)"
+ (builtin "One Step Simplification" (formula "21"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "21"))
+ (rule "notLeft" (formula "19"))
+ (rule "close" (formula "21") (ifseqformula "20"))
+ )
+ (branch "Pre (createArray)"
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "19"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "leq_literals" (formula "19"))
+ (rule "closeTrue" (formula "19"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort_recurse_on((I,int,int,de.wiesler.Storage,(I,int,boolean,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort_recurse_on((I,int,int,de.wiesler.Storage,(I,int,boolean,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..52782b7
--- /dev/null
+++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort_recurse_on((I,int,int,de.wiesler.Storage,(I,int,boolean,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,7251 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 12:55:45 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 12:55:45 CEST 2023
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "60802")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "notLeft" (formula "8"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "notLeft" (formula "11"))
+(rule "notLeft" (formula "10"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "18"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "24"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "26"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "28"))
+(rule "andLeft" (formula "28"))
+(rule "andLeft" (formula "28"))
+(rule "translateJavaSubInt" (formula "13") (term "0,0"))
+(rule "translateJavaSubInt" (formula "18") (term "0"))
+(rule "translateJavaSubInt" (formula "22") (term "1"))
+(rule "translateJavaAddInt" (formula "26") (term "6,0,1,1"))
+(rule "translateJavaSubInt" (formula "26") (term "7,0,1,1"))
+(rule "translateJavaMod" (formula "26") (term "0,0,0,1"))
+(rule "eqSymm" (formula "26") (term "1,0,1"))
+(rule "translateJavaSubInt" (formula "27") (term "3,0"))
+(rule "translateJavaSubInt" (formula "26") (term "0,1,0,1"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "13") (term "0,0"))
+(rule "polySimp_elimSub" (formula "18") (term "0"))
+(rule "polySimp_elimSub" (formula "22") (term "1"))
+(rule "polySimp_elimSub" (formula "26") (term "7,0,1,1"))
+(rule "mul_literals" (formula "26") (term "1,7,0,1,1"))
+(rule "polySimp_elimSub" (formula "27") (term "3,0"))
+(rule "polySimp_elimSub" (formula "26") (term "0,1,0,1"))
+(rule "mul_literals" (formula "26") (term "1,0,1,0,1"))
+(rule "polySimp_addComm0" (formula "26") (term "6,0,1,1"))
+(rule "polySimp_addComm0" (formula "13") (term "0,0"))
+(rule "polySimp_addComm0" (formula "18") (term "0"))
+(rule "polySimp_addComm0" (formula "22") (term "1"))
+(rule "polySimp_addComm0" (formula "26") (term "7,0,1,1"))
+(rule "polySimp_addComm0" (formula "27") (term "3,0"))
+(rule "polySimp_addComm0" (formula "26") (term "0,1,0,1"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "disjointDefinition" (formula "28"))
+(rule "disjointDefinition" (formula "29"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "19"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "commuteIntersection" (formula "28") (term "0"))
+(rule "commuteIntersection" (formula "29") (term "0"))
+(rule "commute_or" (formula "26") (term "0,1"))
+(rule "commute_and" (formula "26") (term "1"))
+(rule "methodBodyExpand" (formula "35") (term "1") (newnames "heapBefore_sample_sort_recurse_on,savedHeapBefore_sample_sort_recurse_on,_storageBefore_sample_sort_recurse_on,_valuesBefore_sample_sort_recurse_on,inner_beginBefore_sample_sort_recurse_on,inner_endBefore_sample_sort_recurse_on"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "variableDeclarationAssign" (formula "35") (term "1"))
+(rule "variableDeclaration" (formula "35") (term "1") (newnames "inner_begin"))
+(rule "compound_addition_2" (formula "35") (term "1") (inst "#v0=x") (inst "#v1=x_1"))
+(rule "variableDeclarationAssign" (formula "35") (term "1"))
+(rule "variableDeclaration" (formula "35") (term "1") (newnames "x"))
+(rule "assignment" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "variableDeclarationAssign" (formula "35") (term "1"))
+(rule "variableDeclaration" (formula "35") (term "1") (newnames "x_1"))
+(rule "assignment_array2" (formula "35"))
+(branch "Normal Execution (_bucket_starts != null)"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "assignmentAdditionInt" (formula "35") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "1"))
+ (rule "mul_literals" (formula "35") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0"))
+ (rule "jmod_axiom" (formula "26") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "14"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "translateJavaMulInt" (formula "30") (term "1"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "translateJavaMulInt" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "35"))
+ (rule "distributeIntersection" (formula "26") (term "0"))
+ (rule "distributeIntersection" (formula "25") (term "0"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "distributeIntersection" (formula "25") (term "0,0"))
+ (rule "distributeIntersection" (formula "25") (term "1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0"))
+ (rule "distributeIntersection" (formula "26") (term "0"))
+ (rule "distributeIntersection" (formula "25") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "25") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "25") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "25") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,0"))
+ (rule "distributeIntersection" (formula "26") (term "0,0"))
+ (rule "distributeIntersection" (formula "26") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "41"))
+ (rule "eqSymm" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "31"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "40"))
+ (rule "eqSymm" (formula "39"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "38"))
+ (rule "eqSymm" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "37"))
+ (rule "eqSymm" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "36"))
+ (rule "eqSymm" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "35"))
+ (rule "eqSymm" (formula "34"))
+ (rule "commuteUnion" (formula "33") (term "0,0,1"))
+ (rule "commuteUnion" (formula "33") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "33") (term "0,1"))
+ (rule "commuteUnion" (formula "33") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "33") (term "1"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "translateJavaAddInt" (formula "20") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "25") (term "0,0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "25") (term "3,0,1,0,0,1"))
+ (rule "translateJavaMod" (formula "25") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "25") (term "2,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "25") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "25") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "25") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,0,0,1,1,0"))
+ (rule "commute_and" (formula "92"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_imp2or" (formula "25") (term "0,0,1"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0,1"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "13") (term "0"))
+ (rule "expand_inShort" (formula "13"))
+ (rule "replace_short_MIN" (formula "13") (term "0,1"))
+ (rule "replace_short_MAX" (formula "13") (term "1,0"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "10"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "27") (term "1,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0,0,1"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "27") (term "1,0,1,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0,0,1"))
+ (rule "add_literals" (formula "27") (term "0,0,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0,0,1"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "commute_or" (formula "27") (term "1,1"))
+ (rule "nnf_imp2or" (formula "21") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "arrayLengthIsAShort" (formula "36") (term "0"))
+ (rule "expand_inShort" (formula "36"))
+ (rule "replace_short_MIN" (formula "36") (term "0,1"))
+ (rule "replace_short_MAX" (formula "36") (term "1,0"))
+ (rule "andLeft" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "37"))
+ (rule "qeq_literals" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "37"))
+ (rule "qeq_literals" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "arrayLengthNotNegative" (formula "35") (term "0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "33") (term "0"))
+ (rule "expand_inShort" (formula "33"))
+ (rule "replace_short_MIN" (formula "33") (term "0,1"))
+ (rule "replace_short_MAX" (formula "33") (term "1,0"))
+ (rule "andLeft" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "arrayLengthNotNegative" (formula "33") (term "0"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "27") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "33"))
+ (rule "leq_literals" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "translateJavaAddInt" (formula "35") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "inner_end"))
+ (rule "compound_addition_2" (formula "35") (term "1") (inst "#v0=x") (inst "#v1=x_1"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_3"))
+ (rule "eval_order_array_access5" (formula "35") (term "1") (inst "#ar1=x_arr") (inst "#v1=x_4"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_4"))
+ (rule "assignmentAdditionInt" (formula "35") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "1"))
+ (rule "mul_literals" (formula "35") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,1"))
+ (rule "add_literals" (formula "35") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0"))
+ (rule "jmod_axiom" (formula "26") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1"))
+ (rule "mul_literals" (formula "35") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "14"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "33") (term "1") (ifseqformula "17"))
+ (rule "leq_literals" (formula "33") (term "0,1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_leqRight" (formula "33"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "11"))
+ (rule "applyEq" (formula "19") (term "1,1") (ifseqformula "1"))
+ (rule "add_literals" (formula "19") (term "1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "23") (term "0,0,0,1,1,1") (ifseqformula "1"))
+ (rule "eqSymm" (formula "23") (term "1,1,1"))
+ (rule "jdiv_axiom_inline" (formula "23") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "23") (term "0,0,2,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "23") (term "0,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "div_literals" (formula "23") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,1"))
+ (rule "applyEq" (formula "20") (term "7,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "1,6,0,0,1") (ifseqformula "1"))
+ (rule "add_literals" (formula "23") (term "6,0,0,1"))
+ (rule "applyEq" (formula "23") (term "0,1,1,1") (ifseqformula "1"))
+ (rule "equal_literals" (formula "23") (term "1,1,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "applyEq" (formula "23") (term "1,1,1,1") (ifseqformula "1"))
+ (rule "add_literals" (formula "23") (term "1,1,1"))
+ (rule "inEqSimp_contradEq3" (formula "23") (term "1,1") (ifseqformula "9"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1"))
+ (rule "qeq_literals" (formula "23") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "translateJavaAddInt" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,1,0"))
+ (rule "assignment_array2" (formula "35"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "assignmentAdditionInt" (formula "35") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "1"))
+ (rule "mul_literals" (formula "35") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0"))
+ (rule "jmod_axiom" (formula "26") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "21") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "24") (term "0,0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0,0,1"))
+ (rule "translateJavaMod" (formula "24") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "24") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "24") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "24") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "nnf_imp2or" (formula "24") (term "0,0,1"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,0,1,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "translateJavaMulInt" (formula "30") (term "1"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "36"))
+ (rule "distributeIntersection" (formula "26") (term "0"))
+ (rule "distributeIntersection" (formula "27") (term "0"))
+ (rule "distributeIntersection" (formula "26") (term "1,0"))
+ (rule "distributeIntersection" (formula "26") (term "0,0"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "distributeIntersection" (formula "26") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "26") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "26") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "26") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "0"))
+ (rule "distributeIntersection" (formula "28") (term "0"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "distributeIntersection" (formula "28") (term "0,0"))
+ (rule "distributeIntersection" (formula "28") (term "1,0"))
+ (rule "distributeIntersection" (formula "29") (term "0,0"))
+ (rule "distributeIntersection" (formula "29") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "43"))
+ (rule "eqSymm" (formula "42"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "41"))
+ (rule "eqSymm" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "40"))
+ (rule "eqSymm" (formula "39"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "38"))
+ (rule "eqSymm" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "37"))
+ (rule "eqSymm" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "eqSymm" (formula "36"))
+ (rule "eqSymm" (formula "35"))
+ (rule "commuteUnion" (formula "34") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "34") (term "0,1"))
+ (rule "commuteUnion" (formula "34") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "34") (term "0,1"))
+ (rule "commuteUnion_2" (formula "34") (term "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "translateJavaAddInt" (formula "20") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0,1"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "commute_and" (formula "92"))
+ (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "24") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "24") (term "1,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,0,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0"))
+ (rule "nnf_imp2or" (formula "19") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_isEqualityBucket_in_de_wiesler_Sorter" (formula "24") (term "0,1,0,0,1") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0,1,0,0,1"))
+ (rule "eqSymm" (formula "24") (term "1,0,1,0,0,1"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,0,1,0,1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,0,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,0,1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1"))
+ (rule "Definition_axiom_for_isBucketPartitioned_in_de_wiesler_Sorter" (formula "23") (term "0,1,0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,1,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,1,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0,1,0,0,1"))
+ (rule "nnf_imp2or" (formula "23") (term "0,1,0"))
+ (rule "commute_or_2" (formula "25") (term "0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,1,0"))
+ (rule "nnf_imp2or" (formula "23") (term "0,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,1,0,0,1"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,1,0,1,0"))
+ (rule "associativeLawUnion" (formula "34") (term "0,1"))
+ (rule "commute_or_2" (formula "19") (term "0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "1,0,0,1,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,1,1,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0,1,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0,1,0,0,1"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0,1,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,1,0,0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,0,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,0,0,1,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,0,0,1,0,0,1"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0,1,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0,0,0,1,0,1,0"))
+ (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "22") (term "0,0"))
+ (rule "commute_or" (formula "24") (term "1,1"))
+ (rule "commute_or_2" (formula "19") (term "0,0,1,0"))
+ (rule "commute_or_2" (formula "23") (term "0,0"))
+ (rule "commute_or_2" (formula "24") (term "0,0,0,1"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "arrayLengthNotNegative" (formula "18") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "29") (term "0"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "28") (term "0"))
+ (rule "expand_inShort" (formula "28"))
+ (rule "replace_short_MAX" (formula "28") (term "1,0"))
+ (rule "replace_short_MIN" (formula "28") (term "0,1"))
+ (rule "andLeft" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "28") (term "0"))
+ (rule "expand_inShort" (formula "28"))
+ (rule "replace_short_MAX" (formula "28") (term "1,0"))
+ (rule "replace_short_MIN" (formula "28") (term "0,1"))
+ (rule "andLeft" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "cut_direct" (formula "93") (term "1"))
+ (branch "CUT: bucket_starts[1 + bucket] <= 2147483647 + begin * -1 TRUE"
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_geqRight" (formula "94"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "15"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "39"))
+ (rule "leq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "37"))
+ (rule "leq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "22") (term "0"))
+ (rule "expand_inShort" (formula "22"))
+ (rule "replace_short_MIN" (formula "22") (term "0,1"))
+ (rule "replace_short_MAX" (formula "22") (term "1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "23"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "33"))
+ (rule "qeq_literals" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthNotNegative" (formula "35") (term "0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "39"))
+ (rule "leq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "33") (term "0"))
+ (rule "expand_inShort" (formula "33"))
+ (rule "replace_short_MIN" (formula "33") (term "0,1"))
+ (rule "replace_short_MAX" (formula "33") (term "1,0"))
+ (rule "andLeft" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "35"))
+ (rule "leq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "36"))
+ (rule "leq_literals" (formula "34"))
+ (rule "closeFalse" (formula "34"))
+ )
+ (branch "CUT: bucket_starts[1 + bucket] <= 2147483647 + begin * -1 FALSE"
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "false_right" (formula "94"))
+ (rule "inEqSimp_leqRight" (formula "93"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "15"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "39"))
+ (rule "leq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "37"))
+ (rule "leq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthNotNegative" (formula "30") (term "0"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "31"))
+ (rule "qeq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "arrayLengthIsAShort" (formula "22") (term "0"))
+ (rule "expand_inShort" (formula "22"))
+ (rule "replace_short_MIN" (formula "22") (term "0,1"))
+ (rule "replace_short_MAX" (formula "22") (term "1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "23"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthNotNegative" (formula "35") (term "0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "36"))
+ (rule "leq_literals" (formula "34"))
+ (rule "closeFalse" (formula "34"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "translateJavaAddInt" (formula "35") (term "0,1,0"))
+ (builtin "Block Contract (Internal)" (formula "35") (newnames "anonOut_heap,exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "1")))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "translateJavaSubInt" (formula "31") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "26") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "31") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "emptyStatement" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "emptyStatement" (formula "35") (term "1"))
+ (rule "jmod_axiom" (formula "26") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "14"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "commute_or" (formula "24") (term "1,1"))
+ (rule "tryEmpty" (formula "33") (term "1"))
+ (rule "blockEmptyLabel" (formula "33") (term "1"))
+ (rule "blockEmpty" (formula "33") (term "1"))
+ (rule "methodCallEmpty" (formula "33") (term "1"))
+ (rule "emptyModality" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "closeTrue" (formula "33"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "1")))
+ (rule "translateJavaSubInt" (formula "35") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "26") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0"))
+ (rule "close" (formula "35") (ifseqformula "13"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "31"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "replace_known_left" (formula "33") (term "0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "polySimp_homoEq" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "jmod_axiom" (formula "26") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "commute_or" (formula "24") (term "1,1"))
+ (rule "ifUnfold" (formula "36") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "replace_known_left" (formula "36") (term "0,0,1,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "jdiv_axiom" (formula "24") (term "0,0,0,1,1"))
+ (rule "eqSymm" (formula "24"))
+ (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "eqSymm" (formula "24"))
+ (rule "applyEq" (formula "25") (term "0,0,0,1,1") (ifseqformula "24"))
+ (rule "div_axiom" (formula "24") (term "1") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "24") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "equal_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "polySimp_addComm1" (formula "26") (term "1"))
+ (rule "add_literals" (formula "26") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0"))
+ (rule "applyEq" (formula "28") (term "0,0,0,1,1") (ifseqformula "24"))
+ (rule "eqSymm" (formula "28") (term "0,1,1"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "24"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "mul_literals" (formula "26") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "26"))
+ (rule "times_zero_1" (formula "16") (term "0,0"))
+ (rule "add_zero_left" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "18"))
+ (rule "polySimp_mulAssoc" (formula "26") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "26") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "16"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "ifSplit" (formula "44"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "44") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "44") (newnames "anonOut_heap_0,exc_1,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaSubInt" (formula "40") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "variableDeclarationAssign" (formula "45") (term "1"))
+ (rule "variableDeclaration" (formula "45") (term "1") (newnames "exc_1_1"))
+ (rule "assignment" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "emptyStatement" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "emptyStatement" (formula "45") (term "1"))
+ (rule "tryEmpty" (formula "45") (term "1"))
+ (rule "blockEmptyLabel" (formula "45") (term "1"))
+ (rule "blockEmpty" (formula "45") (term "1"))
+ (rule "methodCallEmpty" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "emptyModality" (formula "45") (term "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "closeTrue" (formula "45"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedAnon" (formula "44") (term "1"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,0,0"))
+ (rule "replace_known_left" (formula "44") (term "0,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "38")))
+ (rule "polySimp_elimSub" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "close" (formula "44") (ifseqformula "8"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "40"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "45") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "44") (term "0,2,1"))
+ (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "45") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,1,1,0"))
+ (rule "pullOutSelect" (formula "45") (term "1,1,1,0,1,0") (inst "selectSK=arr_0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "45"))
+ (rule "applyEq" (formula "43") (term "1") (ifseqformula "45"))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5")))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5")))
+ (rule "applyEqReverse" (formula "46") (term "1,1,1,0,1,0") (ifseqformula "45"))
+ (rule "applyEqReverse" (formula "42") (term "0") (ifseqformula "45"))
+ (rule "applyEqReverse" (formula "43") (term "1") (ifseqformula "45"))
+ (rule "hideAuxiliaryEq" (formula "45"))
+ (rule "pullOutSelect" (formula "45") (term "1,1,1,1,1,0") (inst "selectSK=arr_1"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "45"))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5")))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5")))
+ (rule "applyEqReverse" (formula "46") (term "1,1,1,1,1,0") (ifseqformula "45"))
+ (rule "applyEqReverse" (formula "44") (term "0") (ifseqformula "45"))
+ (rule "hideAuxiliaryEq" (formula "45"))
+ (rule "inEqSimp_commuteGeq" (formula "44"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "23"))
+ (rule "applyEq" (formula "45") (term "1,1,1,1,1,0") (ifseqformula "23"))
+ (rule "pullOutSelect" (formula "45") (term "1,0,0,1,1,1,0") (inst "selectSK=arr_2"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "45"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "45"))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5")))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5")))
+ (rule "applyEqReverse" (formula "46") (term "1,0,0,1,1,1,0") (ifseqformula "45"))
+ (rule "applyEqReverse" (formula "44") (term "0") (ifseqformula "45"))
+ (rule "applyEqReverse" (formula "43") (term "0") (ifseqformula "45"))
+ (rule "hideAuxiliaryEq" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43"))
+ (rule "mul_literals" (formula "42") (term "0,0"))
+ (rule "add_zero_left" (formula "42") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1"))
+ (rule "polySimp_elimOne" (formula "42") (term "1"))
+ (rule "nnf_imp2or" (formula "46") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "46") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "nnf_notAnd" (formula "46") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "46") (term "1,1,0"))
+ (rule "commute_or" (formula "46") (term "1,1,1,0"))
+ (rule "cnf_rightDist" (formula "46") (term "0,1,0"))
+ (rule "commute_or" (formula "46") (term "1,0,1,0"))
+ (rule "ifUnfold" (formula "51") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_6"))
+ (rule "shift_paren_or" (formula "46") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0,0,0"))
+ (rule "commute_or" (formula "46") (term "0,0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "46") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "cnf_rightDist" (formula "46") (term "0,1,1,0"))
+ (rule "commute_or" (formula "46") (term "1,0,1,1,0"))
+ (rule "cnf_rightDist" (formula "46") (term "0,0,1,0"))
+ (rule "cnf_rightDist" (formula "46") (term "0"))
+ (rule "distr_forallAnd" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "commute_or" (formula "47") (term "0"))
+ (rule "cnf_rightDist" (formula "46") (term "0"))
+ (rule "distr_forallAnd" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "commute_or_2" (formula "47") (term "0"))
+ (rule "commute_or" (formula "46") (term "1,1,0"))
+ (rule "shift_paren_or" (formula "47") (term "0,0"))
+ (rule "cnf_rightDist" (formula "48") (term "0"))
+ (rule "distr_forallAnd" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "commute_or_2" (formula "49") (term "0"))
+ (rule "shift_paren_or" (formula "49") (term "0,0"))
+ (rule "cnf_rightDist" (formula "46") (term "0"))
+ (rule "distr_forallAnd" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "commute_or_2" (formula "47") (term "0"))
+ (rule "shift_paren_or" (formula "46") (term "0"))
+ (rule "commute_or_2" (formula "46") (term "0,0"))
+ (rule "shift_paren_or" (formula "47") (term "0,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption7" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "46") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "qeq_literals" (formula "46") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "cnf_rightDist" (formula "49") (term "0"))
+ (rule "distr_forallAnd" (formula "49"))
+ (rule "andLeft" (formula "49"))
+ (rule "commute_or_2" (formula "50") (term "0"))
+ (rule "shift_paren_or" (formula "49") (term "0"))
+ (rule "commute_or_2" (formula "49") (term "0,0"))
+ (rule "inEqSimp_or_subsumption5" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "49") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,1,0,0,0,0"))
+ (rule "qeq_literals" (formula "49") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "shift_paren_or" (formula "48") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "51") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0"))
+ (rule "shift_paren_or" (formula "47") (term "0,0,0"))
+ (rule "commute_or" (formula "48") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption7" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "48") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0,1,0,0,0"))
+ (rule "qeq_literals" (formula "48") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "commute_or" (formula "51") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0,0"))
+ (rule "commute_or" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption7" (formula "47") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "47") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "qeq_literals" (formula "47") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inequality_comparison_simple" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "commute_or" (formula "50") (term "0,0,0,0"))
+ (rule "ifSplit" (formula "56"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "56") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "56") (newnames "anonOut_heap_1,exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "54")) (ifInst "" (formula "4")) (ifInst "" (formula "56")) (ifInst "" (formula "2")))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "expand_inInt" (formula "52") (term "0,1"))
+ (rule "expand_inInt" (formula "52") (term "1,1"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,1,1"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "56"))
+ (rule "translateJavaSubInt" (formula "52") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "56"))
+ (rule "mul_literals" (formula "56") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "exc_2_1"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "1"))
+ (rule "mul_literals" (formula "54") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "43"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "mul_literals" (formula "56") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "53"))
+ (rule "mul_literals" (formula "42") (term "0,0"))
+ (rule "add_zero_left" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "11"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "ifElseUnfold" (formula "61") (term "1") (inst "#boolv=x"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_7"))
+ (rule "compound_greater_than_comparison_1" (formula "61") (term "1") (inst "#v0=x_8"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_8"))
+ (rule "assignmentSubtractionInt" (formula "61") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "expand_inInt" (formula "61"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "61") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,0"))
+ (rule "add_literals" (formula "61") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "61") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "61") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,1,1"))
+ (rule "add_literals" (formula "61") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "61") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "61") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1"))
+ (rule "mul_literals" (formula "61") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "61") (term "1") (ifseqformula "44"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,1"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "61") (term "0,0,1"))
+ (rule "qeq_literals" (formula "61") (term "0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_leqRight" (formula "61"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "qeq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "qeq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "1"))
+ (rule "mul_literals" (formula "45") (term "0,0"))
+ (rule "add_zero_left" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "45"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "closeFalse" (formula "13"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "61") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "61") (term "0,0,1,0"))
+ (rule "greater_than_comparison_simple" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_gtToGeq" (formula "61") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0,1,0"))
+ (rule "ifElseSplit" (formula "61"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "62"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "qeq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "45") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0"))
+ (rule "qeq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "54") (term "0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "1"))
+ (rule "mul_literals" (formula "45") (term "0,0"))
+ (rule "add_zero_left" (formula "45") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "mul_literals" (formula "45") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "54"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "2"))
+ (rule "mul_literals" (formula "44") (term "0,0"))
+ (rule "add_zero_left" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "44") (ifseqformula "13"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "18"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "mul_literals" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "12"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "43") (term "0,0"))
+ (rule "mul_literals" (formula "43") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "43"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (builtin "Use Operation Contract" (formula "61") (newnames "heapBefore_sample_sort,exc_3,heapAfter_sample_sort,anon_heap_sample_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0"))
+ (branch "Post (sample_sort)"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "60"))
+ (rule "translateJavaSubInt" (formula "58") (term "2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "58") (term "1,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,2,0,1,0"))
+ (rule "narrowSelectArrayType" (formula "59") (term "2,1") (ifseqformula "52") (ifseqformula "67"))
+ (rule "commuteUnion" (formula "58") (term "1,0"))
+ (rule "tryEmpty" (formula "68") (term "1"))
+ (rule "blockEmptyLabel" (formula "68") (term "1"))
+ (rule "blockEmpty" (formula "68") (term "1"))
+ (rule "methodCallEmpty" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "emptyModality" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "closeTrue" (formula "68"))
+ )
+ (branch "Exceptional Post (sample_sort)"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "59") (term "1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "close" (formula "62") (ifseqformula "61"))
+ )
+ (branch "Pre (sample_sort)"
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "60")) (ifInst "" (formula "58")) (ifInst "" (formula "52")) (ifInst "" (formula "60")) (ifInst "" (formula "5")) (ifInst "" (formula "58")) (ifInst "" (formula "6")))
+ (rule "expand_inInt" (formula "61") (term "1,1,0"))
+ (rule "expand_inInt" (formula "61") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,0,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "61") (term "1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "61") (term "0,0,0,0,1"))
+ (rule "add_zero_left" (formula "61") (term "0,0,0,1"))
+ (rule "measuredByCheck" (formula "61") (term "1") (ifseqformula "10"))
+ (rule "precOfPair" (formula "61") (term "1"))
+ (rule "polySimp_homoEq" (formula "61") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1"))
+ (rule "precOfInt" (formula "61") (term "0,1"))
+ (rule "precOfInt" (formula "61") (term "1,1,1"))
+ (rule "less_literals" (formula "61") (term "1,1,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "61") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0,1,1,1"))
+ (rule "mul_literals" (formula "61") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,1,0,1,0"))
+ (rule "replace_known_left" (formula "61") (term "1,0,1,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "61") (term "1,1,1,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "61") (term "1,1,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption1" (formula "61") (term "0,1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,1"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,0,1"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,1"))
+ (rule "qeq_literals" (formula "61") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption0" (formula "61") (term "1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0,1,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,1,0"))
+ (rule "qeq_literals" (formula "61") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "22"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "translateJavaMulInt" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1"))
+ (rule "translateJavaMulInt" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "disjointDefinition" (formula "74"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "notLeft" (formula "74"))
+ (rule "disjointDefinition" (formula "73"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "46"))
+ (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "46"))
+ (rule "distributeIntersection" (formula "36") (term "0"))
+ (rule "distributeIntersection" (formula "37") (term "0"))
+ (rule "distributeIntersection" (formula "36") (term "1,0"))
+ (rule "distributeIntersection" (formula "36") (term "0,0"))
+ (rule "distributeIntersection" (formula "37") (term "1,0"))
+ (rule "distributeIntersection" (formula "37") (term "0,0"))
+ (rule "distributeIntersection" (formula "36") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "36") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "36") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "36") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "37") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "37") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "37") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "37") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "73"))
+ (rule "eqSymm" (formula "72"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "72"))
+ (rule "eqSymm" (formula "71"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "71"))
+ (rule "eqSymm" (formula "70"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "70"))
+ (rule "eqSymm" (formula "69"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "69"))
+ (rule "eqSymm" (formula "68"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "68"))
+ (rule "eqSymm" (formula "67"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "67"))
+ (rule "eqSymm" (formula "66"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "66"))
+ (rule "eqSymm" (formula "65"))
+ (rule "commuteUnion" (formula "44") (term "0,1"))
+ (rule "commuteUnion" (formula "44") (term "1,1,1"))
+ (rule "commuteUnion" (formula "44") (term "1,0,1"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "34") (term "0,0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,0,1"))
+ (rule "translateJavaMod" (formula "34") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "34") (term "2,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "34") (term "3,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "34") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "34") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "34") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "34") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "27") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "expand_inInt" (formula "27") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "27") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "46") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "replaceKnownSelect_taclet21210110_4" (formula "46") (term "1,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "46") (term "1,1,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "46") (term "0,1,0,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "46") (term "1,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "46") (term "0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "46") (term "1,0,0,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "46") (term "1,1,1,0,1,0,1"))
+ (rule "replaceKnownSelect_taclet21210110_4" (formula "46") (term "1,1,1,1,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "46") (term "1,1,1,0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "46") (term "1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "49") (term "0,0,0,1,1,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "49") (term "0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "48") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,1"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "47") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "47") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "48") (term "1,1,1,1,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "24"))
+ (rule "inEqSimp_commuteGeq" (formula "47"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0"))
+ (rule "qeq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "34") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "34") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "120") (term "0"))
+ (rule "replace_known_right" (formula "120") (term "0,1,0,0,0,0,0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "64")) (ifInst "" (formula "65")) (ifInst "" (formula "66")) (ifInst "" (formula "68")) (ifInst "" (formula "69")) (ifInst "" (formula "70")) (ifInst "" (formula "71")))
+ (rule "inEqSimp_leqRight" (formula "120"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_invertInEq1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "64") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0"))
+ (rule "qeq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "16"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_antiSymm" (formula "54") (ifseqformula "2"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "54"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "54"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "53"))
+ (rule "qeq_literals" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "53"))
+ (rule "add_zero_right" (formula "2") (term "1"))
+ (rule "applyEq" (formula "57") (term "1,1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "48") (term "1,1,1,0,1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "53"))
+ (rule "add_zero_right" (formula "5") (term "1"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_homoInEq1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "add_zero_right" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "11"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "14"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "49"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "51"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "applyEq" (formula "56") (term "1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "46") (term "1,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "polySimp_pullOutFactor1" (formula "51") (term "0"))
+ (rule "add_literals" (formula "51") (term "1,0"))
+ (rule "times_zero_1" (formula "51") (term "0"))
+ (rule "qeq_literals" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "59") (term "0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "57"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "11"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_imp2or" (formula "31") (term "0,0,1"))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "nnf_imp2or" (formula "32") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "21"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "15"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "30"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "21"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "associativeLawUnion" (formula "43") (term "1"))
+ (rule "nnf_imp2or" (formula "46") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "42") (term "0"))
+ (rule "expand_inShort" (formula "42"))
+ (rule "replace_short_MIN" (formula "42") (term "0,1"))
+ (rule "replace_short_MAX" (formula "42") (term "1,0"))
+ (rule "andLeft" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "arrayLengthNotNegative" (formula "42") (term "0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "43"))
+ (rule "qeq_literals" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "arrayLengthIsAShort" (formula "41") (term "0"))
+ (rule "expand_inShort" (formula "41"))
+ (rule "replace_short_MIN" (formula "41") (term "0,1"))
+ (rule "replace_short_MAX" (formula "41") (term "1,0"))
+ (rule "andLeft" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthNotNegative" (formula "41") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "42"))
+ (rule "leq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthNotNegative" (formula "40") (term "0"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "39") (term "0"))
+ (rule "expand_inShort" (formula "39"))
+ (rule "replace_short_MIN" (formula "39") (term "0,1"))
+ (rule "replace_short_MAX" (formula "39") (term "1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "arrayLengthNotNegative" (formula "39") (term "0"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "40"))
+ (rule "qeq_literals" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "arrayLengthNotNegative" (formula "38") (term "0"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "39"))
+ (rule "qeq_literals" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "arrayLengthIsAShort" (formula "38") (term "0"))
+ (rule "expand_inShort" (formula "38"))
+ (rule "replace_short_MIN" (formula "38") (term "0,1"))
+ (rule "replace_short_MAX" (formula "38") (term "1,0"))
+ (rule "andLeft" (formula "38"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "40"))
+ (rule "leq_literals" (formula "38"))
+ (rule "closeFalse" (formula "38"))
+ )
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "62"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_geqRight" (formula "57"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "1"))
+ (rule "mul_literals" (formula "57") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "57") (term "0,0"))
+ (rule "add_literals" (formula "57") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0,0"))
+ (rule "add_zero_right" (formula "57") (term "0,0"))
+ (rule "qeq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "elim_double_block_2" (formula "62") (term "1"))
+ (builtin "Use Operation Contract" (formula "62") (newnames "heapBefore_base_case_sort,exc_3,heapAfter_base_case_sort,anon_heap_base_case_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::base_case_sort([I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (base_case_sort)"
+ (builtin "One Step Simplification" (formula "59"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "translateJavaSubInt" (formula "59") (term "2,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "2,1,0"))
+ (rule "mul_literals" (formula "59") (term "1,2,1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0"))
+ (rule "narrowSelectArrayType" (formula "60") (term "2,1") (ifseqformula "53") (ifseqformula "66"))
+ (rule "tryEmpty" (formula "67") (term "1"))
+ (rule "blockEmptyLabel" (formula "67") (term "1"))
+ (rule "blockEmpty" (formula "67") (term "1"))
+ (rule "methodCallEmpty" (formula "67") (term "1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "emptyModality" (formula "67") (term "1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "closeTrue" (formula "67"))
+ )
+ (branch "Exceptional Post (base_case_sort)"
+ (builtin "One Step Simplification" (formula "64"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "60") (term "1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "close" (formula "62") (ifseqformula "61"))
+ )
+ (branch "Pre (base_case_sort)"
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "61")) (ifInst "" (formula "53")) (ifInst "" (formula "61")) (ifInst "" (formula "3")))
+ (rule "expand_inInt" (formula "62") (term "1"))
+ (rule "expand_inInt" (formula "62") (term "0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,1"))
+ (rule "mul_literals" (formula "62") (term "1,0,1,1"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,1"))
+ (rule "replace_known_left" (formula "62") (term "0,1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "62") (term "1,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1"))
+ (rule "mul_literals" (formula "62") (term "0,1,1"))
+ (rule "replace_known_left" (formula "62") (term "1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_geqRight" (formula "62"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0"))
+ (rule "qeq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "55"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53")) (ifInst "" (formula "4")) (ifInst "" (formula "55")) (ifInst "" (formula "2")))
+ (rule "wellFormedAnon" (formula "56") (term "1,0"))
+ (rule "wellFormedAnon" (formula "56") (term "0,1,0"))
+ (rule "expand_inInt" (formula "56") (term "1,1"))
+ (rule "expand_inInt" (formula "56") (term "0,1"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,0,1"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "56") (term "1,1,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "1")) (ifInst "" (formula "38")))
+ (rule "polySimp_elimSub" (formula "56") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,0"))
+ (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "1,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "1,0,1,1"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "39") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "replaceKnownSelect_taclet21210110_4" (formula "39") (term "1,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "39") (term "1,1,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "39") (term "1,0,0,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "39") (term "0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "39") (term "1,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "39") (term "0,1,0,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "39") (term "1,1,1,0,1,0,1"))
+ (rule "replaceKnownSelect_taclet21210110_4" (formula "39") (term "1,1,1,1,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "39") (term "1,1,1,0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "39") (term "1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "41") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "40") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "42") (term "0,0,0,1,1,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "42") (term "0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0,2,0"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "41") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,2,1"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "40") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "40") (term "1"))
+ (rule "inEqSimp_gtToGeq" (formula "42") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_commuteGeq" (formula "39"))
+ (rule "applyEq" (formula "39") (term "1,1,1,1,1,0") (ifseqformula "23"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "nnf_imp2or" (formula "39") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "nnf_notAnd" (formula "39") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "24") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaMulInt" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "translateJavaMulInt" (formula "38") (term "1"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "84"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "81"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "80"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "79"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "78"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "77"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "76"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "75"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "74"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "44"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "66"))
+ (rule "eqSymm" (formula "65"))
+ (rule "unionEqualsEmpty" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "65"))
+ (rule "eqSymm" (formula "64"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "64"))
+ (rule "eqSymm" (formula "63"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "63"))
+ (rule "eqSymm" (formula "62"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "62"))
+ (rule "eqSymm" (formula "61"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "61"))
+ (rule "eqSymm" (formula "60"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "60"))
+ (rule "eqSymm" (formula "59"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "59"))
+ (rule "eqSymm" (formula "58"))
+ (rule "commuteUnion" (formula "42") (term "0,0,1"))
+ (rule "commuteUnion" (formula "42") (term "1,1,1"))
+ (rule "commuteUnion" (formula "42") (term "0,1"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "32") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "32") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "32") (term "0,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0,1,1,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "31") (term "0,0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "31") (term "2,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "31") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "translateJavaMod" (formula "31") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "31") (term "3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "31") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "31") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "translateJavaAddInt" (formula "23") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "21"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "commute_and" (formula "115") (term "0"))
+ (rule "commute_and" (formula "115") (term "1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "46") (term "0,0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "cnf_rightDist" (formula "46") (term "0,1,0"))
+ (rule "cnf_rightDist" (formula "46") (term "1,1,0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0,0,1"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0"))
+ (rule "nnf_imp2or" (formula "25") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,0,1"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,0,1"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "associativeLawUnion" (formula "43") (term "1"))
+ (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "27") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "arrayLengthNotNegative" (formula "41") (term "0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthIsAShort" (formula "41") (term "0"))
+ (rule "expand_inShort" (formula "41"))
+ (rule "replace_short_MIN" (formula "41") (term "0,1"))
+ (rule "replace_short_MAX" (formula "41") (term "1,0"))
+ (rule "andLeft" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "arrayLengthNotNegative" (formula "40") (term "0"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "40") (term "0"))
+ (rule "expand_inShort" (formula "40"))
+ (rule "replace_short_MIN" (formula "40") (term "0,1"))
+ (rule "replace_short_MAX" (formula "40") (term "1,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "42"))
+ (rule "qeq_literals" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "leq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "39") (term "0"))
+ (rule "expand_inShort" (formula "39"))
+ (rule "replace_short_MIN" (formula "39") (term "0,1"))
+ (rule "replace_short_MAX" (formula "39") (term "1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "41"))
+ (rule "qeq_literals" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "arrayLengthNotNegative" (formula "39") (term "0"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "40"))
+ (rule "qeq_literals" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "arrayLengthNotNegative" (formula "38") (term "0"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "39"))
+ (rule "qeq_literals" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "arrayLengthIsAShort" (formula "38") (term "0"))
+ (rule "expand_inShort" (formula "38"))
+ (rule "replace_short_MIN" (formula "38") (term "0,1"))
+ (rule "replace_short_MAX" (formula "38") (term "1,0"))
+ (rule "andLeft" (formula "38"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "40"))
+ (rule "qeq_literals" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "nnf_imp2or" (formula "22") (term "0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (rule "expand_inShort" (formula "37"))
+ (rule "replace_short_MIN" (formula "37") (term "0,1"))
+ (rule "replace_short_MAX" (formula "37") (term "1,0"))
+ (rule "andLeft" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "39"))
+ (rule "qeq_literals" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37"))
+ (rule "closeFalse" (formula "37"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "52"))
+ (rule "translateJavaSubInt" (formula "61") (term "2,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "55") (term "2,0,1,0,2,0"))
+ (rule "translateJavaSubInt" (formula "56") (term "2,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "2,0"))
+ (rule "translateJavaSubInt" (formula "55") (term "2,0,1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,1"))
+ (rule "translateJavaSubInt" (formula "56") (term "2,0,1,0,1,2,0"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "polySimp_elimSub" (formula "60") (term "2,0,1,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,2,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "2,0,1,0,2,0"))
+ (rule "mul_literals" (formula "54") (term "1,2,0,1,0,2,0"))
+ (rule "polySimp_elimSub" (formula "55") (term "2,0,1,0,0"))
+ (rule "mul_literals" (formula "55") (term "1,2,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "2,0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,2,0,1,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "55") (term "2,0,1,0,1,2,0"))
+ (rule "mul_literals" (formula "55") (term "1,2,0,1,0,1,2,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,1"))
+ (rule "polySimp_addComm1" (formula "60") (term "2,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "2,0,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "2,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "2,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "2,0,1,0,1,2,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,2,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,0,1,2,0"))
+ (rule "narrowSelectArrayType" (formula "54") (term "2,1") (ifseqformula "1") (ifseqformula "59"))
+ (rule "pullOutSelect" (formula "54") (term "1,0,0") (inst "selectSK=arr_3"))
+ (rule "applyEq" (formula "56") (term "1,2,0") (ifseqformula "54"))
+ (rule "simplifySelectOfAnon" (formula "54"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "59")) (ifInst "" (formula "5")))
+ (rule "replaceKnownSelect_taclet21210110_0" (formula "54") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "54") (term "2,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "2,0"))
+ (rule "elementOfUnion" (formula "54") (term "0,0"))
+ (rule "disjointAllFields" (formula "54") (term "1,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "0,0"))
+ (rule "eqSymm" (formula "54") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "54") (term "0,0,0,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "applyEqReverse" (formula "56") (term "0,2,0") (ifseqformula "54"))
+ (rule "applyEqReverse" (formula "55") (term "0,0,0") (ifseqformula "54"))
+ (rule "hideAuxiliaryEq" (formula "54"))
+ (rule "polySimp_addComm0" (formula "55") (term "2,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "commuteUnion" (formula "60") (term "1,0,1,0"))
+ (rule "commuteUnion" (formula "54") (term "1,0,2,0"))
+ (rule "commuteUnion" (formula "55") (term "1,0,0"))
+ (rule "ifUnfold" (formula "60") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "60") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "replace_known_left" (formula "60") (term "0,0,1,0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "ifSplit" (formula "60"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "61"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "61"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "60") (newnames "anonOut_heap_2,exc_3,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "56"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "andLeft" (formula "56"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "54") (term "2,0") (ifseqformula "56") (ifseqformula "60"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "exc_3_1"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "emptyStatement" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "emptyStatement" (formula "61") (term "1"))
+ (rule "tryEmpty" (formula "61") (term "1"))
+ (rule "blockEmptyLabel" (formula "61") (term "1"))
+ (rule "blockEmpty" (formula "61") (term "1"))
+ (rule "methodCallEmpty" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "emptyModality" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "closeTrue" (formula "61"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "wellFormedAnon" (formula "60") (term "1"))
+ (rule "wellFormedAnon" (formula "60") (term "0,1"))
+ (rule "wellFormedAnon" (formula "60") (term "0,0,1"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,0,0"))
+ (rule "replace_known_left" (formula "60") (term "1,1") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "41")))
+ (rule "polySimp_elimSub" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0"))
+ (rule "close" (formula "60") (ifseqformula "8"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "56"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "translateJavaAddInt" (formula "60") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "59") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "60") (term "0,2,1,0,1"))
+ (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0,1"))
+ (rule "narrowSelectArrayType" (formula "58") (term "2,1") (ifseqformula "1") (ifseqformula "63"))
+ (rule "narrowSelectArrayType" (formula "59") (term "2,1") (ifseqformula "1") (ifseqformula "63"))
+ (rule "ifUnfold" (formula "64") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "replace_known_left" (formula "64") (term "0,0,1,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "ifSplit" (formula "64"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "65"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "65"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "64") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "64") (newnames "anonOut_heap_3,exc_4,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "65"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0"))
+ (rule "narrowSelectArrayType" (formula "58") (term "2,0") (ifseqformula "60") (ifseqformula "64"))
+ (rule "narrowSelectArrayType" (formula "59") (term "2,0") (ifseqformula "60") (ifseqformula "64"))
+ (rule "variableDeclarationAssign" (formula "65") (term "1"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "exc_4_1"))
+ (rule "assignment" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "emptyStatement" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "emptyStatement" (formula "65") (term "1"))
+ (rule "tryEmpty" (formula "65") (term "1"))
+ (rule "blockEmptyLabel" (formula "65") (term "1"))
+ (rule "blockEmpty" (formula "65") (term "1"))
+ (rule "methodCallEmpty" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "emptyModality" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "closeTrue" (formula "65"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "wellFormedAnon" (formula "64") (term "1"))
+ (rule "wellFormedAnon" (formula "64") (term "0,1"))
+ (rule "wellFormedAnon" (formula "64") (term "0,0,1"))
+ (rule "wellFormedAnon" (formula "64") (term "0,0,0,1"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,0,0"))
+ (rule "replace_known_left" (formula "64") (term "1,1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "41")) (ifInst "" (formula "53")))
+ (rule "polySimp_elimSub" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "close" (formula "64") (ifseqformula "8"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "60"))
+ (rule "translateJavaAddInt" (formula "64") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "63") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "64") (term "0,2,1,0,1"))
+ (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,2,1,0,1"))
+ (rule "narrowSelectArrayType" (formula "63") (term "2,1") (ifseqformula "1") (ifseqformula "67"))
+ (rule "narrowSelectArrayType" (formula "62") (term "2,1") (ifseqformula "1") (ifseqformula "67"))
+ (rule "ifUnfold" (formula "68") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "68") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "replace_known_left" (formula "68") (term "0,0,1,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "ifSplit" (formula "68"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "69"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "69"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "methodCallEmpty" (formula "68") (term "1"))
+ (rule "tryEmpty" (formula "68") (term "1"))
+ (rule "emptyModality" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "translateJavaMulInt" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "translateJavaMulInt" (formula "38") (term "1"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "disjointDefinition" (formula "72"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "notLeft" (formula "72"))
+ (rule "disjointDefinition" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notLeft" (formula "71"))
+ (rule "disjointDefinition" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "notLeft" (formula "70"))
+ (rule "eqSymm" (formula "97"))
+ (rule "disjointDefinition" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "notLeft" (formula "69"))
+ (rule "eqSymm" (formula "96"))
+ (rule "disjointDefinition" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "eqSymm" (formula "95"))
+ (rule "disjointDefinition" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "94"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "eqSymm" (formula "93"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "eqSymm" (formula "92"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "91"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "90"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "89"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "88"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "87"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "86"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "85"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "83"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "82"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "applyEq" (formula "67") (term "0,1,0,0,2,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "71") (term "0,1,0,0,0,2,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "62") (term "0,1,0,2,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "70") (term "0,1,0,0,0,2,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "66") (term "0,1,0,0,2,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "44"))
+ (rule "applyEq" (formula "104") (term "0,1,0,0,0") (ifseqformula "44"))
+ (rule "distributeIntersection" (formula "35") (term "0"))
+ (rule "distributeIntersection" (formula "34") (term "0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "35") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "35") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "34") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "34") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "unionEqualsEmpty" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "78"))
+ (rule "eqSymm" (formula "77"))
+ (rule "unionEqualsEmpty" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "41"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "77"))
+ (rule "eqSymm" (formula "76"))
+ (rule "unionEqualsEmpty" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "40"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "76"))
+ (rule "eqSymm" (formula "75"))
+ (rule "unionEqualsEmpty" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "75"))
+ (rule "eqSymm" (formula "74"))
+ (rule "unionEqualsEmpty" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "74"))
+ (rule "eqSymm" (formula "73"))
+ (rule "unionEqualsEmpty" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "73"))
+ (rule "eqSymm" (formula "72"))
+ (rule "unionEqualsEmpty" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "72"))
+ (rule "eqSymm" (formula "71"))
+ (rule "unionEqualsEmpty" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "71"))
+ (rule "eqSymm" (formula "70"))
+ (rule "commuteUnion_2" (formula "42") (term "0,1"))
+ (rule "commuteUnion" (formula "42") (term "1,1,1"))
+ (rule "commuteUnion" (formula "65") (term "0,0,1,0,0,2,0"))
+ (rule "commuteUnion" (formula "65") (term "1,1,0,1,0,0,2,0"))
+ (rule "commuteUnion" (formula "69") (term "1,1,0,1,0,0,0,2,0"))
+ (rule "commuteUnion" (formula "69") (term "0,0,1,0,0,0,2,0"))
+ (rule "commuteUnion" (formula "60") (term "0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "60") (term "1,1,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "68") (term "0,0,1,0,0,0,2,0"))
+ (rule "commuteUnion" (formula "68") (term "1,1,0,1,0,0,0,2,0"))
+ (rule "commuteUnion_2" (formula "61") (term "0,0,1,0,0"))
+ (rule "commuteUnion" (formula "61") (term "1,1,0,1,0,0"))
+ (rule "commuteUnion" (formula "64") (term "0,0,0,1,0,0,2,0"))
+ (rule "commuteUnion" (formula "64") (term "1,1,0,1,0,0,2,0"))
+ (rule "commuteUnion_2" (formula "118") (term "0,0,1,0,0,0"))
+ (rule "commuteUnion" (formula "118") (term "1,1,0,1,0,0,0"))
+ (rule "commuteUnion" (formula "42") (term "0,0,1"))
+ (rule "commuteUnion" (formula "65") (term "1,0,0,1,0,0,2,0"))
+ (rule "commuteUnion" (formula "69") (term "1,0,0,1,0,0,0,2,0"))
+ (rule "commuteUnion" (formula "60") (term "1,0,0,1,0,2,0"))
+ (rule "commuteUnion" (formula "68") (term "1,0,0,1,0,0,0,2,0"))
+ (rule "commuteUnion" (formula "61") (term "0,0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "64") (term "0,0,1,0,0,2,0"))
+ (rule "commuteUnion" (formula "118") (term "0,0,0,1,0,0,0"))
+ (rule "commuteUnion_2" (formula "42") (term "0,1"))
+ (rule "commuteUnion_2" (formula "61") (term "0,0,1,0,0"))
+ (rule "commuteUnion_2" (formula "64") (term "0,1,0,0,2,0"))
+ (rule "commuteUnion_2" (formula "118") (term "0,0,1,0,0,0"))
+ (rule "commuteUnion_2" (formula "42") (term "1"))
+ (rule "commuteUnion_2" (formula "61") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "64") (term "0,0,0,1,0,0,2,0"))
+ (rule "commuteUnion_2" (formula "118") (term "0,1,0,0,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "32") (term "0,0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,0,1"))
+ (rule "translateJavaMod" (formula "32") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "32") (term "2,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "32") (term "3,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "32") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "32") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "32") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "32") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "24") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "9"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "44") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "replaceKnownSelect_taclet21210110_4" (formula "44") (term "1,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "44") (term "1,1,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "44") (term "0,1,0,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "44") (term "1,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "44") (term "0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "44") (term "1,0,0,0"))
+ (rule "replaceKnownSelect_taclet21210110_1" (formula "44") (term "1,1,1,0,1,0,1"))
+ (rule "replaceKnownSelect_taclet21210110_4" (formula "44") (term "1,1,1,1,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "44") (term "1,1,1,0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "44") (term "1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "45") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "47") (term "0,0,0,1,1,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "47") (term "0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,0"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "46") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,1"))
+ (rule "replaceKnownSelect_taclet21210110_7" (formula "45") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "45") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "22"))
+ (rule "inEqSimp_commuteGeq" (formula "44"))
+ (rule "applyEq" (formula "44") (term "1,1,1,1,1,0") (ifseqformula "22"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "32") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "32") (term "0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "32") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0,1,1,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "translateJavaAddInt" (formula "23") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "21"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_imp2or" (formula "33") (term "0,0,1"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "34") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "62") (term "0"))
+ (rule "wellFormedAnon" (formula "62") (term "1,0"))
+ (rule "wellFormedAnon" (formula "62") (term "0,1,0"))
+ (rule "wellFormedAnon" (formula "62") (term "0,0,1,0"))
+ (rule "replace_known_right" (formula "62") (term "0,0,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "1")) (ifInst "" (formula "45")) (ifInst "" (formula "48")) (ifInst "" (formula "60")) (ifInst "" (formula "63")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "63") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "expand_inInt" (formula "63") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "63") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "128"))
+ (rule "replace_known_right" (formula "128") (term "0,1,0,0,0,0,0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "128") (ifInst "" (formula "72")) (ifInst "" (formula "73")) (ifInst "" (formula "75")) (ifInst "" (formula "76")) (ifInst "" (formula "77")) (ifInst "" (formula "78")) (ifInst "" (formula "79")))
+ (rule "closeTrue" (formula "128"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_4 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "false_right" (formula "36"))
+ (rule "polySimp_homoEq" (formula "27") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "27") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "27") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "27") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "20"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "19"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "16"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "14"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "14"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "14"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "12"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,0,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "24") (term "0,0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0,0,1"))
+ (rule "translateJavaMod" (formula "24") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "24") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "24") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "24") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "21") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "0,2,1,3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "translateJavaAddInt" (formula "21") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_contradEq3" (formula "27") (term "0,1,1") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,1"))
+ (rule "qeq_literals" (formula "27") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (ifseqformula "17"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0"))
+ (rule "add_zero_right" (formula "19") (term "0"))
+ (rule "leq_literals" (formula "19"))
+ (rule "closeFalse" (formula "19"))
+ )
+ )
+ )
+)
+(branch "Null Reference (_bucket_starts = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (rule "closeFalse" (formula "1"))
+)
+(branch "Index Out of Bounds (_bucket_starts != null, but _bucket Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "false_right" (formula "36"))
+ (rule "polySimp_homoEq" (formula "27") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "jmod_axiom" (formula "27") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "27") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "27") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "17"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "15"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "19"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "0,0,1,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,0,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "25") (term "0,0,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25") (term "1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,0,1"))
+ (rule "translateJavaMod" (formula "25") (term "0,1,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "25") (term "2,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "25") (term "3,0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,1,3,0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,0,1"))
+ (rule "jmod_axiom" (formula "25") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_homoEq" (formula "25") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "25") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "nnf_imp2or" (formula "25") (term "0,0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "1,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,1,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "25") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,0,0,0,0,0,1"))
+ (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "expand_inInt" (formula "22") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "22") (term "0,2,1,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,1,3,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "translateJavaMulInt" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "60"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "37"))
+ (rule "distributeIntersection" (formula "28") (term "0"))
+ (rule "distributeIntersection" (formula "27") (term "0"))
+ (rule "distributeIntersection" (formula "28") (term "1,0"))
+ (rule "distributeIntersection" (formula "28") (term "0,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,0"))
+ (rule "distributeIntersection" (formula "28") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "28") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "28") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "28") (term "1,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,1,0"))
+ (rule "distributeIntersection" (formula "27") (term "0,0,0"))
+ (rule "distributeIntersection" (formula "27") (term "1,0,0"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "unionEqualsEmpty" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "43"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "43"))
+ (rule "eqSymm" (formula "42"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "32"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "41"))
+ (rule "unionEqualsEmpty" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "41"))
+ (rule "eqSymm" (formula "40"))
+ (rule "unionEqualsEmpty" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "40"))
+ (rule "eqSymm" (formula "39"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "38"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "38"))
+ (rule "eqSymm" (formula "37"))
+ (rule "unionEqualsEmpty" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "37"))
+ (rule "eqSymm" (formula "36"))
+ (rule "commuteUnion" (formula "35") (term "1,1,1"))
+ (rule "commuteUnion_2" (formula "35") (term "0,1"))
+ (rule "commuteUnion" (formula "35") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "35") (term "0,1"))
+ (rule "commuteUnion_2" (formula "35") (term "1"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "translateJavaAddInt" (formula "22") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_contradEq3" (formula "28") (term "0,1,1") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,1,1"))
+ (rule "qeq_literals" (formula "28") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "leq_literals" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+)
+)
+}
diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..0aacf04
--- /dev/null
+++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,469 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 21:42:14 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 21:42:14 CEST 2022
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "328")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "assignment" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_sort,savedHeapBefore_sort"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "variableDeclarationAssign" (formula "6") (term "1"))
+(rule "variableDeclaration" (formula "6") (term "1") (newnames "storage"))
+ (builtin "Use Operation Contract" (formula "6") (newnames "heapBefore_Storage,self_25,exc_25,heapAfter_Storage,anon_heap_Storage") (contract "de.wiesler.Storage[de.wiesler.Storage::Storage()].JML normal_behavior operation contract.0"))
+(branch "Post (Storage)"
+ (builtin "One Step Simplification" (formula "6"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "andLeft" (formula "6"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "7") (term "1,1,0,0,1,0") (ifseqformula "6"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "assignment" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (builtin "Block Contract (Internal)" (formula "16") (newnames "exc_26,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "3")))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "eqSymm" (formula "17") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "17") (term "1"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "emptyStatement" (formula "17") (term "1"))
+ (rule "emptyStatement" (formula "17") (term "1"))
+ (rule "tryEmpty" (formula "17") (term "1"))
+ (rule "blockEmptyLabel" (formula "17") (term "1"))
+ (rule "blockEmpty" (formula "17") (term "1"))
+ (rule "methodCallEmpty" (formula "17") (term "1"))
+ (rule "emptyModality" (formula "17") (term "1"))
+ (rule "andRight" (formula "17"))
+ (branch
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "closeTrue" (formula "17"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "closeTrue" (formula "17"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "16"))
+ (branch
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "3")))
+ (rule "closeTrue" (formula "16"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "wellFormedAnonEQ" (formula "16") (ifseqformula "6"))
+ (rule "replace_known_left" (formula "16") (term "1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "16"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "13"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "13") (term "1,1") (ifseqformula "6"))
+ (rule "andLeft" (formula "13"))
+ (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "elim_double_block_2" (formula "17") (term "1"))
+ (rule "ifUnfold" (formula "17") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "replace_known_left" (formula "17") (term "0,0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "ifSplit" (formula "17"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "18"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "18"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "17") (term "1"))
+ (rule "methodCallUnfoldArguments" (formula "17") (term "1"))
+ (rule "variableDeclarationAssign" (formula "17") (term "1"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "var"))
+ (rule "assignment" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "variableDeclarationAssign" (formula "17") (term "1"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "variableDeclarationAssign" (formula "17") (term "1"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "var_2"))
+ (rule "assignment_read_length" (formula "17"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "variableDeclarationAssign" (formula "17") (term "1"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (builtin "Use Operation Contract" (formula "17") (newnames "heapBefore_sort_0,exc_27,heapAfter_sort,anon_heap_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0"))
+ (branch "Post (sort)"
+ (builtin "One Step Simplification" (formula "15"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "translateJavaSubInt" (formula "15") (term "2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "2,0,1,0"))
+ (rule "commuteUnion" (formula "15") (term "1,0"))
+ (rule "methodCallEmpty" (formula "24") (term "1"))
+ (rule "tryEmpty" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "emptyModality" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeTrue" (formula "24"))
+ )
+ (branch "Exceptional Post (sort)"
+ (builtin "One Step Simplification" (formula "15"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "15"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "16") (term "1,0") (ifseqformula "15"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "16") (term "0,1,0") (ifseqformula "6"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "16"))
+ (rule "close" (formula "19") (ifseqformula "18"))
+ )
+ (branch "Pre (sort)"
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "17") (term "1,0") (ifseqformula "6"))
+ (rule "wellFormedAnonEQ" (formula "17") (term "0,0,0,0,0") (ifseqformula "6"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "17") (term "1,0,0,0,0") (ifseqformula "6"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0,0"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0"))
+ (rule "leq_literals" (formula "17") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "1")) (ifInst "" (formula "5")) (ifInst "" (formula "2")) (ifInst "" (formula "14")) (ifInst "" (formula "8")))
+ (rule "leq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,0,1"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,0,1"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,1"))
+ (rule "measuredByCheckEmpty" (formula "17") (term "1") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "17") (term "0") (ifseqformula "4"))
+ (rule "leq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_geqRight" (formula "17"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "14"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "14"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "14"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "14"))
+ (rule "notLeft" (formula "13"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "12"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "11"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "11"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "translateJavaMulInt" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "translateJavaMulInt" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "46"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "45"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "44"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "43"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "42"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "41"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "40"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "39"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "38"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "37"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "36"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "35"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "34"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "32"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "eqSymm" (formula "31"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "disjointDefinition" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "notLeft" (formula "20"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "19"))
+ (rule "subsetUnionLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "subsetUnionLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "subsetUnionLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "subsetUnionLeft" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "subsetUnionLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "subsetUnionLeft" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "subsetUnionLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "commuteUnion_2" (formula "26") (term "0,1"))
+ (rule "commuteUnion" (formula "26") (term "1,1,1"))
+ (rule "commuteUnion" (formula "26") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "26") (term "0,1"))
+ (rule "commuteUnion_2" (formula "26") (term "1"))
+ (rule "associativeLawUnion" (formula "26") (term "0,1"))
+ (rule "associativeLawUnion" (formula "26") (term "0,1"))
+ (rule "arrayLengthIsAShort" (formula "1") (term "0"))
+ (rule "expand_inShort" (formula "1"))
+ (rule "replace_short_MAX" (formula "1") (term "1,0"))
+ (rule "replace_short_MIN" (formula "1") (term "0,1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+)
+(branch "Exceptional Post (Storage)"
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "7") (term "1,0,0") (ifseqformula "6"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "7") (term "1,1,0,0,1,0") (ifseqformula "6"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "7"))
+ (rule "close" (formula "12") (ifseqformula "11"))
+)
+(branch "Pre (Storage)"
+ (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "6"))
+)
+)
+}
diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..352d768
--- /dev/null
+++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,715 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 21:42:32 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 21:42:32 CEST 2022
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "432")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "7"))
+(rule "notLeft" (formula "7"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "3"))
+(rule "translateJavaSubInt" (formula "8") (term "0,0"))
+(rule "translateJavaSubInt" (formula "13") (term "0"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "8") (term "0,0"))
+(rule "polySimp_elimSub" (formula "13") (term "0"))
+(rule "polySimp_addComm0" (formula "8") (term "0,0"))
+(rule "polySimp_addComm0" (formula "13") (term "0"))
+(rule "disjointDefinition" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "18") (term "1"))
+ (builtin "One Step Simplification" (formula "18"))
+(rule "commuteIntersection" (formula "15") (term "0"))
+(rule "methodBodyExpand" (formula "18") (term "1") (newnames "heapBefore_sort,savedHeapBefore_sort"))
+ (builtin "One Step Simplification" (formula "18"))
+(rule "ifElseUnfold" (formula "18") (term "1") (inst "#boolv=x"))
+(rule "variableDeclaration" (formula "18") (term "1") (newnames "x"))
+(rule "compound_less_equal_than_comparison_1" (formula "18") (term "1") (inst "#v0=x_1"))
+(rule "variableDeclarationAssign" (formula "18") (term "1"))
+(rule "variableDeclaration" (formula "18") (term "1") (newnames "x_1"))
+(rule "assignmentSubtractionInt" (formula "18") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "17") (term "1") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,1"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,1"))
+ (rule "qeq_literals" (formula "17") (term "0,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_leqRight" (formula "17"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (ifseqformula "1"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "1,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0"))
+ (rule "add_zero_right" (formula "12") (term "0"))
+ (rule "leq_literals" (formula "12"))
+ (rule "closeFalse" (formula "12"))
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,1,0"))
+ (rule "less_equal_than_comparison_simple" (formula "18") (term "1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "ifElseSplit" (formula "18"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_base_case_sort,exc_51,heapAfter_base_case_sort,anon_heap_base_case_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::base_case_sort([I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (base_case_sort)"
+ (builtin "One Step Simplification" (formula "21"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "translateJavaSubInt" (formula "18") (term "2,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "2,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "2,1,0"))
+ (rule "narrowSelectArrayType" (formula "19") (term "2,1") (ifseqformula "2") (ifseqformula "23"))
+ (rule "methodCallEmpty" (formula "24") (term "1"))
+ (rule "tryEmpty" (formula "24") (term "1"))
+ (rule "emptyModality" (formula "24") (term "1"))
+ (rule "andRight" (formula "24"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "expand_inInt" (formula "18") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "18") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "22"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "13"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "translateJavaMulInt" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "translateJavaMulInt" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "48"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "47"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "46"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "45"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "44"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "43"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "42"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "41"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "eqSymm" (formula "39"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "eqSymm" (formula "38"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "applyEq" (formula "22") (term "1,0") (ifseqformula "21"))
+ (rule "distributeIntersection" (formula "22") (term "0"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "distributeIntersection" (formula "22") (term "0"))
+ (rule "distributeIntersection" (formula "23") (term "0"))
+ (rule "distributeIntersection" (formula "22") (term "1,0"))
+ (rule "distributeIntersection" (formula "22") (term "0,0"))
+ (rule "distributeIntersection" (formula "23") (term "0,0"))
+ (rule "distributeIntersection" (formula "23") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "unionEqualsEmpty" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "eqSymm" (formula "31"))
+ (rule "eqSymm" (formula "30"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "22"))
+ (rule "eqSymm" (formula "30"))
+ (rule "eqSymm" (formula "29"))
+ (rule "unionEqualsEmpty" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "23"))
+ (rule "eqSymm" (formula "29"))
+ (rule "eqSymm" (formula "28"))
+ (rule "unionEqualsEmpty" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "eqSymm" (formula "28"))
+ (rule "eqSymm" (formula "27"))
+ (rule "commuteUnion" (formula "21") (term "0,0,1"))
+ (rule "commuteUnion" (formula "21") (term "1,1,1"))
+ (rule "commuteUnion" (formula "21") (term "0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9"))
+ (rule "close" (formula "65") (ifseqformula "9"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeTrue" (formula "24"))
+ )
+ )
+ (branch "Exceptional Post (base_case_sort)"
+ (builtin "One Step Simplification" (formula "18"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "18"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0") (ifseqformula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "19"))
+ (rule "close" (formula "21") (ifseqformula "20"))
+ )
+ (branch "Pre (base_case_sort)"
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "18")) (ifInst "" (formula "2")) (ifInst "" (formula "18")) (ifInst "" (formula "3")))
+ (rule "expand_inInt" (formula "19") (term "1"))
+ (rule "expand_inInt" (formula "19") (term "0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,0"))
+ (rule "replace_known_left" (formula "19") (term "0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "6")))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1"))
+ (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_leqRight" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "19") (term "1"))
+ (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_sample_sort,exc_51,heapAfter_sample_sort,anon_heap_sample_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0"))
+ (branch "Post (sample_sort)"
+ (builtin "One Step Simplification" (formula "21"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "translateJavaSubInt" (formula "17") (term "2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "2,0,1,0"))
+ (rule "narrowSelectArrayType" (formula "19") (term "2,1") (ifseqformula "1") (ifseqformula "25"))
+ (rule "commuteUnion" (formula "17") (term "1,0"))
+ (rule "methodCallEmpty" (formula "26") (term "1"))
+ (rule "tryEmpty" (formula "26") (term "1"))
+ (rule "emptyModality" (formula "26") (term "1"))
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "22")))
+ (rule "closeTrue" (formula "26"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "closeTrue" (formula "26"))
+ )
+ )
+ (branch "Exceptional Post (sample_sort)"
+ (builtin "One Step Simplification" (formula "21"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "18") (term "1,0") (ifseqformula "17"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "18"))
+ (rule "close" (formula "21") (ifseqformula "20"))
+ )
+ (branch "Pre (sample_sort)"
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "9")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "1")) (ifInst "" (formula "18")) (ifInst "" (formula "2")) (ifInst "" (formula "17")) (ifInst "" (formula "7")))
+ (rule "expand_inInt" (formula "19") (term "0,0"))
+ (rule "expand_inInt" (formula "19") (term "1,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "19") (term "0,0,1"))
+ (rule "replace_known_left" (formula "19") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "5")))
+ (rule "polySimp_elimSub" (formula "19") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,1"))
+ (rule "inEqSimp_leqRight" (formula "16"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "measuredByCheck" (formula "19") (term "1") (ifseqformula "9"))
+ (rule "precOfPair" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "precOfInt" (formula "19") (term "1,1"))
+ (rule "less_literals" (formula "19") (term "1,1,1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "leq_literals" (formula "19") (term "1,1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1"))
+ (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_leqRight" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "closeFalse" (formula "12"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..898840e
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,38811 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 12:48:12 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 12:48:12 CEST 2023
+contract=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0
+name=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "4" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "5" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "6" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "7" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "562597")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "8"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "11"))
+(rule "notLeft" (formula "10"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "13"))
+(rule "notLeft" (formula "12"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "14"))
+(rule "notLeft" (formula "13"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "26"))
+(rule "andLeft" (formula "28"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "27"))
+(rule "translateJavaSubInt" (formula "19") (term "0"))
+(rule "translateJavaSubInt" (formula "21") (term "1"))
+(rule "eqSymm" (formula "56") (term "1,0"))
+(rule "translateJavaMulInt" (formula "57") (term "0,4,0,0,0,0,0,1,0"))
+(rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,1,1,1,0"))
+(rule "translateJavaAddInt" (formula "57") (term "1,1,0,1,0"))
+(rule "translateJavaSubInt" (formula "57") (term "0,1,0,1,0"))
+(rule "translateJavaMulInt" (formula "57") (term "3,0,0,0,0,0,1,0"))
+(rule "translateJavaAddInt" (formula "57") (term "4,0,0,0,0,0,1,0"))
+(rule "eqSymm" (formula "57") (term "1,1,0"))
+(rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,1,0,1,0"))
+(rule "translateJavaSubInt" (formula "57") (term "0,0,1,1,0"))
+(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "10"))
+(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "11"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "19") (term "0"))
+(rule "polySimp_elimSub" (formula "21") (term "1"))
+(rule "polySimp_elimSub" (formula "57") (term "0,1,0,1,0"))
+(rule "polySimp_elimSub" (formula "57") (term "0,0,1,1,0"))
+(rule "polySimp_addComm0" (formula "57") (term "1,1,0,1,0"))
+(rule "polySimp_addComm0" (formula "19") (term "0"))
+(rule "polySimp_addComm0" (formula "21") (term "1"))
+(rule "polySimp_addComm0" (formula "57") (term "0,1,0,1,0"))
+(rule "polySimp_addComm0" (formula "57") (term "0,2,0,0,0,1,1,0"))
+(rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+(rule "notLeft" (formula "54"))
+(rule "eqSymm" (formula "57"))
+(rule "polySimp_addComm0" (formula "56") (term "0,2,1,0,1,0,1,0"))
+(rule "polySimp_addComm0" (formula "56") (term "0,0,1,1,0"))
+(rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+(rule "notLeft" (formula "53"))
+(rule "eqSymm" (formula "56"))
+(rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+(rule "notLeft" (formula "52"))
+(rule "eqSymm" (formula "55"))
+(rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+(rule "notLeft" (formula "51"))
+(rule "eqSymm" (formula "54"))
+(rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+(rule "notLeft" (formula "50"))
+(rule "eqSymm" (formula "53"))
+(rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+(rule "notLeft" (formula "49"))
+(rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+(rule "notLeft" (formula "48"))
+(rule "eqSymm" (formula "51"))
+(rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+(rule "notLeft" (formula "47"))
+(rule "eqSymm" (formula "50"))
+(rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+(rule "notLeft" (formula "46"))
+(rule "eqSymm" (formula "49"))
+(rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+(rule "notLeft" (formula "45"))
+(rule "eqSymm" (formula "48"))
+(rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+(rule "notLeft" (formula "44"))
+(rule "eqSymm" (formula "47"))
+(rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+(rule "notLeft" (formula "43"))
+(rule "eqSymm" (formula "46"))
+(rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+(rule "notLeft" (formula "42"))
+(rule "eqSymm" (formula "45"))
+(rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "notLeft" (formula "41"))
+(rule "eqSymm" (formula "44"))
+(rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+(rule "notLeft" (formula "40"))
+(rule "eqSymm" (formula "43"))
+(rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+(rule "notLeft" (formula "39"))
+(rule "eqSymm" (formula "42"))
+(rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+(rule "notLeft" (formula "38"))
+(rule "eqSymm" (formula "41"))
+(rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+(rule "notLeft" (formula "37"))
+(rule "eqSymm" (formula "40"))
+(rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+(rule "notLeft" (formula "36"))
+(rule "eqSymm" (formula "39"))
+(rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "notLeft" (formula "35"))
+(rule "eqSymm" (formula "38"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "eqSymm" (formula "37"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "eqSymm" (formula "35"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "34"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "eqSymm" (formula "33"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "32"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "inEqSimp_commuteLeq" (formula "18"))
+(rule "inEqSimp_commuteLeq" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "17"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+(rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+(rule "applyEq" (formula "20") (term "2,0") (ifseqformula "23"))
+(rule "applyEq" (formula "21") (term "0,2,0") (ifseqformula "23"))
+(rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+(rule "eqSymm" (formula "22"))
+(rule "applyEq" (formula "29") (term "1,1,0,0,0") (ifseqformula "23"))
+(rule "applyEq" (formula "28") (term "1,1,0,0,0") (ifseqformula "23"))
+(rule "commute_and_2" (formula "29") (term "0,0,1,0"))
+(rule "commute_and_2" (formula "28") (term "0,0"))
+(rule "commute_and" (formula "29") (term "1,0,0"))
+(rule "commute_and" (formula "29") (term "0,0,0"))
+(rule "commute_and" (formula "28") (term "1,0,0,0"))
+(rule "shift_paren_and" (formula "29") (term "0,0"))
+(rule "commute_and_2" (formula "29") (term "0,0,0"))
+(rule "commute_and" (formula "29") (term "0,0,0,1,0"))
+(rule "methodBodyExpand" (formula "64") (term "1") (newnames "heapBefore_cleanup,savedHeapBefore_cleanup,_beginBefore_cleanup,_bucket_pointersBefore_cleanup,_bucket_startsBefore_cleanup,_buffersBefore_cleanup,_classifierBefore_cleanup,_endBefore_cleanup,_overflowBefore_cleanup,_valuesBefore_cleanup,is_last_levelBefore_cleanup,startBefore_cleanup,stopBefore_cleanup,bucketBefore_cleanup,relative_startBefore_cleanup,relative_stopBefore_cleanup,writeBefore_cleanup,head_stopBefore_cleanup,tail_startBefore_cleanup"))
+ (builtin "One Step Simplification" (formula "64"))
+(rule "variableDeclarationGhostAssign" (formula "64") (term "1"))
+(rule "variableDeclarationGhost" (formula "64") (term "1") (newnames "heapOld"))
+(rule "assignment" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+(rule "variableDeclarationFinalAssign" (formula "64") (term "1"))
+(rule "variableDeclarationFinal" (formula "64") (term "1") (newnames "num_buckets"))
+(rule "shift_paren_and" (formula "28") (term "0,0,0"))
+(rule "commute_and" (formula "28") (term "0,0,0,0"))
+(rule "arrayLengthIsAShort" (formula "27") (term "0"))
+(rule "expand_inShort" (formula "27"))
+(rule "replace_short_MIN" (formula "27") (term "0,1"))
+(rule "replace_short_MAX" (formula "27") (term "1,0"))
+(rule "andLeft" (formula "27"))
+(rule "inEqSimp_commuteLeq" (formula "28"))
+(rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+(rule "qeq_literals" (formula "28"))
+(rule "true_left" (formula "28"))
+(rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+(rule "leq_literals" (formula "27"))
+(rule "true_left" (formula "27"))
+(rule "arrayLengthNotNegative" (formula "27") (term "0"))
+(rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+(rule "qeq_literals" (formula "27"))
+(rule "true_left" (formula "27"))
+ (builtin "Use Operation Contract" (formula "64") (newnames "heapBefore_num_buckets,result_21,exc_25") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0"))
+(branch "Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "26")) (ifInst "" (formula "15")))
+ (rule "expand_inInt" (formula "30") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "eqSymm" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "assignment" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "variableDeclarationFinalAssign" (formula "68") (term "1"))
+ (rule "variableDeclarationFinal" (formula "68") (term "1") (newnames "is_last_level"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "23"))
+ (rule "applyEq" (formula "28") (term "1,1,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "21") (term "0,2,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "29") (term "1,0,0,0,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "20") (term "2,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "32"))
+ (rule "compound_less_equal_than_comparison_1" (formula "68") (term "1") (inst "#v0=x"))
+ (rule "variableDeclarationAssign" (formula "68") (term "1"))
+ (rule "variableDeclaration" (formula "68") (term "1") (newnames "x"))
+ (rule "assignmentSubtractionInt" (formula "68") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "expand_inInt" (formula "68"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "29") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "68") (term "0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "68") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "68") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "29") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "68") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68") (term "1"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1"))
+ (rule "mul_literals" (formula "68") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "16"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "67") (term "1") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "67") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "67") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0,1"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "67") (term "0,0,1"))
+ (rule "qeq_literals" (formula "67") (term "0,1"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "inEqSimp_leqRight" (formula "67"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (ifseqformula "1"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0"))
+ (rule "add_zero_right" (formula "19") (term "0"))
+ (rule "leq_literals" (formula "19"))
+ (rule "closeFalse" (formula "19"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,0"))
+ (rule "less_equal_than_comparison_simple" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "for_to_while" (formula "68") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1"))
+ (rule "variableDeclarationAssign" (formula "68") (term "1"))
+ (rule "variableDeclaration" (formula "68") (term "1") (newnames "bucket"))
+ (rule "assignment" (formula "68") (term "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "loopScopeInvDia" (formula "68") (term "1") (newnames "bucket_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "68"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "expand_inInt" (formula "69") (term "1,0,0,1,0,0"))
+ (rule "expand_inInt" (formula "69") (term "1,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "69") (term "0,0,1,0,0,0"))
+ (rule "expand_inInt" (formula "69") (term "0,0,1,1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "69") (term "1,0,1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "69") (term "0,1,1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "69") (term "1,0,1,0,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "69") (term "0,1,1,0,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "69") (term "0,1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "69") (term "1,0,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "69") (term "0,1,0,0,1,1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "69") (term "1,0,0,0,1,1,0,1,0,0"))
+ (rule "impRight" (formula "69"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "77") (term "2,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0"))
+ (rule "eqSymm" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,1,0,1,1,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,1,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "3,1,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,5,0,1,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,1,0,0,0,1,0,1,1,0"))
+ (rule "eqSymm" (formula "5") (term "1,1,0,1,1,0"))
+ (rule "translateJavaCastInt" (formula "4") (term "1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "2,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "77") (term "1,2,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,1,0,0,0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,1,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,1,0,0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,1,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,5,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,1,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,1,0,0,1,1,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "variableDeclaration" (formula "77") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "5") (term "1,1,0,0,0") (ifseqformula "32"))
+ (rule "commute_and" (formula "4") (term "0,0"))
+ (rule "commute_and" (formula "5") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "commute_and" (formula "5") (term "0,0,0"))
+ (rule "commute_and_2" (formula "5") (term "0,0"))
+ (rule "commute_and" (formula "5") (term "1,0,1,1,0"))
+ (rule "commute_and" (formula "5") (term "0,0,1,1,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "5") (term "0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "29") (term "0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "10") (ifseqformula "19"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "11") (ifseqformula "17"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0,0") (ifseqformula "12") (ifseqformula "21"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "75") (term "1") (ifseqformula "13") (ifseqformula "19"))
+ (rule "ifElseUnfold" (formula "84") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "84") (term "1") (newnames "x_2"))
+ (rule "less_than_comparison_simple" (formula "84") (term "1"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "58") (term "0") (ifseqformula "14") (ifseqformula "22"))
+ (rule "ifElseSplit" (formula "85"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "Block Contract (Internal)" (formula "86") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "87"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "87") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "87") (term "1"))
+ (rule "variableDeclaration" (formula "87") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "87") (term "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "emptyStatement" (formula "87") (term "1"))
+ (rule "emptyStatement" (formula "87") (term "1"))
+ (rule "tryEmpty" (formula "87") (term "1"))
+ (rule "blockEmptyLabel" (formula "87") (term "1"))
+ (rule "blockEmpty" (formula "87") (term "1"))
+ (rule "methodCallEmpty" (formula "87") (term "1"))
+ (rule "emptyModality" (formula "87") (term "1"))
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (rule "andRight" (formula "87"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "87") (userinteraction))
+ (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "87") (term "0") (userinteraction))
+ (rule "replace_known_right" (formula "1") (term "0,1,1,0,0") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")) (ifInst "" (formula "2")) (ifInst "" (formula "17")) (ifInst "" (formula "88")))
+ (rule "notLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "53"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "86"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "wellFormedAnon" (formula "86"))
+ (rule "replace_known_left" (formula "86") (term "1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "86"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "87"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "elim_double_block_2" (formula "88") (term "1"))
+ (rule "ifUnfold" (formula "88") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "replace_known_left" (formula "88") (term "0,0,1,0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "ifSplit" (formula "88"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "88") (term "1"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "relative_start"))
+ (rule "assignment_array2" (formula "88"))
+ (branch "Normal Execution (_bucket_starts != null)"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "pullOutSelect" (formula "88") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86")) (ifInst "" (formula "24")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "89") (term "0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "relative_stop"))
+ (rule "eval_order_array_access5" (formula "88") (term "1") (inst "#v1=x_2") (inst "#ar1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_4"))
+ (rule "assignmentAdditionInt" (formula "88") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "expand_inInt" (formula "88"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0"))
+ (rule "add_literals" (formula "88") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "1"))
+ (rule "mul_literals" (formula "88") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1"))
+ (rule "add_literals" (formula "88") (term "0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1"))
+ (rule "mul_literals" (formula "88") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "88") (term "1") (ifseqformula "7"))
+ (rule "leq_literals" (formula "88") (term "0,1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "inEqSimp_leqRight" (formula "88"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "34"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "translateJavaAddInt" (formula "88") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,1,0"))
+ (rule "assignment_array2" (formula "88"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "pullOutSelect" (formula "88") (term "0,1,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86")) (ifInst "" (formula "24")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "89") (term "0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "variableDeclarationFinalAssign" (formula "88") (term "1"))
+ (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "relative_write"))
+ (builtin "Use Operation Contract" (formula "88") (newnames "heapBefore_write,result,exc_1") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::write(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (write)"
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "13")))
+ (rule "expand_inInt" (formula "54") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "57"))
+ (rule "eqSymm" (formula "56"))
+ (rule "eqSymm" (formula "57"))
+ (rule "translateJavaAddInt" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "assignment" (formula "94") (term "1"))
+ (builtin "One Step Simplification" (formula "94"))
+ (builtin "Block Contract (Internal)" (formula "94") (newnames "exc_2,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "95"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "27")))
+ (rule "expand_inInt" (formula "95") (term "0,1,0,0,1"))
+ (rule "expand_inInt" (formula "95") (term "1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "95") (term "0,1,0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "95") (term "1,0,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "95") (term "0,1,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "95") (term "1,0,1,1,0,0,1"))
+ (rule "eqSymm" (formula "95") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "95") (term "0,0,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "95") (term "1,1,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "95") (term "0,0,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "95") (term "1,1,1,1,0,0,1"))
+ (rule "variableDeclarationAssign" (formula "95") (term "1"))
+ (rule "variableDeclaration" (formula "95") (term "1") (newnames "exc_2_1"))
+ (rule "assignment" (formula "95") (term "1"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "emptyStatement" (formula "95") (term "1"))
+ (rule "emptyStatement" (formula "95") (term "1"))
+ (rule "tryEmpty" (formula "95") (term "1"))
+ (rule "blockEmptyLabel" (formula "95") (term "1"))
+ (rule "blockEmpty" (formula "95") (term "1"))
+ (rule "methodCallEmpty" (formula "95") (term "1"))
+ (rule "emptyModality" (formula "95") (term "1"))
+ (rule "andRight" (formula "95"))
+ (branch "Case 1"
+ (rule "andRight" (formula "95"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "95"))
+ (branch "Case 1"
+ (rule "andRight" (formula "95"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "95"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "44") (term "1,1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,2,1"))
+ (rule "mul_literals" (formula "47") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "39"))
+ (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "43"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "42"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "43"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "60")) (ifInst "" (formula "96")) (ifInst "" (formula "58")) (ifInst "" (formula "21")))
+ (rule "translateJavaAddInt" (formula "55") (term "1,0,1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "55") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "1,0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "1,1,1,0,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0"))
+ (rule "replace_known_left" (formula "55") (term "0,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1"))
+ (rule "applyEq" (formula "55") (term "0,0,1,1,1") (ifseqformula "56"))
+ (rule "applyEq" (formula "55") (term "1,0,1,0,1,1") (ifseqformula "49"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,0,1,1") (ifseqformula "56"))
+ (rule "inEqSimp_commuteGeq" (formula "55") (term "1,0,0,0,1,1"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,1") (ifseqformula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,0"))
+ (rule "replace_known_left" (formula "55") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "52") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "34"))
+ (rule "inEqSimp_commuteGeq" (formula "54"))
+ (rule "applyEq" (formula "55") (term "1,1,1,1,1,0") (ifseqformula "34"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53"))
+ (rule "times_zero_1" (formula "52") (term "0,0"))
+ (rule "add_zero_left" (formula "52") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1"))
+ (rule "polySimp_elimOne" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeFalse" (formula "31"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "95"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "50") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "53") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "applyEq" (formula "53") (term "1,1,1,1,1,0") (ifseqformula "36"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "53") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "53") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "52"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "50") (term "0,0"))
+ (rule "add_zero_left" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "50"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_contradInEq1" (formula "49") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "closeFalse" (formula "49"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "95"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "95"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "translateJavaAddInt" (formula "38") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "0"))
+ (rule "polySimp_addComm0" (formula "38") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "36"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "58") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "expand_inInt" (formula "58") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "58") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "58") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "translateJavaAddInt" (formula "64") (term "1"))
+ (rule "translateJavaCastInt" (formula "65") (term "0"))
+ (rule "translateJavaMulInt" (formula "59") (term "0"))
+ (rule "translateJavaMulInt" (formula "58") (term "1"))
+ (rule "translateJavaCastInt" (formula "62") (term "0"))
+ (rule "translateJavaCastInt" (formula "61") (term "1"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_addComm0" (formula "64") (term "1"))
+ (rule "castedGetAny" (formula "65") (term "0"))
+ (rule "castedGetAny" (formula "62") (term "0"))
+ (rule "castedGetAny" (formula "61") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "67") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "64") (term "1,1") (ifseqformula "50"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "36"))
+ (rule "greater_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "mul_literals" (formula "58") (term "1,0"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "44") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "63")) (ifInst "" (formula "66")))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "translateJavaCastInt" (formula "50") (term "0"))
+ (rule "translateJavaAddInt" (formula "49") (term "1"))
+ (rule "translateJavaMulInt" (formula "45") (term "0"))
+ (rule "translateJavaMulInt" (formula "44") (term "1"))
+ (rule "translateJavaCastInt" (formula "48") (term "0"))
+ (rule "translateJavaCastInt" (formula "47") (term "1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_addComm0" (formula "49") (term "1"))
+ (rule "castedGetAny" (formula "50") (term "0"))
+ (rule "castedGetAny" (formula "48") (term "0"))
+ (rule "castedGetAny" (formula "47") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "69"))
+ (rule "polySimp_homoEq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0"))
+ (rule "add_zero_left" (formula "48") (term "0,0"))
+ (rule "apply_eq_monomials" (formula "45") (term "0") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "1,1,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0"))
+ (rule "add_zero_right" (formula "45") (term "0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "apply_eq_monomials" (formula "44") (term "0") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "44") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "44") (term "0"))
+ (rule "add_literals" (formula "44") (term "1,1,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0"))
+ (rule "add_zero_right" (formula "44") (term "0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0"))
+ (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "47") (term "1,0") (ifseqformula "54"))
+ (rule "polySimp_pullOutFactor2" (formula "47") (term "0"))
+ (rule "add_literals" (formula "47") (term "1,0"))
+ (rule "times_zero_1" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "44") (ifseqformula "36"))
+ (rule "greater_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "mul_literals" (formula "44") (term "1,0"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "52"))
+ (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "54") (term "0"))
+ (rule "replace_known_left" (formula "54") (term "1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "105")) (ifInst "" (formula "55")))
+ (rule "true_left" (formula "54"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "51"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "40") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "translateJavaMulInt" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "eqSymm" (formula "71"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "43"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "33"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "42"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "52") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "37"))
+ (rule "inEqSimp_commuteGeq" (formula "54"))
+ (rule "applyEq" (formula "55") (term "1,1,1,1,1,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeFalse" (formula "31"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "95"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "35"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "52") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "52"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "55") (term "1,1,1,1,1,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "54"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "add_zero_left" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "29") (ifseqformula "52"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "closeFalse" (formula "29"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "94"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "wellFormedAnon" (formula "94"))
+ (rule "replace_known_left" (formula "94") (term "1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "94"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "expand_inInt" (formula "60") (term "0,1,0"))
+ (rule "expand_inInt" (formula "60") (term "1,1,0"))
+ (rule "replace_int_MAX" (formula "60") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "60") (term "0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "60") (term "0,1,1,1,0"))
+ (rule "replace_int_MAX" (formula "60") (term "1,0,1,1,0"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "61"))
+ (rule "translateJavaAddInt" (formula "64") (term "1"))
+ (rule "translateJavaAddInt" (formula "63") (term "0"))
+ (rule "translateJavaAddInt" (formula "61") (term "0"))
+ (rule "translateJavaAddInt" (formula "62") (term "1"))
+ (rule "replace_known_left" (formula "65") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "elim_double_block_2" (formula "99") (term "1"))
+ (rule "ifUnfold" (formula "99") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "99") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "99") (term "1"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "replace_known_left" (formula "99") (term "0,0,1,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "ifSplit" (formula "99"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "100"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "100"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "99") (term "1"))
+ (rule "variableDeclarationFinalAssign" (formula "99") (term "1"))
+ (rule "variableDeclarationFinal" (formula "99") (term "1") (newnames "start"))
+ (rule "assignmentAdditionInt" (formula "99") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "expand_inInt" (formula "99"))
+ (rule "replace_int_MAX" (formula "99") (term "1,0"))
+ (rule "replace_int_MIN" (formula "99") (term "0,1"))
+ (rule "replace_known_left" (formula "99") (term "1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "61")))
+ (rule "closeTrue" (formula "99"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "translateJavaAddInt" (formula "99") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "99") (term "1"))
+ (rule "variableDeclarationFinal" (formula "99") (term "1") (newnames "stop"))
+ (rule "assignmentAdditionInt" (formula "99") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "expand_inInt" (formula "99"))
+ (rule "replace_int_MIN" (formula "99") (term "0,1"))
+ (rule "replace_int_MAX" (formula "99") (term "1,0"))
+ (rule "replace_known_left" (formula "99") (term "1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "63")))
+ (rule "closeTrue" (formula "99"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "translateJavaAddInt" (formula "99") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "99") (term "1"))
+ (rule "variableDeclarationFinal" (formula "99") (term "1") (newnames "write"))
+ (rule "assignmentAdditionInt" (formula "99") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "expand_inInt" (formula "99"))
+ (rule "replace_int_MIN" (formula "99") (term "0,1"))
+ (rule "replace_int_MAX" (formula "99") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "99") (term "1"))
+ (rule "mul_literals" (formula "99") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "99") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "99") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "99") (term "0"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "99") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "99") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "99") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "99") (term "1"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "99") (term "1,1"))
+ (rule "mul_literals" (formula "99") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "99") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "99") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "34"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "12"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "12")) (ifInst "" (formula "95")) (ifInst "" (formula "12")) (ifInst "" (formula "56")) (ifInst "" (formula "20")))
+ (rule "wellFormedAnon" (formula "53") (term "1,0"))
+ (rule "andRight" (formula "99") (userinteraction))
+ (branch "Case 1"
+ (rule "translateJavaAddInt" (formula "53") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "53") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "53") (term "1,1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "15")))
+ (rule "polySimp_addComm0" (formula "53") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "53") (term "1,0,1,0,1"))
+ (rule "inEqSimp_leqRight" (formula "99"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,1"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0,1") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,1"))
+ (rule "applyEq" (formula "54") (term "1,0,1,0,1") (ifseqformula "48"))
+ (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0,0,1") (ifseqformula "55"))
+ (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0") (ifseqformula "48"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "times_zero_1" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "54"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "1"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "14")) (ifInst "" (formula "101")) (ifInst "" (formula "14")) (ifInst "" (formula "62")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "59") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "59") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "59") (term "1,1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "17")))
+ (rule "polySimp_addComm0" (formula "59") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "59") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0,0,1") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1"))
+ (rule "applyEq" (formula "59") (term "0,1,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "59") (term "0,0,1,1") (ifseqformula "60"))
+ (rule "replace_known_left" (formula "59") (term "1,1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "applyEq" (formula "59") (term "0,0,0,1") (ifseqformula "60"))
+ (rule "inEqSimp_commuteGeq" (formula "59") (term "0,0,1"))
+ (rule "replace_known_left" (formula "59") (term "0,0,1") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "applyEq" (formula "59") (term "0,0,1") (ifseqformula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1"))
+ (rule "replace_known_left" (formula "59") (term "0,1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "applyEq" (formula "59") (term "1,0,1") (ifseqformula "48"))
+ (rule "replace_known_left" (formula "59") (term "1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "59") (term "0"))
+ (rule "translateJavaMulInt" (formula "59") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "59") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "eqSymm" (formula "60"))
+ (rule "applyEqReverse" (formula "59") (term "1") (ifseqformula "60"))
+ (rule "hideAuxiliaryEq" (formula "60"))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0,0"))
+ (rule "replace_known_right" (formula "59") (term "0,0,0,0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "Definition_axiom_for_bufferSizeForBucketLen_in_de_wiesler_Buffers" (formula "45") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "translateJavaMod" (formula "45") (term "0,1,0,0,1,1,0"))
+ (rule "translateJavaMod" (formula "45") (term "2,0,1,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "45") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,1,1,0"))
+ (rule "jmod_axiom" (formula "45") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,0,1,1,0"))
+ (rule "jmod_axiom" (formula "45") (term "2,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,2,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0,0,0,1,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "eqSymm" (formula "47"))
+ (rule "eqSymm" (formula "44"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "44") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,2,1"))
+ (rule "mul_literals" (formula "47") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "1") (ifseqformula "39"))
+ (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "43"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "42"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "43"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "12") (term "2,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "12") (term "1,1") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "26")) (ifInst "" (formula "17")) (ifInst "" (formula "20")) (ifInst "" (formula "108")) (ifInst "" (formula "26")))
+ (rule "true_left" (formula "12"))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "12") (term "2,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaMulInt" (formula "12") (term "2,2,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "12") (term "0,3,2,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "3,2,0,0,1,1,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "49") (term "1,1,0"))
+ (rule "eqSymm" (formula "49") (term "1,0"))
+ (rule "translateJavaCastInt" (formula "49") (term "0,0,1,0"))
+ (rule "castedGetAny" (formula "49") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "49") (term "1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "61") (term "0,0,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_left" (formula "61") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "62") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "106")))
+ (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "62") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "62") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "62") (term "0,0,0,1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0"))
+ (rule "replace_known_left" (formula "62") (term "0,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "62") (term "0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "62") (term "1,0,0,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "62") (term "0,1,0,1,1,1,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,0,1,1,1") (ifseqformula "50"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "62") (term "0,0,1,1,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "62") (term "1,0,1,1,1,1") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "62") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "62") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "62") (term "0,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "62") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "53") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "35"))
+ (rule "inEqSimp_commuteGeq" (formula "55"))
+ (rule "applyEq" (formula "56") (term "1,1,1,1,1,0") (ifseqformula "35"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0"))
+ (rule "add_literals" (formula "73") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "72"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "71"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "add_zero_left" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "27"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "72") (term "0,0"))
+ (rule "add_literals" (formula "72") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "72") (term "1,0,0"))
+ (rule "add_literals" (formula "72") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "times_zero_1" (formula "53") (term "0,0"))
+ (rule "add_zero_left" (formula "53") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "translateJavaAddInt" (formula "36") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "35") (term "0"))
+ (rule "polySimp_addComm0" (formula "36") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "13") (term "1,1,1,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaAddInt" (formula "13") (term "3,2,1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,0,1,1,1,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "3,0,1,1,1,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,2,1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "1,1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,3,0,1,1,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "3,0,1,1,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,3,0,1,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "3,0,1,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,3,0,1,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,1,1,1,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "39") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "translateJavaMulInt" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "eqSymm" (formula "80"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "44"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "114")) (ifInst "" (formula "72")) (ifInst "" (formula "20")))
+ (rule "wellFormedAnon" (formula "70") (term "1,0"))
+ (rule "replace_known_left" (formula "70") (term "1,1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "15")))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0"))
+ (rule "replace_known_left" (formula "70") (term "0,0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "applyEq" (formula "70") (term "0,1,0,0,0") (ifseqformula "53"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "70") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0,0,0"))
+ (rule "replace_known_left" (formula "70") (term "0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "11") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaAddInt" (formula "11") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "4,0,0,1,0"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "69") (term "0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0"))
+ (rule "polySimp_homoEq" (formula "69"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "70") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "expand_inInt" (formula "70") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "72"))
+ (rule "translateJavaAddInt" (formula "76") (term "1"))
+ (rule "translateJavaCastInt" (formula "77") (term "0"))
+ (rule "translateJavaMulInt" (formula "70") (term "1"))
+ (rule "translateJavaMulInt" (formula "71") (term "0"))
+ (rule "translateJavaCastInt" (formula "74") (term "0"))
+ (rule "translateJavaCastInt" (formula "73") (term "1"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "1"))
+ (rule "castedGetAny" (formula "77") (term "0"))
+ (rule "castedGetAny" (formula "74") (term "0"))
+ (rule "castedGetAny" (formula "73") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "79") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72"))
+ (rule "inEqSimp_commuteLeq" (formula "70"))
+ (rule "inEqSimp_commuteLeq" (formula "73"))
+ (rule "applyEq" (formula "70") (term "0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "71") (term "0,0") (ifseqformula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "applyEq" (formula "73") (term "1,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "74") (term "1,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "79") (term "0,1,0,0,1,0,0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "76") (term "1,1") (ifseqformula "52"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "79") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "70") (ifseqformula "42"))
+ (rule "mul_literals" (formula "70") (term "1,1,0"))
+ (rule "greater_literals" (formula "70") (term "0,0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "leq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "73"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "notLeft" (formula "24"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "40") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "74")) (ifInst "" (formula "77")))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "translateJavaCastInt" (formula "46") (term "0"))
+ (rule "translateJavaAddInt" (formula "45") (term "1"))
+ (rule "translateJavaMulInt" (formula "40") (term "1"))
+ (rule "translateJavaMulInt" (formula "41") (term "0"))
+ (rule "translateJavaCastInt" (formula "44") (term "0"))
+ (rule "translateJavaCastInt" (formula "43") (term "1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "45") (term "1"))
+ (rule "castedGetAny" (formula "46") (term "0"))
+ (rule "castedGetAny" (formula "44") (term "0"))
+ (rule "castedGetAny" (formula "43") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "80"))
+ (rule "polySimp_homoEq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0"))
+ (rule "apply_eq_monomials" (formula "40") (term "0") (ifseqformula "56"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,1,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0"))
+ (rule "add_zero_right" (formula "40") (term "0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0"))
+ (rule "apply_eq_monomials" (formula "41") (term "0") (ifseqformula "56"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "41") (term "0"))
+ (rule "add_literals" (formula "41") (term "1,1,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0"))
+ (rule "add_zero_right" (formula "41") (term "0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "55"))
+ (rule "polySimp_pullOutFactor2" (formula "43") (term "0"))
+ (rule "add_literals" (formula "43") (term "1,0"))
+ (rule "times_zero_1" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "44"))
+ (rule "greater_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1,0"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "applyEq" (formula "40") (term "1,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "40") (term "1,0") (ifseqformula "52"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "translateJavaMod" (formula "65") (term "0"))
+ (rule "jmod_axiom" (formula "65") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "newSym_eq" (formula "65") (inst "l=l_0") (inst "newSymDef=mul(result, Z(0(#)))"))
+ (rule "times_zero_1" (formula "65") (term "1,1"))
+ (rule "add_zero_right" (formula "65") (term "1"))
+ (rule "applyEq" (formula "66") (term "0,0") (ifseqformula "65"))
+ (rule "eqSymm" (formula "66"))
+ (rule "applyEq" (formula "63") (term "1") (ifseqformula "66"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "66"))
+ (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "66"))
+ (rule "applyEq" (formula "62") (term "1") (ifseqformula "66"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "66"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEq" (formula "69") (term "1") (ifseqformula "66"))
+ (rule "applyEq" (formula "67") (term "1") (ifseqformula "66"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "60") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "60") (term "0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "60") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "elimGcdLeq_antec" (formula "59") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0"))
+ (rule "qeq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(1(8(4(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "2"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62"))
+ (rule "mul_literals" (formula "61") (term "0,0"))
+ (rule "add_zero_left" (formula "61") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "61") (ifseqformula "2"))
+ (rule "greater_literals" (formula "61") (term "0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "122")))
+ (rule "translateJavaAddInt" (formula "64") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "64") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "64") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "64") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "64") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "64") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "64") (term "0,1,0,0") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq1" (formula "64") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1,0,0"))
+ (rule "add_literals" (formula "64") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "64") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "applyEq" (formula "64") (term "1,0,1,0,0,1") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq1" (formula "64") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "64") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "64") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "64") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "applyEq" (formula "64") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "64") (term "0,1,0,1,1,1,1") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq1" (formula "64") (term "1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "64") (term "1,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "64") (term "0,1,0,1,1,1,1"))
+ (rule "leq_literals" (formula "64") (term "1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "applyEq" (formula "64") (term "0,1,0,0,0,1,1,1") (ifseqformula "52"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "64") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "64") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (term "0,1,1,1") (ifseqformula "42"))
+ (rule "leq_literals" (formula "64") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_subsumption1" (formula "64") (term "0,0") (ifseqformula "42"))
+ (rule "leq_literals" (formula "64") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "123")))
+ (rule "translateJavaSubInt" (formula "65") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "65") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "65") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "65") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "65") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "65") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "65") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "65") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "65") (term "0,0,0,0"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0") (ifseqformula "52"))
+ (rule "replace_known_left" (formula "65") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "applyEq" (formula "65") (term "1,0,1,0,0,1") (ifseqformula "52"))
+ (rule "replace_known_left" (formula "65") (term "1,0,0,1") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "applyEq" (formula "65") (term "0,1,0,1,1,1,1") (ifseqformula "52"))
+ (rule "replace_known_left" (formula "65") (term "1,0,1,1,1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,0,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "65") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "65") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "65") (term "1,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "65") (term "0,1,1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "65") (term "0,0") (ifseqformula "11"))
+ (rule "leq_literals" (formula "65") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "66") (term "1"))
+ (rule "translateJavaCastInt" (formula "66") (term "0,1"))
+ (rule "castedGetAny" (formula "66") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "66"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "63") (term "0"))
+ (rule "translateJavaCastInt" (formula "63") (term "0,0"))
+ (rule "castedGetAny" (formula "63") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "66"))
+ (rule "polySimp_mulAssoc" (formula "63") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "125")))
+ (rule "translateJavaSubInt" (formula "61") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "61") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "61") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0"))
+ (rule "replace_known_left" (formula "61") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "61") (term "0,0,0,1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "applyEq" (formula "61") (term "0,1,0,0,0,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "61") (term "0,1,0,1,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "61") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "61") (term "0,0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "61") (term "1,0,0,0,1") (ifseqformula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "61") (term "0,0,1,1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption1" (formula "61") (term "1,0,1,1,1,1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "61") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "61") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_subsumption1" (formula "61") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "61") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "61"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "125")))
+ (rule "translateJavaSubInt" (formula "62") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "62") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "62") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0"))
+ (rule "replace_known_left" (formula "62") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "62") (term "0,0,0,1") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "applyEq" (formula "62") (term "0,1,0,1,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "62") (term "0,0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,0,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1,1"))
+ (rule "applyEq" (formula "62") (term "1,0,0,0,1") (ifseqformula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "62") (term "0,0,1,1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "62") (term "0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "62") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "62") (term "1,0,1,1,1,1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "62") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "62") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "72")))
+ (rule "true_left" (formula "62"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "62") (term "0"))
+ (rule "translateJavaCastInt" (formula "62") (term "0,0"))
+ (rule "castedGetAny" (formula "62") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "61") (term "0"))
+ (rule "translateJavaCastInt" (formula "61") (term "0,0"))
+ (rule "castedGetAny" (formula "61") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62"))
+ (rule "mul_literals" (formula "61") (term "0,0"))
+ (rule "add_zero_left" (formula "61") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "61") (ifseqformula "2"))
+ (rule "mul_literals" (formula "61") (term "1,1,0"))
+ (rule "greater_literals" (formula "61") (term "0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "nnf_imp2or" (formula "59") (term "0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "51") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "translateJavaSubInt" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "48") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "expand_inInt" (formula "48") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "50"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "56") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "54") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "50") (term "1"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "3,0"))
+ (rule "mul_literals" (formula "54") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "50"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "50"))
+ (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "45"))
+ (rule "inEqSimp_commuteGeq" (formula "53"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "97") (term "0") (ifseqformula "45"))
+ (rule "applyEq" (formula "56") (term "1,0,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "50") (term "1"))
+ (rule "mod_axiom" (formula "50") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1,3,0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "1"))
+ (rule "mod_axiom" (formula "52") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "46") (term "3,0"))
+ (rule "mod_axiom" (formula "46") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "2,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "50") (term "0,1"))
+ (rule "eqSymm" (formula "50"))
+ (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "52") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "shiftLeftDef" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "46") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "44") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "55") (term "1,1,1,1,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "55") (term "1,1,1,0,0,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "56") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "56") (term "1,1,1,0,0,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "53"))
+ (rule "mul_literals" (formula "51") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "mul_literals" (formula "51") (term "1"))
+ (rule "inEqSimp_notLeq" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "60") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "60") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_or_subsumption6" (formula "60") (term "1,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "60") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "60") (term "0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0,1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "60") (term "0,0,1,1,0,0,1,0"))
+ (rule "qeq_literals" (formula "60") (term "0,1,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "nnf_imp2or" (formula "91") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "nnf_notAnd" (formula "68") (term "0,0"))
+ (rule "nnf_imp2or" (formula "68") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "68") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "68") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "68") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "68") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "68") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,1,1,0"))
+ (rule "expand_moduloInteger" (formula "50") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "50") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "50") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0,1,0,1"))
+ (rule "translateJavaCastInt" (formula "75") (term "0,0,1,0,1"))
+ (rule "castedGetAny" (formula "75") (term "0,0,1,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "74") (term "0"))
+ (rule "replace_known_right" (formula "74") (term "0,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "andLeft" (formula "74"))
+ (rule "andLeft" (formula "74"))
+ (rule "andLeft" (formula "76"))
+ (rule "replace_known_left" (formula "83") (term "1,0,1") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "75"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "72") (ifseqformula "69"))
+ (rule "greater_literals" (formula "72") (term "0,0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "true_left" (formula "72"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,0,0,0,1,1,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "14") (term "0,0,2,0,0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,2,0,0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,0,0,0,1,1,1,0,1,1,0"))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "14") (term "1,0,1,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "eqSymm" (formula "14") (term "0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "14") (term "2,0,0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "14") (term "0,3,0,0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "3,0,0,1,0,1,1,0"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "12") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "141")) (ifInst "" (formula "136")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "12") (term "1,0"))
+ (rule "replace_known_left" (formula "12") (term "1,1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "17")))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "79") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "139")))
+ (rule "translateJavaAddInt" (formula "79") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "79") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "79") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "79") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "79") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "79") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "79") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "79") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "79") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "79") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "79") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "79") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0,0"))
+ (rule "applyEq" (formula "79") (term "1,0,1,0,0,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "79") (term "0,1,0,0") (ifseqformula "62"))
+ (rule "replace_known_left" (formula "79") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "applyEq" (formula "79") (term "1,0,1,0,1") (ifseqformula "62"))
+ (rule "replace_known_left" (formula "79") (term "1,0,1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "applyEq" (formula "79") (term "0,1,0,1,1,1,1") (ifseqformula "62"))
+ (rule "replace_known_left" (formula "79") (term "1,0,1,1,1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "applyEq" (formula "79") (term "0,1,0,0,0,1,1,1") (ifseqformula "62"))
+ (rule "inEqSimp_invertInEq0" (formula "79") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "79") (term "1,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "79") (term "0,1,1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "79") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "79") (term "0,0") (ifseqformula "11"))
+ (rule "leq_literals" (formula "79") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "13") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "nnf_imp2or" (formula "57") (term "0"))
+ (rule "nnf_imp2or" (formula "58") (term "0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0"))
+ (rule "nnf_notAnd" (formula "96") (term "0,0"))
+ (rule "nnf_notAnd" (formula "57") (term "0,0"))
+ (rule "nnf_notAnd" (formula "58") (term "0,0"))
+ (rule "nnf_notAnd" (formula "69") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "nnf_notAnd" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "96") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "96") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "96") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "96") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "96") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "96") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "96") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "96") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "96") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "96") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "96") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "96") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "96") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "96") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "96") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "96") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "96") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "96") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "96") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "96") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "96") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "96") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "96") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "96") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "96") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "57") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "57") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "57") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "57") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "57") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "57") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "57") (term "0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "58") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "58") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "58") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "58") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "58") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "69") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "69") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "69") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "69") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "69") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "69") (term "0,0,0,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "69") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "69") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0"))
+ (rule "translateJavaCastInt" (formula "75") (term "0,0"))
+ (rule "castedGetAny" (formula "75") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "85") (term "0,1,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "140")))
+ (rule "translateJavaAddInt" (formula "85") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "85") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "85") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "85") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "85") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "85") (term "0,1,1,1,0,1,1,1"))
+ (rule "add_zero_left" (formula "85") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "85") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "85") (term "0,1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "85") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "85") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,0,1,1,1"))
+ (rule "add_zero_left" (formula "85") (term "0,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "85") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "85") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0,0"))
+ (rule "mul_literals" (formula "85") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "85") (term "0,0,0,0"))
+ (rule "applyEq" (formula "85") (term "1,0,1,0,1") (ifseqformula "62"))
+ (rule "replace_known_left" (formula "85") (term "1,0,1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "applyEq" (formula "85") (term "0,1,0,1,1,1,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "85") (term "0,1,0,0,0,1,1,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "85") (term "1,0,1,0,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "85") (term "0,1,0,0") (ifseqformula "62"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "85") (term "0,0,0"))
+ (rule "mul_literals" (formula "85") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "85") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "85") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "85") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "85") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "85") (term "1,0,1,1,1,1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0,1,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0,1,0,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "85") (term "0,0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "85") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "85") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "inEqSimp_subsumption1" (formula "85") (term "1,0,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "85") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "85") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "85") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "inEqSimp_subsumption1" (formula "85") (term "0,0,1,1,1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "85") (term "0,0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "85") (term "0,0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "1,3,0,0,1,0,1,1,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "translateJavaSubInt" (formula "72") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "72") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "1,1,1"))
+ (rule "mul_literals" (formula "72") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "72") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "72") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "translateJavaUnaryMinusInt" (formula "73") (term "1,0"))
+ (rule "neg_literal" (formula "73") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "73") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "73") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "73") (term "0,0"))
+ (rule "mul_literals" (formula "73") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "73") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "87") (term "0,1,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "87") (term "0,0,1,1,1,1,1"))
+ (rule "castedGetAny" (formula "87") (term "0,0,1,1,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "142")) (ifInst "" (formula "79")))
+ (rule "translateJavaAddInt" (formula "77") (term "1,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "77") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "77") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "77") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "77") (term "1,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "77") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "77") (term "1,1,1,1") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,1"))
+ (rule "applyEq" (formula "77") (term "1,0,1,0,0,1") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "77") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "77") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "77") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "applyEq" (formula "77") (term "0,1,0,0") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,0"))
+ (rule "add_literals" (formula "77") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "77") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "applyEq" (formula "77") (term "0,1,0,0,1,1") (ifseqformula "62"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,1,1"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,1,1"))
+ (rule "add_zero_right" (formula "77") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "77") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "applyEq" (formula "77") (term "1,0,1,1") (ifseqformula "62"))
+ (rule "replace_known_left" (formula "77") (term "1,1") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "77") (term "0,0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "77") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "88") (term "1,0,1"))
+ (rule "translateJavaCastInt" (formula "88") (term "0,1,0,1"))
+ (rule "castedGetAny" (formula "88") (term "0,1,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "88") (term "0,1"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "15") (term "2,1,1,1,0,1,1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "15") (term "1,1,0,1,1,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "82") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "95")))
+ (rule "translateJavaSubInt" (formula "82") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "82") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "1,1,1"))
+ (rule "mul_literals" (formula "82") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "82") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "82") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "83") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "translateJavaSubInt" (formula "83") (term "0,0,1,0,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "83") (term "1,0,1,0,1"))
+ (rule "neg_literal" (formula "83") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "83") (term "0,0,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "83") (term "0,0,1,0,1"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addLiterals" (formula "83") (term "0,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,0,1,0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "81") (term "0,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "81") (term "0,0,1,1,1,1"))
+ (rule "castedGetAny" (formula "81") (term "0,0,1,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "79") (term "0,0"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "144")) (ifInst "" (formula "80")))
+ (rule "translateJavaSubInt" (formula "79") (term "1,0,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "79") (term "1,1,1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "79") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "79") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "79") (term "1,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "79") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "79") (term "1,1,1,1") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_ltToLeq" (formula "79") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0"))
+ (rule "applyEq" (formula "79") (term "1,0,1,0,1") (ifseqformula "62"))
+ (rule "replace_known_left" (formula "79") (term "1,0,1") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "applyEq" (formula "79") (term "0,1,0,0") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "79") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "79") (term "0,1,0,0"))
+ (rule "add_literals" (formula "79") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "79") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "applyEq" (formula "79") (term "0,1,0,0,1,1") (ifseqformula "62"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0,1,1"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0,1,1"))
+ (rule "add_zero_right" (formula "79") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "79") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "applyEq" (formula "79") (term "1,0,1,1") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "79") (term "1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "79") (term "0,1,1"))
+ (rule "add_literals" (formula "79") (term "1,0,1,1"))
+ (rule "times_zero_1" (formula "79") (term "0,1,1"))
+ (rule "leq_literals" (formula "79") (term "1,1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_subsumption1" (formula "79") (term "0,0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "79") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "77")))
+ (rule "true_left" (formula "79"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "84") (term "1"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "144")) (ifInst "" (formula "79")))
+ (rule "translateJavaSubInt" (formula "84") (term "1,0,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "84") (term "1,1,1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "84") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "84") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "84") (term "1,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "84") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "84") (term "1,1,1,1") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_ltToLeq" (formula "84") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "84") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0"))
+ (rule "applyEq" (formula "84") (term "0,1,0,0") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "84") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "84") (term "0,1,0,0"))
+ (rule "add_literals" (formula "84") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "84") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "84") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "applyEq" (formula "84") (term "1,0,1,0,0,1") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "84") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "84") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "84") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "84") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "84") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "applyEq" (formula "84") (term "1,0,1,0,1") (ifseqformula "62"))
+ (rule "replace_known_left" (formula "84") (term "1,0,1") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "applyEq" (formula "84") (term "0,1,0,0,1,1") (ifseqformula "62"))
+ (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0,1,1"))
+ (rule "add_literals" (formula "84") (term "1,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "84") (term "1,0,0,1,1"))
+ (rule "add_zero_right" (formula "84") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "84") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_subsumption1" (formula "84") (term "0,0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "84") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "77")))
+ (rule "true_left" (formula "84"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "84") (term "1"))
+ (rule "translateJavaCastInt" (formula "84") (term "0,1"))
+ (rule "castedGetAny" (formula "84") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "78") (term "0"))
+ (rule "translateJavaCastInt" (formula "78") (term "0,0"))
+ (rule "castedGetAny" (formula "78") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "78"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "84"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "84"))
+ (rule "polySimp_mulAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "75") (ifseqformula "70"))
+ (rule "greater_literals" (formula "75") (term "0,0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "0,0"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "97") (term "0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "translateJavaMod" (formula "97") (term "0"))
+ (rule "jmod_axiom" (formula "97") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0"))
+ (rule "newSym_eq" (formula "97") (inst "l=l_1") (inst "newSymDef=mul(int::final(bucket_pointers,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "97") (term "1,1"))
+ (rule "add_zero_right" (formula "97") (term "1"))
+ (rule "applyEq" (formula "98") (term "0,0") (ifseqformula "97"))
+ (rule "eqSymm" (formula "98"))
+ (rule "applyEq" (formula "94") (term "0") (ifseqformula "98"))
+ (rule "applyEq" (formula "97") (term "0,0") (ifseqformula "98"))
+ (rule "applyEq" (formula "93") (term "0") (ifseqformula "98"))
+ (rule "applyEq" (formula "95") (term "1") (ifseqformula "98"))
+ (rule "elimGcdGeq_antec" (formula "93") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "times_zero_1" (formula "93") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "93") (term "0,0"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "add_zero_right" (formula "93") (term "0,0,0,0"))
+ (rule "add_literals" (formula "93") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "1,0,0"))
+ (rule "add_zero_right" (formula "93") (term "0,0"))
+ (rule "leq_literals" (formula "93") (term "0"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "elimGcdLeq_antec" (formula "94") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "94") (term "0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "neg_literal" (formula "94") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "94") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "94") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "94") (term "0,0"))
+ (rule "add_literals" (formula "94") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "94") (term "1,0,0"))
+ (rule "add_zero_right" (formula "94") (term "0,0"))
+ (rule "qeq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "96"))
+ (rule "polySimp_mulAssoc" (formula "95") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "95"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "95") (ifseqformula "94"))
+ (rule "mul_literals" (formula "95") (term "0,1,0"))
+ (rule "greater_literals" (formula "95") (term "0,0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "leq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "81") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "146")) (ifInst "" (formula "79")))
+ (rule "translateJavaSubInt" (formula "81") (term "1,0,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "81") (term "1,1,1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "81") (term "1,0,1,1,1,1"))
+ (rule "mul_literals" (formula "81") (term "1,1,0,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "81") (term "1,1,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "81") (term "1,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "81") (term "1,1,1,1") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0"))
+ (rule "applyEq" (formula "81") (term "0,1,0,0") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "81") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "81") (term "0,1,0,0"))
+ (rule "add_literals" (formula "81") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "81") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "81") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "applyEq" (formula "81") (term "1,0,1,0,0,1") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "81") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "81") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "81") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "81") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "81") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "applyEq" (formula "81") (term "1,0,1,0,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "81") (term "0,1,0,0,1,1") (ifseqformula "62"))
+ (rule "polySimp_pullOutFactor1b" (formula "81") (term "0,0,1,1"))
+ (rule "add_literals" (formula "81") (term "1,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "81") (term "1,0,0,1,1"))
+ (rule "add_zero_right" (formula "81") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "81") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_subsumption1" (formula "81") (term "0,0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "81") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "61") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "1,1,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12") (term "0,1"))
+ (rule "replace_known_right" (formula "12") (term "0,0,0,1") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "115")))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "13") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "150")) (ifInst "" (formula "145")) (ifInst "" (formula "24")))
+ (rule "wellFormedAnon" (formula "13") (term "1,0"))
+ (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "57") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "83") (term "0,0,0,1"))
+ (rule "translateJavaCastInt" (formula "83") (term "0,0,0,0,1"))
+ (rule "castedGetAny" (formula "83") (term "0,0,0,0,1"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "62") (term "1,1,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "15") (term "1,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "15") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,1,0"))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "16") (term "1,0,1,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "150")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "16") (term "1,0"))
+ (rule "replace_known_left" (formula "16") (term "0,1,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "18")))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "149")) (ifInst "" (formula "24")))
+ (rule "wellFormedAnon" (formula "94") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "94") (term "1,1,1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "94") (term "1,0,1,0,1,1"))
+ (rule "replace_known_left" (formula "94") (term "1,1,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "19")))
+ (rule "polySimp_addComm0" (formula "94") (term "1,1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "94") (term "1,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "94") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0,0"))
+ (rule "replace_known_left" (formula "94") (term "0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,1,1"))
+ (rule "applyEq" (formula "94") (term "0,0,0,1,1,1") (ifseqformula "95"))
+ (rule "applyEq" (formula "94") (term "0,1,0,0,0") (ifseqformula "64"))
+ (rule "applyEq" (formula "94") (term "1,0,1,0,1,1") (ifseqformula "64"))
+ (rule "applyEq" (formula "94") (term "0,1,0,0,0,1,1") (ifseqformula "95"))
+ (rule "inEqSimp_commuteGeq" (formula "94") (term "1,0,0,0,1,1"))
+ (rule "applyEq" (formula "94") (term "0,1,0,0,1,1") (ifseqformula "95"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "94") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "94") (term "0,0,0"))
+ (rule "replace_known_left" (formula "94") (term "0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "84") (term "0,0,0,1,1"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "150")))
+ (rule "translateJavaSubInt" (formula "84") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "84") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "84") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "84") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "84") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "84") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "84") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "84") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "84") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "84") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "84") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "84") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "84") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "84") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "84") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "0,0,0"))
+ (rule "mul_literals" (formula "84") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "84") (term "0,0,0,0"))
+ (rule "applyEq" (formula "84") (term "0,1,0,0") (ifseqformula "64"))
+ (rule "replace_known_left" (formula "84") (term "1,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "applyEq" (formula "84") (term "0,1,0,1,1,1,1") (ifseqformula "64"))
+ (rule "replace_known_left" (formula "84") (term "1,0,1,1,1,1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "applyEq" (formula "84") (term "0,1,0,0,0,1,1,1") (ifseqformula "64"))
+ (rule "applyEq" (formula "84") (term "1,0,1,0,0,1") (ifseqformula "64"))
+ (rule "applyEq" (formula "84") (term "1,0,1,0,1") (ifseqformula "64"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "84") (term "0,0"))
+ (rule "mul_literals" (formula "84") (term "1,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "84") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "84") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "84") (term "0,1,1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "84") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "84") (term "0,0") (ifseqformula "11"))
+ (rule "leq_literals" (formula "84") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "85") (term "0"))
+ (rule "replace_known_right" (formula "85") (term "0,0") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "88"))
+ (rule "replace_known_left" (formula "99") (term "1,0,1,1") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "replace_known_left" (formula "91") (term "0,1,1,1") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "87")))
+ (rule "replace_known_left" (formula "84") (term "0,1,1,1") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "86")) (ifInst "" (formula "87")))
+ (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "92"))
+ (rule "polySimp_mulComm0" (formula "89") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "89"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0"))
+ (rule "polySimp_elimOne" (formula "89") (term "0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "99") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "translateJavaMod" (formula "99") (term "0,0,1,1"))
+ (rule "jmod_axiom" (formula "99") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "1,0,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "99") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "0,0,1,1"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "17") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaSubInt" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "17") (term "3,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "17") (term "3,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "4,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "17") (term "4,0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "17") (term "0,4,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "4,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "1,4,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "4,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,4,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "49") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "62") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "translateJavaSubInt" (formula "62") (term "0,0,1,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "62") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "62") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,1,0"))
+ (rule "polySimp_addLiterals" (formula "62") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "156")))
+ (rule "translateJavaSubInt" (formula "82") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "82") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "82") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "82") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "82") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "82") (term "0,1,1,1,0,1,1,1"))
+ (rule "add_zero_left" (formula "82") (term "1,1,1,0,1,1,1"))
+ (rule "replace_known_left" (formula "82") (term "1,0,1,1,1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "polySimp_addComm1" (formula "82") (term "1,0,1,1,1,1"))
+ (rule "add_literals" (formula "82") (term "0,1,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "82") (term "0,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "82") (term "0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,0"))
+ (rule "mul_literals" (formula "82") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "82") (term "0,0,0,0"))
+ (rule "applyEq" (formula "82") (term "1,0,1,0,1") (ifseqformula "64"))
+ (rule "applyEq" (formula "82") (term "0,1,0,0") (ifseqformula "64"))
+ (rule "inEqSimp_homoInEq1" (formula "82") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,1,0,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "82") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "82") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "applyEq" (formula "82") (term "0,1,0,1,1,1") (ifseqformula "64"))
+ (rule "inEqSimp_homoInEq1" (formula "82") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "82") (term "1,1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "82") (term "1,0,1,0,1,1,1"))
+ (rule "add_zero_right" (formula "82") (term "0,1,0,1,1,1"))
+ (rule "leq_literals" (formula "82") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "applyEq" (formula "82") (term "1,0,1,0,0,1") (ifseqformula "64"))
+ (rule "inEqSimp_commuteGeq" (formula "82") (term "1,0,0,1"))
+ (rule "replace_known_left" (formula "82") (term "1,0,0,1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "82") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,1,1,1"))
+ (rule "replace_known_left" (formula "82") (term "0,1,1,1") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "0,0"))
+ (rule "mul_literals" (formula "82") (term "1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "82") (term "0,0") (ifseqformula "45"))
+ (rule "leq_literals" (formula "82") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "83") (term "0"))
+ (rule "translateJavaCastInt" (formula "83") (term "0,0"))
+ (rule "castedGetAny" (formula "83") (term "0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaMod" (formula "81") (term "0"))
+ (rule "jmod_axiom" (formula "81") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "81"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0"))
+ (rule "newSym_eq" (formula "81") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(bucket_pointers,
+ result_21),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "81") (term "1,1"))
+ (rule "add_zero_right" (formula "81") (term "1"))
+ (rule "applyEq" (formula "82") (term "0,0") (ifseqformula "81"))
+ (rule "eqSymm" (formula "82"))
+ (rule "applyEq" (formula "85") (term "0,1,1") (ifseqformula "82"))
+ (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "82"))
+ (rule "applyEq" (formula "85") (term "0,0,1") (ifseqformula "82"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "82"))
+ (rule "inEqSimp_commuteGeq" (formula "88"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "82"))
+ (rule "inEqSimp_commuteGeq" (formula "76"))
+ (rule "applyEq" (formula "86") (term "0,1,0,1") (ifseqformula "82"))
+ (rule "applyEq" (formula "101") (term "1,0,1") (ifseqformula "82"))
+ (rule "applyEq" (formula "79") (term "0,1") (ifseqformula "82"))
+ (rule "applyEq" (formula "84") (term "1") (ifseqformula "82"))
+ (rule "applyEq" (formula "100") (term "0,1,0,1") (ifseqformula "82"))
+ (rule "inEqSimp_commuteGeq" (formula "100") (term "1,0,1"))
+ (rule "applyEq" (formula "83") (term "0,1,0,1") (ifseqformula "82"))
+ (rule "elimGcdLeq_antec" (formula "76") (inst "elimGcdRightDiv=l_2") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "76") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "76") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "76") (term "0,0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0"))
+ (rule "qeq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "elimGcdGeq" (formula "85") (term "0,1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "add_zero_right" (formula "85") (term "0,0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0,0,1"))
+ (rule "sub_literals" (formula "85") (term "0,0,0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,0,1,0,0,1"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,0,0,0,0,0,1"))
+ (rule "mul_literals" (formula "85") (term "0,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "85") (term "0,0,1,0,0,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "85") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "85") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "85") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "85") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "polySimp_pullOutFactor0b" (formula "85") (term "0,0,0,1"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0,0,1"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "85") (term "0,0,0,1"))
+ (rule "qeq_literals" (formula "85") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "elimGcdGeq" (formula "79") (term "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,1,0,1"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0,0,0,0,1"))
+ (rule "sub_literals" (formula "79") (term "0,0,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "79") (term "0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "79") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "79") (term "0,1,0,1"))
+ (rule "add_literals" (formula "79") (term "1,0,1,0,1"))
+ (rule "times_zero_1" (formula "79") (term "0,1,0,1"))
+ (rule "leq_literals" (formula "79") (term "1,0,1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,1"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "79") (term "0,0,1"))
+ (rule "qeq_literals" (formula "79") (term "0,1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "elimGcdLeq" (formula "86") (term "1,0,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0,0,0,0,1,0,1,0,1"))
+ (rule "sub_literals" (formula "86") (term "0,0,0,0,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "86") (term "1,0,0,0,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "86") (term "0,0,0,0,1,0,1,0,1"))
+ (rule "add_literals" (formula "86") (term "0,0,0,0,0,0,1,0,1"))
+ (rule "add_literals" (formula "86") (term "0,0,0,1,0,1,0,1"))
+ (rule "add_literals" (formula "86") (term "0,0,0,0,0,1,0,1"))
+ (rule "add_zero_left" (formula "86") (term "0,0,1,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "86") (term "0,0,0,1,0,1"))
+ (rule "add_literals" (formula "86") (term "1,1,0,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "86") (term "1,0,0,0,1,0,1"))
+ (rule "add_zero_right" (formula "86") (term "0,0,0,1,0,1"))
+ (rule "leq_literals" (formula "86") (term "0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "polySimp_pullOutFactor0" (formula "86") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "86") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "86") (term "0,0,1,0,1"))
+ (rule "qeq_literals" (formula "86") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "elimGcdLeq" (formula "83") (term "1,0,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "83") (term "0,0,0,0,0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,1,0,1,0,1"))
+ (rule "sub_literals" (formula "83") (term "0,0,0,0,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,0,0,0,0,1,0,1"))
+ (rule "mul_literals" (formula "83") (term "0,0,0,0,1,0,1,0,1"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,0,0,1,0,1"))
+ (rule "add_literals" (formula "83") (term "0,0,0,1,0,1,0,1"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,0,1,0,1"))
+ (rule "add_zero_left" (formula "83") (term "0,0,1,0,1,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,1,0,1"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0,1,0,1"))
+ (rule "add_zero_right" (formula "83") (term "0,0,0,1,0,1"))
+ (rule "leq_literals" (formula "83") (term "0,0,1,0,1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "polySimp_pullOutFactor0" (formula "83") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "83") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "83") (term "0,0,1,0,1"))
+ (rule "qeq_literals" (formula "83") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "elimGcdLeq" (formula "85") (term "1,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,0,1,0,1,1"))
+ (rule "sub_literals" (formula "85") (term "0,0,0,0,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "85") (term "0,0,0,0,1,0,1,1"))
+ (rule "mul_literals" (formula "85") (term "1,0,0,0,0,0,0,1,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,0,0,1,1"))
+ (rule "add_zero_left" (formula "85") (term "0,0,1,0,1,1"))
+ (rule "add_literals" (formula "85") (term "0,0,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor0" (formula "85") (term "0,1,0,1,1"))
+ (rule "add_literals" (formula "85") (term "1,0,1,0,1,1"))
+ (rule "times_zero_1" (formula "85") (term "0,1,0,1,1"))
+ (rule "qeq_literals" (formula "85") (term "1,0,1,1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "polySimp_pullOutFactor0b" (formula "85") (term "0,0,1,1"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,1,1"))
+ (rule "add_zero_right" (formula "85") (term "0,0,1,1"))
+ (rule "leq_literals" (formula "85") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "76"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "80") (term "1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "80") (term "0,1"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_subsumption1" (formula "85") (term "0,1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "85") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "64") (term "1,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "64") (term "0,2,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,2,1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "64") (term "1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "113") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "expand_inInt" (formula "113") (term "1,0,0"))
+ (rule "expand_inInt" (formula "113") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "113") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "113") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "113") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "113") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "113") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "113") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "1,0,1,0"))
+ (rule "applyEq" (formula "113") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "111"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "113") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "113") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "113") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "113") (term "0,0,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "113") (term "0,1,0,0,1,0,0,0") (ifseqformula "111"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "113") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "113") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "113") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "113") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "translateJavaSubInt" (formula "74") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "74") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,1,1"))
+ (rule "mul_literals" (formula "74") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "74") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "103") (term "0"))
+ (rule "translateJavaMulInt" (formula "103") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "103") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,2,0"))
+ (rule "replaceKnownSelect_taclet0011120010120110_4" (formula "103") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0011120010120110_5" (formula "103") (term "0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "translateJavaSubInt" (formula "74") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "74") (term "1,0"))
+ (rule "neg_literal" (formula "74") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "74") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "74") (term "0,0"))
+ (rule "mul_literals" (formula "74") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "76"))
+ (rule "mul_literals" (formula "74") (term "0,0"))
+ (rule "add_zero_left" (formula "74") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "74") (ifseqformula "3"))
+ (rule "mul_literals" (formula "74") (term "1,1,0"))
+ (rule "greater_literals" (formula "74") (term "0,0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "translateJavaSubInt" (formula "78") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "78") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "1,1,1"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "78") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "78") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "15") (term "0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,0,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,0"))
+ (rule "neg_literal" (formula "79") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "79") (term "0,0,0"))
+ (rule "translateJavaSubInt" (formula "79") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "79") (term "0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "64") (term "0,1,0,0,0,1,0"))
+ (rule "replace_known_left" (formula "64") (term "1,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "125")) (ifInst "" (formula "26")) (ifInst "" (formula "156")))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "65") (term "1,4,0,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "37") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "65") (term "0,0,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "translateJavaAddInt" (formula "65") (term "0,4,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "3,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "3,0,2,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "4,0,2,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "65") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "65") (term "4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "4,0,0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "65") (term "1,4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,4,0,0,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "60") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "61") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "61") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "61") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,2,0,1,0"))
+ (rule "commute_or_2" (formula "44") (term "0,0"))
+ (rule "commute_or_2" (formula "45") (term "0,0"))
+ (rule "cnf_rightDist" (formula "73") (term "1,1,0"))
+ (rule "cnf_rightDist" (formula "73") (term "0,1,0"))
+ (rule "commute_or_2" (formula "115") (term "0,0"))
+ (rule "commute_or_2" (formula "60") (term "0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "110")))
+ (rule "translateJavaSubInt" (formula "81") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "81") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "1,1,1"))
+ (rule "mul_literals" (formula "81") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "81") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "81") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaSubInt" (formula "81") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,0"))
+ (rule "neg_literal" (formula "81") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "81") (term "0,0"))
+ (rule "mul_literals" (formula "81") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "81") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "commute_or_2" (formula "61") (term "0,0"))
+ (rule "commute_or_2" (formula "73") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "102") (term "1,0"))
+ (rule "replace_known_right" (formula "102") (term "0,1,0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "div_axiom" (formula "54") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "qeq_literals" (formula "54") (term "0,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1,1,1"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "polySimp_addComm1" (formula "56") (term "1"))
+ (rule "add_literals" (formula "56") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_homoInEq1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "applyEq" (formula "57") (term "0,1,1,2,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addComm0" (formula "57") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "57") (term "0,0,0,1,0,0") (ifseqformula "54"))
+ (rule "inEqSimp_homoInEq1" (formula "57") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "57") (term "0,1,1,1,1,1,0,0") (ifseqformula "54"))
+ (rule "polySimp_addComm0" (formula "57") (term "1,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "57") (term "0,1,0,0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq1" (formula "57") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "57") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "57") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "mod_axiom" (formula "57") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "57") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1"))
+ (rule "polySimp_rightDist" (formula "57") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "57") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "57") (term "0,1"))
+ (rule "applyEq" (formula "48") (term "0,1,0") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0"))
+ (rule "applyEq" (formula "60") (term "1") (ifseqformula "57"))
+ (rule "applyEq" (formula "50") (term "1,1,1,0,0,0") (ifseqformula "57"))
+ (rule "polySimp_addAssoc" (formula "50") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "50") (term "1,1,1,0,0,0,1,0") (ifseqformula "57"))
+ (rule "polySimp_addAssoc" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "48") (term "2,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "62") (term "1,1,1,0,0,0,1,0") (ifseqformula "57"))
+ (rule "polySimp_addAssoc" (formula "62") (term "1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "64") (term "1,1,0,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "51") (term "1,0,2,0") (ifseqformula "57"))
+ (rule "eqSymm" (formula "51"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,2,1"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq1" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "applyEq" (formula "62") (term "1,1,1,0,0,0") (ifseqformula "57"))
+ (rule "polySimp_addAssoc" (formula "62") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "applyEq" (formula "63") (term "1,1,0,0") (ifseqformula "57"))
+ (rule "applyEq" (formula "51") (term "1,0,2,0") (ifseqformula "57"))
+ (rule "eqSymm" (formula "51"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,2,1"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,1,1,1,0") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1"))
+ (rule "mul_literals" (formula "59") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1"))
+ (rule "inEqSimp_exactShadow0" (formula "61") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "greater_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "61") (term "0"))
+ (rule "add_literals" (formula "61") (term "1,1,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0"))
+ (rule "add_zero_right" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "61") (ifseqformula "58"))
+ (rule "mul_literals" (formula "61") (term "1,1,0"))
+ (rule "greater_literals" (formula "61") (term "0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "56"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "52") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "52") (term "0,0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "54"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "56") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "56") (term "0,0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "56") (term "0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0"))
+ (rule "qeq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_antiSymm" (formula "52") (ifseqformula "56"))
+ (rule "applyEqRigid" (formula "58") (term "0,1") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "58") (term "1"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "52"))
+ (rule "qeq_literals" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "applyEqRigid" (formula "58") (term "0,1,1") (ifseqformula "52"))
+ (rule "mul_literals" (formula "58") (term "1,1"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "applyEqRigid" (formula "56") (term "0") (ifseqformula "52"))
+ (rule "leq_literals" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "applyEqRigid" (formula "61") (term "0,0,1,1,0,0,1,1") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "61") (term "0,1,1,0,0,1,1"))
+ (rule "add_zero_left" (formula "61") (term "1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "1"))
+ (rule "applyEqRigid" (formula "48") (term "0,0,1,1,0,0,1,1,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "48") (term "0,1,1,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "48") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "1,0"))
+ (rule "applyEq" (formula "50") (term "0,0,1,1,0,0,1,1,1,0,0,0,1,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "50") (term "0,1,1,0,0,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "50") (term "1,1,0,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "52"))
+ (rule "applyEq" (formula "48") (term "0,0,1,1,0,0,1,2,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "48") (term "0,1,1,0,0,1,2,0"))
+ (rule "add_zero_left" (formula "48") (term "1,1,0,0,1,2,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "2,0"))
+ (rule "applyEq" (formula "62") (term "0,0,1,1,1") (ifseqformula "52"))
+ (rule "mul_literals" (formula "62") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "62") (term "1,1,1"))
+ (rule "applyEqRigid" (formula "65") (term "0,0,1,1,0,0,1,1,1,0,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "65") (term "0,1,1,0,0,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "65") (term "1,1,0,0,1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "60") (term "0,0,1,1,1") (ifseqformula "52"))
+ (rule "mul_literals" (formula "60") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "60") (term "1,1,1"))
+ (rule "applyEqRigid" (formula "62") (term "0,0,1,1,0,0,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "62") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "62") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "63") (term "0,0,1,1,0,0,1,1,1,0,0,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "63") (term "0,1,1,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "63") (term "1,1,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "64") (term "0,0,1,1,0,0,1,1,1,0,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "64") (term "0,1,1,0,0,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "64") (term "1,1,0,0,1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "51") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "51") (term "0,1,1,0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "51") (term "1,1,0,0,1,0,2,0"))
+ (rule "eqSymm" (formula "51"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,2,1"))
+ (rule "applyEq" (formula "60") (term "0,0,1,1,0,0,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "60") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "50") (term "0,0,1,1,0,0,1,1,1,0,0,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "50") (term "0,1,1,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "1,1,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "63") (term "0,0,1,1,0,0,1,1,1,0,0,0,1,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "63") (term "0,1,1,0,0,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "63") (term "1,1,0,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "58") (term "0,0,1,1,0,0,1,1") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "58") (term "0,1,1,0,0,1,1"))
+ (rule "add_zero_left" (formula "58") (term "1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "58") (term "1"))
+ (rule "applyEqRigid" (formula "64") (term "0,0,1,1,0,0,1,0,0,1,1,1,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "64") (term "0,1,1,0,0,1,0,0,1,1,1,0"))
+ (rule "add_zero_left" (formula "64") (term "1,1,0,0,1,0,0,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,1,1,1,0"))
+ (rule "applyEqRigid" (formula "61") (term "0,0,1,1,1") (ifseqformula "52"))
+ (rule "mul_literals" (formula "61") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "61") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "1"))
+ (rule "applyEq" (formula "48") (term "0,0,1,0,1,1,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "add_zero_left" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "1,0"))
+ (rule "applyEqRigid" (formula "65") (term "0,0,1,1,1,1,0,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "65") (term "0,1,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "65") (term "1,1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "1,1,0,0"))
+ (rule "applyEq" (formula "51") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "51") (term "0,1,1,0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "51") (term "1,1,0,0,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,2,0"))
+ (rule "eqSymm" (formula "51"))
+ (rule "applyEqRigid" (formula "63") (term "0,0,1,1,1,1,0,0,0,1,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "63") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "48") (term "0,0,1,1,2,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,2,0"))
+ (rule "add_zero_left" (formula "48") (term "1,1,2,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "2,0"))
+ (rule "applyEq" (formula "64") (term "0,0,1,1,1,1,0,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "64") (term "0,1,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "64") (term "1,1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "50") (term "0,0,1,1,1,1,0,0,0,1,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "50") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "applyEqRigid" (formula "50") (term "0,0,1,1,1,1,0,0,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "50") (term "0,1,1,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "50") (term "1,1,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "63") (term "0,0,1,1,1,1,0,0,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "63") (term "0,1,1,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "63") (term "1,1,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "51") (term "0,0,1,1,0,2,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "51") (term "0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "51") (term "1,1,0,2,0"))
+ (rule "eqSymm" (formula "51"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,2,1"))
+ (rule "applyEq" (formula "58") (term "0,0,1,1,1") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "58") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "58") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "58") (term "1"))
+ (rule "applyEq" (formula "51") (term "0,0,1,1,0,2,0") (ifseqformula "52"))
+ (rule "mul_literals" (formula "51") (term "0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "51") (term "1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,2,0"))
+ (rule "eqSymm" (formula "51"))
+ (rule "applyEqRigid" (formula "64") (term "0,0,1,0,1,0,0,1,1,1,0") (ifseqformula "52"))
+ (rule "times_zero_2" (formula "64") (term "0,1,0,1,0,0,1,1,1,0"))
+ (rule "add_zero_left" (formula "64") (term "1,0,1,0,0,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_subsumption0" (formula "57") (ifseqformula "54"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "53"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow0" (formula "60") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "greater_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "1,1,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0"))
+ (rule "add_zero_right" (formula "60") (term "0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "60") (ifseqformula "57"))
+ (rule "mul_literals" (formula "60") (term "1,1,0"))
+ (rule "greater_literals" (formula "60") (term "0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "jdiv_axiom" (formula "101") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "101"))
+ (rule "applyEq" (formula "101") (term "1") (ifseqformula "102"))
+ (rule "inEqSimp_subsumption6" (formula "101") (term "0,0") (ifseqformula "3"))
+ (rule "mul_literals" (formula "101") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "101") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "leq_literals" (formula "101") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "polyDiv_pullOut" (formula "101") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "101") (term "0,0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "polySimp_homoEq" (formula "101"))
+ (rule "polySimp_pullOutFactor0" (formula "101") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "101") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "101") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "101") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "101") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "1,0"))
+ (rule "times_zero_1" (formula "101") (term "0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "78") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "translateJavaSubInt" (formula "78") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "78") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "1,1,1"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "78") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "78") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "78") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "translateJavaMod" (formula "78") (term "0,0,1"))
+ (rule "jmod_axiom" (formula "78") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "78") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "97") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "translateJavaSubInt" (formula "97") (term "0,0,0,1,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "97") (term "1,0,0,1,1"))
+ (rule "neg_literal" (formula "97") (term "1,0,0,1,1"))
+ (rule "translateJavaAddInt" (formula "97") (term "0,0,0,0,1,1"))
+ (rule "polySimp_elimSub" (formula "97") (term "0,0,0,1,1"))
+ (rule "mul_literals" (formula "97") (term "1,0,0,0,1,1"))
+ (rule "polySimp_addLiterals" (formula "97") (term "0,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0,0,1,1"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "seqGetAlphaCast" (formula "115") (term "0"))
+ (rule "castedGetAny" (formula "115") (term "0"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "true_left" (formula "115"))
+ (rule "arrayLengthIsAShort" (formula "36") (term "0"))
+ (rule "expand_inShort" (formula "36"))
+ (rule "replace_short_MAX" (formula "36") (term "1,0"))
+ (rule "replace_short_MIN" (formula "36") (term "0,1"))
+ (rule "andLeft" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "add_literals" (formula "38") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "38") (ifseqformula "50"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "arrayLengthNotNegative" (formula "44") (term "0"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "45"))
+ (rule "qeq_literals" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "arrayLengthIsAShort" (formula "61") (term "0"))
+ (rule "expand_inShort" (formula "61"))
+ (rule "replace_short_MAX" (formula "61") (term "1,0"))
+ (rule "replace_short_MIN" (formula "61") (term "0,1"))
+ (rule "andLeft" (formula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1"))
+ (rule "arrayLengthNotNegative" (formula "64") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "64"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "arrayLengthNotNegative" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "69") (term "0"))
+ (rule "expand_inShort" (formula "69"))
+ (rule "replace_short_MAX" (formula "69") (term "1,0"))
+ (rule "replace_short_MIN" (formula "69") (term "0,1"))
+ (rule "andLeft" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "70"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "71"))
+ (rule "leq_literals" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "70"))
+ (rule "qeq_literals" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "59") (term "0"))
+ (rule "expand_inShort" (formula "59"))
+ (rule "replace_short_MIN" (formula "59") (term "0,1"))
+ (rule "replace_short_MAX" (formula "59") (term "1,0"))
+ (rule "andLeft" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "61"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "arrayLengthNotNegative" (formula "60") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "61"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "arrayLengthNotNegative" (formula "113") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "44") (term "0"))
+ (rule "expand_inShort" (formula "44"))
+ (rule "replace_short_MIN" (formula "44") (term "0,1"))
+ (rule "replace_short_MAX" (formula "44") (term "1,0"))
+ (rule "andLeft" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "46"))
+ (rule "leq_literals" (formula "44"))
+ (rule "closeFalse" (formula "44"))
+ )
+ (branch "Case 2"
+ (rule "translateJavaAddInt" (formula "53") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "53") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "53") (term "1,1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "15")))
+ (rule "polySimp_addComm0" (formula "53") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "53") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_geqRight" (formula "99"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,1"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0,1") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,1"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0,0,1") (ifseqformula "55"))
+ (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "54") (term "1,0,1,0,1") (ifseqformula "48"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "1"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "28") (ifseqformula "53"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeFalse" (formula "28"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (builtin "Block Contract (Internal)" (formula "99") (newnames "exc_3,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "eqSymm" (formula "100") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "100") (term "1"))
+ (rule "variableDeclaration" (formula "100") (term "1") (newnames "exc_3_1"))
+ (rule "assignment" (formula "100") (term "1"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "emptyStatement" (formula "100") (term "1"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "emptyStatement" (formula "100") (term "1"))
+ (rule "tryEmpty" (formula "100") (term "1"))
+ (rule "blockEmptyLabel" (formula "100") (term "1"))
+ (rule "blockEmpty" (formula "100") (term "1"))
+ (rule "methodCallEmpty" (formula "100") (term "1"))
+ (rule "emptyModality" (formula "100") (term "1"))
+ (rule "andRight" (formula "100"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "closeTrue" (formula "100"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "closeTrue" (formula "100"))
+ )
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "99"))
+ (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "99"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "65"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "replaceKnownSelect_taclet0120110_0" (formula "65") (term "1,0,0,0,1"))
+ (rule "replaceKnownSelect_taclet0120110_0" (formula "65") (term "0,1,0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "65") (term "1,0,0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "65") (term "0,1,0,0,1"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "69") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "68") (term "0,2,1"))
+ (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,0"))
+ (rule "replaceKnownSelect_taclet010120110_2" (formula "68") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,1"))
+ (rule "replaceKnownSelect_taclet010120110_2" (formula "67") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "67") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "inEqSimp_commuteLeq" (formula "68"))
+ (rule "inEqSimp_commuteLeq" (formula "67"))
+ (rule "pullOutSelect" (formula "69") (term "0,0") (inst "selectSK=arr_2"))
+ (rule "applyEq" (formula "68") (term "0") (ifseqformula "69"))
+ (rule "simplifySelectOfAnon" (formula "69"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "102")) (ifInst "" (formula "23")))
+ (rule "eqSymm" (formula "70"))
+ (rule "elementOfArrayRangeConcrete" (formula "69") (term "0,0"))
+ (rule "eqSymm" (formula "69") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "69") (term "0,0,0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "applyEqReverse" (formula "70") (term "0,1") (ifseqformula "69"))
+ (rule "applyEqReverse" (formula "68") (term "0") (ifseqformula "69"))
+ (rule "hideAuxiliaryEq" (formula "69"))
+ (rule "applyEq" (formula "68") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteGeq" (formula "68"))
+ (rule "applyEq" (formula "69") (term "0,1") (ifseqformula "39"))
+ (rule "elim_double_block_2" (formula "104") (term "1"))
+ (rule "ifUnfold" (formula "104") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "104") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "104") (term "1"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "replace_known_left" (formula "104") (term "0,0,1,0") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "arrayLengthIsAShort" (formula "45") (term "0"))
+ (rule "expand_inShort" (formula "45"))
+ (rule "replace_short_MAX" (formula "45") (term "1,0"))
+ (rule "replace_short_MIN" (formula "45") (term "0,1"))
+ (rule "andLeft" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "47"))
+ (rule "qeq_literals" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "46"))
+ (rule "leq_literals" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "arrayLengthNotNegative" (formula "45") (term "0"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "46"))
+ (rule "qeq_literals" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "ifSplit" (formula "104"))
+ (branch "if x_6 true"
+ (builtin "SMTRule")
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "105"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "104") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "104") (newnames "exc_4,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "expand_inInt" (formula "105") (term "1,1,0,0,1"))
+ (rule "expand_inInt" (formula "105") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "105") (term "1,0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "105") (term "0,1,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "105") (term "0,1,0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "105") (term "1,0,0,1,0,0,1"))
+ (rule "eqSymm" (formula "105") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "105") (term "1,1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,0,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "105") (term "1,1,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,0,0,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "105") (term "1,1,1,1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "105") (term "1,1,0,0,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "105") (term "1,1,1,1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "105") (term "1,1,0,0,1,1,0,0,1"))
+ (rule "variableDeclarationAssign" (formula "105") (term "1"))
+ (rule "variableDeclaration" (formula "105") (term "1") (newnames "exc_4_1"))
+ (rule "assignment" (formula "105") (term "1"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "emptyStatement" (formula "105") (term "1"))
+ (rule "emptyStatement" (formula "105") (term "1"))
+ (rule "tryEmpty" (formula "105") (term "1"))
+ (rule "blockEmptyLabel" (formula "105") (term "1"))
+ (rule "blockEmpty" (formula "105") (term "1"))
+ (rule "methodCallEmpty" (formula "105") (term "1"))
+ (rule "emptyModality" (formula "105") (term "1"))
+ (rule "andRight" (formula "105"))
+ (branch "Case 1"
+ (rule "andRight" (formula "105"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "closeTrue" (formula "105"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "105"))
+ (branch "Case 1"
+ (rule "andRight" (formula "105"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "105"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59"))
+ (rule "times_zero_1" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "times_zero_1" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1"))
+ (rule "polySimp_elimOne" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "69") (term "1"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "1,1,1"))
+ (rule "mul_literals" (formula "69") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "69") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "69") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "69") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,1,0"))
+ (rule "replace_known_left" (formula "69") (term "1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0"))
+ (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "70"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "72") (term "1"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "translateJavaAddInt" (formula "72") (term "0,0,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "72") (term "1,1"))
+ (rule "neg_literal" (formula "72") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "72") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "72") (term "0,1"))
+ (rule "mul_literals" (formula "72") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "72") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0,1"))
+ (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "52") (term "0"))
+ (rule "replace_known_left" (formula "52") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "106")) (ifInst "" (formula "17")) (ifInst "" (formula "53")))
+ (rule "true_left" (formula "52"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "42") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "translateJavaCastInt" (formula "49") (term "0"))
+ (rule "translateJavaAddInt" (formula "48") (term "1"))
+ (rule "translateJavaMulInt" (formula "42") (term "1"))
+ (rule "translateJavaMulInt" (formula "43") (term "0"))
+ (rule "translateJavaCastInt" (formula "46") (term "0"))
+ (rule "translateJavaCastInt" (formula "45") (term "1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "1"))
+ (rule "castedGetAny" (formula "49") (term "0"))
+ (rule "castedGetAny" (formula "46") (term "0"))
+ (rule "castedGetAny" (formula "45") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "45"))
+ (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "48") (term "1,1") (ifseqformula "58"))
+ (rule "applyEq" (formula "51") (term "0,1,0,0,1,0,0,0") (ifseqformula "58"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0,0"))
+ (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=result_21") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "42"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "66") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "48")) (ifInst "" (formula "51")))
+ (rule "expand_inInt" (formula "66") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "68"))
+ (rule "translateJavaCastInt" (formula "72") (term "0"))
+ (rule "translateJavaAddInt" (formula "71") (term "1"))
+ (rule "translateJavaCastInt" (formula "70") (term "0"))
+ (rule "translateJavaMulInt" (formula "66") (term "1"))
+ (rule "translateJavaMulInt" (formula "67") (term "0"))
+ (rule "translateJavaCastInt" (formula "69") (term "1"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "1"))
+ (rule "castedGetAny" (formula "72") (term "0"))
+ (rule "castedGetAny" (formula "70") (term "0"))
+ (rule "castedGetAny" (formula "69") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "inEqSimp_commuteLeq" (formula "68"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "49"))
+ (rule "polySimp_homoEq" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0"))
+ (rule "add_zero_left" (formula "70") (term "0,0"))
+ (rule "apply_eq_monomials" (formula "66") (term "0") (ifseqformula "58"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "66") (term "0"))
+ (rule "add_literals" (formula "66") (term "1,1,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0"))
+ (rule "add_zero_right" (formula "66") (term "0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0"))
+ (rule "apply_eq_monomials" (formula "67") (term "0") (ifseqformula "58"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "67") (term "0"))
+ (rule "add_literals" (formula "67") (term "1,1,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0"))
+ (rule "add_zero_right" (formula "67") (term "0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "67"))
+ (rule "applyEq" (formula "70") (term "0,1,0,0,1,0,0,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "69") (term "1,0") (ifseqformula "58"))
+ (rule "polySimp_pullOutFactor2" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "1,0"))
+ (rule "times_zero_1" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1,1,0,0,0"))
+ (rule "applyEq" (formula "68") (term "1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "67") (term "1,0") (ifseqformula "58"))
+ (rule "inEqSimp_subsumption6" (formula "66") (ifseqformula "42"))
+ (rule "greater_literals" (formula "66") (term "0,0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "times_zero_1" (formula "66") (term "1,0"))
+ (rule "leq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "25"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "14")) (ifInst "" (formula "81")) (ifInst "" (formula "114")) (ifInst "" (formula "14")) (ifInst "" (formula "21")))
+ (rule "translateJavaAddInt" (formula "62") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0"))
+ (rule "replace_known_left" (formula "62") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,0,1") (ifseqformula "63"))
+ (rule "inEqSimp_commuteGeq" (formula "62") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,1") (ifseqformula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1"))
+ (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "56"))
+ (rule "applyEq" (formula "62") (term "0,0,0,1,1") (ifseqformula "63"))
+ (rule "applyEq" (formula "62") (term "0,1,0,1") (ifseqformula "80"))
+ (rule "inEqSimp_commuteGeq" (formula "62") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0"))
+ (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "64"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "63"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1"))
+ (rule "polySimp_elimOne" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "1"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "70") (term "0"))
+ (rule "translateJavaMulInt" (formula "70") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "70") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "70") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "70"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "eqSymm" (formula "71"))
+ (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "71"))
+ (rule "hideAuxiliaryEq" (formula "71"))
+ (rule "elementOfArrayRangeConcrete" (formula "70") (term "0,0,0"))
+ (rule "replace_known_right" (formula "70") (term "0,0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "translateJavaAddInt" (formula "38") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "37") (term "0"))
+ (rule "polySimp_addComm0" (formula "38") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "36"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,2,0"))
+ (rule "eqSymm" (formula "56"))
+ (rule "eqSymm" (formula "59"))
+ (rule "translateJavaMulInt" (formula "56") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,2,1"))
+ (rule "mul_literals" (formula "59") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,2,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "42"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "42"))
+ (rule "inEqSimp_subsumption0" (formula "63") (ifseqformula "54"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "5"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "replace_known_right" (formula "74") (term "0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_left" (formula "74") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "64") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "expand_inInt" (formula "64") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "64") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "64") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "66") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "64"))
+ (rule "applyEq" (formula "64") (term "1,1,1,1,1,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,1,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "41") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "expand_inInt" (formula "41") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "translateJavaMulInt" (formula "41") (term "1"))
+ (rule "mul_literals" (formula "41") (term "1"))
+ (rule "eqSymm" (formula "97"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "34"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "16"))
+ (rule "notLeft" (formula "16"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "nnf_notAnd" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "60") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "60") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "60") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "60") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0,1,1"))
+ (rule "translateJavaCastInt" (formula "75") (term "0,0,1,1"))
+ (rule "polySimp_homoEq" (formula "75"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "castedGetAny" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "129")))
+ (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "3") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "3") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "3") (term "1,0,1,0,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "3") (term "0,1,0,0,0,1,1,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "3") (term "0,1,0,1,1,1,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "3") (term "1,0,0,0,1") (ifseqformula "62"))
+ (rule "applyEq" (formula "3") (term "0,1,0,1") (ifseqformula "92"))
+ (rule "applyEq" (formula "3") (term "0,0,0,1") (ifseqformula "92"))
+ (rule "inEqSimp_commuteGeq" (formula "3") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "3") (term "0,0,1,1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "3") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "3") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "0"))
+ (rule "translateJavaCastInt" (formula "4") (term "0,0"))
+ (rule "castedGetAny" (formula "4") (term "0,0"))
+ (rule "nnf_imp2or" (formula "52") (term "0"))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "14") (term "2,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "translateJavaMulInt" (formula "14") (term "0,3,2,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "14") (term "2,2,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "3,2,0,0,1,1,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "60") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "translateJavaUnaryMinusInt" (formula "60") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "60") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "60") (term "0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_addLiterals" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,1,0"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "13") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaAddInt" (formula "13") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "4,0,0,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "61") (term "0,0,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "translateJavaAddInt" (formula "61") (term "3,0,2,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "4,0,2,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "0,4,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "3,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "4,0,0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "1,4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,4,0,0,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "15") (term "0,0,1,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "94")) (ifInst "" (formula "132")) (ifInst "" (formula "21")))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "16") (term "1,0,1,0,1,1,0"))
+ (rule "replace_known_left" (formula "16") (term "1,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "22")) (ifInst "" (formula "133")))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "17") (term "0,0,1,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "translateJavaAddInt" (formula "17") (term "3,0,0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "17") (term "2,0,0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "17") (term "0,3,0,0,1,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "91") (term "0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "translateJavaMod" (formula "91") (term "0"))
+ (rule "jmod_axiom" (formula "91") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "0"))
+ (rule "newSym_eq" (formula "91") (inst "l=l_0") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(add(mul(begin,
+ Z(neglit(1(#)))),
+ end)),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "91") (term "1,1"))
+ (rule "add_zero_right" (formula "91") (term "1"))
+ (rule "applyEq" (formula "92") (term "0,0") (ifseqformula "91"))
+ (rule "eqSymm" (formula "92"))
+ (rule "applyEq" (formula "94") (term "0") (ifseqformula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0,0"))
+ (rule "applyEq" (formula "91") (term "0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "93") (term "0") (ifseqformula "92"))
+ (rule "inEqSimp_homoInEq1" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1"))
+ (rule "polySimp_rightDist" (formula "94") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "94") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "94") (term "0,1"))
+ (rule "mul_literals" (formula "94") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1"))
+ (rule "polySimp_rightDist" (formula "93") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "94") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "0,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "94") (term "0"))
+ (rule "add_literals" (formula "94") (term "1,1,0"))
+ (rule "times_zero_1" (formula "94") (term "1,0"))
+ (rule "add_zero_right" (formula "94") (term "0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0"))
+ (rule "add_literals" (formula "94") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "94") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "94") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "94") (term "0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "mul_literals" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "94") (term "0,0,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "94") (term "0,0"))
+ (rule "add_literals" (formula "94") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "94") (term "1,0,0"))
+ (rule "add_zero_right" (formula "94") (term "0,0"))
+ (rule "qeq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "95") (term "0"))
+ (rule "polySimp_rightDist" (formula "95") (term "0,0,0"))
+ (rule "mul_literals" (formula "95") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "95") (term "0,0"))
+ (rule "add_literals" (formula "95") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "95"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0"))
+ (rule "polySimp_elimOne" (formula "95") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "93"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "1,1,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0"))
+ (rule "add_zero_right" (formula "29") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "29") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "29") (term "0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "94"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "97"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "1") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption0" (formula "97") (ifseqformula "1"))
+ (rule "leq_literals" (formula "97") (term "0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "22") (ifseqformula "32"))
+ (rule "mul_literals" (formula "22") (term "1,1,0"))
+ (rule "greater_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "99") (term "0"))
+ (rule "translateJavaCastInt" (formula "99") (term "0,0"))
+ (rule "castedGetAny" (formula "99") (term "0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "56") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0"))
+ (rule "translateJavaCastInt" (formula "56") (term "1,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "56") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "56") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "56") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,0"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "56") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "56") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "translateJavaMod" (formula "53") (term "0"))
+ (rule "jmod_axiom" (formula "53") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "newSym_eq" (formula "53") (inst "l=l_1") (inst "newSymDef=mul(int::final(bucket_pointers,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "53") (term "1,1"))
+ (rule "add_zero_right" (formula "53") (term "1"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "53"))
+ (rule "eqSymm" (formula "54"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "54"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "54"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "51") (term "1") (ifseqformula "54"))
+ (rule "elimGcdGeq_antec" (formula "49") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "49") (term "0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "leq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "elimGcdLeq_antec" (formula "50") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "50") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "50") (term "0,0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "50") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "50") (term "0,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0"))
+ (rule "qeq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "52"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "51") (ifseqformula "50"))
+ (rule "greater_literals" (formula "51") (term "0,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "mul_literals" (formula "51") (term "0,0"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "65") (term "0"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "66"))
+ (rule "qeq_literals" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "65") (term "0"))
+ (rule "expand_inShort" (formula "65"))
+ (rule "replace_short_MAX" (formula "65") (term "1,0"))
+ (rule "replace_short_MIN" (formula "65") (term "0,1"))
+ (rule "andLeft" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "67"))
+ (rule "leq_literals" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "66"))
+ (rule "qeq_literals" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "nnf_imp2or" (formula "71") (term "0"))
+ (rule "nnf_imp2or" (formula "47") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "78") (term "0"))
+ (rule "translateJavaCastInt" (formula "78") (term "0,0"))
+ (rule "castedGetAny" (formula "78") (term "0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "translateJavaMod" (formula "79") (term "0"))
+ (rule "jmod_axiom" (formula "79") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "newSym_eq" (formula "79") (inst "l=l_2") (inst "newSymDef=mul(result, Z(0(#)))"))
+ (rule "times_zero_1" (formula "79") (term "1,1"))
+ (rule "add_zero_right" (formula "79") (term "1"))
+ (rule "applyEq" (formula "80") (term "0,0") (ifseqformula "79"))
+ (rule "eqSymm" (formula "80"))
+ (rule "applyEq" (formula "75") (term "1") (ifseqformula "80"))
+ (rule "applyEq" (formula "77") (term "1") (ifseqformula "80"))
+ (rule "applyEq" (formula "79") (term "0,0") (ifseqformula "80"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "80"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "80"))
+ (rule "applyEq" (formula "76") (term "1") (ifseqformula "80"))
+ (rule "applyEq" (formula "73") (term "0") (ifseqformula "80"))
+ (rule "applyEq" (formula "82") (term "1") (ifseqformula "80"))
+ (rule "applyEq" (formula "83") (term "0,1") (ifseqformula "80"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "73") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "73") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "73") (term "0,0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "add_zero_right" (formula "73") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "73") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0"))
+ (rule "add_zero_right" (formula "73") (term "0,0"))
+ (rule "leq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "elimGcdLeq_antec" (formula "72") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "neg_literal" (formula "72") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "72") (term "0,0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "mul_literals" (formula "72") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "72") (term "0,0,0,0"))
+ (rule "add_literals" (formula "72") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "72") (term "0,0"))
+ (rule "add_literals" (formula "72") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "72") (term "1,0,0"))
+ (rule "add_zero_right" (formula "72") (term "0,0"))
+ (rule "qeq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "99"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "3") (inst "elimGcdRightDiv=add(Z(neglit(0(8(4(8(8(3(8(#))))))))), l_2)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "neg_literal" (formula "3") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "76"))
+ (rule "mul_literals" (formula "75") (term "0,0"))
+ (rule "add_zero_left" (formula "75") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "75") (ifseqformula "74"))
+ (rule "greater_literals" (formula "75") (term "0,0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(1(8(4(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "4"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "33") (term "0,0"))
+ (rule "add_zero_left" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "4"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "82") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "translateJavaCastInt" (formula "89") (term "0"))
+ (rule "translateJavaAddInt" (formula "88") (term "1"))
+ (rule "translateJavaMulInt" (formula "82") (term "1"))
+ (rule "translateJavaMulInt" (formula "83") (term "0"))
+ (rule "translateJavaCastInt" (formula "86") (term "0"))
+ (rule "translateJavaCastInt" (formula "85") (term "1"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1"))
+ (rule "polySimp_mulComm0" (formula "83") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "1"))
+ (rule "castedGetAny" (formula "89") (term "0"))
+ (rule "castedGetAny" (formula "86") (term "0"))
+ (rule "castedGetAny" (formula "85") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "90") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "85"))
+ (rule "applyEq" (formula "85") (term "1,0") (ifseqformula "70"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "56"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "57"))
+ (rule "polySimp_homoEq" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0"))
+ (rule "add_zero_left" (formula "87") (term "0,0"))
+ (rule "applyEq" (formula "82") (term "0,0") (ifseqformula "70"))
+ (rule "applyEq" (formula "84") (term "0") (ifseqformula "56"))
+ (rule "applyEq" (formula "83") (term "0,0") (ifseqformula "70"))
+ (rule "inEqSimp_commuteLeq" (formula "83"))
+ (rule "applyEq" (formula "84") (term "1,0") (ifseqformula "70"))
+ (rule "applyEq" (formula "84") (term "0,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0,1,0,0,0") (ifseqformula "70"))
+ (rule "applyEq" (formula "85") (term "1,0") (ifseqformula "70"))
+ (rule "polySimp_pullOutFactor2" (formula "85") (term "0"))
+ (rule "add_literals" (formula "85") (term "1,0"))
+ (rule "times_zero_1" (formula "85") (term "0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "true_left" (formula "85"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "86") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "86") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "40"))
+ (rule "mul_literals" (formula "82") (term "1,1,0"))
+ (rule "greater_literals" (formula "82") (term "0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "51"))
+ (rule "greater_literals" (formula "82") (term "0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "mul_literals" (formula "82") (term "1,0"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "142")))
+ (rule "translateJavaSubInt" (formula "78") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "78") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "78") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "78") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "78") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "78") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "78") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "78") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "78") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0,0,0"))
+ (rule "applyEq" (formula "78") (term "0,1,0,1,1,1,1") (ifseqformula "70"))
+ (rule "replace_known_left" (formula "78") (term "1,0,1,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "applyEq" (formula "78") (term "1,0,1,0,0,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "78") (term "0,1,0,0") (ifseqformula "70"))
+ (rule "replace_known_left" (formula "78") (term "1,0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "applyEq" (formula "78") (term "0,1,0,0,0,1,1,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "78") (term "1,0,1,0,1") (ifseqformula "70"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "78") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "78") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "78") (term "0,1,1,1,1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (term "0,0") (ifseqformula "15"))
+ (rule "leq_literals" (formula "78") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "79") (term "0"))
+ (rule "translateJavaCastInt" (formula "79") (term "0,0"))
+ (rule "castedGetAny" (formula "79") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "80"))
+ (rule "polySimp_mulAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "143")))
+ (rule "translateJavaAddInt" (formula "76") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "76") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "76") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "76") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "76") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "76") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "76") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "76") (term "0,0,0,1") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "76") (term "0,1,0,1,1,1,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "76") (term "1,0,0,0,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "76") (term "1,0,1,0,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "76") (term "0,0,0") (ifseqformula "70"))
+ (rule "applyEq" (formula "76") (term "0,1,0,0,0,1,1,1") (ifseqformula "70"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "76") (term "0,0,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "76") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "76") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "76") (term "1,0,1,1,1,1") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "76") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "76") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "144")))
+ (rule "translateJavaSubInt" (formula "75") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "75") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "75") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "75") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "75") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "75") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "75") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "75") (term "0,0,0,1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0"))
+ (rule "replace_known_left" (formula "75") (term "0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0"))
+ (rule "applyEq" (formula "75") (term "0,1,0,0,0,1,1,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "75") (term "1,0,1,0,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "75") (term "1,0,0,0,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "75") (term "0,1,0,1,1,1,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "75") (term "0,0,0") (ifseqformula "70"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "75") (term "0,0,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_subsumption1" (formula "75") (term "1,0,1,1,1,1") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "75") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "75") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_subsumption1" (formula "75") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "75") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "77")))
+ (rule "true_left" (formula "75"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "77") (term "0"))
+ (rule "translateJavaCastInt" (formula "77") (term "0,0"))
+ (rule "castedGetAny" (formula "77") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0"))
+ (rule "translateJavaCastInt" (formula "75") (term "0,0"))
+ (rule "castedGetAny" (formula "75") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "77"))
+ (rule "mul_literals" (formula "75") (term "0,0"))
+ (rule "add_zero_left" (formula "75") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "75") (ifseqformula "4"))
+ (rule "mul_literals" (formula "75") (term "1,1,0"))
+ (rule "greater_literals" (formula "75") (term "0,0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "42") (term "0"))
+ (rule "replace_known_left" (formula "42") (term "0,1") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "145")) (ifInst "" (formula "22")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "43") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "43") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "67") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "67"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0"))
+ (rule "expand_inInt" (formula "67") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "69"))
+ (rule "notLeft" (formula "68"))
+ (rule "notLeft" (formula "67"))
+ (rule "eqSymm" (formula "75") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "73") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "69") (term "1"))
+ (rule "translateJavaSubInt" (formula "75") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "73") (term "3,0"))
+ (rule "mul_literals" (formula "73") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "75") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "75") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72"))
+ (rule "inEqSimp_commuteLeq" (formula "70"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "inEqSimp_commuteLeq" (formula "67"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "69"))
+ (rule "applyEq" (formula "63") (term "0,1,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "73") (term "1,3,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "71") (term "1") (ifseqformula "69"))
+ (rule "applyEq" (formula "65") (term "3,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "72") (term "0,0") (ifseqformula "64"))
+ (rule "inEqSimp_commuteGeq" (formula "72"))
+ (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69"))
+ (rule "eqSymm" (formula "66"))
+ (rule "applyEq" (formula "117") (term "0") (ifseqformula "64"))
+ (rule "applyEq" (formula "75") (term "1,0,1,0") (ifseqformula "64"))
+ (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "73") (term "1,0") (ifseqformula "64"))
+ (rule "applyEq" (formula "75") (term "0,1,0,0,1,0,0,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "74") (term "0,1,0,0,1,1,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "74") (term "0,1,0,0,1,0,0,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69"))
+ (rule "eqSymm" (formula "66"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "69"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "75") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "69") (term "1"))
+ (rule "mod_axiom" (formula "69") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "70") (term "0"))
+ (rule "mod_axiom" (formula "70") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "0,1,0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "73") (term "1,3,0"))
+ (rule "mod_axiom" (formula "73") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "71") (term "1"))
+ (rule "mod_axiom" (formula "71") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "65") (term "3,0"))
+ (rule "mod_axiom" (formula "65") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "63") (term "2,0"))
+ (rule "mod_axiom" (formula "63") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "66") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "66") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "66") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "66") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "72") (term "0"))
+ (rule "mod_axiom" (formula "72") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "75") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "75") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "74") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "74") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "74") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "74") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "69") (term "0,1"))
+ (rule "eqSymm" (formula "69"))
+ (rule "polySimp_elimNeg" (formula "69") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "69") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "69") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "69") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "0,0,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "70") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "70") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "70") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "70") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "70") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "0,0,0"))
+ (rule "mul_literals" (formula "70") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "70") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0,0,0,0"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "63") (term "0,1,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "73") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "73") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "73") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "73") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "73") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "73") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "73") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "73") (term "1,3,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "71") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "71") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "71") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "71") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "71") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "71") (term "0,0,1"))
+ (rule "mul_literals" (formula "71") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "71") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "71"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "71") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0,0,0,0"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "shiftLeftDef" (formula "65") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "65") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "65") (term "3,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "63") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "66") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "66"))
+ (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "72") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "72") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "72") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "72") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "72") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,0"))
+ (rule "mul_literals" (formula "72") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "72") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0,0"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "75") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "75") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "75") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "75") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "75") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "75") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "75") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "75") (term "1,1,1,0,0,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "74") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "74") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "74") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "74") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "74") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "0,0,1,1,1,1,0"))
+ (rule "mul_literals" (formula "74") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "74") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "74") (term "1,1,1,1,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "74") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "74") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "74") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "74") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "74") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "74") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "74") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "74") (term "1,1,1,0,0,0") (ifseqformula "69"))
+ (rule "shiftLeftDef" (formula "66") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "66"))
+ (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "72"))
+ (rule "mul_literals" (formula "70") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70"))
+ (rule "mul_literals" (formula "70") (term "1"))
+ (rule "nnf_imp2or" (formula "60") (term "0"))
+ (rule "nnf_imp2or" (formula "43") (term "0"))
+ (rule "nnf_imp2or" (formula "96") (term "0"))
+ (rule "nnf_notAnd" (formula "98") (term "0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0"))
+ (rule "nnf_notAnd" (formula "50") (term "0,0"))
+ (rule "nnf_notAnd" (formula "83") (term "0,0"))
+ (rule "nnf_imp2or" (formula "83") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "83") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "83") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "83") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "83") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "20") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "expand_moduloInteger" (formula "69") (term "0"))
+ (rule "replace_int_MIN" (formula "69") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "69") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "69") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "69"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "19") (term "1,1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "49")))
+ (rule "expand_inInt" (formula "19") (term "1,0,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,1,1"))
+ (rule "translateJavaMulInt" (formula "19") (term "1,1,0,0,1,1"))
+ (rule "mul_literals" (formula "19") (term "1,1,0,0,1,1"))
+ (rule "eqSymm" (formula "19") (term "0,0,0,0,1,1"))
+ (rule "replace_known_left" (formula "19") (term "1,0,0,1,1") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "145")))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,1,1"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,1") (ifseqformula "46"))
+ (rule "applyEq" (formula "19") (term "0,1,0,1,1") (ifseqformula "46"))
+ (rule "replace_known_left" (formula "19") (term "1,0,1,1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,1,1") (ifseqformula "46"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (term "0,1,1") (ifseqformula "40"))
+ (rule "leq_literals" (formula "19") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "85") (term "0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "translateJavaSubInt" (formula "85") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "85") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "85") (term "1,1,1"))
+ (rule "mul_literals" (formula "85") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "85") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "85") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "85") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "85") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "20") (term "0,0,1,0,1,1,0") (inst "i=i"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "78") (term "1,1,0"))
+ (rule "translateJavaCastInt" (formula "78") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "78") (term "1,0"))
+ (rule "castedGetAny" (formula "78") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "78") (term "1,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "87") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "155")))
+ (rule "translateJavaAddInt" (formula "87") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "87") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "87") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "87") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "87") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "87") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "87") (term "0,1,0,1,1,1,1") (ifseqformula "80"))
+ (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "87") (term "1,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "87") (term "0,1,0,1,1,1,1"))
+ (rule "leq_literals" (formula "87") (term "1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0") (ifseqformula "80"))
+ (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0"))
+ (rule "add_literals" (formula "87") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "87") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "87") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "1,0,1,0,1") (ifseqformula "80"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0,0,1,1,1") (ifseqformula "80"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "87") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "1,0,1,0,0,1") (ifseqformula "80"))
+ (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "87") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "87") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "87") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "0,0") (ifseqformula "40"))
+ (rule "leq_literals" (formula "87") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "0,1,1,1") (ifseqformula "40"))
+ (rule "leq_literals" (formula "87") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "6") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "156")))
+ (rule "translateJavaAddInt" (formula "6") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "6") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "6") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "6") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0"))
+ (rule "replace_known_left" (formula "6") (term "0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "6") (term "1,0,1,0,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "6") (term "1,0,1,0,0,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "81"))
+ (rule "applyEq" (formula "6") (term "0,1,0,0,0,1,1,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "6") (term "0,1,0,1,1,1,1") (ifseqformula "81"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "6") (term "0,0,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "6") (term "1,0,1,1,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "6") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "6") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "7") (term "0,0,0,1"))
+ (rule "translateJavaCastInt" (formula "7") (term "0,0,0,0,1"))
+ (rule "castedGetAny" (formula "7") (term "0,0,0,0,1"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "80") (term "0,2,0,0,0,0,1,0"))
+ (rule "replace_known_left" (formula "80") (term "1,0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "160")) (ifInst "" (formula "30")) (ifInst "" (formula "155")))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "81") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0,0,2,0,0,0,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,2,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,2,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,2,0,0,0,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "90") (term "1,0,1,1,1"))
+ (rule "translateJavaCastInt" (formula "90") (term "0,1,0,1,1,1"))
+ (rule "castedGetAny" (formula "90") (term "0,1,0,1,1,1"))
+ (rule "inEqSimp_commuteGeq" (formula "90") (term "0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "93") (term "0,0,0,0,1"))
+ (rule "translateJavaCastInt" (formula "93") (term "0,0,0,0,0,1"))
+ (rule "castedGetAny" (formula "93") (term "0,0,0,0,0,1"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "81") (term "0,0,1,0,0,0,0,1,0"))
+ (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "161")) (ifInst "" (formula "23")) (ifInst "" (formula "156")) (ifInst "" (formula "80")))
+ (rule "true_left" (formula "81"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "91") (term "0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "translateJavaSubInt" (formula "91") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "91") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "91") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "91") (term "1,1,1"))
+ (rule "mul_literals" (formula "91") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "91") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "91") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "91") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "91") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "91") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1,1,1,1,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "101") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "translateJavaSubInt" (formula "101") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "101") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "101") (term "1,1,1"))
+ (rule "mul_literals" (formula "101") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "101") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "101") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "101") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "101") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "81") (term "1,4,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,2,1,4,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0,0,2,1,4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,2,1,4,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,2,1,4,0,0,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "81") (term "1,4,0,2,0,0,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0,0,2,1,4,0,2,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,2,1,4,0,2,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,2,1,4,0,2,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,2,1,4,0,2,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "81") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "1,1,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "expand_inInt" (formula "43") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "43") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "1,1,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "43") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_bufferSizeForBucketLen_in_de_wiesler_Buffers" (formula "81") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaMod" (formula "81") (term "0,1,0,0,1,1,0"))
+ (rule "translateJavaMod" (formula "81") (term "2,0,1,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "81") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,0,0,1,1,0"))
+ (rule "jmod_axiom" (formula "81") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,0,1,0,0,1,1,0"))
+ (rule "jmod_axiom" (formula "81") (term "2,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,2,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "81") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "81") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,0,0,1,1,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "translateJavaSubInt" (formula "88") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "88") (term "1,0"))
+ (rule "neg_literal" (formula "88") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "88") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "88") (term "0,0"))
+ (rule "mul_literals" (formula "88") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "88") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "17") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "161")) (ifInst "" (formula "121")) (ifInst "" (formula "156")) (ifInst "" (formula "31")))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "102") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "translateJavaSubInt" (formula "102") (term "0,0,1,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "102") (term "1,0,1,1"))
+ (rule "neg_literal" (formula "102") (term "1,0,1,1"))
+ (rule "translateJavaAddInt" (formula "102") (term "0,0,0,1,1"))
+ (rule "polySimp_elimSub" (formula "102") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "102") (term "1,0,0,1,1"))
+ (rule "polySimp_addLiterals" (formula "102") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "7") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "159")))
+ (rule "translateJavaAddInt" (formula "7") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "7") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "7") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "7") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "7") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "7") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "7") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "7") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "7") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "applyEq" (formula "7") (term "0,1,0,1,1,1,1") (ifseqformula "84"))
+ (rule "replace_known_left" (formula "7") (term "1,0,1,1,1,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEq" (formula "7") (term "0,1,0,0,0,1,1,1") (ifseqformula "84"))
+ (rule "applyEq" (formula "7") (term "0,1,0,0") (ifseqformula "84"))
+ (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEq" (formula "7") (term "1,0,1,0,0,1") (ifseqformula "84"))
+ (rule "applyEq" (formula "7") (term "1,0,1,0,1") (ifseqformula "84"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "7") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "7") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "7") (term "0,1,1,1,1") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "17"))
+ (rule "leq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "translateJavaMod" (formula "100") (term "0"))
+ (rule "jmod_axiom" (formula "100") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1,0"))
+ (rule "applyEqRigid" (formula "100") (term "0,1,0") (ifseqformula "59"))
+ (rule "polySimp_pullOutFactor0" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,0"))
+ (rule "times_zero_1" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "116") (term "0"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "translateJavaSubInt" (formula "116") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "116") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "116") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "116") (term "1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "116") (term "0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "116") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "116") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "116") (term "1,1,1"))
+ (rule "mul_literals" (formula "116") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "116") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "116") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "116") (term "0,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "116") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "116") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "116") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "116") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "116") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "116") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "116") (term "0,0"))
+ (rule "mul_literals" (formula "116") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "116") (term "0,0,0"))
+ (rule "applyEq" (formula "116") (term "0,0,1,1") (ifseqformula "117"))
+ (rule "inEqSimp_homoInEq1" (formula "116") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "1,0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "116") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "116") (term "0,0,0,1,1"))
+ (rule "applyEq" (formula "116") (term "0,0,0,1") (ifseqformula "117"))
+ (rule "applyEq" (formula "116") (term "1,0,1,1,1") (ifseqformula "117"))
+ (rule "polySimp_addComm1" (formula "116") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "116") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "116") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "116") (term "0,1,0"))
+ (rule "replace_known_left" (formula "116") (term "1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "116") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "116") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "116") (term "1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "1,1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "116") (term "1,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "116") (term "0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0,1,1"))
+ (rule "replace_known_left" (formula "116") (term "0,1,1") (ifseqformula "118"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "116") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "116") (term "1,0"))
+ (rule "replace_known_left" (formula "116") (term "0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "andLeft" (formula "116"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "117"))
+ (rule "polySimp_mulLiterals" (formula "117") (term "0"))
+ (rule "polySimp_elimOne" (formula "117") (term "0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "117") (term "0"))
+ (builtin "One Step Simplification" (formula "117"))
+ (rule "translateJavaSubInt" (formula "117") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "117") (term "1,0"))
+ (rule "neg_literal" (formula "117") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "117") (term "0,0"))
+ (rule "mul_literals" (formula "117") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "117") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "117") (term "0,0,0"))
+ (rule "applyEq" (formula "94") (term "0") (ifseqformula "117"))
+ (rule "applyEq" (formula "8") (term "0,1,0,1") (ifseqformula "117"))
+ (rule "applyEq" (formula "8") (term "1,0,0,1") (ifseqformula "117"))
+ (rule "applyEq" (formula "97") (term "1") (ifseqformula "117"))
+ (rule "applyEq" (formula "121") (term "1") (ifseqformula "117"))
+ (rule "inEqSimp_contradInEq3" (formula "94") (ifseqformula "3"))
+ (rule "greater_literals" (formula "94") (term "0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "andLeft" (formula "94"))
+ (rule "polySimp_rightDist" (formula "94") (term "0"))
+ (rule "mul_literals" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "94") (term "0"))
+ (rule "add_literals" (formula "94") (term "1,1,0"))
+ (rule "times_zero_1" (formula "94") (term "1,0"))
+ (rule "add_zero_right" (formula "94") (term "0"))
+ (rule "leq_literals" (formula "94"))
+ (rule "closeFalse" (formula "94"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "105"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60"))
+ (rule "times_zero_1" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "mul_literals" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1"))
+ (rule "polySimp_elimOne" (formula "65") (term "1"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "27")) (ifInst "" (formula "102")))
+ (rule "translateJavaSubInt" (formula "69") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "69") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "69") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "69") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "69") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "69") (term "1,0,1,0,1") (ifseqformula "49"))
+ (rule "applyEq" (formula "69") (term "0,0,0,1,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "69") (term "0,1,0,0,0,1,1,1") (ifseqformula "49"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "69") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "69") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "applyEq" (formula "69") (term "1,0,1,0,0,1") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "69") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "69") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "69") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "69") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "69") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "applyEq" (formula "69") (term "1,1,1,1,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "69") (term "0,0,0,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "69") (term "0,1,0") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "69") (term "1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "69") (term "0,1,0"))
+ (rule "add_literals" (formula "69") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "69") (term "0,1,0"))
+ (rule "leq_literals" (formula "69") (term "1,0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "applyEq" (formula "69") (term "0,1,0,1,1,1") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "69") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "69") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "69") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "69") (term "0,1,0,1,1,1"))
+ (rule "leq_literals" (formula "69") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "applyEq" (formula "69") (term "0,1,0,1") (ifseqformula "70"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,0,1,1,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "45") (term "1,1"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "45"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "1") (ifseqformula "40"))
+ (rule "inEqSimp_subsumption1" (formula "75") (term "0,1,1,1") (ifseqformula "43"))
+ (rule "leq_literals" (formula "75") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "43"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "73") (term "0") (ifseqformula "43"))
+ (rule "leq_literals" (formula "73") (term "0,0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "74"))
+ (rule "andLeft" (formula "73"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "77") (term "1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "translateJavaUnaryMinusInt" (formula "77") (term "1,1"))
+ (rule "neg_literal" (formula "77") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "77") (term "0,0,1"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1"))
+ (rule "mul_literals" (formula "77") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "77") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0,1"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaAddInt" (formula "39") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "0"))
+ (rule "polySimp_addComm0" (formula "39") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "63") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "expand_inInt" (formula "63") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "translateJavaCastInt" (formula "70") (term "0"))
+ (rule "translateJavaAddInt" (formula "69") (term "1"))
+ (rule "translateJavaMulInt" (formula "63") (term "1"))
+ (rule "translateJavaMulInt" (formula "64") (term "0"))
+ (rule "translateJavaCastInt" (formula "67") (term "0"))
+ (rule "translateJavaCastInt" (formula "66") (term "1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "69") (term "1"))
+ (rule "castedGetAny" (formula "70") (term "0"))
+ (rule "castedGetAny" (formula "67") (term "0"))
+ (rule "castedGetAny" (formula "66") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "applyEq" (formula "63") (term "0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "67") (term "1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "64") (term "0,0") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "applyEq" (formula "72") (term "0,1,0,0,1,0,0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "69") (term "1,1") (ifseqformula "55"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "63") (ifseqformula "45"))
+ (rule "greater_literals" (formula "63") (term "0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "42") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "translateJavaMulInt" (formula "42") (term "1"))
+ (rule "mul_literals" (formula "42") (term "1"))
+ (rule "eqSymm" (formula "93"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "47"))
+ (rule "leq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "true_left" (formula "44"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "14"))
+ (rule "notLeft" (formula "13"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "58") (term "0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1,0,0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "15")) (ifInst "" (formula "59")))
+ (rule "true_left" (formula "58"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "notLeft" (formula "24"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "13")) (ifInst "" (formula "89")) (ifInst "" (formula "124")) (ifInst "" (formula "13")) (ifInst "" (formula "20")))
+ (rule "translateJavaAddInt" (formula "60") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "60") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "60") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "60") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0"))
+ (rule "replace_known_left" (formula "60") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,1"))
+ (rule "applyEq" (formula "60") (term "0,1,0,0,0,1") (ifseqformula "61"))
+ (rule "inEqSimp_commuteGeq" (formula "60") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "60") (term "0,1,0,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "60") (term "1,0,1,0,1") (ifseqformula "54"))
+ (rule "applyEq" (formula "60") (term "0,0,0,1,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "60") (term "0,1,0,0,1") (ifseqformula "61"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,0,1"))
+ (rule "applyEq" (formula "60") (term "0,1,0,1") (ifseqformula "88"))
+ (rule "inEqSimp_commuteGeq" (formula "60") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0"))
+ (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1"))
+ (rule "polySimp_elimOne" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "mul_literals" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "60"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "1"))
+ (rule "mul_literals" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "26") (ifseqformula "60"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "closeFalse" (formula "26"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "105"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "105"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "35"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60"))
+ (rule "mul_literals" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "mul_literals" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1"))
+ (rule "polySimp_elimOne" (formula "65") (term "1"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "45") (term "1,1"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "45"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,1"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "1") (ifseqformula "40"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "43"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "56") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "56") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "58") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "59") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteGeq" (formula "56"))
+ (rule "applyEq" (formula "56") (term "1,1,1,1,1,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "13")) (ifInst "" (formula "72")) (ifInst "" (formula "107")) (ifInst "" (formula "13")) (ifInst "" (formula "59")) (ifInst "" (formula "20")))
+ (rule "translateJavaAddInt" (formula "56") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "56") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0"))
+ (rule "replace_known_left" (formula "56") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1"))
+ (rule "applyEq" (formula "56") (term "1,0,1,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1") (ifseqformula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,1"))
+ (rule "applyEq" (formula "56") (term "0,0,1,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,0,1") (ifseqformula "57"))
+ (rule "inEqSimp_commuteGeq" (formula "56") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "56") (term "0,1,0,1") (ifseqformula "71"))
+ (rule "inEqSimp_commuteGeq" (formula "56") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0"))
+ (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "59"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "60"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "mul_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "57"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "26")) (ifInst "" (formula "114")))
+ (rule "translateJavaAddInt" (formula "77") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "77") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "77") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "77") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "77") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "77") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "77") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "77") (term "0,1,0") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "0,1,0"))
+ (rule "leq_literals" (formula "77") (term "1,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "applyEq" (formula "77") (term "1,1,0,0,1") (ifseqformula "78"))
+ (rule "applyEq" (formula "77") (term "0,1,0,1,1,1,1") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "77") (term "1,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "77") (term "0,1,0,1,1,1,1"))
+ (rule "leq_literals" (formula "77") (term "1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "applyEq" (formula "77") (term "0,0,0,1,1") (ifseqformula "78"))
+ (rule "applyEq" (formula "77") (term "0,0,0,0,1") (ifseqformula "78"))
+ (rule "applyEq" (formula "77") (term "1,0,1,0,0,1") (ifseqformula "51"))
+ (rule "applyEq" (formula "77") (term "1,1,0,1,1,1") (ifseqformula "78"))
+ (rule "applyEq" (formula "77") (term "1,1,1,1,1,1") (ifseqformula "78"))
+ (rule "applyEq" (formula "77") (term "0,1,0,0,0,1,1,1") (ifseqformula "51"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "77") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "77") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "applyEq" (formula "77") (term "0,1,0,0,1") (ifseqformula "78"))
+ (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "77") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "77") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "77") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "applyEq" (formula "77") (term "1,0,1,0,1") (ifseqformula "51"))
+ (rule "applyEq" (formula "77") (term "0,1,0,1") (ifseqformula "78"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "77") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (term "0") (ifseqformula "41"))
+ (rule "leq_literals" (formula "77") (term "0,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "80") (term "0") (ifseqformula "41"))
+ (rule "leq_literals" (formula "80") (term "0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "78"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "59"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "1"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "81") (term "0"))
+ (rule "translateJavaCastInt" (formula "81") (term "0,0"))
+ (rule "castedGetAny" (formula "81") (term "0,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "63") (term "0"))
+ (rule "translateJavaAddInt" (formula "63") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "63") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "63") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "eqSymm" (formula "64"))
+ (rule "applyEqReverse" (formula "63") (term "1") (ifseqformula "64"))
+ (rule "hideAuxiliaryEq" (formula "64"))
+ (rule "elementOfArrayRangeConcrete" (formula "63") (term "0,0,0"))
+ (rule "replace_known_right" (formula "63") (term "0,0,0,0,0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "39") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "translateJavaMulInt" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "eqSymm" (formula "87"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "44"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "35"))
+ (rule "translateJavaAddInt" (formula "37") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0"))
+ (rule "polySimp_addComm0" (formula "37") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "69") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "expand_inInt" (formula "69") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "69") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "69") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "71"))
+ (rule "translateJavaCastInt" (formula "76") (term "0"))
+ (rule "translateJavaAddInt" (formula "75") (term "1"))
+ (rule "translateJavaMulInt" (formula "70") (term "0"))
+ (rule "translateJavaMulInt" (formula "69") (term "1"))
+ (rule "translateJavaCastInt" (formula "73") (term "0"))
+ (rule "translateJavaCastInt" (formula "72") (term "1"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1"))
+ (rule "polySimp_addComm0" (formula "75") (term "1"))
+ (rule "castedGetAny" (formula "76") (term "0"))
+ (rule "castedGetAny" (formula "73") (term "0"))
+ (rule "castedGetAny" (formula "72") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "inEqSimp_commuteLeq" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "72"))
+ (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "69") (term "0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "70") (term "0,0") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "70"))
+ (rule "applyEq" (formula "73") (term "1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "75") (term "1,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "78") (term "0,1,0,0,1,0,0,0") (ifseqformula "55"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "69") (ifseqformula "45"))
+ (rule "mul_literals" (formula "69") (term "1,1,0"))
+ (rule "greater_literals" (formula "69") (term "0,0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "72"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "replace_known_right" (formula "66") (term "0,0,0,0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_left" (formula "66") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "93") (term "1"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "91")))
+ (rule "translateJavaSubInt" (formula "93") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "93") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "1,1"))
+ (rule "mul_literals" (formula "93") (term "1,0,0,1,1"))
+ (rule "add_literals" (formula "93") (term "0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93") (term "0,0"))
+ (rule "times_zero_2" (formula "93") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "93") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "93") (term "0,1,1,1"))
+ (rule "mul_literals" (formula "93") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "93") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,1,0"))
+ (rule "replace_known_left" (formula "93") (term "1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "93") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,0"))
+ (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "andLeft" (formula "93"))
+ (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "94"))
+ (rule "mul_literals" (formula "89") (term "0,0"))
+ (rule "add_zero_left" (formula "89") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1"))
+ (rule "polySimp_rightDist" (formula "89") (term "1"))
+ (rule "mul_literals" (formula "89") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "89") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "89") (term "0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "89") (term "0,0"))
+ (rule "add_literals" (formula "89") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "89") (term "1,0,0"))
+ (rule "add_zero_right" (formula "89") (term "0,0"))
+ (rule "qeq_literals" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "94"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "95"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "105") (term "1,1") (userinteraction))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "102")))
+ (rule "translateJavaAddInt" (formula "1") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "1") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "1") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "1") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "106"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "applyEq" (formula "2") (term "0,1,0,1,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "2") (term "0,1,0,0,0,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0,0,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "2") (term "0,1,0,1") (ifseqformula "71"))
+ (rule "applyEq" (formula "2") (term "0,1,0,0,1") (ifseqformula "71"))
+ (rule "inEqSimp_commuteGeq" (formula "2") (term "1,0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "replace_known_left" (formula "2") (term "1,0,1,1,1,1") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "3")))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "2") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "2") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "2") (term "0,1,1,1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0") (ifseqformula "9"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "4"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "73"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "mul_literals" (formula "69") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "38") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "closeFalse" (formula "38"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "closeTrue" (formula "105"))
+ )
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "104"))
+ (rule "replace_known_left" (formula "104") (term "1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "104"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "70"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "expand_inInt" (formula "70") (term "1,1,0"))
+ (rule "expand_inInt" (formula "70") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,1,1,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,1,1,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "71"))
+ (rule "translateJavaAddInt" (formula "74") (term "1"))
+ (rule "translateJavaAddInt" (formula "73") (term "0"))
+ (rule "translateJavaAddInt" (formula "71") (term "0"))
+ (rule "translateJavaAddInt" (formula "72") (term "1"))
+ (rule "translateJavaAddInt" (formula "74") (term "1,1,1"))
+ (rule "translateJavaAddInt" (formula "73") (term "1,1,0"))
+ (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "polySimp_addComm0" (formula "74") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "73") (term "1,1,0"))
+ (rule "elim_double_block_2" (formula "109") (term "1"))
+ (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "ifSplit" (formula "109"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "109") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "109") (newnames "anonOut_heap,exc_5,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "27")) (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "109")) (ifInst "" (formula "17")) (ifInst "" (formula "105")) (ifInst "" (formula "26")))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "expand_inInt" (formula "75") (term "1,0,0,0,0,0,0,1"))
+ (rule "expand_inInt" (formula "75") (term "1,1"))
+ (rule "expand_inInt" (formula "75") (term "1,0,0,0,1"))
+ (rule "expand_inInt" (formula "75") (term "1,0,1"))
+ (rule "expand_inInt" (formula "75") (term "1,0,0,0,0,1"))
+ (rule "expand_inInt" (formula "75") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "75") (term "1,0,0,0,0,0,1"))
+ (rule "expand_inInt" (formula "75") (term "0,0,0,0,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,0,0,0,0,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,0,0,0,0,0,0,0,1"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "78"))
+ (rule "inEqSimp_commuteLeq" (formula "85"))
+ (rule "inEqSimp_commuteLeq" (formula "83"))
+ (rule "inEqSimp_commuteLeq" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "77"))
+ (rule "inEqSimp_commuteLeq" (formula "78"))
+ (rule "variableDeclarationAssign" (formula "118") (term "1"))
+ (rule "variableDeclaration" (formula "118") (term "1") (newnames "exc_5_1"))
+ (rule "assignment" (formula "118") (term "1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (builtin "Block Contract (Internal)" (formula "118") (newnames "exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "119"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "27")) (ifInst "" (formula "75")))
+ (rule "true_left" (formula "84"))
+ (rule "eqSymm" (formula "118") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "118") (term "1"))
+ (rule "variableDeclaration" (formula "118") (term "1") (newnames "exc_6_1"))
+ (rule "assignment" (formula "118") (term "1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "emptyStatement" (formula "118") (term "1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "emptyStatement" (formula "118") (term "1"))
+ (rule "tryEmpty" (formula "118") (term "1"))
+ (rule "blockEmptyLabel" (formula "118") (term "1"))
+ (rule "blockEmpty" (formula "118") (term "1"))
+ (rule "methodCallEmpty" (formula "118") (term "1"))
+ (rule "emptyModality" (formula "118") (term "1"))
+ (rule "andRight" (formula "118"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "closeTrue" (formula "118"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "closeTrue" (formula "118"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "118"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "118"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "118"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "119"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "replaceKnownSelect_taclet0120110_0" (formula "84") (term "0,0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "84") (term "0,0,1,0,1"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "86"))
+ (rule "translateJavaAddInt" (formula "88") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "88") (term "0,2,0,0"))
+ (rule "eqSymm" (formula "86"))
+ (rule "replace_known_left" (formula "85") (term "0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "true_left" (formula "85"))
+ (rule "polySimp_addComm0" (formula "87") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,2,0,0"))
+ (rule "replaceKnownSelect_taclet010120110_2" (formula "87") (term "0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "87") (term "0,0"))
+ (rule "elim_double_block_2" (formula "122") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "45") (term "0"))
+ (rule "expand_inShort" (formula "45"))
+ (rule "replace_short_MAX" (formula "45") (term "1,0"))
+ (rule "replace_short_MIN" (formula "45") (term "0,1"))
+ (rule "andLeft" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "47"))
+ (rule "qeq_literals" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "46"))
+ (rule "leq_literals" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "arrayLengthNotNegative" (formula "33") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "36") (term "0"))
+ (rule "expand_inShort" (formula "36"))
+ (rule "replace_short_MIN" (formula "36") (term "0,1"))
+ (rule "replace_short_MAX" (formula "36") (term "1,0"))
+ (rule "andLeft" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "arrayLengthNotNegative" (formula "45") (term "0"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "46"))
+ (rule "qeq_literals" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "ifUnfold" (formula "122") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "122") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "122") (term "1"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "replace_known_left" (formula "122") (term "0,0,1,0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "ifSplit" (formula "122"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "123"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "123"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "122") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "122") (newnames "exc_7,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "27")) (ifInst "" (formula "75")))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "true_left" (formula "88"))
+ (rule "eqSymm" (formula "122") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "122") (term "1"))
+ (rule "variableDeclaration" (formula "122") (term "1") (newnames "exc_7_1"))
+ (rule "assignment" (formula "122") (term "1"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "emptyStatement" (formula "122") (term "1"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "emptyStatement" (formula "122") (term "1"))
+ (rule "tryEmpty" (formula "122") (term "1"))
+ (rule "blockEmptyLabel" (formula "122") (term "1"))
+ (rule "blockEmpty" (formula "122") (term "1"))
+ (rule "methodCallEmpty" (formula "122") (term "1"))
+ (rule "emptyModality" (formula "122") (term "1"))
+ (rule "andRight" (formula "122"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "closeTrue" (formula "122"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "closeTrue" (formula "122"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "122"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "122"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "122"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "88"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "replaceKnownSelect_taclet0120110_0" (formula "88") (term "0,0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "88") (term "0,0,0,1"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "88"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1"))
+ (rule "replace_known_left" (formula "89") (term "0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet010120110_2" (formula "90") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "90") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "90"))
+ (rule "applyEq" (formula "89") (term "0") (ifseqformula "86"))
+ (rule "applyEq" (formula "90") (term "0") (ifseqformula "87"))
+ (rule "elim_double_block_2" (formula "125") (term "1"))
+ (rule "ifUnfold" (formula "125") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "125") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "replace_known_left" (formula "125") (term "0,0,1,0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "ifSplit" (formula "125"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "126"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "126"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "125") (term "1"))
+ (rule "variableDeclarationFinalAssign" (formula "125") (term "1"))
+ (rule "variableDeclarationFinal" (formula "125") (term "1") (newnames "head_start"))
+ (rule "assignment" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "variableDeclarationAssign" (formula "125") (term "1"))
+ (rule "variableDeclaration" (formula "125") (term "1") (newnames "head_stop"))
+ (rule "assignment" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "variableDeclarationAssign" (formula "125") (term "1"))
+ (rule "variableDeclaration" (formula "125") (term "1") (newnames "tail_start"))
+ (rule "assignment" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "variableDeclarationFinalAssign" (formula "125") (term "1"))
+ (rule "variableDeclarationFinal" (formula "125") (term "1") (newnames "tail_stop"))
+ (rule "assignment" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "Block Contract (Internal)" (formula "125") (newnames "anonOut_heap_0,exc_8,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,tail_start_Before_BLOCK#33,head_stop_Before_BLOCK#34,o,f,anonOut_tail_start,anonOut_head_stop"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "126"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "27")) (ifInst "" (formula "75")) (ifInst "" (formula "125")) (ifInst "" (formula "17")) (ifInst "" (formula "121")) (ifInst "" (formula "26")))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0"))
+ (rule "expand_inInt" (formula "91") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,0,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,0,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0"))
+ (rule "leq_literals" (formula "91") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "63")) (ifInst "" (formula "64")) (ifInst "" (formula "20")) (ifInst "" (formula "78")) (ifInst "" (formula "79")) (ifInst "" (formula "18")) (ifInst "" (formula "63")) (ifInst "" (formula "64")) (ifInst "" (formula "80")) (ifInst "" (formula "82")))
+ (rule "leq_literals" (formula "91") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "leq_literals" (formula "91") (term "1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "leq_literals" (formula "91") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "91"))
+ (rule "inEqSimp_commuteLeq" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "93"))
+ (rule "inEqSimp_commuteLeq" (formula "91"))
+ (rule "inEqSimp_commuteLeq" (formula "91"))
+ (rule "variableDeclarationAssign" (formula "128") (term "1"))
+ (rule "variableDeclaration" (formula "128") (term "1") (newnames "exc_8_1"))
+ (rule "assignment" (formula "128") (term "1"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "ifElseUnfold" (formula "128") (term "1") (inst "#boolv=x"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "variableDeclaration" (formula "128") (term "1") (newnames "x_10"))
+ (rule "compound_less_equal_than_comparison_1" (formula "128") (term "1") (inst "#v0=x_11"))
+ (rule "variableDeclarationAssign" (formula "128") (term "1"))
+ (rule "variableDeclaration" (formula "128") (term "1") (newnames "x_11"))
+ (rule "assignmentSubtractionInt" (formula "128") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "expand_inInt" (formula "128"))
+ (rule "replace_int_MIN" (formula "128") (term "0,1"))
+ (rule "replace_int_MAX" (formula "128") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "128") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "128") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "128") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "128") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0"))
+ (rule "add_zero_left" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_mulComm0" (formula "91") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "91") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "91") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0,0"))
+ (rule "add_zero_left" (formula "91") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "127") (term "1"))
+ (rule "mul_literals" (formula "127") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "127") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "127") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "127") (term "0"))
+ (rule "polySimp_mulComm0" (formula "127") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "127") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "127") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "127") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "127") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "127") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "127") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "125") (term "1"))
+ (rule "polySimp_mulComm0" (formula "125") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "125") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "1,1,1"))
+ (rule "mul_literals" (formula "125") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "125") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "125") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "125") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "65"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_subsumption1" (formula "123") (term "1") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq0" (formula "123") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "123") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "123") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "123") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "123") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "123") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "123") (term "0,0,1"))
+ (rule "add_literals" (formula "123") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "123") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "123") (term "0,0,1"))
+ (rule "qeq_literals" (formula "123") (term "0,1"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "inEqSimp_leqRight" (formula "123"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "8"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "qeq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "70"))
+ (rule "polySimp_mulComm0" (formula "85") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "85"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0"))
+ (rule "polySimp_elimOne" (formula "85") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "74"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "30"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "2"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "36"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "37"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "67") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "closeFalse" (formula "67"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "translateJavaSubInt" (formula "128") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "128") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "128") (term "0,1,0"))
+ (rule "less_equal_than_comparison_simple" (formula "128") (term "1"))
+ (builtin "One Step Simplification" (formula "128"))
+ (builtin "Use Dependency Contract" (formula "57") (term "1,0") (ifInst "" (formula "47") (term "0,1,1,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "94") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "94") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "94") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "94") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "94") (term "0,1,0,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "125")) (ifInst "" (formula "24")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76")) (ifInst "" (formula "29")))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "94") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "94") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,1,0"))
+ (rule "replace_known_right" (formula "94") (term "0,0,0,1,0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0"))
+ (rule "replace_known_left" (formula "94") (term "0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0"))
+ (rule "replace_known_left" (formula "94") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "applyEq" (formula "94") (term "1,0") (ifseqformula "50"))
+ (rule "replace_known_left" (formula "94") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "94"))
+ (builtin "Use Dependency Contract" (formula "56") (term "0") (ifInst "" (formula "85") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "95") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "95") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "95") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "95") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "95") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "95") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "95") (term "1,0,0,0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "126")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76")) (ifInst "" (formula "29")))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "95") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "95") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "95") (term "0,1,0"))
+ (rule "replace_known_right" (formula "95") (term "0,0,0,1,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "0,1,0"))
+ (rule "replace_known_left" (formula "95") (term "0,1,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "0,0"))
+ (rule "replace_known_left" (formula "95") (term "0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "applyEq" (formula "95") (term "0,1") (ifseqformula "56"))
+ (rule "eqSymm" (formula "95") (term "1"))
+ (rule "replace_known_left" (formula "95") (term "1") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "ifElseSplit" (formula "129"))
+ (branch "if x_10 true"
+ (builtin "Block Contract (Internal)" (formula "130") (newnames "exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "28")) (ifInst "" (formula "76")))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "true_left" (formula "96"))
+ (rule "eqSymm" (formula "130") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "130") (term "1"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_9_1"))
+ (rule "assignment" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (rule "tryEmpty" (formula "130") (term "1"))
+ (rule "blockEmptyLabel" (formula "130") (term "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (rule "methodCallEmpty" (formula "130") (term "1"))
+ (rule "emptyModality" (formula "130") (term "1"))
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "76")))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "applyEq" (formula "58") (term "1,0") (ifseqformula "97"))
+ (rule "add_zero_right" (formula "58") (term "0"))
+ (rule "applyEq" (formula "73") (term "1,1") (ifseqformula "58"))
+ (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "58"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "95"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "58"))
+ (rule "elim_double_block_2" (formula "130") (term "1"))
+ (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "ifSplit" (formula "130"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "130") (newnames "exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "28")) (ifInst "" (formula "74")))
+ (rule "true_left" (formula "96"))
+ (rule "eqSymm" (formula "130") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "130") (term "1"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_10_1"))
+ (rule "assignment" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (rule "tryEmpty" (formula "130") (term "1"))
+ (rule "blockEmptyLabel" (formula "130") (term "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (rule "methodCallEmpty" (formula "130") (term "1"))
+ (rule "emptyModality" (formula "130") (term "1"))
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "expand_inInt" (formula "96") (term "0,0,1"))
+ (rule "replace_int_MAX" (formula "96") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "96") (term "0,1,0,0,1"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_commuteLeq" (formula "97") (term "1,0,0"))
+ (rule "commute_and" (formula "97") (term "0,0"))
+ (rule "elim_double_block_2" (formula "132") (term "1"))
+ (rule "ifUnfold" (formula "132") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "132") (term "1") (newnames "x_13"))
+ (rule "inequality_comparison_simple" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "replace_known_left" (formula "132") (term "0,0,1,0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "ifSplit" (formula "132"))
+ (branch "if x_13 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_13 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "132") (term "1"))
+ (rule "assignment" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "assignment" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "blockEmpty" (formula "132") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "132") (newnames "exc_11,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "133"))
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "28")) (ifInst "" (formula "74")))
+ (rule "true_left" (formula "98"))
+ (rule "eqSymm" (formula "132") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "132") (term "1"))
+ (rule "variableDeclaration" (formula "132") (term "1") (newnames "exc_11_1"))
+ (rule "assignment" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "emptyStatement" (formula "132") (term "1"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "emptyStatement" (formula "132") (term "1"))
+ (rule "tryEmpty" (formula "132") (term "1"))
+ (rule "blockEmptyLabel" (formula "132") (term "1"))
+ (rule "blockEmpty" (formula "132") (term "1"))
+ (rule "methodCallEmpty" (formula "132") (term "1"))
+ (rule "emptyModality" (formula "132") (term "1"))
+ (rule "andRight" (formula "132"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "closeTrue" (formula "132"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "closeTrue" (formula "132"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "132"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "132") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "132"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "132") (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "132"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "13")) (ifInst "" (formula "14")))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "andLeft" (formula "98"))
+ (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "elim_double_block_2" (formula "133") (term "1"))
+ (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_14"))
+ (rule "inequality_comparison_simple" (formula "133") (term "1"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "ifSplit" (formula "133"))
+ (branch "if x_14 true"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_14 false"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "133") (term "1"))
+ (rule "emptyStatement" (formula "133") (term "1"))
+ (rule "tryEmpty" (formula "133") (term "1"))
+ (rule "blockEmptyLabel" (formula "133") (term "1"))
+ (rule "blockEmpty" (formula "133") (term "1"))
+ (rule "methodCallEmpty" (formula "133") (term "1"))
+ (rule "emptyModality" (formula "133") (term "1"))
+ (rule "andRight" (formula "133"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "closeTrue" (formula "133"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "133"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "133"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "133"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "variableDeclarationFinalAssign" (formula "130") (term "1"))
+ (rule "variableDeclarationFinal" (formula "130") (term "1") (newnames "aligned_relative_start"))
+ (builtin "Use Operation Contract" (formula "130") (newnames "heapBefore_align_to_next_block,result_0,exc_9") (contract "de.wiesler.Buffers[de.wiesler.Buffers::align_to_next_block(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "expand_inInt" (formula "95") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "95") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "95") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "eqSymm" (formula "97"))
+ (rule "inEqSimp_commuteLeq" (formula "96"))
+ (rule "assignment" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "Block Contract (Internal)" (formula "134") (newnames "exc_10,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "135"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "27")) (ifInst "" (formula "75")))
+ (rule "true_left" (formula "99"))
+ (rule "eqSymm" (formula "134") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "134") (term "1"))
+ (rule "variableDeclaration" (formula "134") (term "1") (newnames "exc_10_1"))
+ (rule "assignment" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "emptyStatement" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "emptyStatement" (formula "134") (term "1"))
+ (rule "applyEq" (formula "97") (term "0") (ifseqformula "86"))
+ (rule "applyEq" (formula "72") (term "1,1") (ifseqformula "97"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "97"))
+ (rule "applyEq" (formula "89") (term "0") (ifseqformula "97"))
+ (rule "applyEq" (formula "86") (term "1") (ifseqformula "97"))
+ (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "97"))
+ (rule "tryEmpty" (formula "134") (term "1"))
+ (rule "blockEmptyLabel" (formula "134") (term "1"))
+ (rule "blockEmpty" (formula "134") (term "1"))
+ (rule "methodCallEmpty" (formula "134") (term "1"))
+ (rule "emptyModality" (formula "134") (term "1"))
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "closeTrue" (formula "134"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "closeTrue" (formula "134"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "134"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "134"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "99"))
+ (rule "eqSymm" (formula "101"))
+ (rule "replace_known_left" (formula "100") (term "0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "applyEq" (formula "97") (term "0") (ifseqformula "86"))
+ (rule "applyEq" (formula "89") (term "0") (ifseqformula "97"))
+ (rule "applyEq" (formula "72") (term "1,1") (ifseqformula "97"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "97"))
+ (rule "applyEq" (formula "86") (term "1") (ifseqformula "97"))
+ (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "97"))
+ (rule "elim_double_block_2" (formula "135") (term "1"))
+ (rule "ifUnfold" (formula "135") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "135") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "135") (term "1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "replace_known_left" (formula "135") (term "0,0,1,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "ifSplit" (formula "135"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "136"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "136"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "135") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "135") (newnames "exc_11,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "27")) (ifInst "" (formula "75")))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "true_left" (formula "100"))
+ (rule "eqSymm" (formula "135") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "135") (term "1"))
+ (rule "variableDeclaration" (formula "135") (term "1") (newnames "exc_11_1"))
+ (rule "assignment" (formula "135") (term "1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "emptyStatement" (formula "135") (term "1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "emptyStatement" (formula "135") (term "1"))
+ (rule "tryEmpty" (formula "135") (term "1"))
+ (rule "blockEmptyLabel" (formula "135") (term "1"))
+ (rule "blockEmpty" (formula "135") (term "1"))
+ (rule "methodCallEmpty" (formula "135") (term "1"))
+ (rule "emptyModality" (formula "135") (term "1"))
+ (rule "andRight" (formula "135"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "closeTrue" (formula "135"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "closeTrue" (formula "135"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "135"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "135"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "135"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "100"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "andLeft" (formula "100"))
+ (rule "andLeft" (formula "100"))
+ (rule "eqSymm" (formula "102"))
+ (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "elim_double_block_2" (formula "136") (term "1"))
+ (rule "ifUnfold" (formula "136") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "136") (term "1") (newnames "x_13"))
+ (rule "inequality_comparison_simple" (formula "136") (term "1"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "replace_known_left" (formula "136") (term "0,0,1,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "ifSplit" (formula "136"))
+ (branch "if x_13 true"
+ (builtin "One Step Simplification" (formula "137"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_13 false"
+ (builtin "One Step Simplification" (formula "137"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "136") (term "1"))
+ (rule "assignmentAdditionInt" (formula "136") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "expand_inInt" (formula "136"))
+ (rule "replace_int_MAX" (formula "136") (term "1,0"))
+ (rule "replace_int_MIN" (formula "136") (term "0,1"))
+ (rule "replace_known_left" (formula "136") (term "1") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "71")))
+ (rule "closeTrue" (formula "136"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "136"))
+ (builtin "Block Contract (Internal)" (formula "136") (newnames "exc_12,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "27")) (ifInst "" (formula "75")))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "true_left" (formula "101"))
+ (rule "eqSymm" (formula "136") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "136") (term "0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "136") (term "1"))
+ (rule "variableDeclaration" (formula "136") (term "1") (newnames "exc_12_1"))
+ (rule "assignment" (formula "136") (term "1"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "emptyStatement" (formula "136") (term "1"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "emptyStatement" (formula "136") (term "1"))
+ (rule "tryEmpty" (formula "136") (term "1"))
+ (rule "blockEmptyLabel" (formula "136") (term "1"))
+ (rule "blockEmpty" (formula "136") (term "1"))
+ (rule "methodCallEmpty" (formula "136") (term "1"))
+ (rule "emptyModality" (formula "136") (term "1"))
+ (rule "andRight" (formula "136"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "closeTrue" (formula "136"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "closeTrue" (formula "136"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "136"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "136"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "136"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "101"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "103"))
+ (rule "translateJavaAddInt" (formula "140") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "103") (term "1"))
+ (rule "translateJavaAddInt" (formula "104") (term "0"))
+ (rule "replace_known_left" (formula "102") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "elim_double_block_2" (formula "139") (term "1"))
+ (rule "ifUnfold" (formula "139") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "139") (term "1") (newnames "x_14"))
+ (rule "inequality_comparison_simple" (formula "139") (term "1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "replace_known_left" (formula "139") (term "0,0,1,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "ifSplit" (formula "139"))
+ (branch "if x_14 true"
+ (builtin "One Step Simplification" (formula "140"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_14 false"
+ (builtin "One Step Simplification" (formula "140"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "139") (term "1"))
+ (rule "ifElseUnfold" (formula "139") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "139") (term "1") (newnames "x_15"))
+ (rule "less_than_comparison_simple" (formula "139") (term "1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "ifElseSplit" (formula "139"))
+ (branch "if x_15 true"
+ (builtin "Block Contract (Internal)" (formula "140") (newnames "exc_13,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "28")) (ifInst "" (formula "76")))
+ (rule "true_left" (formula "105"))
+ (rule "eqSymm" (formula "140") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "140") (term "1"))
+ (rule "variableDeclaration" (formula "140") (term "1") (newnames "exc_13_1"))
+ (rule "assignment" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "emptyStatement" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "emptyStatement" (formula "140") (term "1"))
+ (rule "tryEmpty" (formula "140") (term "1"))
+ (rule "blockEmptyLabel" (formula "140") (term "1"))
+ (rule "blockEmpty" (formula "140") (term "1"))
+ (rule "methodCallEmpty" (formula "140") (term "1"))
+ (rule "emptyModality" (formula "140") (term "1"))
+ (rule "andRight" (formula "140"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "closeTrue" (formula "140"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "closeTrue" (formula "140"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "140"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "140"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "76")))
+ (rule "closeTrue" (formula "140"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "105"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "eqSymm" (formula "107"))
+ (rule "replace_known_left" (formula "106") (term "0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "true_left" (formula "106"))
+ (rule "applyEq" (formula "106") (term "0") (ifseqformula "88"))
+ (rule "applyEq" (formula "74") (term "1,0") (ifseqformula "106"))
+ (rule "applyEq" (formula "90") (term "0") (ifseqformula "105"))
+ (rule "applyEq" (formula "74") (term "1,1") (ifseqformula "105"))
+ (rule "applyEq" (formula "86") (term "1") (ifseqformula "104"))
+ (rule "elim_double_block_2" (formula "140") (term "1"))
+ (rule "ifUnfold" (formula "140") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "140") (term "1") (newnames "x_16"))
+ (rule "inequality_comparison_simple" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "replace_known_left" (formula "140") (term "0,0,1,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "ifSplit" (formula "140"))
+ (branch "if x_16 true"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_16 false"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "140") (term "1"))
+ (rule "ifElseUnfold" (formula "140") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "140") (term "1") (newnames "x_17"))
+ (rule "less_than_comparison_simple" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "ifElseSplit" (formula "140"))
+ (branch "if x_17 true"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elim_double_block_2" (formula "141") (term "1"))
+ (rule "assignmentSubtractionInt" (formula "141") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "expand_inInt" (formula "141"))
+ (rule "replace_int_MAX" (formula "141") (term "1,0"))
+ (rule "replace_int_MIN" (formula "141") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "141") (term "1,1"))
+ (rule "mul_literals" (formula "141") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "141") (term "0,0"))
+ (rule "mul_literals" (formula "141") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "141") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "141") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "141") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "106"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0"))
+ (rule "add_literals" (formula "104") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "104") (term "0,0,0"))
+ (rule "add_zero_left" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0,0"))
+ (rule "add_zero_left" (formula "93") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0"))
+ (rule "add_zero_left" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "139") (term "1"))
+ (rule "mul_literals" (formula "139") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "139") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "139") (term "0,0,1"))
+ (rule "add_literals" (formula "139") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "139") (term "0"))
+ (rule "polySimp_mulComm0" (formula "139") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "139") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "139") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "139") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "139") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "139") (term "0,0,0"))
+ (rule "add_literals" (formula "139") (term "0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "137") (term "1"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "137") (term "1,1"))
+ (rule "mul_literals" (formula "137") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "137") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "137") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "67"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "10"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "67") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0"))
+ (rule "qeq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_subsumption0" (formula "131") (term "0") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq0" (formula "131") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "131") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "131") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "131") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "131") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "131") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "131") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "131") (term "0,0,0,0"))
+ (rule "add_literals" (formula "131") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "131") (term "0,0,0"))
+ (rule "add_literals" (formula "131") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "131") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "131") (term "0,0,0"))
+ (rule "qeq_literals" (formula "131") (term "0,0"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "inEqSimp_geqRight" (formula "131"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "4"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "7"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "80"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "86"))
+ (rule "mul_literals" (formula "89") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "89"))
+ (rule "mul_literals" (formula "89") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "79"))
+ (rule "leq_literals" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "70"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "80") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "37"))
+ (rule "inEqSimp_homoInEq0" (formula "80") (term "0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0,0"))
+ (rule "mul_literals" (formula "80") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "80") (term "0,0"))
+ (rule "add_literals" (formula "80") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "qeq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "95"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "73"))
+ (rule "mul_literals" (formula "89") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "add_literals" (formula "89") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "89"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0"))
+ (rule "polySimp_elimOne" (formula "89") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "89") (ifseqformula "24"))
+ (rule "leq_literals" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "95"))
+ (rule "times_zero_1" (formula "69") (term "0,0"))
+ (rule "add_zero_left" (formula "69") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "69"))
+ (rule "leq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "58"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "36"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "41"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "37"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "6"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "58"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "42"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "89"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "36"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "9"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "67"))
+ (rule "mul_literals" (formula "81") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "81"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "27"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "68"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "mul_literals" (formula "69") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "38"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "87"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1"))
+ (rule "mul_literals" (formula "77") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "68"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "7"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "87") (ifseqformula "96"))
+ (rule "inEqSimp_homoInEq0" (formula "87") (term "0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0"))
+ (rule "qeq_literals" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "true_left" (formula "87"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "73"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0"))
+ (rule "polySimp_elimOne" (formula "97") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "72"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (ifseqformula "65"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "Block Contract (Internal)" (formula "141") (newnames "exc_14,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "29")) (ifInst "" (formula "75")))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "true_left" (formula "106"))
+ (rule "eqSymm" (formula "141") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "141") (term "0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "141") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "141") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "141") (term "0,0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "141") (term "1"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "exc_14_1"))
+ (rule "assignment" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (rule "tryEmpty" (formula "141") (term "1"))
+ (rule "blockEmptyLabel" (formula "141") (term "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "methodCallEmpty" (formula "141") (term "1"))
+ (rule "emptyModality" (formula "141") (term "1"))
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "102")))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "107"))
+ (rule "andLeft" (formula "106"))
+ (rule "translateJavaSubInt" (formula "145") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "109") (term "0"))
+ (rule "translateJavaSubInt" (formula "108") (term "1"))
+ (rule "replace_known_left" (formula "107") (term "0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "true_left" (formula "107"))
+ (rule "polySimp_elimSub" (formula "144") (term "0,1,0"))
+ (rule "mul_literals" (formula "144") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "108") (term "0"))
+ (rule "mul_literals" (formula "108") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "107") (term "1"))
+ (rule "mul_literals" (formula "107") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "144") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "108") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "1"))
+ (rule "polySimp_addComm0" (formula "144") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,1"))
+ (rule "elim_double_block_2" (formula "144") (term "1"))
+ (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_18"))
+ (rule "inequality_comparison_simple" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "ifSplit" (formula "144"))
+ (branch "if x_18 true"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_18 false"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "144") (term "1"))
+ (rule "variableDeclarationAssign" (formula "144") (term "1"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "tail_len"))
+ (rule "assignmentSubtractionInt" (formula "144") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "expand_inInt" (formula "144"))
+ (rule "replace_int_MIN" (formula "144") (term "0,1"))
+ (rule "replace_int_MAX" (formula "144") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_elimSub" (formula "144") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "144") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "144") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "144") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "144") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "0,1,1,1"))
+ (rule "mul_literals" (formula "144") (term "0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "144") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "109"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "144") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "144") (term "0,0,0,0"))
+ (rule "add_literals" (formula "144") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "144") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "144") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "144") (term "0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "144") (term "0,0,1,1"))
+ (rule "add_literals" (formula "144") (term "1,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "144") (term "1,0,0,1,1"))
+ (rule "add_literals" (formula "144") (term "0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "108"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0"))
+ (rule "add_zero_left" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "0,1,0"))
+ (rule "mul_literals" (formula "107") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0,0"))
+ (rule "add_zero_left" (formula "91") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0"))
+ (rule "add_literals" (formula "106") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "106") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "106") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "142") (term "0"))
+ (rule "polySimp_mulComm0" (formula "142") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "142") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "142") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "142") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "142") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_literals" (formula "107") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "142") (term "1"))
+ (rule "mul_literals" (formula "142") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "142") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "142") (term "0,0,1"))
+ (rule "add_literals" (formula "142") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "142") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "142") (term "0,0,0"))
+ (rule "add_literals" (formula "142") (term "0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1"))
+ (rule "polySimp_elimOne" (formula "100") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1"))
+ (rule "polySimp_rightDist" (formula "105") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1"))
+ (rule "mul_literals" (formula "105") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "140") (term "1"))
+ (rule "polySimp_mulComm0" (formula "140") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "140") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "140") (term "1,1,1"))
+ (rule "mul_literals" (formula "140") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "140") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "140") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "140") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "140") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0,0"))
+ (rule "add_literals" (formula "88") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0,0"))
+ (rule "add_zero_right" (formula "88") (term "0,0"))
+ (rule "qeq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "10"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "135") (term "1") (ifseqformula "100"))
+ (rule "inEqSimp_homoInEq0" (formula "135") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "135") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "135") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "135") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "135") (term "0,0,0,1"))
+ (rule "add_literals" (formula "135") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "135") (term "0,0,1"))
+ (rule "add_literals" (formula "135") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "135") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "135") (term "0,0,1"))
+ (rule "qeq_literals" (formula "135") (term "0,1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "inEqSimp_leqRight" (formula "135"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_subsumption1" (formula "99") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "99") (term "0"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "99") (term "1,0,0"))
+ (rule "mul_literals" (formula "99") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "99") (term "0,0,0"))
+ (rule "add_literals" (formula "99") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0"))
+ (rule "add_literals" (formula "99") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "99") (term "1,0,0"))
+ (rule "add_literals" (formula "99") (term "0,0"))
+ (rule "qeq_literals" (formula "99") (term "0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_literals" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "144"))
+ (builtin "Block Contract (Internal)" (formula "144") (newnames "exc_15,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "29")) (ifInst "" (formula "75")))
+ (rule "true_left" (formula "109"))
+ (rule "eqSymm" (formula "144") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "144") (term "1"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "exc_15_1"))
+ (rule "assignment" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "emptyStatement" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "emptyStatement" (formula "144") (term "1"))
+ (rule "tryEmpty" (formula "144") (term "1"))
+ (rule "blockEmptyLabel" (formula "144") (term "1"))
+ (rule "blockEmpty" (formula "144") (term "1"))
+ (rule "methodCallEmpty" (formula "144") (term "1"))
+ (rule "emptyModality" (formula "144") (term "1"))
+ (rule "andRight" (formula "144"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "closeTrue" (formula "144"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "closeTrue" (formula "144"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "144"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "144"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "144"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "andLeft" (formula "109"))
+ (rule "andLeft" (formula "109"))
+ (rule "translateJavaSubInt" (formula "147") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "111") (term "0"))
+ (rule "translateJavaSubInt" (formula "111") (term "0,1"))
+ (rule "translateJavaSubInt" (formula "111") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "111") (term "1"))
+ (rule "replace_known_left" (formula "110") (term "0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "true_left" (formula "110"))
+ (rule "polySimp_elimSub" (formula "146") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "110") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "110") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "146") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "146") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "146") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "146") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "146") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "0,1,0,1"))
+ (rule "mul_literals" (formula "110") (term "0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "110") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "110") (term "1"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,1,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "110") (term "0,0,1,0,1"))
+ (rule "add_literals" (formula "110") (term "1,0,0,1,0,1"))
+ (rule "times_zero_1" (formula "110") (term "0,0,1,0,1"))
+ (rule "add_zero_left" (formula "110") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "146") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "146") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "146") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "146") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "146") (term "1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "146") (term "1,0,0,0,1,0"))
+ (rule "add_literals" (formula "146") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "110") (term "0,0,0,1"))
+ (rule "add_literals" (formula "110") (term "1,1,0,0,0,1"))
+ (rule "times_zero_1" (formula "110") (term "1,0,0,0,1"))
+ (rule "add_zero_right" (formula "110") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,1"))
+ (rule "elim_double_block_2" (formula "146") (term "1"))
+ (builtin "Use Dependency Contract" (formula "94") (term "0") (ifInst "" (formula "94") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "111") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "111") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "111") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "111") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "111") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "111") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "111") (term "1") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "143")) (ifInst "" (formula "26")) (ifInst "" (formula "18")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "76")) (ifInst "" (formula "31")))
+ (rule "true_left" (formula "111"))
+ (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_19"))
+ (rule "inequality_comparison_simple" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "ifSplit" (formula "146"))
+ (branch "if x_19 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_19 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "146") (term "1"))
+ (builtin "Use Operation Contract" (formula "146") (newnames "heapBefore_copy_nonoverlapping,exc_16,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "148"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "expand_inInt" (formula "112") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "112") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "112"))
+ (rule "andLeft" (formula "113"))
+ (rule "andLeft" (formula "113"))
+ (rule "andLeft" (formula "113"))
+ (rule "translateJavaSubInt" (formula "112") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "113") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "113") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "113") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "114") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "112") (term "0,2,1,0"))
+ (rule "polySimp_elimSub" (formula "112") (term "2,1,0"))
+ (rule "mul_literals" (formula "112") (term "1,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "3,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "2,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0,3,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "114") (term "0,3,0,1,0"))
+ (rule "add_literals" (formula "114") (term "1,1,0,3,0,1,0"))
+ (rule "times_zero_1" (formula "114") (term "1,0,3,0,1,0"))
+ (rule "polySimp_addLiterals" (formula "114") (term "0,3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,3,0,1,0"))
+ (rule "add_literals" (formula "114") (term "0,0,3,0,1,0"))
+ (rule "add_zero_left" (formula "114") (term "0,3,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "112") (term "0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,0,2,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "112") (term "0,2,1,0"))
+ (rule "add_literals" (formula "112") (term "1,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "112") (term "1,0,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "112") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,2,1,0"))
+ (rule "add_literals" (formula "112") (term "0,0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "114") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "1,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "151") (term "1"))
+ (rule "variableDeclaration" (formula "151") (term "1") (newnames "head_elements"))
+ (rule "commute_and" (formula "114") (term "0,0"))
+ (rule "commute_and" (formula "113") (term "0,0,0"))
+ (rule "commute_and" (formula "113") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "113") (term "0,0"))
+ (rule "commute_and_2" (formula "113") (term "0,0,0"))
+ (rule "assignmentSubtractionInt" (formula "151") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "expand_inInt" (formula "151"))
+ (rule "replace_int_MIN" (formula "151") (term "0,1"))
+ (rule "replace_int_MAX" (formula "151") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "151") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "151") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "151") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "151") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "151") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "151") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "151") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "151") (term "1,0,1,1,1"))
+ (rule "mul_literals" (formula "151") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "151") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "151") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "151") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "151") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "151") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "110") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "151") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "151") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "151") (term "0,1,1"))
+ (rule "add_literals" (formula "151") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "151") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "151") (term "0,0,0"))
+ (rule "add_literals" (formula "151") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "151") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "114") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_addComm1" (formula "92") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0"))
+ (rule "add_zero_left" (formula "92") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "108"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "0,1,0"))
+ (rule "mul_literals" (formula "108") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "108") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_mulComm0" (formula "91") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "91") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "91") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0"))
+ (rule "add_literals" (formula "106") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "106") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "106") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "101") (term "0,0,0"))
+ (rule "add_literals" (formula "101") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "101") (term "0,0,0"))
+ (rule "add_zero_left" (formula "101") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0,0"))
+ (rule "add_zero_left" (formula "91") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "149") (term "1"))
+ (rule "mul_literals" (formula "149") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "149") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "149") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "149") (term "0"))
+ (rule "polySimp_mulComm0" (formula "149") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "149") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "149") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "149") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "149") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "149") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "112") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "112") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "112") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "112") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1"))
+ (rule "polySimp_rightDist" (formula "106") (term "1"))
+ (rule "mul_literals" (formula "106") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "0"))
+ (rule "polySimp_elimOne" (formula "91") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "147") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "147") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "147") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "147") (term "0"))
+ (rule "polySimp_mulComm0" (formula "147") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "147") (term "1,0"))
+ (rule "mul_literals" (formula "147") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "147") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "147") (term "1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "10"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "85") (ifseqformula "99"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0,0"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0"))
+ (rule "add_zero_right" (formula "85") (term "0,0"))
+ (rule "qeq_literals" (formula "85") (term "0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "true_left" (formula "85"))
+ (rule "inEqSimp_subsumption1" (formula "141") (term "0") (ifseqformula "99"))
+ (rule "inEqSimp_homoInEq0" (formula "141") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "141") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "141") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0,0,0"))
+ (rule "add_literals" (formula "141") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,0"))
+ (rule "add_literals" (formula "141") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "141") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "141") (term "0,0,0"))
+ (rule "qeq_literals" (formula "141") (term "0,0"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_leqRight" (formula "141"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_subsumption1" (formula "99") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "99") (term "0"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "99") (term "1,0,0"))
+ (rule "mul_literals" (formula "99") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "99") (term "0,0,0"))
+ (rule "add_literals" (formula "99") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0"))
+ (rule "add_literals" (formula "99") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "99") (term "1,0,0"))
+ (rule "add_literals" (formula "99") (term "0,0"))
+ (rule "qeq_literals" (formula "99") (term "0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "4"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "translateJavaSubInt" (formula "151") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "151") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "151") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "151") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "151") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "151") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "151") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "151") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "151") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "151") (term "0,0,1,0"))
+ (rule "add_literals" (formula "151") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "151") (term "0,0,1,0"))
+ (rule "compound_assignment_op_minus" (formula "151") (term "1"))
+ (rule "compound_int_cast_expression" (formula "151") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "151") (term "1"))
+ (rule "variableDeclaration" (formula "151") (term "1") (newnames "x_20"))
+ (rule "remove_parentheses_right" (formula "151") (term "1"))
+ (rule "compound_subtraction_2" (formula "151") (term "1") (inst "#v1=x_22") (inst "#v0=x_21"))
+ (rule "variableDeclarationAssign" (formula "151") (term "1"))
+ (rule "variableDeclaration" (formula "151") (term "1") (newnames "x_21"))
+ (rule "assignment" (formula "151") (term "1"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "variableDeclarationAssign" (formula "151") (term "1"))
+ (rule "variableDeclaration" (formula "151") (term "1") (newnames "x_22"))
+ (rule "remove_parentheses_right" (formula "151") (term "1"))
+ (rule "assignment" (formula "151") (term "1"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "assignmentSubtractionInt" (formula "151") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "expand_inInt" (formula "151") (userinteraction))
+ (rule "andRight" (formula "151"))
+ (branch
+ (rule "replace_int_MAX" (formula "151") (term "1"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_elimSub" (formula "151") (term "0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "151") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "151") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "151") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "151") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "151") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "110") (term "0,0,0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "151") (term "0"))
+ (rule "polySimp_addComm1" (formula "151") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "151"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0"))
+ (rule "add_literals" (formula "104") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "104") (term "0,0,0"))
+ (rule "add_zero_left" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "95"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "0,1,0"))
+ (rule "mul_literals" (formula "110") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_literals" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0,0"))
+ (rule "add_zero_left" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0"))
+ (rule "add_literals" (formula "108") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "108") (term "1,0,0,0"))
+ (rule "add_literals" (formula "108") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "110"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1"))
+ (rule "polySimp_elimOne" (formula "101") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1"))
+ (rule "polySimp_rightDist" (formula "106") (term "1"))
+ (rule "mul_literals" (formula "106") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "11"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0"))
+ (rule "add_literals" (formula "90") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "90") (term "1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0"))
+ (rule "qeq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "71") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0"))
+ (rule "add_literals" (formula "71") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "71") (term "1,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0"))
+ (rule "qeq_literals" (formula "71") (term "0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "70"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "98"))
+ (rule "mul_literals" (formula "87") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "add_literals" (formula "87") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "87"))
+ (rule "mul_literals" (formula "87") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "87"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "38"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "4"))
+ (rule "mul_literals" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "87"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "33"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "56"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62"))
+ (rule "mul_literals" (formula "67") (term "0,0"))
+ (rule "add_zero_left" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "71"))
+ (rule "mul_literals" (formula "88") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "22"))
+ (rule "leq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "3"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "qeq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "8"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "96") (ifseqformula "101"))
+ (rule "inEqSimp_homoInEq0" (formula "96") (term "0"))
+ (rule "polySimp_mulComm0" (formula "96") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "96") (term "1,0,0"))
+ (rule "mul_literals" (formula "96") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "96") (term "0,0,0"))
+ (rule "add_literals" (formula "96") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "96") (term "0,0"))
+ (rule "add_literals" (formula "96") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "96") (term "1,0,0"))
+ (rule "add_literals" (formula "96") (term "0,0"))
+ (rule "qeq_literals" (formula "96") (term "0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "95"))
+ (rule "mul_literals" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "71"))
+ (rule "leq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "qeq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "77"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "151") (term "0"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_elimSub" (formula "151") (term "1"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "151") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "151") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "151") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "151") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "151") (term "0,1,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "110") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "151") (term "1"))
+ (rule "polySimp_addComm1" (formula "151") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "151"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "95"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1,0"))
+ (rule "mul_literals" (formula "109") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0,0"))
+ (rule "add_zero_left" (formula "92") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_literals" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0"))
+ (rule "add_literals" (formula "108") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "108") (term "1,0,0,0"))
+ (rule "add_literals" (formula "108") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "110"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1"))
+ (rule "polySimp_elimOne" (formula "101") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1"))
+ (rule "polySimp_rightDist" (formula "106") (term "1"))
+ (rule "mul_literals" (formula "106") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "11"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "70"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0,0"))
+ (rule "add_literals" (formula "88") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0,0"))
+ (rule "add_literals" (formula "88") (term "0,0"))
+ (rule "qeq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0"))
+ (rule "qeq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "99"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "qeq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "63") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "93"))
+ (rule "mul_literals" (formula "67") (term "0,0"))
+ (rule "add_zero_left" (formula "67") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "88") (ifseqformula "67"))
+ (rule "leq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "69"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "80") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "35"))
+ (rule "inEqSimp_homoInEq0" (formula "80") (term "0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0,0"))
+ (rule "mul_literals" (formula "80") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "80") (term "0,0"))
+ (rule "add_literals" (formula "80") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "qeq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "93"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "1"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0,0,0"))
+ (rule "add_literals" (formula "80") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "69"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "40"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "78"))
+ (rule "mul_literals" (formula "58") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "add_literals" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "23"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "7"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "add_literals" (formula "66") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "37"))
+ (rule "leq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "6"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "10"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "91"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "39"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "69"))
+ (rule "polySimp_rightDist" (formula "103") (term "0,0"))
+ (rule "mul_literals" (formula "103") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0"))
+ (rule "add_literals" (formula "103") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "103") (ifseqformula "81"))
+ (rule "inEqSimp_homoInEq0" (formula "103") (term "0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "103") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "103") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "103") (term "0,0"))
+ (rule "add_literals" (formula "103") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "103") (term "1,0,0"))
+ (rule "add_literals" (formula "103") (term "0,0"))
+ (rule "qeq_literals" (formula "103") (term "0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "103") (term "0,0"))
+ (rule "mul_literals" (formula "103") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "add_literals" (formula "103") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "103") (ifseqformula "61"))
+ (rule "leq_literals" (formula "103") (term "0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "28"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "98") (term "0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "98") (term "0"))
+ (rule "add_literals" (formula "98") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "98"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "99") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "99"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "0"))
+ (rule "polySimp_elimOne" (formula "99") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "99") (term "0"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "99") (term "1,0,0"))
+ (rule "mul_literals" (formula "99") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "99") (term "0,0,0"))
+ (rule "add_literals" (formula "99") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0"))
+ (rule "add_literals" (formula "99") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "99") (term "1,0,0"))
+ (rule "add_literals" (formula "99") (term "0,0"))
+ (rule "qeq_literals" (formula "99") (term "0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "69"))
+ (rule "polySimp_mulComm0" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "99") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "99"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "0"))
+ (rule "polySimp_elimOne" (formula "99") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "104") (term "0,0"))
+ (rule "mul_literals" (formula "104") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "104") (term "0,0"))
+ (rule "add_literals" (formula "104") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "104") (term "1,0,0"))
+ (rule "add_zero_right" (formula "104") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "add_literals" (formula "104") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "qeq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "81"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "98"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0"))
+ (rule "polySimp_elimOne" (formula "98") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "75"))
+ (rule "polySimp_rightDist" (formula "104") (term "0,0"))
+ (rule "mul_literals" (formula "104") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "102"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "78"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0"))
+ (rule "add_literals" (formula "70") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70"))
+ (rule "mul_literals" (formula "70") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "39"))
+ (rule "leq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "74"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "98"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0"))
+ (rule "polySimp_elimOne" (formula "98") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "43"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "69"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "add_literals" (formula "83") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "83"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "83") (ifseqformula "27"))
+ (rule "leq_literals" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "9"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "add_literals" (formula "83") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "mul_literals" (formula "83") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "83"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "43"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_and_subsumption2" (formula "53") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "53") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "38"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "81"))
+ (rule "times_zero_1" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "mul_literals" (formula "71") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "99"))
+ (rule "times_zero_1" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "105"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "72"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_contradInEq1" (formula "71") (ifseqformula "37"))
+ (rule "qeq_literals" (formula "71") (term "0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "closeFalse" (formula "71"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "translateJavaSubInt" (formula "151") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "151") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "151") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "151") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "151") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "151") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "151") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "151") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "151") (term "0,0,1,0"))
+ (rule "widening_identity_cast_5" (formula "151") (term "1"))
+ (rule "assignment" (formula "151") (term "1"))
+ (builtin "One Step Simplification" (formula "151"))
+ (builtin "Use Operation Contract" (formula "151") (newnames "heapBefore_copy_nonoverlapping_0,exc_17,heapAfter_copy_nonoverlapping_0,anon_heap_copy_nonoverlapping_0") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "117"))
+ (builtin "One Step Simplification" (formula "153"))
+ (builtin "Block Contract (Internal)" (formula "153") (newnames "exc_18,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "29")))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "expand_inInt" (formula "117") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "117") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "117"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "eqSymm" (formula "157") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "117") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "119") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "119") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "0,2,1,0"))
+ (rule "polySimp_elimSub" (formula "117") (term "2,1,0"))
+ (rule "mul_literals" (formula "117") (term "1,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "119") (term "3,1,1,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "0,3,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,1,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,3,1,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,3,1,1,0"))
+ (rule "add_zero_right" (formula "119") (term "3,1,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "119") (term "3,1,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,3,1,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,3,1,1,0"))
+ (rule "add_literals" (formula "119") (term "3,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "119") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "0,3,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,0,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,3,0,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,3,0,1,0"))
+ (rule "add_zero_right" (formula "119") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "3,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "119") (term "0,3,0,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,0,3,0,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,0,3,0,1,0"))
+ (rule "add_zero_right" (formula "119") (term "0,3,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "0,0,2,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "117") (term "0,2,1,0"))
+ (rule "add_literals" (formula "117") (term "1,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "117") (term "1,0,2,1,0"))
+ (rule "add_zero_right" (formula "117") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "0,2,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "117") (term "0,0,2,1,0"))
+ (rule "add_literals" (formula "117") (term "1,1,0,0,2,1,0"))
+ (rule "times_zero_1" (formula "117") (term "1,0,0,2,1,0"))
+ (rule "add_zero_right" (formula "117") (term "0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "117") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "119") (term "1,0,0"))
+ (rule "variableDeclarationAssign" (formula "157") (term "1"))
+ (rule "variableDeclaration" (formula "157") (term "1") (newnames "exc_18_1"))
+ (rule "assignment" (formula "157") (term "1"))
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "emptyStatement" (formula "157") (term "1"))
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "emptyStatement" (formula "157") (term "1"))
+ (rule "commute_and" (formula "119") (term "0,0"))
+ (rule "commute_and" (formula "118") (term "0,0,0"))
+ (rule "commute_and" (formula "118") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "118") (term "0,0"))
+ (rule "commute_and_2" (formula "118") (term "0,0,0"))
+ (rule "tryEmpty" (formula "157") (term "1"))
+ (rule "blockEmptyLabel" (formula "157") (term "1"))
+ (rule "blockEmpty" (formula "157") (term "1"))
+ (rule "methodCallEmpty" (formula "157") (term "1"))
+ (rule "emptyModality" (formula "157") (term "1"))
+ (rule "andRight" (formula "157"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "closeTrue" (formula "157"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "closeTrue" (formula "157"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "153"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "153") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "153"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "expand_inInt" (formula "117") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "117") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "117"))
+ (rule "wellFormedAnonEQ" (formula "154") (ifseqformula "117"))
+ (rule "wellFormedAnonEQ" (formula "154") (term "0") (ifseqformula "112"))
+ (rule "wellFormedAnon" (formula "154") (term "0,0"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "translateJavaSubInt" (formula "117") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "119") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "119") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "156") (term "1") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111")))
+ (rule "closeTrue" (formula "156"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "118"))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "expand_inInt" (formula "117") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "117") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "117") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "117") (term "1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "1,1") (ifseqformula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0,1,1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "andLeft" (formula "120"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "120"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "translateJavaSubInt" (formula "117") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "119") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "119") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "122") (term "0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "true_left" (formula "122"))
+ (rule "polySimp_elimSub" (formula "117") (term "2,1,0"))
+ (rule "mul_literals" (formula "117") (term "1,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "119") (term "3,1,1,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "0,3,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,1,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,3,1,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,3,1,1,0"))
+ (rule "add_zero_right" (formula "119") (term "3,1,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "119") (term "3,1,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,3,1,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,3,1,1,0"))
+ (rule "add_literals" (formula "119") (term "3,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "119") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "0,3,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,0,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,3,0,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,3,0,1,0"))
+ (rule "add_zero_right" (formula "119") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "3,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "119") (term "0,3,0,1,0"))
+ (rule "add_literals" (formula "119") (term "1,1,0,3,0,1,0"))
+ (rule "times_zero_1" (formula "119") (term "1,0,3,0,1,0"))
+ (rule "add_zero_right" (formula "119") (term "0,3,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "0,0,0,2,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "117") (term "0,0,0,0,2,1,0"))
+ (rule "add_literals" (formula "117") (term "1,1,0,0,0,0,2,1,0"))
+ (rule "times_zero_1" (formula "117") (term "1,0,0,0,0,2,1,0"))
+ (rule "add_zero_right" (formula "117") (term "0,0,0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "0,2,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "117") (term "2,1,0"))
+ (rule "add_literals" (formula "117") (term "1,1,2,1,0"))
+ (rule "times_zero_1" (formula "117") (term "1,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "117") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "117") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "119") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "1,1,0,0"))
+ (rule "commute_and" (formula "119") (term "0,0"))
+ (rule "elim_double_block_2" (formula "159") (term "1"))
+ (rule "commute_and" (formula "118") (term "0,0,0"))
+ (rule "commute_and" (formula "118") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "118") (term "0,0"))
+ (rule "commute_and_2" (formula "118") (term "0,0,0"))
+ (rule "ifUnfold" (formula "159") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "159") (term "1") (newnames "x_23"))
+ (rule "inequality_comparison_simple" (formula "159") (term "1"))
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "replace_known_left" (formula "159") (term "0,0,1,0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "159"))
+ (builtin "Use Dependency Contract" (formula "110") (term "1,0") (ifInst "" (formula "49") (term "1,1,1,0")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "124") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "124") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "124") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "124") (term "0,1,1,0,0,0"))
+ (rule "replace_known_right" (formula "124") (term "0,0,0,0,0,0,0") (ifseqformula "158"))
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "24")) (ifInst "" (formula "18")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "76")) (ifInst "" (formula "30")))
+ (rule "disjointDefinition" (formula "124") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "124") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "124") (term "0,1,0"))
+ (rule "replace_known_right" (formula "124") (term "0,0,0,1,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "inEqSimp_commuteLeq" (formula "124") (term "0,1,0"))
+ (rule "replace_known_left" (formula "124") (term "0,1,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0"))
+ (rule "replace_known_left" (formula "124") (term "0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "applyEq" (formula "124") (term "1,0") (ifseqformula "42"))
+ (rule "replace_known_left" (formula "124") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "applyEq" (formula "110") (term "1,0") (ifseqformula "124"))
+ (rule "ifSplit" (formula "160"))
+ (branch "if x_23 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_23 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "160") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "160") (newnames "exc_19,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "29")))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "eqSymm" (formula "161") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "161") (term "1"))
+ (rule "variableDeclaration" (formula "161") (term "1") (newnames "exc_19_1"))
+ (rule "assignment" (formula "161") (term "1"))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "emptyStatement" (formula "161") (term "1"))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "emptyStatement" (formula "161") (term "1"))
+ (rule "tryEmpty" (formula "161") (term "1"))
+ (rule "blockEmptyLabel" (formula "161") (term "1"))
+ (rule "blockEmpty" (formula "161") (term "1"))
+ (rule "methodCallEmpty" (formula "161") (term "1"))
+ (rule "emptyModality" (formula "161") (term "1"))
+ (rule "andRight" (formula "161"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "closeTrue" (formula "161"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "closeTrue" (formula "161"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "160"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "160"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "wellFormedAnonEQ" (formula "160") (ifseqformula "117"))
+ (rule "wellFormedAnonEQ" (formula "160") (term "0") (ifseqformula "112"))
+ (rule "wellFormedAnon" (formula "160") (term "0,0"))
+ (rule "replace_known_left" (formula "160") (term "1") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111")))
+ (rule "closeTrue" (formula "160"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "161"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,1,0") (ifseqformula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,1,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "andLeft" (formula "125"))
+ (rule "andLeft" (formula "125"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "127"))
+ (rule "translateJavaAddInt" (formula "130") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "128") (term "3,0"))
+ (rule "replace_known_left" (formula "126") (term "0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "true_left" (formula "126"))
+ (rule "polySimp_addAssoc" (formula "129") (term "4,0"))
+ (rule "polySimp_addComm1" (formula "129") (term "0,4,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "129") (term "4,0"))
+ (rule "add_literals" (formula "129") (term "1,1,4,0"))
+ (rule "times_zero_1" (formula "129") (term "1,4,0"))
+ (rule "add_zero_right" (formula "129") (term "4,0"))
+ (rule "polySimp_addComm1" (formula "129") (term "4,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "129") (term "0,4,0"))
+ (rule "add_literals" (formula "129") (term "1,1,0,4,0"))
+ (rule "times_zero_1" (formula "129") (term "1,0,4,0"))
+ (rule "add_zero_right" (formula "129") (term "0,4,0"))
+ (rule "polySimp_addAssoc" (formula "127") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "127") (term "0,3,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "127") (term "3,0"))
+ (rule "add_literals" (formula "127") (term "1,1,3,0"))
+ (rule "times_zero_1" (formula "127") (term "1,3,0"))
+ (rule "add_zero_right" (formula "127") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "127") (term "3,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "127") (term "0,3,0"))
+ (rule "add_literals" (formula "127") (term "1,1,0,3,0"))
+ (rule "times_zero_1" (formula "127") (term "1,0,3,0"))
+ (rule "add_zero_right" (formula "127") (term "0,3,0"))
+ (rule "elim_double_block_2" (formula "166") (term "1"))
+ (rule "ifUnfold" (formula "166") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "166") (term "1") (newnames "x_24"))
+ (rule "inequality_comparison_simple" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "replace_known_left" (formula "166") (term "0,0,1,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "ifSplit" (formula "166"))
+ (branch "if x_24 true"
+ (builtin "One Step Simplification" (formula "167"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_24 false"
+ (builtin "One Step Simplification" (formula "167"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "166") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "166") (newnames "exc_20,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "29")))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "eqSymm" (formula "167") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "167") (term "1"))
+ (rule "variableDeclaration" (formula "167") (term "1") (newnames "exc_20_1"))
+ (rule "assignment" (formula "167") (term "1"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "emptyStatement" (formula "167") (term "1"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "emptyStatement" (formula "167") (term "1"))
+ (rule "tryEmpty" (formula "167") (term "1"))
+ (rule "blockEmptyLabel" (formula "167") (term "1"))
+ (rule "blockEmpty" (formula "167") (term "1"))
+ (rule "methodCallEmpty" (formula "167") (term "1"))
+ (rule "emptyModality" (formula "167") (term "1"))
+ (rule "andRight" (formula "167"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "closeTrue" (formula "167"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "closeTrue" (formula "167"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "166"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "166") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "166"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "wellFormedAnonEQ" (formula "166") (ifseqformula "117"))
+ (rule "wellFormedAnonEQ" (formula "166") (term "0") (ifseqformula "112"))
+ (rule "wellFormedAnon" (formula "166") (term "0,0"))
+ (rule "replace_known_left" (formula "166") (term "1,0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "166") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "116")))
+ (rule "closeTrue" (formula "166"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "167"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,1,0") (ifseqformula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "0,1,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "132"))
+ (rule "andLeft" (formula "131"))
+ (rule "replace_known_left" (formula "132") (term "0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "true_left" (formula "132"))
+ (rule "elim_double_block_2" (formula "169") (term "1"))
+ (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_25"))
+ (rule "inequality_comparison_simple" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "ifSplit" (formula "169"))
+ (branch "if x_25 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_25 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "169") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "169") (newnames "exc_21,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "29")))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "eqSymm" (formula "170") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "170") (term "1"))
+ (rule "variableDeclaration" (formula "170") (term "1") (newnames "exc_21_1"))
+ (rule "assignment" (formula "170") (term "1"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "emptyStatement" (formula "170") (term "1"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "emptyStatement" (formula "170") (term "1"))
+ (rule "tryEmpty" (formula "170") (term "1"))
+ (rule "blockEmptyLabel" (formula "170") (term "1"))
+ (rule "blockEmpty" (formula "170") (term "1"))
+ (rule "methodCallEmpty" (formula "170") (term "1"))
+ (rule "emptyModality" (formula "170") (term "1"))
+ (rule "andRight" (formula "170"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "closeTrue" (formula "170"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "closeTrue" (formula "170"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "169"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "169"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "wellFormedAnonEQ" (formula "169") (ifseqformula "117"))
+ (rule "wellFormedAnonEQ" (formula "169") (term "0") (ifseqformula "112"))
+ (rule "wellFormedAnon" (formula "169") (term "0,0"))
+ (rule "replace_known_left" (formula "169") (term "1") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111")))
+ (rule "closeTrue" (formula "169"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "134") (term "1,1,0") (ifseqformula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "134") (term "0,1,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "expand_inInt" (formula "134") (term "0,0,1"))
+ (rule "replace_int_MIN" (formula "134") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "134") (term "1,0,0,0,1"))
+ (rule "andLeft" (formula "134"))
+ (rule "andLeft" (formula "134"))
+ (rule "translateJavaAddInt" (formula "136") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "136") (term "2,0,1,1,0"))
+ (rule "replace_known_left" (formula "135") (term "0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "true_left" (formula "135"))
+ (rule "polySimp_addComm0" (formula "135") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "135") (term "2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "135") (term "0,2,1,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "135") (term "2,1,1,1,0"))
+ (rule "add_literals" (formula "135") (term "1,1,2,1,1,1,0"))
+ (rule "times_zero_1" (formula "135") (term "1,2,1,1,1,0"))
+ (rule "add_zero_right" (formula "135") (term "2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "135") (term "2,1,1,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "135") (term "0,2,1,1,1,0"))
+ (rule "add_literals" (formula "135") (term "1,1,0,2,1,1,1,0"))
+ (rule "times_zero_1" (formula "135") (term "1,0,2,1,1,1,0"))
+ (rule "add_zero_right" (formula "135") (term "0,2,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "135") (term "1,0,0"))
+ (rule "commute_and" (formula "135") (term "0,0"))
+ (rule "elim_double_block_2" (formula "171") (term "1"))
+ (rule "ifUnfold" (formula "171") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "171") (term "1") (newnames "x_26"))
+ (rule "inequality_comparison_simple" (formula "171") (term "1"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "replace_known_left" (formula "171") (term "0,0,1,0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "ifSplit" (formula "171"))
+ (branch "if x_26 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_26 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "171") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "171") (newnames "exc_22,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "29")))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "eqSymm" (formula "172") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "172") (term "1"))
+ (rule "variableDeclaration" (formula "172") (term "1") (newnames "exc_22_1"))
+ (rule "assignment" (formula "172") (term "1"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "emptyStatement" (formula "172") (term "1"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "emptyStatement" (formula "172") (term "1"))
+ (rule "tryEmpty" (formula "172") (term "1"))
+ (rule "blockEmptyLabel" (formula "172") (term "1"))
+ (rule "blockEmpty" (formula "172") (term "1"))
+ (rule "methodCallEmpty" (formula "172") (term "1"))
+ (rule "emptyModality" (formula "172") (term "1"))
+ (rule "andRight" (formula "172"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "closeTrue" (formula "172"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "closeTrue" (formula "172"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "171"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "171"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "wellFormedAnonEQ" (formula "171") (ifseqformula "117"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0") (ifseqformula "112"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0"))
+ (rule "replace_known_left" (formula "171") (term "1") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111")))
+ (rule "closeTrue" (formula "171"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "136"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "136") (term "1,1,0") (ifseqformula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "136") (term "0,1,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "andLeft" (formula "136"))
+ (rule "andLeft" (formula "137"))
+ (rule "andLeft" (formula "136"))
+ (rule "andLeft" (formula "138"))
+ (rule "translateJavaAddInt" (formula "140") (term "3,0"))
+ (rule "replace_known_left" (formula "137") (term "0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "true_left" (formula "137"))
+ (rule "polySimp_addAssoc" (formula "139") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "139") (term "0,3,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "139") (term "3,0"))
+ (rule "add_literals" (formula "139") (term "1,1,3,0"))
+ (rule "times_zero_1" (formula "139") (term "1,3,0"))
+ (rule "add_zero_right" (formula "139") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "139") (term "3,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "139") (term "0,3,0"))
+ (rule "add_literals" (formula "139") (term "1,1,0,3,0"))
+ (rule "times_zero_1" (formula "139") (term "1,0,3,0"))
+ (rule "add_zero_right" (formula "139") (term "0,3,0"))
+ (rule "elim_double_block_2" (formula "175") (term "1"))
+ (rule "ifUnfold" (formula "175") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "175") (term "1") (newnames "x_27"))
+ (rule "inequality_comparison_simple" (formula "175") (term "1"))
+ (builtin "One Step Simplification" (formula "175"))
+ (rule "replace_known_left" (formula "175") (term "0,0,1,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "175"))
+ (rule "ifSplit" (formula "175"))
+ (branch "if x_27 true"
+ (builtin "One Step Simplification" (formula "176"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_27 false"
+ (builtin "One Step Simplification" (formula "176"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "175") (term "1"))
+ (rule "assignment" (formula "175") (term "1"))
+ (builtin "One Step Simplification" (formula "175"))
+ (rule "blockEmpty" (formula "175") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "175") (newnames "exc_23,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "176"))
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "29")))
+ (rule "eqSymm" (formula "176") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "176") (term "1"))
+ (rule "variableDeclaration" (formula "176") (term "1") (newnames "exc_23_1"))
+ (rule "assignment" (formula "176") (term "1"))
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "emptyStatement" (formula "176") (term "1"))
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "emptyStatement" (formula "176") (term "1"))
+ (rule "tryEmpty" (formula "176") (term "1"))
+ (rule "blockEmptyLabel" (formula "176") (term "1"))
+ (rule "blockEmpty" (formula "176") (term "1"))
+ (rule "methodCallEmpty" (formula "176") (term "1"))
+ (rule "emptyModality" (formula "176") (term "1"))
+ (rule "andRight" (formula "176"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "closeTrue" (formula "176"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "closeTrue" (formula "176"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "175"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "175") (ifInst "" (formula "29")))
+ (rule "closeTrue" (formula "175"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "175"))
+ (rule "wellFormedAnonEQ" (formula "175") (ifseqformula "117"))
+ (rule "wellFormedAnonEQ" (formula "175") (term "0") (ifseqformula "112"))
+ (rule "wellFormedAnon" (formula "175") (term "0,0"))
+ (rule "replace_known_left" (formula "175") (term "1") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "175") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111")))
+ (rule "closeTrue" (formula "175"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "176"))
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "122")) (ifInst "" (formula "123")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "140") (term "1,1") (ifseqformula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "140") (term "0,1,1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "andLeft" (formula "140"))
+ (rule "replace_known_left" (formula "141") (term "0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "true_left" (formula "141"))
+ (rule "elim_double_block_2" (formula "176") (term "1"))
+ (rule "ifUnfold" (formula "176") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "176") (term "1") (newnames "x_28"))
+ (rule "inequality_comparison_simple" (formula "176") (term "1"))
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "replace_known_left" (formula "176") (term "0,0,1,0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "ifSplit" (formula "176"))
+ (branch "if x_28 true"
+ (builtin "One Step Simplification" (formula "177"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_28 false"
+ (builtin "One Step Simplification" (formula "177"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "176") (term "1"))
+ (rule "emptyStatement" (formula "176") (term "1"))
+ (rule "tryEmpty" (formula "176") (term "1"))
+ (rule "blockEmptyLabel" (formula "176") (term "1"))
+ (rule "blockEmpty" (formula "176") (term "1"))
+ (rule "methodCallEmpty" (formula "176") (term "1"))
+ (rule "emptyModality" (formula "176") (term "1"))
+ (rule "andRight" (formula "176"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "closeTrue" (formula "176"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "176"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "176") (ifInst "" (formula "122")))
+ (rule "closeTrue" (formula "176"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "176") (ifInst "" (formula "123")))
+ (rule "closeTrue" (formula "176"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "117"))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "andLeft" (formula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (term "1,0") (ifseqformula "117"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (term "0,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "notLeft" (formula "118"))
+ (rule "close" (formula "120") (ifseqformula "119"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "146")) (ifInst "" (formula "150")) (ifInst "" (formula "146")) (ifInst "" (formula "150")))
+ (rule "andRight" (formula "151"))
+ (branch "Case 1"
+ (rule "andRight" (formula "151"))
+ (branch
+ (rule "andRight" (formula "151"))
+ (branch
+ (rule "andRight" (formula "151"))
+ (branch
+ (rule "andRight" (formula "151"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "151") (ifseqformula "112"))
+ (rule "wellFormedAnon" (formula "151") (term "0"))
+ (rule "replace_known_left" (formula "151") (term "1") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "18")) (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "151"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "151"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "151"))
+ (rule "replace_int_MIN" (formula "151") (term "0,1"))
+ (rule "replace_int_MAX" (formula "151") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "110") (term "0,0,0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "114") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_addComm1" (formula "92") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0"))
+ (rule "add_zero_left" (formula "92") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "92") (term "0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0,0"))
+ (rule "add_zero_left" (formula "92") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "108"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "0,1,0"))
+ (rule "mul_literals" (formula "108") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "108") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "149") (term "1"))
+ (rule "mul_literals" (formula "149") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "149") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "149") (term "0"))
+ (rule "polySimp_mulComm0" (formula "149") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "149") (term "0,0,1"))
+ (rule "add_literals" (formula "149") (term "0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_rightDist" (formula "149") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "149") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "149") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "149") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "149") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0"))
+ (rule "add_literals" (formula "106") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "106") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "106") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "149") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "149") (term "0,0,0"))
+ (rule "add_literals" (formula "149") (term "0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "112") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "112") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "112") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "112") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "148") (term "1"))
+ (rule "polySimp_mulComm0" (formula "148") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "148") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "148") (term "1,1,1"))
+ (rule "mul_literals" (formula "148") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "148") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "0"))
+ (rule "polySimp_elimOne" (formula "91") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1"))
+ (rule "polySimp_elimOne" (formula "100") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1"))
+ (rule "polySimp_rightDist" (formula "105") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1"))
+ (rule "mul_literals" (formula "105") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "147") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "147") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "147") (term "0,0"))
+ (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0"))
+ (rule "add_literals" (formula "90") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "90") (term "1,0,0"))
+ (rule "add_zero_right" (formula "90") (term "0,0"))
+ (rule "qeq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "10"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "69"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "141") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "141") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "141") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "141") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0,0,0"))
+ (rule "add_literals" (formula "141") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,0"))
+ (rule "add_literals" (formula "141") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "141") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "141") (term "0,0,0"))
+ (rule "qeq_literals" (formula "141") (term "0,0"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_geqRight" (formula "141"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_contradInEq0" (formula "99") (ifseqformula "1"))
+ (rule "andLeft" (formula "99"))
+ (rule "inEqSimp_homoInEq1" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "99") (term "1,0"))
+ (rule "mul_literals" (formula "99") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "99") (term "0"))
+ (rule "polySimp_addComm1" (formula "99") (term "0,0"))
+ (rule "add_literals" (formula "99") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "99") (term "0"))
+ (rule "add_literals" (formula "99") (term "1,1,0"))
+ (rule "times_zero_1" (formula "99") (term "1,0"))
+ (rule "add_literals" (formula "99") (term "0"))
+ (rule "leq_literals" (formula "99"))
+ (rule "closeFalse" (formula "99"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "151"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "151") (userinteraction))
+ (rule "andRight" (formula "151"))
+ (branch
+ (rule "replace_int_MAX" (formula "151") (term "1"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "110") (term "0,0,0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "151"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "115") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "115") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "115") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0"))
+ (rule "add_literals" (formula "104") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "104") (term "0,0,0"))
+ (rule "add_zero_left" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "109") (term "0,0,0"))
+ (rule "add_literals" (formula "109") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "109") (term "1,0,0,0"))
+ (rule "add_literals" (formula "109") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1,0"))
+ (rule "mul_literals" (formula "109") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0,0"))
+ (rule "add_zero_left" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0"))
+ (rule "add_literals" (formula "108") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "108") (term "1,0,0,0"))
+ (rule "add_literals" (formula "108") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "polySimp_sepNegMonomial" (formula "110"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "107"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1"))
+ (rule "polySimp_rightDist" (formula "106") (term "1"))
+ (rule "mul_literals" (formula "106") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0"))
+ (rule "add_literals" (formula "90") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "90") (term "1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0"))
+ (rule "qeq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "11"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "72"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "151") (term "0"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "110") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "151"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "115") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "115") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "115") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "105") (term "0,0,0"))
+ (rule "add_literals" (formula "105") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "105") (term "0,0,0"))
+ (rule "add_zero_left" (formula "105") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "94") (term "0,0,0"))
+ (rule "add_literals" (formula "94") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "94") (term "0,0,0"))
+ (rule "add_zero_left" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "0,1,0"))
+ (rule "mul_literals" (formula "110") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "95"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_literals" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0"))
+ (rule "add_literals" (formula "108") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "108") (term "1,0,0,0"))
+ (rule "add_literals" (formula "108") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "110"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1"))
+ (rule "polySimp_elimOne" (formula "103") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1"))
+ (rule "polySimp_rightDist" (formula "106") (term "1"))
+ (rule "mul_literals" (formula "106") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "70"))
+ (rule "leq_literals" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0"))
+ (rule "add_literals" (formula "90") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "90") (term "1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0"))
+ (rule "qeq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "11"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "99"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "qeq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0"))
+ (rule "polySimp_elimOne" (formula "94") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "99"))
+ (rule "inEqSimp_homoInEq0" (formula "94") (term "0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "94") (term "0,0"))
+ (rule "add_literals" (formula "94") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "94") (term "1,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0"))
+ (rule "qeq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "add_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "33"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "98"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "add_literals" (formula "72") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "72"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "93"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "68"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0"))
+ (rule "polySimp_elimOne" (formula "94") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "99"))
+ (rule "mul_literals" (formula "87") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "add_literals" (formula "87") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "87"))
+ (rule "mul_literals" (formula "87") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "87"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "1"))
+ (rule "mul_literals" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "5"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "71"))
+ (rule "mul_literals" (formula "88") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "22"))
+ (rule "leq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "38"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "95"))
+ (rule "mul_literals" (formula "68") (term "0,0"))
+ (rule "add_zero_left" (formula "68") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "68"))
+ (rule "leq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "57"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "98") (term "0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "98") (term "0"))
+ (rule "add_literals" (formula "98") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "98"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "89"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "35"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "99") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "99"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "0"))
+ (rule "polySimp_elimOne" (formula "99") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "64"))
+ (rule "mul_literals" (formula "70") (term "0,0"))
+ (rule "add_zero_left" (formula "70") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "41"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "66"))
+ (rule "mul_literals" (formula "82") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0"))
+ (rule "add_literals" (formula "82") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "82"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "24"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "41"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "8"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "add_literals" (formula "83") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "mul_literals" (formula "83") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "92"))
+ (rule "leq_literals" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "81"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "6"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "73"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1"))
+ (rule "polySimp_rightDist" (formula "83") (term "1"))
+ (rule "mul_literals" (formula "83") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "39"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "83") (term "0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0"))
+ (rule "qeq_literals" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "105") (term "0,0"))
+ (rule "add_literals" (formula "105") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "105") (term "1,0,0"))
+ (rule "add_zero_right" (formula "105") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,0"))
+ (rule "add_literals" (formula "105") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "105"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "qeq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "80"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "add_literals" (formula "105") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "105") (ifseqformula "61"))
+ (rule "leq_literals" (formula "105") (term "0"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "true_left" (formula "105"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1"))
+ (rule "mul_literals" (formula "69") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_literals" (formula "69") (term "0,0"))
+ (rule "qeq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "73"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,0"))
+ (rule "mul_literals" (formula "105") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "80"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "mul_literals" (formula "69") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "38"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "106") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "106") (term "0,0"))
+ (rule "mul_literals" (formula "106") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0,0"))
+ (rule "add_literals" (formula "106") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "106") (ifseqformula "79"))
+ (rule "inEqSimp_homoInEq0" (formula "106") (term "0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0,0"))
+ (rule "mul_literals" (formula "106") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0,0"))
+ (rule "add_literals" (formula "106") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "106") (term "0,0"))
+ (rule "add_literals" (formula "106") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "106") (term "1,0,0"))
+ (rule "add_literals" (formula "106") (term "0,0"))
+ (rule "qeq_literals" (formula "106") (term "0"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "true_left" (formula "106"))
+ (rule "inEqSimp_and_subsumption2" (formula "53") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "53") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "90") (ifseqformula "79"))
+ (rule "mul_literals" (formula "90") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0"))
+ (rule "add_literals" (formula "90") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "90"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0"))
+ (rule "polySimp_elimOne" (formula "90") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "27"))
+ (rule "leq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_exactShadow3" (formula "90") (ifseqformula "105"))
+ (rule "mul_literals" (formula "90") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0"))
+ (rule "add_literals" (formula "90") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "90"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1"))
+ (rule "polySimp_rightDist" (formula "90") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "1,1"))
+ (rule "mul_literals" (formula "90") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "90") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "39"))
+ (rule "inEqSimp_homoInEq0" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0"))
+ (rule "add_literals" (formula "90") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "90") (term "1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0"))
+ (rule "qeq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "105"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "81"))
+ (rule "mul_literals" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "mul_literals" (formula "71") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "98"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "4"))
+ (rule "mul_literals" (formula "73") (term "0,0"))
+ (rule "add_zero_left" (formula "73") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "73"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0"))
+ (rule "add_literals" (formula "39") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0"))
+ (rule "qeq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "104"))
+ (rule "times_zero_1" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "92") (ifseqformula "71"))
+ (rule "leq_literals" (formula "92") (term "0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "105"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "38") (ifseqformula "72"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "closeFalse" (formula "38"))
+ )
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "151"))
+ (rule "replace_int_MIN" (formula "151") (term "0,1"))
+ (rule "replace_int_MAX" (formula "151") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "116"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "111") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "111") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "114") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0"))
+ (rule "add_literals" (formula "104") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "104") (term "0,0,0"))
+ (rule "add_zero_left" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_addComm1" (formula "92") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0"))
+ (rule "add_zero_left" (formula "92") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "0,1,0"))
+ (rule "mul_literals" (formula "107") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_mulComm0" (formula "91") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "149") (term "1"))
+ (rule "mul_literals" (formula "149") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "149") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "149") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "149") (term "0"))
+ (rule "polySimp_mulComm0" (formula "149") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "91") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "91") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_rightDist" (formula "149") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "149") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "149") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "149") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0,0"))
+ (rule "add_zero_left" (formula "91") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0"))
+ (rule "add_literals" (formula "106") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "106") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "106") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "149") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "107") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "112") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "112") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "112") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "112") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "149") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "149") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "149") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "147") (term "0"))
+ (rule "polySimp_mulComm0" (formula "147") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "147") (term "1,0"))
+ (rule "mul_literals" (formula "147") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "147") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "147") (term "1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1"))
+ (rule "polySimp_rightDist" (formula "105") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1"))
+ (rule "mul_literals" (formula "105") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "10"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_subsumption0" (formula "146") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "146") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "146") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "146") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "146") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "146") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "146") (term "0,0,0,1"))
+ (rule "add_literals" (formula "146") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "146") (term "0,0,1"))
+ (rule "add_literals" (formula "146") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "146") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "146") (term "0,0,1"))
+ (rule "qeq_literals" (formula "146") (term "0,1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "inEqSimp_geqRight" (formula "146"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "88") (term "0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0,0"))
+ (rule "add_literals" (formula "88") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0,0"))
+ (rule "add_literals" (formula "88") (term "0,0"))
+ (rule "qeq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "69"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq0" (formula "98") (ifseqformula "1"))
+ (rule "andLeft" (formula "98"))
+ (rule "inEqSimp_homoInEq1" (formula "98"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "98") (term "1,0"))
+ (rule "mul_literals" (formula "98") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "98") (term "0"))
+ (rule "polySimp_addComm1" (formula "98") (term "0,0"))
+ (rule "add_literals" (formula "98") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "98") (term "0"))
+ (rule "add_literals" (formula "98") (term "1,1,0"))
+ (rule "times_zero_1" (formula "98") (term "1,0"))
+ (rule "add_literals" (formula "98") (term "0"))
+ (rule "leq_literals" (formula "98"))
+ (rule "closeFalse" (formula "98"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "andLeft" (formula "112"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "andLeft" (formula "113"))
+ (rule "andLeft" (formula "113"))
+ (rule "notLeft" (formula "113"))
+ (rule "close" (formula "115") (ifseqformula "114"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "141")) (ifInst "" (formula "145")) (ifInst "" (formula "75")) (ifInst "" (formula "141")) (ifInst "" (formula "28")) (ifInst "" (formula "145")) (ifInst "" (formula "19")))
+ (rule "expand_inInt" (formula "146") (term "1"))
+ (rule "expand_inInt" (formula "146") (term "1,0"))
+ (rule "expand_inInt" (formula "146") (term "0,0"))
+ (rule "replace_int_MIN" (formula "146") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "146") (term "1,0,1"))
+ (rule "replace_int_MAX" (formula "146") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "146") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "146") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "146") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "146") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "leq_literals" (formula "146") (term "0,0"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "111"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "111") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "111") (term "0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0"))
+ (rule "add_zero_left" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "0,1,0"))
+ (rule "mul_literals" (formula "107") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0,0"))
+ (rule "add_zero_left" (formula "91") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "144") (term "1,0"))
+ (rule "mul_literals" (formula "144") (term "1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "144") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "144") (term "0,0,1,0"))
+ (rule "add_literals" (formula "144") (term "0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "144") (term "1,1"))
+ (rule "mul_literals" (formula "144") (term "1,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "144") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "144") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "144") (term "0,1,1"))
+ (rule "polySimp_addComm1" (formula "144") (term "0,0,1,1"))
+ (rule "add_literals" (formula "144") (term "0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "144") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "1,0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "144") (term "1,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "144") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "144") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0"))
+ (rule "add_literals" (formula "106") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "106") (term "1,0,0,0"))
+ (rule "add_literals" (formula "106") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_literals" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,0,1"))
+ (rule "add_literals" (formula "144") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,0,0"))
+ (rule "add_literals" (formula "144") (term "0,0,0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "142") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "142") (term "1,1,0"))
+ (rule "mul_literals" (formula "142") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "142") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "142") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "142") (term "0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "142") (term "1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1"))
+ (rule "polySimp_elimOne" (formula "100") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1"))
+ (rule "polySimp_rightDist" (formula "105") (term "1"))
+ (rule "mul_literals" (formula "105") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "142") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "142") (term "0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "69"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "10"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "68") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0"))
+ (rule "add_zero_right" (formula "68") (term "0,0"))
+ (rule "qeq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "136") (term "1,1") (ifseqformula "99"))
+ (rule "inEqSimp_homoInEq0" (formula "136") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "136") (term "1,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "136") (term "1,0,0,1,1"))
+ (rule "mul_literals" (formula "136") (term "0,1,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "136") (term "0,0,1,1"))
+ (rule "polySimp_addComm1" (formula "136") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "136") (term "0,0,0,0,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "136") (term "0,0,1,1"))
+ (rule "add_literals" (formula "136") (term "1,1,0,0,1,1"))
+ (rule "times_zero_1" (formula "136") (term "1,0,0,1,1"))
+ (rule "add_zero_right" (formula "136") (term "0,0,1,1"))
+ (rule "qeq_literals" (formula "136") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "inEqSimp_subsumption0" (formula "84") (ifseqformula "98"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,0"))
+ (rule "mul_literals" (formula "84") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0"))
+ (rule "add_literals" (formula "84") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0,0"))
+ (rule "add_zero_right" (formula "84") (term "0,0"))
+ (rule "qeq_literals" (formula "84") (term "0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "inEqSimp_subsumption0" (formula "135") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "135") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "135") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "135") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "135") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "135") (term "0,0,0,1"))
+ (rule "add_literals" (formula "135") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "135") (term "0,0,1"))
+ (rule "add_literals" (formula "135") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "135") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "135") (term "0,0,1"))
+ (rule "qeq_literals" (formula "135") (term "0,1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "inEqSimp_subsumption0" (formula "135") (term "0") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq0" (formula "135") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "135") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "135") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "135") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "135") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "135") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "135") (term "0,0,0,0"))
+ (rule "add_literals" (formula "135") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "135") (term "0,0,0"))
+ (rule "add_literals" (formula "135") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "135") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "135") (term "0,0,0"))
+ (rule "qeq_literals" (formula "135") (term "0,0"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "inEqSimp_geqRight" (formula "135"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "37") (ifseqformula "3"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "1"))
+ (rule "mul_literals" (formula "56") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "56"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "2"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "7"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "67"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "57"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "98"))
+ (rule "mul_literals" (formula "87") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "add_literals" (formula "87") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "87"))
+ (rule "mul_literals" (formula "87") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "87"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "40"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "93"))
+ (rule "mul_literals" (formula "70") (term "0,0"))
+ (rule "add_zero_left" (formula "70") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "88") (ifseqformula "70"))
+ (rule "leq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "add_literals" (formula "68") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "35"))
+ (rule "leq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "qeq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "86"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "36"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "98"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "76"))
+ (rule "inEqSimp_homoInEq0" (formula "67") (term "0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0"))
+ (rule "qeq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "75"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "if x_17 false"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "141") (term "1"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "overflow_len"))
+ (rule "assignmentSubtractionInt" (formula "141") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "expand_inInt" (formula "141"))
+ (rule "replace_int_MIN" (formula "141") (term "0,1"))
+ (rule "replace_int_MAX" (formula "141") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "141") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "141") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "141") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "141") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "141") (term "0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "141") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "106"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "106"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "141") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "141") (term "0,0,1,1"))
+ (rule "add_literals" (formula "141") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "141") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "141") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "141") (term "0,0,0,0"))
+ (rule "add_literals" (formula "141") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "141") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "141") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0"))
+ (rule "add_literals" (formula "104") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "104") (term "0,0,0"))
+ (rule "add_zero_left" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0"))
+ (rule "add_zero_left" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_mulComm0" (formula "91") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "91") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "91") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0,0"))
+ (rule "add_zero_left" (formula "91") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "101") (term "0,0,0"))
+ (rule "add_literals" (formula "101") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "101") (term "0,0,0"))
+ (rule "add_zero_left" (formula "101") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "139") (term "1"))
+ (rule "mul_literals" (formula "139") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "139") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "139") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "139") (term "0"))
+ (rule "polySimp_mulComm0" (formula "139") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "139") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "139") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "139") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "139") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "139") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "99"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "0"))
+ (rule "polySimp_elimOne" (formula "99") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "137") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "137") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "137") (term "0"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "137") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "1,1,0"))
+ (rule "mul_literals" (formula "137") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "137") (term "1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "68"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0"))
+ (rule "qeq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "133") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "133") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "133") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "133") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "133") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "133") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "133") (term "0,0,0,1"))
+ (rule "add_literals" (formula "133") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "133") (term "0,0,1"))
+ (rule "add_literals" (formula "133") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "133") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "133") (term "0,0,1"))
+ (rule "qeq_literals" (formula "133") (term "0,1"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "inEqSimp_geqRight" (formula "133"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "11"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "63"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "62") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "qeq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "94"))
+ (rule "mul_literals" (formula "67") (term "0,0"))
+ (rule "add_zero_left" (formula "67") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "67"))
+ (rule "leq_literals" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "39"))
+ (rule "mul_literals" (formula "24") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "35"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0"))
+ (rule "add_zero_left" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "65"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "qeq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "88"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "34"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "65"))
+ (rule "mul_literals" (formula "81") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "81"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "23"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "71"))
+ (rule "mul_literals" (formula "81") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "36"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "81") (term "0,0"))
+ (rule "add_literals" (formula "81") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0,0"))
+ (rule "add_literals" (formula "81") (term "0,0"))
+ (rule "qeq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "35"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "2"))
+ (rule "mul_literals" (formula "58") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "mul_literals" (formula "58") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "36"))
+ (rule "inEqSimp_homoInEq0" (formula "58") (term "0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0"))
+ (rule "qeq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "80"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "6"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "72"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "1"))
+ (rule "mul_literals" (formula "81") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "0,0"))
+ (rule "add_zero_left" (formula "81") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "81"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "95"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "add_literals" (formula "67") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "36"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "87"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "8"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "72"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0"))
+ (rule "polySimp_elimOne" (formula "97") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "87") (ifseqformula "97"))
+ (rule "inEqSimp_homoInEq0" (formula "87") (term "0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0"))
+ (rule "qeq_literals" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "true_left" (formula "87"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0"))
+ (rule "polySimp_elimOne" (formula "97") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "71"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "4"))
+ (rule "mul_literals" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "mul_literals" (formula "71") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "71"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "63"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "35"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "95"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "96"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0"))
+ (rule "add_zero_left" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "63"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "qeq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "64"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "5"))
+ (rule "mul_literals" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "56") (ifseqformula "71"))
+ (rule "qeq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "closeFalse" (formula "56"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "Block Contract (Internal)" (formula "141") (newnames "exc_14,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "28")) (ifInst "" (formula "74")))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "true_left" (formula "105"))
+ (rule "translateJavaSubInt" (formula "141") (term "0,1,0,0"))
+ (rule "eqSymm" (formula "141") (term "0,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "141") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "141") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "141") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "141") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "141") (term "1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "141") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "141") (term "0,0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "141") (term "1"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "exc_14_1"))
+ (rule "assignment" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (rule "tryEmpty" (formula "141") (term "1"))
+ (rule "blockEmptyLabel" (formula "141") (term "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "methodCallEmpty" (formula "141") (term "1"))
+ (rule "emptyModality" (formula "141") (term "1"))
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "101")) (ifInst "" (formula "102")))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "105"))
+ (rule "translateJavaSubInt" (formula "145") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "108") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "107") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "108") (term "0"))
+ (rule "translateJavaAddInt" (formula "107") (term "1"))
+ (rule "replace_known_left" (formula "106") (term "0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "true_left" (formula "106"))
+ (rule "polySimp_elimSub" (formula "144") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "107") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "106") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "144") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "144") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "144") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "144") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "144") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,1,0"))
+ (rule "add_literals" (formula "107") (term "1,0,0,1,0"))
+ (rule "times_zero_1" (formula "107") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "107") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "106") (term "0,0,1,1"))
+ (rule "add_literals" (formula "106") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "106") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "106") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "107") (term "0"))
+ (rule "add_literals" (formula "107") (term "1,1,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0"))
+ (rule "add_zero_right" (formula "107") (term "0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "1"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "106") (term "1"))
+ (rule "add_literals" (formula "106") (term "1,1,1"))
+ (rule "times_zero_1" (formula "106") (term "1,1"))
+ (rule "add_zero_right" (formula "106") (term "1"))
+ (rule "elim_double_block_2" (formula "144") (term "1"))
+ (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_18"))
+ (rule "inequality_comparison_simple" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "144"))
+ (builtin "Use Dependency Contract" (formula "93") (term "0") (ifInst "" (formula "93") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "108") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "108") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "108") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "108") (term "1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "108") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "108") (term "0,1,1,1,0"))
+ (rule "replace_known_right" (formula "108") (term "0,0,0,0,0,0,0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "25")) (ifInst "" (formula "17")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "75")) (ifInst "" (formula "30")) (ifInst "" (formula "93")))
+ (rule "true_left" (formula "108"))
+ (rule "ifSplit" (formula "144"))
+ (branch "if x_18 true"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_18 false"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "144") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "144") (newnames "exc_15,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "28")) (ifInst "" (formula "74")))
+ (rule "true_left" (formula "108"))
+ (rule "eqSymm" (formula "144") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "144") (term "1"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "exc_15_1"))
+ (rule "assignment" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "emptyStatement" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "emptyStatement" (formula "144") (term "1"))
+ (rule "tryEmpty" (formula "144") (term "1"))
+ (rule "blockEmptyLabel" (formula "144") (term "1"))
+ (rule "blockEmpty" (formula "144") (term "1"))
+ (rule "methodCallEmpty" (formula "144") (term "1"))
+ (rule "emptyModality" (formula "144") (term "1"))
+ (rule "andRight" (formula "144"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "closeTrue" (formula "144"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "closeTrue" (formula "144"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "144"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "144"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "144"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "andLeft" (formula "108"))
+ (rule "andLeft" (formula "108"))
+ (rule "translateJavaAddInt" (formula "110") (term "0"))
+ (rule "translateJavaSubInt" (formula "110") (term "1"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "true_left" (formula "109"))
+ (rule "polySimp_elimSub" (formula "109") (term "1"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "109") (term "1"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "109") (term "0,0,1"))
+ (rule "add_literals" (formula "109") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "109") (term "0,0,1"))
+ (rule "add_zero_left" (formula "109") (term "0,1"))
+ (rule "elim_double_block_2" (formula "146") (term "1"))
+ (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_19"))
+ (rule "inequality_comparison_simple" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "ifSplit" (formula "146"))
+ (branch "if x_19 true"
+ (builtin "One Step Simplification" (formula "147"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_19 false"
+ (builtin "One Step Simplification" (formula "147"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "146") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "146") (newnames "exc_16,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "147"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "28")) (ifInst "" (formula "74")))
+ (rule "true_left" (formula "110"))
+ (rule "eqSymm" (formula "146") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "146") (term "1"))
+ (rule "variableDeclaration" (formula "146") (term "1") (newnames "exc_16_1"))
+ (rule "assignment" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "emptyStatement" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "emptyStatement" (formula "146") (term "1"))
+ (rule "tryEmpty" (formula "146") (term "1"))
+ (rule "blockEmptyLabel" (formula "146") (term "1"))
+ (rule "blockEmpty" (formula "146") (term "1"))
+ (rule "methodCallEmpty" (formula "146") (term "1"))
+ (rule "emptyModality" (formula "146") (term "1"))
+ (rule "andRight" (formula "146"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "closeTrue" (formula "146"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "closeTrue" (formula "146"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "146"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "146"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "146"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "andLeft" (formula "110"))
+ (rule "andLeft" (formula "110"))
+ (rule "translateJavaSubInt" (formula "112") (term "1"))
+ (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "true_left" (formula "111"))
+ (rule "polySimp_elimSub" (formula "111") (term "1"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "111") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "111") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "111") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "111") (term "1"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,1"))
+ (rule "elim_double_block_2" (formula "148") (term "1"))
+ (rule "ifUnfold" (formula "148") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_20"))
+ (rule "inequality_comparison_simple" (formula "148") (term "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "replace_known_left" (formula "148") (term "0,0,1,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "ifSplit" (formula "148"))
+ (branch "if x_20 true"
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_20 false"
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "148") (term "1"))
+ (rule "compound_assignment_op_minus" (formula "148") (term "1"))
+ (rule "compound_int_cast_expression" (formula "148") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "148") (term "1"))
+ (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_21"))
+ (rule "remove_parentheses_right" (formula "148") (term "1"))
+ (rule "compound_subtraction_2" (formula "148") (term "1") (inst "#v1=x_23") (inst "#v0=x_22"))
+ (rule "variableDeclarationAssign" (formula "148") (term "1"))
+ (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_22"))
+ (rule "assignment" (formula "148") (term "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "variableDeclarationAssign" (formula "148") (term "1"))
+ (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_23"))
+ (rule "remove_parentheses_right" (formula "148") (term "1"))
+ (rule "assignment" (formula "148") (term "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "assignmentSubtractionInt" (formula "148") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "expand_inInt" (formula "148") (userinteraction))
+ (rule "andRight" (formula "148") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "148") (term "1"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "148") (term "0"))
+ (rule "polySimp_homoEq" (formula "109"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "148") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "148") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "148") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "113"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "113"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "148") (term "0"))
+ (rule "polySimp_addComm1" (formula "148") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "148"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "114"))
+ (rule "polySimp_mulComm0" (formula "114") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "114") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "114") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "114") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "114") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "114") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "95"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "0,0,0"))
+ (rule "add_zero_left" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addComm1" (formula "92") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0,0"))
+ (rule "add_zero_left" (formula "92") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1"))
+ (rule "polySimp_rightDist" (formula "111") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "111") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "111") (term "0,1"))
+ (rule "polySimp_mulAssoc" (formula "111") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "111") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "111") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "71") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0"))
+ (rule "add_literals" (formula "71") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "71") (term "1,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0"))
+ (rule "qeq_literals" (formula "71") (term "0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "11"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "69"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "99") (term "0"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "99") (term "1,0,0"))
+ (rule "mul_literals" (formula "99") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "99") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0"))
+ (rule "add_literals" (formula "99") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "99") (term "1,0,0"))
+ (rule "add_literals" (formula "99") (term "0,0"))
+ (rule "qeq_literals" (formula "99") (term "0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "3"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "64") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "qeq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "102") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "1,0,0,0"))
+ (rule "add_literals" (formula "102") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "94") (term "0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "94") (term "0,0"))
+ (rule "add_literals" (formula "94") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "94") (term "1,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0"))
+ (rule "qeq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "102") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "103") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_rightDist" (formula "103") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "103") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0"))
+ (rule "polySimp_elimOne" (formula "94") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "85") (ifseqformula "94"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0,0"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0"))
+ (rule "add_literals" (formula "85") (term "0,0"))
+ (rule "qeq_literals" (formula "85") (term "0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "true_left" (formula "85"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "78"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0"))
+ (rule "polySimp_elimOne" (formula "94") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "76"))
+ (rule "mul_literals" (formula "58") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "add_literals" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "23"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0"))
+ (rule "polySimp_elimOne" (formula "94") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "24"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "65"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "23"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "39"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "86"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "add_literals" (formula "73") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "73") (ifseqformula "34"))
+ (rule "leq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "94"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "148") (term "0"))
+ (rule "polySimp_homoEq" (formula "109"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "148") (term "1"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "148") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "148") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "148") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "148") (term "0,1,1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "113"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "113"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "148") (term "1"))
+ (rule "polySimp_addComm1" (formula "148") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "148"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "113"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,0"))
+ (rule "add_zero_left" (formula "103") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "112") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "112") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "112") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "112") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0,0"))
+ (rule "add_zero_left" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "0,0,0"))
+ (rule "add_zero_left" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1"))
+ (rule "polySimp_elimOne" (formula "103") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1"))
+ (rule "polySimp_rightDist" (formula "111") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "111") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "111") (term "0,1"))
+ (rule "polySimp_mulAssoc" (formula "111") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "111") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "111") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "69"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "102") (term "0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0,0"))
+ (rule "mul_literals" (formula "102") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0"))
+ (rule "add_literals" (formula "102") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "102") (term "1,0,0"))
+ (rule "add_literals" (formula "102") (term "0,0"))
+ (rule "qeq_literals" (formula "102") (term "0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "11"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "75"))
+ (rule "mul_literals" (formula "56") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "56") (ifseqformula "21"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "4"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "79"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "5"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "86") (ifseqformula "65"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "0"))
+ (rule "polySimp_mulComm0" (formula "86") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "1,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0"))
+ (rule "add_literals" (formula "86") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "86") (term "1,0,0"))
+ (rule "add_literals" (formula "86") (term "0,0"))
+ (rule "qeq_literals" (formula "86") (term "0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "true_left" (formula "86"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "64"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "22"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "38"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "80"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "mul_literals" (formula "69") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "35"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "96"))
+ (rule "mul_literals" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "91") (ifseqformula "71"))
+ (rule "leq_literals" (formula "91") (term "0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "41"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "73"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1"))
+ (rule "polySimp_rightDist" (formula "83") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,1"))
+ (rule "mul_literals" (formula "83") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "36"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "83") (term "0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0"))
+ (rule "qeq_literals" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "5"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "1"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "83"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "74"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70"))
+ (rule "mul_literals" (formula "70") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0"))
+ (rule "add_literals" (formula "66") (term "0,0"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "91"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "37"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "97"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "74"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "98"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0"))
+ (rule "polySimp_elimOne" (formula "98") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "106") (ifseqformula "74"))
+ (rule "polySimp_rightDist" (formula "106") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0"))
+ (rule "polySimp_rightDist" (formula "106") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "74"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "109") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "109") (term "0,0"))
+ (rule "add_literals" (formula "109") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "109") (term "1,0,0"))
+ (rule "add_zero_right" (formula "109") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "109") (term "0,0"))
+ (rule "add_literals" (formula "109") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "109") (term "1,0,0"))
+ (rule "add_zero_right" (formula "109") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "109"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq0" (formula "66") (ifseqformula "108"))
+ (rule "andLeft" (formula "66"))
+ (rule "inEqSimp_homoInEq1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "66") (term "0"))
+ (rule "add_literals" (formula "66") (term "1,1,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0"))
+ (rule "add_literals" (formula "66") (term "0"))
+ (rule "leq_literals" (formula "66"))
+ (rule "closeFalse" (formula "66"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "translateJavaSubInt" (formula "148") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "148") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "148") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "148") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "148") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "148") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "148") (term "0,0,1,0"))
+ (rule "widening_identity_cast_5" (formula "148") (term "1"))
+ (rule "assignment" (formula "148") (term "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (builtin "Use Operation Contract" (formula "148") (newnames "heapBefore_copy_nonoverlapping,exc_17,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "113"))
+ (builtin "One Step Simplification" (formula "150"))
+ (builtin "Block Contract (Internal)" (formula "150") (newnames "exc_18,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "28")))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "expand_inInt" (formula "113") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "113") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "113"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "eqSymm" (formula "154") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "113") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "113") (term "0,2,1,0"))
+ (rule "polySimp_elimSub" (formula "113") (term "2,1,0"))
+ (rule "mul_literals" (formula "113") (term "1,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "115") (term "0,3,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,0,1,0"))
+ (rule "add_literals" (formula "115") (term "1,1,3,0,1,0"))
+ (rule "times_zero_1" (formula "115") (term "1,3,0,1,0"))
+ (rule "add_zero_right" (formula "115") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "115") (term "3,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "115") (term "0,3,0,1,0"))
+ (rule "add_literals" (formula "115") (term "1,1,0,3,0,1,0"))
+ (rule "times_zero_1" (formula "115") (term "1,0,3,0,1,0"))
+ (rule "add_zero_right" (formula "115") (term "0,3,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "3,1,1,0"))
+ (rule "polySimp_addComm1" (formula "115") (term "0,3,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,1,1,0"))
+ (rule "add_literals" (formula "115") (term "1,1,3,1,1,0"))
+ (rule "times_zero_1" (formula "115") (term "1,3,1,1,0"))
+ (rule "add_zero_right" (formula "115") (term "3,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "113") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "0,0,2,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "113") (term "0,2,1,0"))
+ (rule "add_literals" (formula "113") (term "1,1,0,2,1,0"))
+ (rule "times_zero_1" (formula "113") (term "1,0,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "113") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "0,2,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "113") (term "0,0,2,1,0"))
+ (rule "add_literals" (formula "113") (term "1,1,0,0,2,1,0"))
+ (rule "times_zero_1" (formula "113") (term "1,0,0,2,1,0"))
+ (rule "add_zero_right" (formula "113") (term "0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "113") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "114") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "114") (term "1,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "154") (term "1"))
+ (rule "variableDeclaration" (formula "154") (term "1") (newnames "exc_18_1"))
+ (rule "assignment" (formula "154") (term "1"))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "emptyStatement" (formula "154") (term "1"))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "emptyStatement" (formula "154") (term "1"))
+ (rule "commute_and" (formula "115") (term "0,0"))
+ (rule "commute_and" (formula "114") (term "0,0,0"))
+ (rule "commute_and" (formula "114") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "114") (term "0,0"))
+ (rule "commute_and_2" (formula "114") (term "0,0,0"))
+ (rule "tryEmpty" (formula "154") (term "1"))
+ (rule "blockEmptyLabel" (formula "154") (term "1"))
+ (rule "blockEmpty" (formula "154") (term "1"))
+ (rule "methodCallEmpty" (formula "154") (term "1"))
+ (rule "emptyModality" (formula "154") (term "1"))
+ (rule "andRight" (formula "154"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "closeTrue" (formula "154"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "closeTrue" (formula "154"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "150"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "150"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "expand_inInt" (formula "113") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "113") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "113"))
+ (rule "wellFormedAnonEQ" (formula "151") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "151") (term "0"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "translateJavaSubInt" (formula "113") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "113") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "153") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "153") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "153"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "151"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "expand_inInt" (formula "113") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "113") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "113"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "1,1") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "translateJavaAddInt" (formula "113") (term "0,2,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "3,0,1,0"))
+ (rule "translateJavaSubInt" (formula "113") (term "2,1,0"))
+ (rule "replace_known_left" (formula "118") (term "0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "true_left" (formula "118"))
+ (rule "polySimp_elimSub" (formula "113") (term "2,1,0"))
+ (rule "mul_literals" (formula "113") (term "1,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "3,1,1,0"))
+ (rule "polySimp_addComm1" (formula "115") (term "0,3,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,1,1,0"))
+ (rule "add_literals" (formula "115") (term "1,1,3,1,1,0"))
+ (rule "times_zero_1" (formula "115") (term "1,3,1,1,0"))
+ (rule "add_zero_right" (formula "115") (term "3,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "115") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "115") (term "0,3,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,0,1,0"))
+ (rule "add_literals" (formula "115") (term "1,1,3,0,1,0"))
+ (rule "times_zero_1" (formula "115") (term "1,3,0,1,0"))
+ (rule "add_zero_right" (formula "115") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "115") (term "3,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "115") (term "0,3,0,1,0"))
+ (rule "add_literals" (formula "115") (term "1,1,0,3,0,1,0"))
+ (rule "times_zero_1" (formula "115") (term "1,0,3,0,1,0"))
+ (rule "add_zero_right" (formula "115") (term "0,3,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "113") (term "0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "0,0,0,2,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "113") (term "0,0,0,0,2,1,0"))
+ (rule "add_literals" (formula "113") (term "1,1,0,0,0,0,2,1,0"))
+ (rule "times_zero_1" (formula "113") (term "1,0,0,0,0,2,1,0"))
+ (rule "add_zero_right" (formula "113") (term "0,0,0,0,2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "0,2,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "113") (term "2,1,0"))
+ (rule "add_literals" (formula "113") (term "1,1,2,1,0"))
+ (rule "times_zero_1" (formula "113") (term "1,2,1,0"))
+ (rule "add_zero_right" (formula "113") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "113") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "114") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "114") (term "1,1,0,0"))
+ (rule "commute_and" (formula "115") (term "0,0"))
+ (rule "elim_double_block_2" (formula "156") (term "1"))
+ (rule "commute_and" (formula "114") (term "0,0,0"))
+ (rule "commute_and" (formula "114") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "114") (term "0,0"))
+ (rule "commute_and_2" (formula "114") (term "0,0,0"))
+ (rule "ifUnfold" (formula "156") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "156") (term "1") (newnames "x_24"))
+ (rule "inequality_comparison_simple" (formula "156") (term "1"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "replace_known_left" (formula "156") (term "0,0,1,0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "ifSplit" (formula "156"))
+ (branch "if x_24 true"
+ (builtin "One Step Simplification" (formula "157"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_24 false"
+ (builtin "One Step Simplification" (formula "157"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "156") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "156") (newnames "exc_19,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "157"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "28")))
+ (rule "eqSymm" (formula "157") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "157") (term "1"))
+ (rule "variableDeclaration" (formula "157") (term "1") (newnames "exc_19_1"))
+ (rule "assignment" (formula "157") (term "1"))
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "emptyStatement" (formula "157") (term "1"))
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "emptyStatement" (formula "157") (term "1"))
+ (rule "tryEmpty" (formula "157") (term "1"))
+ (rule "blockEmptyLabel" (formula "157") (term "1"))
+ (rule "blockEmpty" (formula "157") (term "1"))
+ (rule "methodCallEmpty" (formula "157") (term "1"))
+ (rule "emptyModality" (formula "157") (term "1"))
+ (rule "andRight" (formula "157"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "closeTrue" (formula "157"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "157"))
+ (rule "closeTrue" (formula "157"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "156"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "156"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "wellFormedAnonEQ" (formula "156") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "156") (term "0"))
+ (rule "replace_known_left" (formula "156") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "156"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "157"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "120") (term "1,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "andLeft" (formula "120"))
+ (rule "andLeft" (formula "120"))
+ (rule "translateJavaAddInt" (formula "122") (term "3,0"))
+ (rule "replace_known_left" (formula "121") (term "0") (ifseqformula "120"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "true_left" (formula "121"))
+ (rule "polySimp_addAssoc" (formula "121") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "121") (term "0,3,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "121") (term "3,0"))
+ (rule "add_literals" (formula "121") (term "1,1,3,0"))
+ (rule "times_zero_1" (formula "121") (term "1,3,0"))
+ (rule "add_zero_right" (formula "121") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "121") (term "3,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "121") (term "0,3,0"))
+ (rule "add_literals" (formula "121") (term "1,1,0,3,0"))
+ (rule "times_zero_1" (formula "121") (term "1,0,3,0"))
+ (rule "add_zero_right" (formula "121") (term "0,3,0"))
+ (rule "elim_double_block_2" (formula "158") (term "1"))
+ (rule "ifUnfold" (formula "158") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "158") (term "1") (newnames "x_25"))
+ (rule "inequality_comparison_simple" (formula "158") (term "1"))
+ (builtin "One Step Simplification" (formula "158"))
+ (rule "replace_known_left" (formula "158") (term "0,0,1,0") (ifseqformula "120"))
+ (builtin "One Step Simplification" (formula "158"))
+ (rule "ifSplit" (formula "158"))
+ (branch "if x_25 true"
+ (builtin "One Step Simplification" (formula "159"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_25 false"
+ (builtin "One Step Simplification" (formula "159"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "158") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "158") (newnames "exc_20,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "28")))
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "eqSymm" (formula "159") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "159") (term "1"))
+ (rule "variableDeclaration" (formula "159") (term "1") (newnames "exc_20_1"))
+ (rule "assignment" (formula "159") (term "1"))
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "emptyStatement" (formula "159") (term "1"))
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "emptyStatement" (formula "159") (term "1"))
+ (rule "tryEmpty" (formula "159") (term "1"))
+ (rule "blockEmptyLabel" (formula "159") (term "1"))
+ (rule "blockEmpty" (formula "159") (term "1"))
+ (rule "methodCallEmpty" (formula "159") (term "1"))
+ (rule "emptyModality" (formula "159") (term "1"))
+ (rule "andRight" (formula "159"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "closeTrue" (formula "159"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "closeTrue" (formula "159"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "158"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "158"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "158"))
+ (rule "wellFormedAnonEQ" (formula "158") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "158") (term "0"))
+ (rule "replace_known_left" (formula "158") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "158"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "159"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "1,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "andLeft" (formula "122"))
+ (rule "andLeft" (formula "122"))
+ (rule "translateJavaAddInt" (formula "124") (term "3,0"))
+ (rule "replace_known_left" (formula "123") (term "0") (ifseqformula "122"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "true_left" (formula "123"))
+ (rule "polySimp_addAssoc" (formula "123") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "123") (term "0,3,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "123") (term "3,0"))
+ (rule "add_literals" (formula "123") (term "1,1,3,0"))
+ (rule "times_zero_1" (formula "123") (term "1,3,0"))
+ (rule "add_zero_right" (formula "123") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "123") (term "3,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "123") (term "0,3,0"))
+ (rule "add_literals" (formula "123") (term "1,1,0,3,0"))
+ (rule "times_zero_1" (formula "123") (term "1,0,3,0"))
+ (rule "add_zero_right" (formula "123") (term "0,3,0"))
+ (rule "elim_double_block_2" (formula "160") (term "1"))
+ (rule "ifUnfold" (formula "160") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "160") (term "1") (newnames "x_26"))
+ (rule "inequality_comparison_simple" (formula "160") (term "1"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "replace_known_left" (formula "160") (term "0,0,1,0") (ifseqformula "122"))
+ (builtin "One Step Simplification" (formula "160"))
+ (builtin "Use Dependency Contract" (formula "109") (term "1,0") (ifInst "" (formula "48") (term "1,1,1,0")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "124") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "124") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "124") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "124") (term "1,0,1,0,0,0"))
+ (rule "replace_known_left" (formula "124") (term "0,1,0,0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "159")) (ifInst "" (formula "23")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "75")) (ifInst "" (formula "29")))
+ (rule "disjointDefinition" (formula "124") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "124") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "124") (term "0,1,0"))
+ (rule "replace_known_right" (formula "124") (term "0,0,0,1,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0"))
+ (rule "replace_known_left" (formula "124") (term "0,0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0"))
+ (rule "replace_known_left" (formula "124") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "applyEq" (formula "124") (term "1,0") (ifseqformula "41"))
+ (rule "replace_known_left" (formula "124") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "applyEq" (formula "109") (term "1,0") (ifseqformula "124"))
+ (rule "polySimp_addComm1" (formula "109") (term "0"))
+ (rule "ifSplit" (formula "161"))
+ (branch "if x_26 true"
+ (builtin "One Step Simplification" (formula "162"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_26 false"
+ (builtin "One Step Simplification" (formula "162"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "161") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "161") (newnames "exc_21,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "162"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "28")))
+ (rule "eqSymm" (formula "162") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "162") (term "1"))
+ (rule "variableDeclaration" (formula "162") (term "1") (newnames "exc_21_1"))
+ (rule "assignment" (formula "162") (term "1"))
+ (builtin "One Step Simplification" (formula "162"))
+ (rule "emptyStatement" (formula "162") (term "1"))
+ (builtin "One Step Simplification" (formula "162"))
+ (rule "emptyStatement" (formula "162") (term "1"))
+ (rule "tryEmpty" (formula "162") (term "1"))
+ (rule "blockEmptyLabel" (formula "162") (term "1"))
+ (rule "blockEmpty" (formula "162") (term "1"))
+ (rule "methodCallEmpty" (formula "162") (term "1"))
+ (rule "emptyModality" (formula "162") (term "1"))
+ (rule "andRight" (formula "162"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "162"))
+ (rule "closeTrue" (formula "162"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "162"))
+ (rule "closeTrue" (formula "162"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "161"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "161") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "161"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "wellFormedAnonEQ" (formula "161") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "161") (term "0"))
+ (rule "replace_known_left" (formula "161") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "161") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "161"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "One Step Simplification" (formula "162"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "andLeft" (formula "125"))
+ (rule "andLeft" (formula "125"))
+ (rule "replace_known_left" (formula "126") (term "0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "true_left" (formula "126"))
+ (rule "elim_double_block_2" (formula "163") (term "1"))
+ (rule "ifUnfold" (formula "163") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "163") (term "1") (newnames "x_27"))
+ (rule "inequality_comparison_simple" (formula "163") (term "1"))
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "replace_known_left" (formula "163") (term "0,0,1,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "ifSplit" (formula "163"))
+ (branch "if x_27 true"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_27 false"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "163") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "163") (newnames "exc_22,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "28")))
+ (rule "eqSymm" (formula "164") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "164") (term "1"))
+ (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_22_1"))
+ (rule "assignment" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (rule "tryEmpty" (formula "164") (term "1"))
+ (rule "blockEmptyLabel" (formula "164") (term "1"))
+ (rule "blockEmpty" (formula "164") (term "1"))
+ (rule "methodCallEmpty" (formula "164") (term "1"))
+ (rule "emptyModality" (formula "164") (term "1"))
+ (rule "andRight" (formula "164"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "163"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "163"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "wellFormedAnonEQ" (formula "163") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "163") (term "0"))
+ (rule "replace_known_left" (formula "163") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "163"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "1,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "127"))
+ (rule "translateJavaAddInt" (formula "129") (term "4,0"))
+ (rule "replace_known_left" (formula "128") (term "0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "true_left" (formula "128"))
+ (rule "polySimp_addAssoc" (formula "128") (term "4,0"))
+ (rule "polySimp_addComm1" (formula "128") (term "0,4,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "128") (term "4,0"))
+ (rule "add_literals" (formula "128") (term "1,1,4,0"))
+ (rule "times_zero_1" (formula "128") (term "1,4,0"))
+ (rule "add_zero_right" (formula "128") (term "4,0"))
+ (rule "polySimp_addComm1" (formula "128") (term "4,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "128") (term "0,4,0"))
+ (rule "add_literals" (formula "128") (term "1,1,0,4,0"))
+ (rule "times_zero_1" (formula "128") (term "1,0,4,0"))
+ (rule "add_zero_right" (formula "128") (term "0,4,0"))
+ (rule "elim_double_block_2" (formula "165") (term "1"))
+ (rule "ifUnfold" (formula "165") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "165") (term "1") (newnames "x_28"))
+ (rule "inequality_comparison_simple" (formula "165") (term "1"))
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "replace_known_left" (formula "165") (term "0,0,1,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "ifSplit" (formula "165"))
+ (branch "if x_28 true"
+ (builtin "One Step Simplification" (formula "166"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_28 false"
+ (builtin "One Step Simplification" (formula "166"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "165") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "165") (newnames "exc_23,heap_Before_BLOCK_19,savedHeap_Before_BLOCK_19,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "28")))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "eqSymm" (formula "166") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "166") (term "1"))
+ (rule "variableDeclaration" (formula "166") (term "1") (newnames "exc_23_1"))
+ (rule "assignment" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "emptyStatement" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "emptyStatement" (formula "166") (term "1"))
+ (rule "tryEmpty" (formula "166") (term "1"))
+ (rule "blockEmptyLabel" (formula "166") (term "1"))
+ (rule "blockEmpty" (formula "166") (term "1"))
+ (rule "methodCallEmpty" (formula "166") (term "1"))
+ (rule "emptyModality" (formula "166") (term "1"))
+ (rule "andRight" (formula "166"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "closeTrue" (formula "166"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "closeTrue" (formula "166"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "165"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "165"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "wellFormedAnonEQ" (formula "165") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "165") (term "0"))
+ (rule "replace_known_left" (formula "165") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "165"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "166"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "129") (term "1,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "expand_inInt" (formula "129") (term "0,0,1"))
+ (rule "replace_int_MIN" (formula "129") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "129") (term "1,0,0,0,1"))
+ (rule "andLeft" (formula "129"))
+ (rule "andLeft" (formula "129"))
+ (rule "translateJavaAddInt" (formula "131") (term "2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "131") (term "3,1,1,0"))
+ (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "true_left" (formula "130"))
+ (rule "inEqSimp_commuteLeq" (formula "130") (term "1,0,0"))
+ (rule "applyEq" (formula "130") (term "1,2,1,1,0") (ifseqformula "96"))
+ (rule "applyEq" (formula "130") (term "1,3,1,1,0") (ifseqformula "84"))
+ (rule "commute_and" (formula "130") (term "0,0"))
+ (rule "elim_double_block_2" (formula "167") (term "1"))
+ (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_29"))
+ (rule "inequality_comparison_simple" (formula "167") (term "1"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "replace_known_left" (formula "167") (term "0,0,1,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "ifSplit" (formula "167"))
+ (branch "if x_29 true"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_29 false"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "167") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "167") (newnames "exc_24,heap_Before_BLOCK_20,savedHeap_Before_BLOCK_20,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "28")))
+ (rule "eqSymm" (formula "168") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "168") (term "1"))
+ (rule "variableDeclaration" (formula "168") (term "1") (newnames "exc_24_1"))
+ (rule "assignment" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "emptyStatement" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "emptyStatement" (formula "168") (term "1"))
+ (rule "tryEmpty" (formula "168") (term "1"))
+ (rule "blockEmptyLabel" (formula "168") (term "1"))
+ (rule "blockEmpty" (formula "168") (term "1"))
+ (rule "methodCallEmpty" (formula "168") (term "1"))
+ (rule "emptyModality" (formula "168") (term "1"))
+ (rule "andRight" (formula "168"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "closeTrue" (formula "168"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "closeTrue" (formula "168"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "167"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "167"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "wellFormedAnonEQ" (formula "167") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "167") (term "0"))
+ (rule "replace_known_left" (formula "167") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "167"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "translateJavaAddInt" (formula "133") (term "2,0"))
+ (rule "replace_known_left" (formula "132") (term "0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "true_left" (formula "132"))
+ (rule "polySimp_addAssoc" (formula "132") (term "2,0"))
+ (rule "polySimp_addComm1" (formula "132") (term "0,2,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "132") (term "2,0"))
+ (rule "add_literals" (formula "132") (term "1,1,2,0"))
+ (rule "times_zero_1" (formula "132") (term "1,2,0"))
+ (rule "add_zero_right" (formula "132") (term "2,0"))
+ (rule "polySimp_addComm1" (formula "132") (term "2,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "132") (term "0,2,0"))
+ (rule "add_literals" (formula "132") (term "1,1,0,2,0"))
+ (rule "times_zero_1" (formula "132") (term "1,0,2,0"))
+ (rule "add_zero_right" (formula "132") (term "0,2,0"))
+ (rule "elim_double_block_2" (formula "169") (term "1"))
+ (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_30"))
+ (rule "inequality_comparison_simple" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "ifSplit" (formula "169"))
+ (branch "if x_30 true"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_30 false"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "169") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "169") (newnames "exc_26,heap_Before_BLOCK_21,savedHeap_Before_BLOCK_21,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "28")))
+ (rule "eqSymm" (formula "170") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "170") (term "1"))
+ (rule "variableDeclaration" (formula "170") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "170") (term "1"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "emptyStatement" (formula "170") (term "1"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "emptyStatement" (formula "170") (term "1"))
+ (rule "tryEmpty" (formula "170") (term "1"))
+ (rule "blockEmptyLabel" (formula "170") (term "1"))
+ (rule "blockEmpty" (formula "170") (term "1"))
+ (rule "methodCallEmpty" (formula "170") (term "1"))
+ (rule "emptyModality" (formula "170") (term "1"))
+ (rule "andRight" (formula "170"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "closeTrue" (formula "170"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "closeTrue" (formula "170"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "169"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "169"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "wellFormedAnonEQ" (formula "169") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "169") (term "0"))
+ (rule "replace_known_left" (formula "169") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "169"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "133"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "133") (term "1,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "andLeft" (formula "133"))
+ (rule "andLeft" (formula "133"))
+ (rule "translateJavaAddInt" (formula "135") (term "3,0"))
+ (rule "replace_known_left" (formula "134") (term "0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "true_left" (formula "134"))
+ (rule "polySimp_addAssoc" (formula "134") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "134") (term "0,3,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "134") (term "3,0"))
+ (rule "add_literals" (formula "134") (term "1,1,3,0"))
+ (rule "times_zero_1" (formula "134") (term "1,3,0"))
+ (rule "add_zero_right" (formula "134") (term "3,0"))
+ (rule "polySimp_addComm1" (formula "134") (term "3,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "134") (term "0,3,0"))
+ (rule "add_literals" (formula "134") (term "1,1,0,3,0"))
+ (rule "times_zero_1" (formula "134") (term "1,0,3,0"))
+ (rule "add_zero_right" (formula "134") (term "0,3,0"))
+ (rule "elim_double_block_2" (formula "171") (term "1"))
+ (rule "ifUnfold" (formula "171") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "171") (term "1") (newnames "x_31"))
+ (rule "inequality_comparison_simple" (formula "171") (term "1"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "replace_known_left" (formula "171") (term "0,0,1,0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "ifSplit" (formula "171"))
+ (branch "if x_31 true"
+ (builtin "One Step Simplification" (formula "172"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_31 false"
+ (builtin "One Step Simplification" (formula "172"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "171") (term "1"))
+ (rule "assignment" (formula "171") (term "1"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "blockEmpty" (formula "171") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "171") (newnames "exc_27,heap_Before_BLOCK_22,savedHeap_Before_BLOCK_22,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "172"))
+ (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "28")))
+ (rule "eqSymm" (formula "172") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "172") (term "1"))
+ (rule "variableDeclaration" (formula "172") (term "1") (newnames "exc_27_1"))
+ (rule "assignment" (formula "172") (term "1"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "emptyStatement" (formula "172") (term "1"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "emptyStatement" (formula "172") (term "1"))
+ (rule "tryEmpty" (formula "172") (term "1"))
+ (rule "blockEmptyLabel" (formula "172") (term "1"))
+ (rule "blockEmpty" (formula "172") (term "1"))
+ (rule "methodCallEmpty" (formula "172") (term "1"))
+ (rule "emptyModality" (formula "172") (term "1"))
+ (rule "andRight" (formula "172"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "closeTrue" (formula "172"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "closeTrue" (formula "172"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "171"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "171"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "wellFormedAnonEQ" (formula "171") (ifseqformula "113"))
+ (rule "wellFormedAnon" (formula "171") (term "0"))
+ (rule "replace_known_left" (formula "171") (term "1") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "17")) (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "171"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "118")) (ifInst "" (formula "119")))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "135") (term "1,1") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "andLeft" (formula "135"))
+ (rule "replace_known_left" (formula "136") (term "0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "true_left" (formula "136"))
+ (rule "elim_double_block_2" (formula "172") (term "1"))
+ (rule "ifUnfold" (formula "172") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "172") (term "1") (newnames "x_32"))
+ (rule "inequality_comparison_simple" (formula "172") (term "1"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "replace_known_left" (formula "172") (term "0,0,1,0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "ifSplit" (formula "172"))
+ (branch "if x_32 true"
+ (builtin "One Step Simplification" (formula "173"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_32 false"
+ (builtin "One Step Simplification" (formula "173"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "172") (term "1"))
+ (rule "emptyStatement" (formula "172") (term "1"))
+ (rule "tryEmpty" (formula "172") (term "1"))
+ (rule "blockEmptyLabel" (formula "172") (term "1"))
+ (rule "blockEmpty" (formula "172") (term "1"))
+ (rule "methodCallEmpty" (formula "172") (term "1"))
+ (rule "emptyModality" (formula "172") (term "1"))
+ (rule "andRight" (formula "172"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "172"))
+ (rule "closeTrue" (formula "172"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "172"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "118")))
+ (rule "closeTrue" (formula "172"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "119")))
+ (rule "closeTrue" (formula "172"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "150"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "andLeft" (formula "113"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "114") (term "1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "notLeft" (formula "114"))
+ (rule "close" (formula "116") (ifseqformula "115"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "147")) (ifInst "" (formula "74")) (ifInst "" (formula "147")) (ifInst "" (formula "18")) (ifInst "" (formula "147")) (ifInst "" (formula "18")))
+ (rule "andRight" (formula "148"))
+ (branch "Case 1"
+ (rule "andRight" (formula "148"))
+ (branch
+ (rule "expand_inInt" (formula "148"))
+ (rule "replace_int_MIN" (formula "148") (term "0,1"))
+ (rule "replace_int_MAX" (formula "148") (term "1,0"))
+ (rule "replace_known_left" (formula "148") (term "0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "65")))
+ (rule "closeTrue" (formula "148"))
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "148") (userinteraction))
+ (rule "andRight" (formula "148") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "148") (term "1"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "109"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "113"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "113"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "148"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "112") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "105") (term "0,0,0"))
+ (rule "add_literals" (formula "105") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "105") (term "0,0,0"))
+ (rule "add_zero_left" (formula "105") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "94") (term "0,0,0"))
+ (rule "add_literals" (formula "94") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "94") (term "0,0,0"))
+ (rule "add_zero_left" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "112"))
+ (rule "polySimp_mulComm0" (formula "112") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "112") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "108"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "111") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "0,0,0"))
+ (rule "add_zero_left" (formula "107") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1"))
+ (rule "polySimp_elimOne" (formula "103") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1"))
+ (rule "polySimp_rightDist" (formula "109") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1"))
+ (rule "polySimp_mulAssoc" (formula "109") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "71") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0"))
+ (rule "add_literals" (formula "71") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "71") (term "1,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0"))
+ (rule "qeq_literals" (formula "71") (term "0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "11"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "102") (term "0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0,0"))
+ (rule "mul_literals" (formula "102") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0"))
+ (rule "add_literals" (formula "102") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "102") (term "1,0,0"))
+ (rule "add_literals" (formula "102") (term "0,0"))
+ (rule "qeq_literals" (formula "102") (term "0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "38"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62"))
+ (rule "mul_literals" (formula "67") (term "0,0"))
+ (rule "add_zero_left" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "75"))
+ (rule "mul_literals" (formula "56") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "56") (ifseqformula "21"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "68"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "34"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "4"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "79"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "85"))
+ (rule "mul_literals" (formula "88") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88"))
+ (rule "mul_literals" (formula "88") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "88") (ifseqformula "78"))
+ (rule "leq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "95"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0"))
+ (rule "polySimp_elimOne" (formula "95") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "5"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "68"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "95"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0"))
+ (rule "polySimp_elimOne" (formula "95") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "64"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "22"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "87"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "add_literals" (formula "72") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "72") (ifseqformula "33"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "true_left" (formula "72"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "95"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "64") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "qeq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "add_literals" (formula "67") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "35"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "86"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "66"))
+ (rule "inEqSimp_homoInEq0" (formula "74") (term "0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,0"))
+ (rule "add_literals" (formula "74") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_literals" (formula "74") (term "0,0"))
+ (rule "qeq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "70"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0"))
+ (rule "add_literals" (formula "67") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "35"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "5"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "98"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0"))
+ (rule "polySimp_elimOne" (formula "98") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "105") (term "0,0,0"))
+ (rule "add_literals" (formula "105") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "105") (term "1,0,0,0"))
+ (rule "add_literals" (formula "105") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "96") (ifseqformula "105"))
+ (rule "inEqSimp_homoInEq0" (formula "96") (term "0"))
+ (rule "polySimp_mulComm0" (formula "96") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "96") (term "1,0,0"))
+ (rule "mul_literals" (formula "96") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "96") (term "0,0"))
+ (rule "add_literals" (formula "96") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "96") (term "1,0,0"))
+ (rule "add_literals" (formula "96") (term "0,0"))
+ (rule "qeq_literals" (formula "96") (term "0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "76"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "148") (term "0"))
+ (rule "polySimp_homoEq" (formula "109"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "113"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "113"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "148"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "112") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "105") (term "0,0,0"))
+ (rule "add_literals" (formula "105") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "105") (term "0,0,0"))
+ (rule "add_zero_left" (formula "105") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,0"))
+ (rule "times_zero_1" (formula "92") (term "0"))
+ (rule "leq_literals" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "108"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_addComm1" (formula "92") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0"))
+ (rule "add_zero_left" (formula "92") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "112"))
+ (rule "polySimp_mulComm0" (formula "112") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "112") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "112") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0"))
+ (rule "add_literals" (formula "92") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "92") (term "0,0,0"))
+ (rule "add_zero_left" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "0,0,0"))
+ (rule "add_zero_left" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "111") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "61"))
+ (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "109"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1"))
+ (rule "polySimp_elimOne" (formula "103") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1"))
+ (rule "polySimp_rightDist" (formula "68") (term "1"))
+ (rule "mul_literals" (formula "68") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1"))
+ (rule "polySimp_elimOne" (formula "92") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1"))
+ (rule "polySimp_rightDist" (formula "110") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "110") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "110") (term "0,1"))
+ (rule "polySimp_mulAssoc" (formula "110") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "110") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "68"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "102") (term "0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0,0"))
+ (rule "mul_literals" (formula "102") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0"))
+ (rule "add_literals" (formula "102") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "102") (term "1,0,0"))
+ (rule "add_literals" (formula "102") (term "0,0"))
+ (rule "qeq_literals" (formula "102") (term "0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "11"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "68") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0"))
+ (rule "qeq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "85"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "95") (term "0"))
+ (rule "add_literals" (formula "95") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "95"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "85") (ifseqformula "96"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0,0"))
+ (rule "mul_literals" (formula "85") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0"))
+ (rule "add_literals" (formula "85") (term "0,0"))
+ (rule "qeq_literals" (formula "85") (term "0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "true_left" (formula "85"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "86"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "add_literals" (formula "72") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "72") (ifseqformula "33"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "true_left" (formula "72"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "38"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "103") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_rightDist" (formula "103") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "103") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "2"))
+ (rule "mul_literals" (formula "56") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "mul_literals" (formula "56") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "34"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0"))
+ (rule "qeq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "104") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_rightDist" (formula "104") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "104") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "104") (term "0,0"))
+ (rule "add_literals" (formula "104") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "104") (term "1,0,0"))
+ (rule "add_zero_right" (formula "104") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "104") (term "0,0"))
+ (rule "add_literals" (formula "104") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "104") (term "1,0,0"))
+ (rule "add_zero_right" (formula "104") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "104") (ifseqformula "63"))
+ (rule "andLeft" (formula "104"))
+ (rule "inEqSimp_homoInEq1" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "mul_literals" (formula "104") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "104") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0,0"))
+ (rule "add_literals" (formula "104") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "104") (term "0"))
+ (rule "add_literals" (formula "104") (term "1,1,0"))
+ (rule "times_zero_1" (formula "104") (term "1,0"))
+ (rule "add_literals" (formula "104") (term "0"))
+ (rule "leq_literals" (formula "104"))
+ (rule "closeFalse" (formula "104"))
+ )
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "148"))
+ (rule "replace_int_MIN" (formula "148") (term "0,1"))
+ (rule "replace_int_MAX" (formula "148") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "113"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "113"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0,0"))
+ (rule "add_zero_left" (formula "93") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "91"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0"))
+ (rule "add_literals" (formula "91") (term "1,0"))
+ (rule "times_zero_1" (formula "91") (term "0"))
+ (rule "leq_literals" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_homoInEq0" (formula "91"))
+ (rule "polySimp_addComm1" (formula "91") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0"))
+ (rule "add_literals" (formula "91") (term "1,0,0"))
+ (rule "times_zero_1" (formula "91") (term "0,0"))
+ (rule "add_zero_left" (formula "91") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "101") (term "0,0,0"))
+ (rule "add_literals" (formula "101") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "101") (term "0,0,0"))
+ (rule "add_zero_left" (formula "101") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "111") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "111") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "106"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "146") (term "1"))
+ (rule "mul_literals" (formula "146") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "146") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "146") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "146") (term "0"))
+ (rule "polySimp_mulComm0" (formula "146") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "111") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "111") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "111") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "146") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "146") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "146") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "146") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "106") (term "0,0,0"))
+ (rule "add_literals" (formula "106") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "106") (term "0,0,0"))
+ (rule "add_zero_left" (formula "106") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "applyEq" (formula "93") (term "1") (ifseqformula "60"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "108"))
+ (rule "polySimp_mulLiterals" (formula "108") (term "0"))
+ (rule "polySimp_elimOne" (formula "108") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1"))
+ (rule "polySimp_elimOne" (formula "91") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "144") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "144") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1"))
+ (rule "polySimp_rightDist" (formula "109") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "109") (term "0,1"))
+ (rule "polySimp_mulAssoc" (formula "109") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1"))
+ (rule "polySimp_elimOne" (formula "101") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "0"))
+ (rule "polySimp_elimOne" (formula "91") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "143") (term "0"))
+ (rule "polySimp_mulComm0" (formula "143") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "143") (term "1,0"))
+ (rule "mul_literals" (formula "143") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "143") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "143") (term "1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "68"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_subsumption0" (formula "141") (term "1") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "141") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,1"))
+ (rule "add_literals" (formula "141") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "141") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "141") (term "0,0,1"))
+ (rule "qeq_literals" (formula "141") (term "0,1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_geqRight" (formula "141"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "11"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "100") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "100") (term "0"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,0,0"))
+ (rule "mul_literals" (formula "100") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "100") (term "0,0"))
+ (rule "add_literals" (formula "100") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "100") (term "1,0,0"))
+ (rule "add_literals" (formula "100") (term "0,0"))
+ (rule "qeq_literals" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "68") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0"))
+ (rule "qeq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "93"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61"))
+ (rule "mul_literals" (formula "66") (term "0,0"))
+ (rule "add_zero_left" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "74"))
+ (rule "mul_literals" (formula "55") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "20"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "37"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "33"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "67"))
+ (rule "mul_literals" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "33"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "qeq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "94"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "0"))
+ (rule "polySimp_elimOne" (formula "94") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "32"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "77"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "95"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0"))
+ (rule "polySimp_elimOne" (formula "95") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "add_zero_left" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "64"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "qeq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "1"))
+ (rule "mul_literals" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "add_zero_left" (formula "78") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "78"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "63"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "62") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "qeq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "63"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "22"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "38"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "71"))
+ (rule "mul_literals" (formula "88") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "22"))
+ (rule "leq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "6"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "add_literals" (formula "67") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "mul_literals" (formula "67") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "35"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "88"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "35"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "104") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_rightDist" (formula "104") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "104") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "104") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "polySimp_rightDist" (formula "105") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "86"))
+ (rule "mul_literals" (formula "89") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "89"))
+ (rule "mul_literals" (formula "89") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "79"))
+ (rule "leq_literals" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "inEqSimp_exactShadow3" (formula "106") (ifseqformula "70"))
+ (rule "polySimp_rightDist" (formula "106") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0"))
+ (rule "polySimp_rightDist" (formula "106") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "106") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "106") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0"))
+ (rule "polySimp_elimOne" (formula "97") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "86") (ifseqformula "97"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "0"))
+ (rule "polySimp_mulComm0" (formula "86") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "1,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0"))
+ (rule "add_literals" (formula "86") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "86") (term "1,0,0"))
+ (rule "add_literals" (formula "86") (term "0,0"))
+ (rule "qeq_literals" (formula "86") (term "0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "true_left" (formula "86"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0"))
+ (rule "polySimp_elimOne" (formula "97") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "107") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "107") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "polySimp_rightDist" (formula "107") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "107") (term "0,0,0"))
+ (rule "add_literals" (formula "107") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "107") (term "1,0,0,0"))
+ (rule "add_literals" (formula "107") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "107"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "107"))
+ (rule "inEqSimp_homoInEq0" (formula "94") (term "0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "94") (term "0,0"))
+ (rule "add_literals" (formula "94") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "94") (term "1,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0"))
+ (rule "qeq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "8"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "5"))
+ (rule "mul_literals" (formula "70") (term "0,0"))
+ (rule "add_zero_left" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1"))
+ (rule "polySimp_rightDist" (formula "70") (term "1"))
+ (rule "mul_literals" (formula "70") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "70"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "64"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "103"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "71"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_contradInEq1" (formula "57") (ifseqformula "71"))
+ (rule "qeq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "closeFalse" (formula "57"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "if x_15 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "notLeft" (formula "1"))
+ (rule "assignment" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "blockEmpty" (formula "140") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "140") (newnames "exc_13,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "27")) (ifInst "" (formula "75")))
+ (rule "true_left" (formula "104"))
+ (rule "eqSymm" (formula "140") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "140") (term "1"))
+ (rule "variableDeclaration" (formula "140") (term "1") (newnames "exc_13_1"))
+ (rule "assignment" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "emptyStatement" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "emptyStatement" (formula "140") (term "1"))
+ (rule "tryEmpty" (formula "140") (term "1"))
+ (rule "blockEmptyLabel" (formula "140") (term "1"))
+ (rule "blockEmpty" (formula "140") (term "1"))
+ (rule "methodCallEmpty" (formula "140") (term "1"))
+ (rule "emptyModality" (formula "140") (term "1"))
+ (rule "andRight" (formula "140"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "closeTrue" (formula "140"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "closeTrue" (formula "140"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "140"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "140"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "140"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "12")) (ifInst "" (formula "13")))
+ (rule "andLeft" (formula "104"))
+ (rule "replace_known_left" (formula "105") (term "0") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "true_left" (formula "105"))
+ (rule "elim_double_block_2" (formula "141") (term "1"))
+ (rule "ifUnfold" (formula "141") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_16"))
+ (rule "inequality_comparison_simple" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "replace_known_left" (formula "141") (term "0,0,1,0") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "ifSplit" (formula "141"))
+ (branch "if x_16 true"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_16 false"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (rule "tryEmpty" (formula "141") (term "1"))
+ (rule "blockEmptyLabel" (formula "141") (term "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "methodCallEmpty" (formula "141") (term "1"))
+ (rule "emptyModality" (formula "141") (term "1"))
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "notLeft" (formula "95"))
+ (rule "close" (formula "97") (ifseqformula "96"))
+ )
+ (branch "Pre (align_to_next_block)"
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "75")))
+ (rule "expand_inInt" (formula "130"))
+ (rule "replace_int_MIN" (formula "130") (term "0,1"))
+ (rule "replace_int_MAX" (formula "130") (term "1,0"))
+ (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "95"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "130"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "94") (term "0,0,0"))
+ (rule "add_literals" (formula "94") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "94") (term "0,0,0"))
+ (rule "add_zero_left" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "95"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "93"))
+ (rule "polySimp_addComm1" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "0,0"))
+ (rule "add_zero_left" (formula "93") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "39"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "applyEq" (formula "95") (term "1") (ifseqformula "59"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1"))
+ (rule "polySimp_elimOne" (formula "93") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "68") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "closeFalse" (formula "68"))
+ )
+ )
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "125"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "75")))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (rule "orRight" (formula "125"))
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "126"))
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "125"))
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "126"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_known_left" (formula "125") (term "1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "63")))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "125"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "79")))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "125"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "32") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "leq_literals" (formula "125") (term "0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "leq_literals" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_known_left" (formula "125") (term "1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "63")))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "leq_literals" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "leq_literals" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "125"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "1"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_contradInEq0" (formula "66") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "closeFalse" (formula "66"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1"))
+ (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "125"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_rightDist" (formula "80") (term "1"))
+ (rule "mul_literals" (formula "80") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "83") (ifseqformula "1"))
+ (rule "leq_literals" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "81"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "126"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "expand_inInt" (formula "91") (term "0,0,1,1,1,1,1"))
+ (rule "expand_inInt" (formula "91") (term "1,0,1,0"))
+ (rule "expand_inInt" (formula "91") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,0,0,1,1,1,1,1"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,0,0,1,1,1,1,1"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,0,0,1,0"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "102"))
+ (rule "andLeft" (formula "102"))
+ (rule "andLeft" (formula "102"))
+ (rule "andLeft" (formula "102"))
+ (rule "translateJavaSubInt" (formula "146") (term "2,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "101") (term "2,1,0"))
+ (rule "translateJavaSubInt" (formula "100") (term "2,1,0"))
+ (rule "eqSymm" (formula "109"))
+ (rule "translateJavaSubInt" (formula "110") (term "2,1,0,0"))
+ (rule "eqSymm" (formula "111") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "92") (term "2,1,0"))
+ (rule "translateJavaSubInt" (formula "93") (term "2,1,0"))
+ (rule "translateJavaSubInt" (formula "109") (term "1"))
+ (rule "translateJavaSubInt" (formula "111") (term "2,1,0,1,1,0"))
+ (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "polySimp_elimSub" (formula "145") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "145") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "100") (term "2,1,0"))
+ (rule "mul_literals" (formula "100") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "99") (term "2,1,0"))
+ (rule "mul_literals" (formula "99") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "109") (term "2,1,0,0"))
+ (rule "mul_literals" (formula "109") (term "1,2,1,0,0"))
+ (rule "polySimp_elimSub" (formula "92") (term "2,1,0"))
+ (rule "mul_literals" (formula "92") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "93") (term "2,1,0"))
+ (rule "mul_literals" (formula "93") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "108") (term "1"))
+ (rule "polySimp_elimSub" (formula "110") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "110") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "145") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "100") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "99") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "2,1,0,0"))
+ (rule "polySimp_addComm1" (formula "92") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "108") (term "1"))
+ (rule "polySimp_addComm1" (formula "110") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "145") (term "0,2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "99") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "93") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,2,1,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "107"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "96"))
+ (rule "inEqSimp_commuteLeq" (formula "98"))
+ (rule "inEqSimp_commuteLeq" (formula "103"))
+ (rule "commute_and" (formula "109") (term "0,0"))
+ (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "144"))
+ (builtin "Use Dependency Contract" (formula "57") (term "1,0") (ifInst "" (formula "107") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "110") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "110") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "110") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "110") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "110") (term "0,1,0,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "141")) (ifInst "" (formula "24")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76")) (ifInst "" (formula "29")))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "110") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "110") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "110") (term "0,1,0"))
+ (rule "replace_known_right" (formula "110") (term "0,0,0,1,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0"))
+ (rule "replace_known_left" (formula "110") (term "0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0"))
+ (rule "replace_known_left" (formula "110") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "applyEq" (formula "110") (term "1,0") (ifseqformula "50"))
+ (rule "replace_known_left" (formula "110") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "110"))
+ (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "107"))
+ (rule "polySimp_addComm0" (formula "57") (term "0"))
+ (rule "applyEq" (formula "110") (term "1") (ifseqformula "107"))
+ (builtin "Use Dependency Contract" (formula "56") (term "0") (ifInst "" (formula "85") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "111") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "111") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "111") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "111") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "111") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "111") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "111") (term "1,1,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "142")) (ifInst "" (formula "24")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76")))
+ (rule "polySimp_mulComm0" (formula "111") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "111") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "111") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "111") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "111") (term "0,1,0"))
+ (rule "replace_known_right" (formula "111") (term "0,0,0,1,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "inEqSimp_commuteLeq" (formula "111") (term "0,1,0"))
+ (rule "replace_known_left" (formula "111") (term "0,1,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "inEqSimp_commuteLeq" (formula "111") (term "0,0"))
+ (rule "replace_known_left" (formula "111") (term "0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "applyEq" (formula "111") (term "1,0") (ifseqformula "50"))
+ (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "111"))
+ (rule "applyEq" (formula "110") (term "1") (ifseqformula "84"))
+ (rule "ifSplit" (formula "145"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "146"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "146"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "145") (term "1"))
+ (rule "variableDeclarationAssign" (formula "145") (term "1"))
+ (rule "variableDeclaration" (formula "145") (term "1") (newnames "head_len"))
+ (rule "assignmentSubtractionInt" (formula "145") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "expand_inInt" (formula "145"))
+ (rule "replace_int_MIN" (formula "145") (term "0,1"))
+ (rule "replace_int_MAX" (formula "145") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_elimSub" (formula "145") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "145") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "145") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "145") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "145") (term "0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "100"))
+ (rule "polySimp_pullOutFactor1" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,0"))
+ (rule "times_zero_1" (formula "100") (term "0"))
+ (rule "qeq_literals" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_homoInEq0" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "102"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0"))
+ (rule "add_literals" (formula "103") (term "1,0"))
+ (rule "times_zero_1" (formula "103") (term "0"))
+ (rule "qeq_literals" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "143") (term "0"))
+ (rule "polySimp_mulComm0" (formula "143") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "143") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "143") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "143") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "143") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "143") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "143") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "143") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "143") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "143") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "143") (term "1"))
+ (rule "mul_literals" (formula "143") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "143") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "143") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "143") (term "0,0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "88"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "1,1,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0"))
+ (rule "add_zero_right" (formula "88") (term "0"))
+ (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "56"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1"))
+ (rule "polySimp_rightDist" (formula "102") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "102") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "102") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "0"))
+ (rule "polySimp_mulComm0" (formula "142") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "142") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "142") (term "0,1,0"))
+ (rule "mul_literals" (formula "142") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "142") (term "1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "142") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1"))
+ (rule "polySimp_elimOne" (formula "88") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "7"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "137") (term "1") (ifseqformula "95"))
+ (rule "inEqSimp_homoInEq0" (formula "137") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "137") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "137") (term "1,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "137") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "137") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "137") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "137") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "137") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "137") (term "0,0,1"))
+ (rule "add_literals" (formula "137") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "137") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "137") (term "0,0,1"))
+ (rule "qeq_literals" (formula "137") (term "0,1"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "inEqSimp_geqRight" (formula "137"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "63"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "95") (term "0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "95") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "95") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "95") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "95") (term "0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0"))
+ (rule "add_zero_right" (formula "95") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0"))
+ (rule "qeq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "74"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "60"))
+ (rule "polySimp_rightDist" (formula "96") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "96") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "96") (term "0"))
+ (rule "polySimp_addComm1" (formula "96") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "96") (term "0"))
+ (rule "add_literals" (formula "96") (term "1,1,0"))
+ (rule "times_zero_1" (formula "96") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "96") (term "0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "30"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "77"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "96") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "96") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "96") (term "0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "96"))
+ (rule "polySimp_mulComm0" (formula "96") (term "1"))
+ (rule "polySimp_rightDist" (formula "96") (term "1"))
+ (rule "mul_literals" (formula "96") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "96") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "76"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "30"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "1,1,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0"))
+ (rule "add_zero_right" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "96"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "74"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "1,1,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "71"))
+ (rule "polySimp_mulComm0" (formula "85") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "85"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0"))
+ (rule "polySimp_elimOne" (formula "85") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "65"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "60"))
+ (rule "mul_literals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "18"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "2"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "91"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "0"))
+ (rule "polySimp_elimOne" (formula "97") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "1,1,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0"))
+ (rule "add_zero_right" (formula "60") (term "0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "95") (ifseqformula "60"))
+ (rule "leq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "100") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "100") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "100") (term "0,0"))
+ (rule "add_literals" (formula "100") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "100") (term "1,0,0"))
+ (rule "add_zero_right" (formula "100") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1"))
+ (rule "polySimp_elimOne" (formula "100") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "71"))
+ (rule "mul_literals" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "30"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "66") (term "0,0"))
+ (rule "add_zero_left" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "mul_literals" (formula "101") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "1,1,0"))
+ (rule "times_zero_1" (formula "101") (term "1,0"))
+ (rule "add_zero_right" (formula "101") (term "0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "101") (ifseqformula "97"))
+ (rule "leq_literals" (formula "101") (term "0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "68"))
+ (rule "times_zero_1" (formula "67") (term "0,0"))
+ (rule "add_zero_left" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "mul_literals" (formula "101") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0,0"))
+ (rule "add_literals" (formula "101") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "101") (ifseqformula "100"))
+ (rule "andLeft" (formula "101"))
+ (rule "inEqSimp_homoInEq1" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "mul_literals" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "1,1,0"))
+ (rule "times_zero_1" (formula "101") (term "1,0"))
+ (rule "add_literals" (formula "101") (term "0"))
+ (rule "leq_literals" (formula "101"))
+ (rule "closeFalse" (formula "101"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "translateJavaSubInt" (formula "145") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "145") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "145") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "145") (term "1"))
+ (rule "variableDeclaration" (formula "145") (term "1") (newnames "tail_len"))
+ (rule "assignmentSubtractionInt" (formula "145") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "expand_inInt" (formula "145"))
+ (rule "replace_int_MIN" (formula "145") (term "0,1"))
+ (rule "replace_int_MAX" (formula "145") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "145") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "145") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "145") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "145") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "145") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "145") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "100"))
+ (rule "polySimp_pullOutFactor1" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,0"))
+ (rule "times_zero_1" (formula "100") (term "0"))
+ (rule "qeq_literals" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0"))
+ (rule "add_literals" (formula "103") (term "1,0"))
+ (rule "times_zero_1" (formula "103") (term "0"))
+ (rule "qeq_literals" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "143") (term "1"))
+ (rule "mul_literals" (formula "143") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "143") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "143") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "143") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "143") (term "0"))
+ (rule "polySimp_mulComm0" (formula "143") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "143") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "143") (term "0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "143") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "143") (term "0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "143") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "143") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "143") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "143") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "88"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "1,1,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0"))
+ (rule "add_zero_right" (formula "88") (term "0"))
+ (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "56"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1"))
+ (rule "polySimp_rightDist" (formula "102") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "102") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "102") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "1"))
+ (rule "polySimp_mulComm0" (formula "142") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "142") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "142") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "1,0,1,1"))
+ (rule "mul_literals" (formula "142") (term "0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "142") (term "1,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "142") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1"))
+ (rule "polySimp_elimOne" (formula "88") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "62"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "137") (term "1") (ifseqformula "97"))
+ (rule "inEqSimp_homoInEq0" (formula "137") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "137") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "137") (term "1,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "137") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "137") (term "0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "137") (term "0,0,1"))
+ (rule "add_literals" (formula "137") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "137") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "137") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "137") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "137") (term "0,0,1"))
+ (rule "add_literals" (formula "137") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "137") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "137") (term "0,0,1"))
+ (rule "qeq_literals" (formula "137") (term "0,1"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "inEqSimp_leqRight" (formula "137"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "8"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "97") (term "0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "97") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "97") (term "0,0"))
+ (rule "add_literals" (formula "97") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "97") (term "1,0,0"))
+ (rule "add_zero_right" (formula "97") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "97") (term "0,0"))
+ (rule "add_literals" (formula "97") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "97") (term "1,0,0"))
+ (rule "add_literals" (formula "97") (term "0,0"))
+ (rule "qeq_literals" (formula "97") (term "0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "95"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "58"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77"))
+ (rule "mul_literals" (formula "77") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "30"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "60"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "18"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "72"))
+ (rule "polySimp_mulComm0" (formula "86") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "76"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "70"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "98"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "1,1,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0"))
+ (rule "add_zero_right" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "2"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "69"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0"))
+ (rule "add_literals" (formula "73") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1"))
+ (rule "mul_literals" (formula "73") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "69"))
+ (rule "mul_literals" (formula "82") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1"))
+ (rule "polySimp_rightDist" (formula "82") (term "1"))
+ (rule "mul_literals" (formula "82") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0"))
+ (rule "add_literals" (formula "82") (term "0,0"))
+ (rule "qeq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "add_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "30"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "62"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "1"))
+ (rule "leq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "83"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "74"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,0"))
+ (rule "mul_literals" (formula "81") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "1,1,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0"))
+ (rule "add_zero_right" (formula "81") (term "0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0"))
+ (rule "add_literals" (formula "81") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "81") (term "0,0"))
+ (rule "add_literals" (formula "81") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0,0"))
+ (rule "add_literals" (formula "81") (term "0,0"))
+ (rule "qeq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "add_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "32"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "80"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0"))
+ (rule "add_literals" (formula "76") (term "1,1,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "76") (term "0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "76"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "68"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "add_zero_left" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "33"))
+ (rule "leq_literals" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "38"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "35"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "103") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "103") (term "0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "closeFalse" (formula "103"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "Block Contract (Internal)" (formula "145") (newnames "exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "eqSymm" (formula "146") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "146") (term "0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "146") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "146") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "146") (term "0,0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "146") (term "1"))
+ (rule "variableDeclaration" (formula "146") (term "1") (newnames "exc_9_1"))
+ (rule "assignment" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "emptyStatement" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "emptyStatement" (formula "146") (term "1"))
+ (rule "tryEmpty" (formula "146") (term "1"))
+ (rule "blockEmptyLabel" (formula "146") (term "1"))
+ (rule "blockEmpty" (formula "146") (term "1"))
+ (rule "methodCallEmpty" (formula "146") (term "1"))
+ (rule "emptyModality" (formula "146") (term "1"))
+ (rule "andRight" (formula "146"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "closeTrue" (formula "146"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "closeTrue" (formula "146"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "145"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "145"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "wellFormedAnon" (formula "145"))
+ (rule "wellFormedAnon" (formula "145") (term "0"))
+ (rule "replace_known_left" (formula "145") (term "1") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "145"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "146"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "andLeft" (formula "111"))
+ (rule "andLeft" (formula "111"))
+ (rule "translateJavaSubInt" (formula "148") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "113") (term "1"))
+ (rule "translateJavaSubInt" (formula "113") (term "1,1"))
+ (rule "replace_known_left" (formula "112") (term "0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "true_left" (formula "112"))
+ (rule "polySimp_elimSub" (formula "147") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "112") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "147") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "147") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "112") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "112") (term "1"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "112") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "112") (term "0,0,1"))
+ (rule "add_literals" (formula "112") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "112") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "112") (term "0,0,1"))
+ (rule "elim_double_block_2" (formula "147") (term "1"))
+ (rule "ifUnfold" (formula "147") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_11"))
+ (rule "inequality_comparison_simple" (formula "147") (term "1"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "replace_known_left" (formula "147") (term "0,0,1,0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "ifSplit" (formula "147"))
+ (branch "if x_11 true"
+ (builtin "One Step Simplification" (formula "148"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_11 false"
+ (builtin "One Step Simplification" (formula "148"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "147") (term "1"))
+ (builtin "Use Operation Contract" (formula "147") (newnames "heapBefore_distribute,exc_10,heapAfter_distribute,anon_heap_distribute") (contract "de.wiesler.Buffers[de.wiesler.Buffers::distribute(int,[I,int,int,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (distribute)"
+ (builtin "One Step Simplification" (formula "114"))
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "Block Contract (Internal)" (formula "149") (newnames "exc_11,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "150"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "27")))
+ (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "114") (term "0,0,0,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "117"))
+ (rule "eqSymm" (formula "156") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "3,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "114") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "114") (term "1,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "114") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "114") (term "1,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "117") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "2,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "114") (term "2,0,1,0"))
+ (rule "add_literals" (formula "114") (term "1,1,2,0,1,0"))
+ (rule "times_zero_1" (formula "114") (term "1,2,0,1,0"))
+ (rule "polySimp_addLiterals" (formula "114") (term "2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "3,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "3,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "117") (term "0,3,1,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "117") (term "3,1,0,1,0"))
+ (rule "add_literals" (formula "117") (term "1,1,3,1,0,1,0"))
+ (rule "times_zero_1" (formula "117") (term "1,3,1,0,1,0"))
+ (rule "add_zero_right" (formula "117") (term "3,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,2,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "114") (term "0,0,0,2,1,1,0"))
+ (rule "add_literals" (formula "114") (term "1,0,0,0,2,1,1,0"))
+ (rule "times_zero_1" (formula "114") (term "0,0,0,2,1,1,0"))
+ (rule "add_zero_left" (formula "114") (term "0,0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,2,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,0,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "114") (term "0,2,0,1,0"))
+ (rule "add_literals" (formula "114") (term "1,1,0,2,0,1,0"))
+ (rule "times_zero_1" (formula "114") (term "1,0,2,0,1,0"))
+ (rule "add_zero_right" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "114") (term "2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "0,3,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "117") (term "0,0,3,0,0,1,0"))
+ (rule "add_literals" (formula "117") (term "1,0,0,3,0,0,1,0"))
+ (rule "times_zero_1" (formula "117") (term "0,0,3,0,0,1,0"))
+ (rule "add_zero_left" (formula "117") (term "0,3,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "3,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "117") (term "0,3,1,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "117") (term "3,1,0,1,0"))
+ (rule "add_literals" (formula "117") (term "1,1,3,1,0,1,0"))
+ (rule "times_zero_1" (formula "117") (term "1,3,1,0,1,0"))
+ (rule "add_zero_right" (formula "117") (term "3,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "115") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "117") (term "1,0,0"))
+ (rule "variableDeclarationAssign" (formula "156") (term "1"))
+ (rule "variableDeclaration" (formula "156") (term "1") (newnames "exc_11_1"))
+ (rule "assignment" (formula "156") (term "1"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "emptyStatement" (formula "156") (term "1"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "emptyStatement" (formula "156") (term "1"))
+ (rule "commuteUnion" (formula "114") (term "1,0"))
+ (rule "commute_and" (formula "117") (term "0,0"))
+ (rule "commute_and" (formula "115") (term "0,0,0"))
+ (rule "commute_and" (formula "115") (term "1,0,0"))
+ (rule "commute_and" (formula "116") (term "0,0,0"))
+ (rule "commute_and" (formula "116") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "115") (term "0,0"))
+ (rule "commute_and_2" (formula "115") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "116") (term "0,0"))
+ (rule "commute_and_2" (formula "116") (term "0,0,0"))
+ (rule "tryEmpty" (formula "156") (term "1"))
+ (rule "blockEmptyLabel" (formula "156") (term "1"))
+ (rule "blockEmpty" (formula "156") (term "1"))
+ (rule "methodCallEmpty" (formula "156") (term "1"))
+ (rule "emptyModality" (formula "156") (term "1"))
+ (rule "andRight" (formula "156"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "closeTrue" (formula "156"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "closeTrue" (formula "156"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "149"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "149"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "114") (term "0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "andLeft" (formula "114"))
+ (rule "wellFormedAnonEQ" (formula "150") (ifseqformula "114"))
+ (rule "wellFormedAnon" (formula "150") (term "0"))
+ (rule "wellFormedAnon" (formula "150") (term "0,0"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "117"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "115") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "3,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "0,1,0"))
+ (rule "replace_known_left" (formula "155") (term "1,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "155") (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "113")))
+ (rule "closeTrue" (formula "155"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "114") (term "0,0,0,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "114"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "andLeft" (formula "117"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "117"))
+ (rule "andLeft" (formula "119"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "117"))
+ (rule "andLeft" (formula "120"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "117"))
+ (rule "andLeft" (formula "118"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "125") (term "1"))
+ (rule "translateJavaAddInt" (formula "116") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "117") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "3,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "3,0,0,1,0"))
+ (rule "replace_known_left" (formula "122") (term "0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "true_left" (formula "122"))
+ (rule "polySimp_elimSub" (formula "114") (term "2,0,1,0"))
+ (rule "mul_literals" (formula "114") (term "1,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "114") (term "2,1,1,0"))
+ (rule "mul_literals" (formula "114") (term "1,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "124") (term "1"))
+ (rule "polySimp_addComm1" (formula "124") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "114") (term "2,0,1,0"))
+ (rule "add_literals" (formula "114") (term "1,1,2,0,1,0"))
+ (rule "times_zero_1" (formula "114") (term "1,2,0,1,0"))
+ (rule "polySimp_addLiterals" (formula "114") (term "2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "2,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "3,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "118") (term "0,3,1,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "118") (term "3,1,0,1,0"))
+ (rule "add_literals" (formula "118") (term "1,1,3,1,0,1,0"))
+ (rule "times_zero_1" (formula "118") (term "1,3,1,0,1,0"))
+ (rule "add_zero_right" (formula "118") (term "3,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "3,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "124") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "124") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "124") (term "0,0,1"))
+ (rule "add_literals" (formula "124") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "124") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "124") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "114") (term "2,0,1,0"))
+ (rule "add_literals" (formula "114") (term "1,1,2,0,1,0"))
+ (rule "times_zero_1" (formula "114") (term "1,2,0,1,0"))
+ (rule "add_zero_right" (formula "114") (term "2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,2,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "114") (term "0,0,0,2,1,1,0"))
+ (rule "add_literals" (formula "114") (term "1,0,0,0,2,1,1,0"))
+ (rule "times_zero_1" (formula "114") (term "0,0,0,2,1,1,0"))
+ (rule "add_zero_left" (formula "114") (term "0,0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,2,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "3,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,3,1,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "118") (term "3,1,0,1,0"))
+ (rule "add_literals" (formula "118") (term "1,1,3,1,0,1,0"))
+ (rule "times_zero_1" (formula "118") (term "1,3,1,0,1,0"))
+ (rule "add_zero_right" (formula "118") (term "3,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0,3,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "118") (term "0,0,3,0,0,1,0"))
+ (rule "add_literals" (formula "118") (term "1,0,0,3,0,0,1,0"))
+ (rule "times_zero_1" (formula "118") (term "0,0,3,0,0,1,0"))
+ (rule "add_zero_left" (formula "118") (term "0,3,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "117") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "117") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "1,0,0"))
+ (rule "commuteUnion" (formula "114") (term "1,0"))
+ (rule "elim_double_block_2" (formula "160") (term "1"))
+ (rule "commute_and" (formula "118") (term "0,0"))
+ (rule "commute_and" (formula "116") (term "1,0,0"))
+ (rule "commute_and" (formula "116") (term "0,0,0"))
+ (rule "commute_and" (formula "117") (term "0,0,0"))
+ (rule "commute_and" (formula "117") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "116") (term "0,0"))
+ (rule "commute_and_2" (formula "116") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "117") (term "0,0"))
+ (rule "commute_and_2" (formula "117") (term "0,0,0"))
+ (rule "ifUnfold" (formula "160") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "160") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "160") (term "1"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "replace_known_left" (formula "160") (term "0,0,1,0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "ifSplit" (formula "160"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "160") (term "1"))
+ (rule "emptyStatement" (formula "160") (term "1"))
+ (rule "variableDeclarationGhostAssign" (formula "160") (term "1"))
+ (rule "variableDeclarationGhost" (formula "160") (term "1") (newnames "bucketOffset"))
+ (rule "assignmentMultiplicationInt" (formula "160") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "expand_inInt" (formula "160"))
+ (rule "replace_int_MAX" (formula "160") (term "1,0"))
+ (rule "replace_int_MIN" (formula "160") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "118") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "118") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "118") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "117") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "117") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "117") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "117") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "117") (term "0,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "117") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "117") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "116") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "116") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "1,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "116") (term "1,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "116") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "116") (term "1,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "116") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "117") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "116") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "160") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "100"))
+ (rule "polySimp_pullOutFactor1" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,0"))
+ (rule "times_zero_1" (formula "100") (term "0"))
+ (rule "qeq_literals" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "100"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "102"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0"))
+ (rule "add_literals" (formula "103") (term "1,0"))
+ (rule "times_zero_1" (formula "103") (term "0"))
+ (rule "qeq_literals" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "116") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "116") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "88"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "1,1,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0"))
+ (rule "add_zero_right" (formula "88") (term "0"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "56"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "115") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "115") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "115") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "1,0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "115") (term "1,0,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "115") (term "0,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "115") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "114") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "114") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1"))
+ (rule "polySimp_rightDist" (formula "102") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "102") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "102") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1"))
+ (rule "polySimp_elimOne" (formula "88") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "63"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "7"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_subsumption6" (formula "152") (term "1") (ifseqformula "7"))
+ (rule "mul_literals" (formula "152") (term "1,1,0,1"))
+ (rule "greater_literals" (formula "152") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "leq_literals" (formula "152") (term "0,1"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "inEqSimp_leqRight" (formula "152"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "64"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "57"))
+ (rule "times_zero_1" (formula "62") (term "0,0"))
+ (rule "add_zero_left" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "65"))
+ (rule "mul_literals" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "78") (term "0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "qeq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "89"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "95"))
+ (rule "mul_literals" (formula "62") (term "0,0"))
+ (rule "add_zero_left" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "69"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "60"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "17"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "72"))
+ (rule "polySimp_mulComm0" (formula "86") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "76"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "17"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "72") (term "0"))
+ (rule "add_literals" (formula "72") (term "1,1,0"))
+ (rule "times_zero_1" (formula "72") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "add_literals" (formula "72") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "70"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,0"))
+ (rule "mul_literals" (formula "79") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "1,1,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0"))
+ (rule "add_zero_right" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "101"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "60"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "1,1,0"))
+ (rule "times_zero_1" (formula "101") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "101") (term "0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "28"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,0"))
+ (rule "mul_literals" (formula "79") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "28"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1"))
+ (rule "polySimp_rightDist" (formula "101") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,1"))
+ (rule "mul_literals" (formula "101") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "2"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "68"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "102") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0"))
+ (rule "add_literals" (formula "102") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "102") (term "1,0,0"))
+ (rule "add_zero_right" (formula "102") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "80"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "29"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "99"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "1,1,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0"))
+ (rule "add_zero_right" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "mul_literals" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1"))
+ (rule "polySimp_elimOne" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "64"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "add_zero_left" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "28"))
+ (rule "leq_literals" (formula "97") (term "0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "54"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "add_zero_left" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "101"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "74"))
+ (rule "mul_literals" (formula "95") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "add_literals" (formula "95") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "95"))
+ (rule "mul_literals" (formula "95") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "95") (ifseqformula "28"))
+ (rule "leq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "73") (ifseqformula "75"))
+ (rule "inEqSimp_homoInEq0" (formula "73") (term "0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0"))
+ (rule "add_literals" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0"))
+ (rule "add_literals" (formula "73") (term "0,0"))
+ (rule "qeq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "102"))
+ (rule "leq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1"))
+ (rule "polySimp_rightDist" (formula "102") (term "1"))
+ (rule "mul_literals" (formula "102") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "102") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "100") (term "0"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,0,0"))
+ (rule "mul_literals" (formula "100") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "100") (term "0,0,0"))
+ (rule "add_literals" (formula "100") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "100") (term "0,0"))
+ (rule "add_literals" (formula "100") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "100") (term "1,0,0"))
+ (rule "add_literals" (formula "100") (term "0,0"))
+ (rule "qeq_literals" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "73"))
+ (rule "mul_literals" (formula "95") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0"))
+ (rule "add_literals" (formula "95") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "95"))
+ (rule "mul_literals" (formula "95") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "95") (ifseqformula "28"))
+ (rule "mul_literals" (formula "95") (term "1,1,0"))
+ (rule "greater_literals" (formula "95") (term "0,0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "leq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0"))
+ (rule "mul_literals" (formula "102") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "add_literals" (formula "102") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "101"))
+ (rule "leq_literals" (formula "102") (term "0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0"))
+ (rule "mul_literals" (formula "102") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "102") (term "0"))
+ (rule "add_literals" (formula "102") (term "1,1,0"))
+ (rule "times_zero_1" (formula "102") (term "1,0"))
+ (rule "add_zero_right" (formula "102") (term "0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "add_literals" (formula "102") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "96"))
+ (rule "leq_literals" (formula "102") (term "0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "73"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "100") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "100"))
+ (rule "mul_literals" (formula "100") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "28"))
+ (rule "leq_literals" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "102") (term "0,0"))
+ (rule "mul_literals" (formula "102") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "102") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "102"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0"))
+ (rule "polySimp_elimOne" (formula "102") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "102"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_literals" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "100"))
+ (rule "polySimp_mulComm0" (formula "99") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "99") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "99"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "0"))
+ (rule "polySimp_elimOne" (formula "99") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "99"))
+ (rule "leq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "101"))
+ (rule "mul_literals" (formula "94") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0"))
+ (rule "add_literals" (formula "94") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "94"))
+ (rule "mul_literals" (formula "94") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "94") (ifseqformula "28"))
+ (rule "leq_literals" (formula "94") (term "0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_and_subsumption3" (formula "116") (term "0,0,0"))
+ (rule "leq_literals" (formula "116") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "inEqSimp_and_subsumption3" (formula "115") (term "0,0,0"))
+ (rule "leq_literals" (formula "115") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "nnf_imp2or" (formula "107") (term "0"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "117") (term "0"))
+ (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "52") (term "0"))
+ (rule "replace_known_left" (formula "52") (term "1") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "37")) (ifInst "" (formula "157")) (ifInst "" (formula "16")))
+ (rule "true_left" (formula "52"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "26")) (ifInst "" (formula "156")))
+ (rule "translateJavaSubInt" (formula "70") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "70") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "70") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "70") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "70") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "70") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "70") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "70") (term "1,0,1,0,0,1") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "70") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "70") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "70") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "70") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "70") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "applyEq" (formula "70") (term "0,1,0,1,1,1,1") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "70") (term "1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "70") (term "0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "70") (term "1,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "70") (term "0,1,0,1,1,1,1"))
+ (rule "leq_literals" (formula "70") (term "1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "applyEq" (formula "70") (term "0,0,0,1,1") (ifseqformula "71"))
+ (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "49"))
+ (rule "inEqSimp_homoInEq1" (formula "70") (term "1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "70") (term "0,1,0"))
+ (rule "add_literals" (formula "70") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "70") (term "0,1,0"))
+ (rule "leq_literals" (formula "70") (term "1,0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "applyEq" (formula "70") (term "1,0,1,0,1") (ifseqformula "49"))
+ (rule "applyEq" (formula "70") (term "1,1,0,1,1,1") (ifseqformula "71"))
+ (rule "applyEq" (formula "70") (term "1,1,1,1,1,1") (ifseqformula "71"))
+ (rule "applyEq" (formula "70") (term "0,0,0,1") (ifseqformula "71"))
+ (rule "applyEq" (formula "70") (term "0,1,0,0,0,1,1,1") (ifseqformula "49"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "70") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "70") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "applyEq" (formula "70") (term "0,1,0,1") (ifseqformula "71"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "70") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "70") (term "0,0,1,1,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "translateJavaSubInt" (formula "88") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "88") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "88") (term "1,1,1"))
+ (rule "mul_literals" (formula "88") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "88") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0"))
+ (rule "applyEq" (formula "88") (term "1,0,1,1,1") (ifseqformula "89"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,1,1,1"))
+ (rule "applyEq" (formula "88") (term "0,0,1,1") (ifseqformula "89"))
+ (rule "inEqSimp_commuteGeq" (formula "88") (term "0,1,1"))
+ (rule "applyEq" (formula "88") (term "0,0,0,1") (ifseqformula "89"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "88") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,1,1,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "89") (term "1"))
+ (rule "eqSymm" (formula "89"))
+ (rule "translateJavaCastInt" (formula "89") (term "0,0"))
+ (rule "castedGetAny" (formula "89") (term "0,0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "108") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "expand_inInt" (formula "108") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "108") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "108") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "108") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "108") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "108") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "108") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "108") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "108") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "108") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "70") (term "0"))
+ (rule "translateJavaCastInt" (formula "70") (term "0,0"))
+ (rule "castedGetAny" (formula "70") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "118") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "expand_inInt" (formula "118") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "118") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "118") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "118"))
+ (rule "andLeft" (formula "120"))
+ (rule "andLeft" (formula "118"))
+ (rule "notLeft" (formula "118"))
+ (rule "translateJavaMulInt" (formula "118") (term "1"))
+ (rule "mul_literals" (formula "118") (term "1"))
+ (rule "eqSymm" (formula "129"))
+ (rule "inEqSimp_ltToLeq" (formula "122") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "122") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "122") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "122") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "122") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "120"))
+ (rule "applyEq" (formula "120") (term "0") (ifseqformula "37"))
+ (rule "replace_known_left" (formula "68") (term "0") (ifseqformula "120"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "68"))
+ (rule "applyEq" (formula "124") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "125") (term "0,1,0,0,1,0,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "125") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "125") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "125") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "125") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "45") (ifseqformula "124"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "122"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "122"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "translateJavaMulInt" (formula "160") (term "0,1,0"))
+ (rule "emptyStatement" (formula "160") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "160") (newnames "exc_12,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "161"))
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "161") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "161") (term "1"))
+ (rule "variableDeclaration" (formula "161") (term "1") (newnames "exc_12_1"))
+ (rule "assignment" (formula "161") (term "1"))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "emptyStatement" (formula "161") (term "1"))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "emptyStatement" (formula "161") (term "1"))
+ (rule "tryEmpty" (formula "161") (term "1"))
+ (rule "blockEmptyLabel" (formula "161") (term "1"))
+ (rule "blockEmpty" (formula "161") (term "1"))
+ (rule "methodCallEmpty" (formula "161") (term "1"))
+ (rule "emptyModality" (formula "161") (term "1"))
+ (rule "andRight" (formula "161"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "closeTrue" (formula "161"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "closeTrue" (formula "161"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "160"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "160"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "wellFormedAnonEQ" (formula "160") (ifseqformula "114"))
+ (rule "wellFormedAnon" (formula "160") (term "0"))
+ (rule "wellFormedAnon" (formula "160") (term "0,0"))
+ (rule "replace_known_left" (formula "160") (term "1") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "93")))
+ (rule "closeTrue" (formula "160"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "161"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "126") (term "1,1,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "andLeft" (formula "126"))
+ (rule "andLeft" (formula "126"))
+ (rule "andLeft" (formula "128"))
+ (rule "translateJavaAddInt" (formula "128") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "129") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "129") (term "5,0"))
+ (rule "replace_known_left" (formula "127") (term "0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "true_left" (formula "127"))
+ (rule "polySimp_addAssoc" (formula "128") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "128") (term "0,4,0"))
+ (rule "applyEq" (formula "128") (term "1,5,0") (ifseqformula "124"))
+ (rule "polySimp_addAssoc" (formula "128") (term "5,0"))
+ (rule "polySimp_addAssoc" (formula "128") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "128") (term "0,0,5,0"))
+ (rule "applyEq" (formula "127") (term "1,4,0") (ifseqformula "124"))
+ (rule "polySimp_addAssoc" (formula "127") (term "4,0"))
+ (rule "polySimp_addAssoc" (formula "127") (term "0,4,0"))
+ (rule "polySimp_addComm0" (formula "127") (term "0,0,4,0"))
+ (rule "elim_double_block_2" (formula "163") (term "1"))
+ (rule "ifUnfold" (formula "163") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "163") (term "1") (newnames "x_13"))
+ (rule "inequality_comparison_simple" (formula "163") (term "1"))
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "replace_known_left" (formula "163") (term "0,0,1,0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "ifSplit" (formula "163"))
+ (branch "if x_13 true"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_13 false"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "163") (term "1"))
+ (rule "emptyStatement" (formula "163") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "163") (newnames "exc_13,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "eqSymm" (formula "164") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "164") (term "1"))
+ (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_13_1"))
+ (rule "assignment" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (rule "tryEmpty" (formula "164") (term "1"))
+ (rule "blockEmptyLabel" (formula "164") (term "1"))
+ (rule "blockEmpty" (formula "164") (term "1"))
+ (rule "methodCallEmpty" (formula "164") (term "1"))
+ (rule "emptyModality" (formula "164") (term "1"))
+ (rule "andRight" (formula "164"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "163"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "163"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "wellFormedAnonEQ" (formula "163") (ifseqformula "114"))
+ (rule "wellFormedAnon" (formula "163") (term "0"))
+ (rule "wellFormedAnon" (formula "163") (term "0,0"))
+ (rule "replace_known_left" (formula "163") (term "1") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "93")))
+ (rule "closeTrue" (formula "163"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "129"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "129") (term "1,1,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "andLeft" (formula "129"))
+ (rule "andLeft" (formula "129"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "translateJavaAddInt" (formula "132") (term "3,0"))
+ (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "true_left" (formula "130"))
+ (rule "polySimp_addAssoc" (formula "131") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "131") (term "0,3,0"))
+ (rule "elim_double_block_2" (formula "168") (term "1"))
+ (rule "ifUnfold" (formula "168") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "168") (term "1") (newnames "x_14"))
+ (rule "inequality_comparison_simple" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "replace_known_left" (formula "168") (term "0,0,1,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "Use Dependency Contract" (formula "112") (term "0") (ifInst "" (formula "47") (term "1,1,1,0")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "134") (term "1,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "134") (term "0,1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "134") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "134") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "134") (term "1,0,1,0,0,0"))
+ (rule "replace_known_left" (formula "134") (term "1,1,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "167")) (ifInst "" (formula "22")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "93")) (ifInst "" (formula "75")))
+ (rule "disjointDefinition" (formula "134") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "134") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "134") (term "0,0,0"))
+ (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "inEqSimp_commuteLeq" (formula "134") (term "0,0,0"))
+ (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "applyEq" (formula "134") (term "0,1") (ifseqformula "112"))
+ (rule "applyEq" (formula "134") (term "1,0,0") (ifseqformula "40"))
+ (rule "replace_known_left" (formula "134") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "elementOfUnion" (formula "134") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "134") (term "1,0,0"))
+ (rule "replace_known_right" (formula "134") (term "0,0,1,0,0") (ifseqformula "138"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "elementOfArrayRangeConcrete" (formula "134") (term "0,0"))
+ (rule "replace_known_right" (formula "134") (term "0,0,0,0") (ifseqformula "138"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "ifSplit" (formula "169"))
+ (branch "if x_14 true"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_14 false"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "169") (term "1"))
+ (rule "emptyStatement" (formula "169") (term "1"))
+ (rule "tryEmpty" (formula "169") (term "1"))
+ (rule "blockEmptyLabel" (formula "169") (term "1"))
+ (rule "blockEmpty" (formula "169") (term "1"))
+ (rule "methodCallEmpty" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "emptyModality" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "closeTrue" (formula "169"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (distribute)"
+ (builtin "One Step Simplification" (formula "114"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "andLeft" (formula "114"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "1,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "115"))
+ (rule "andLeft" (formula "117"))
+ (rule "notLeft" (formula "115"))
+ (rule "close" (formula "118") (ifseqformula "117"))
+ )
+ (branch "Pre (distribute)"
+ (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "146")) (ifInst "" (formula "22")) (ifInst "" (formula "146")) (ifInst "" (formula "17")))
+ (rule "andRight" (formula "147"))
+ (branch "Case 1"
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "147") (userinteraction))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "14") (userinteraction))
+ (rule "close" (formula "147") (ifseqformula "14"))
+ )
+ (branch
+ (rule "andRight" (formula "147"))
+ (branch
+ (rule "andRight" (formula "147"))
+ (branch
+ (rule "andRight" (formula "147"))
+ (branch
+ (rule "andRight" (formula "147"))
+ (branch
+ (rule "andRight" (formula "147"))
+ (branch
+ (rule "wellFormedAnon" (formula "147"))
+ (rule "wellFormedAnon" (formula "147") (term "0"))
+ (rule "replace_known_left" (formula "147") (term "1") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "147"))
+ )
+ (branch
+ (rule "expand_inInt" (formula "147"))
+ (rule "replace_int_MIN" (formula "147") (term "0,1"))
+ (rule "replace_int_MAX" (formula "147") (term "1,0"))
+ (rule "replace_known_left" (formula "147") (term "0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "147"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_pullOutFactor1" (formula "105") (term "0"))
+ (rule "add_literals" (formula "105") (term "1,0"))
+ (rule "times_zero_1" (formula "105") (term "0"))
+ (rule "qeq_literals" (formula "105"))
+ (rule "true_left" (formula "105"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_pullOutFactor1" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "1,0"))
+ (rule "times_zero_1" (formula "101") (term "0"))
+ (rule "qeq_literals" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "57"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0"))
+ (rule "applyEq" (formula "89") (term "0") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "89") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "89") (term "0"))
+ (rule "add_literals" (formula "89") (term "1,1,0"))
+ (rule "times_zero_1" (formula "89") (term "1,0"))
+ (rule "add_zero_right" (formula "89") (term "0"))
+ (rule "applyEq" (formula "86") (term "1") (ifseqformula "57"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1"))
+ (rule "polySimp_rightDist" (formula "103") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "103") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "103") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,1"))
+ (rule "mul_literals" (formula "72") (term "0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "89"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1"))
+ (rule "polySimp_elimOne" (formula "89") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "1"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_contradInEq0" (formula "76") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "closeFalse" (formula "76"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "147"))
+ (rule "replace_int_MIN" (formula "147") (term "0,1"))
+ (rule "replace_int_MAX" (formula "147") (term "1,0"))
+ (rule "replace_known_left" (formula "147") (term "1") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "60")))
+ (rule "closeTrue" (formula "147"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "147"))
+ (rule "replace_int_MIN" (formula "147") (term "0,1"))
+ (rule "replace_int_MAX" (formula "147") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0"))
+ (rule "add_literals" (formula "104") (term "1,0"))
+ (rule "times_zero_1" (formula "104") (term "0"))
+ (rule "qeq_literals" (formula "104"))
+ (rule "true_left" (formula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "100"))
+ (rule "polySimp_pullOutFactor1" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,0"))
+ (rule "times_zero_1" (formula "100") (term "0"))
+ (rule "qeq_literals" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_homoInEq0" (formula "145") (term "1"))
+ (rule "mul_literals" (formula "145") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "145") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "145") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "145") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "145") (term "0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "145") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "145") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "145") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "145") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "145") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "145") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "88"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "1,1,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0"))
+ (rule "add_zero_right" (formula "88") (term "0"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "56"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1"))
+ (rule "polySimp_rightDist" (formula "102") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "102") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "102") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "144") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "144") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "144") (term "0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "0,1,0"))
+ (rule "mul_literals" (formula "144") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "144") (term "1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1"))
+ (rule "polySimp_elimOne" (formula "88") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "7"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "63"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption0" (formula "139") (term "1") (ifseqformula "95"))
+ (rule "inEqSimp_homoInEq0" (formula "139") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "139") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "139") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "139") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "139") (term "1,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "139") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "139") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "139") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "139") (term "0,0,1"))
+ (rule "add_literals" (formula "139") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "139") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "139") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "139") (term "0,0,1"))
+ (rule "add_literals" (formula "139") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "139") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "139") (term "0,0,1"))
+ (rule "qeq_literals" (formula "139") (term "0,1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "inEqSimp_geqRight" (formula "139"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "95") (term "0"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "95") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "95") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "95") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "95") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "95") (term "0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0"))
+ (rule "add_zero_right" (formula "95") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "95") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0"))
+ (rule "qeq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58"))
+ (rule "times_zero_1" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "70"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "84"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "60"))
+ (rule "mul_literals" (formula "78") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "18"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "1"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "add_literals" (formula "76") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "30"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "97") (term "0,0"))
+ (rule "add_literals" (formula "97") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "97") (term "1,0,0"))
+ (rule "add_zero_right" (formula "97") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "97"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1"))
+ (rule "polySimp_elimOne" (formula "97") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "75"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0"))
+ (rule "add_literals" (formula "70") (term "1,1,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "69"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,0"))
+ (rule "mul_literals" (formula "77") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0"))
+ (rule "add_literals" (formula "77") (term "1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0"))
+ (rule "add_zero_right" (formula "77") (term "0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1"))
+ (rule "mul_literals" (formula "77") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "98"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "1,1,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0"))
+ (rule "add_zero_right" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "0,0"))
+ (rule "add_zero_left" (formula "59") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "96") (ifseqformula "59"))
+ (rule "leq_literals" (formula "96") (term "0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "82"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "1,1,0"))
+ (rule "times_zero_1" (formula "101") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "101") (term "0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "30"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "79"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "2"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1"))
+ (rule "polySimp_rightDist" (formula "101") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,1"))
+ (rule "mul_literals" (formula "101") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "72"))
+ (rule "mul_literals" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "70"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "95"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "70"))
+ (rule "mul_literals" (formula "84") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "84"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1"))
+ (rule "polySimp_rightDist" (formula "84") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,1"))
+ (rule "mul_literals" (formula "84") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "84") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "84") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,0"))
+ (rule "mul_literals" (formula "84") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0"))
+ (rule "add_literals" (formula "84") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0,0"))
+ (rule "add_literals" (formula "84") (term "0,0"))
+ (rule "qeq_literals" (formula "84") (term "0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "30"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "68"))
+ (rule "mul_literals" (formula "67") (term "0,0"))
+ (rule "add_zero_left" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "74"))
+ (rule "mul_literals" (formula "96") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "96") (term "0"))
+ (rule "add_literals" (formula "96") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "96"))
+ (rule "mul_literals" (formula "96") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "96") (ifseqformula "61"))
+ (rule "leq_literals" (formula "96") (term "0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "66"))
+ (rule "mul_literals" (formula "30") (term "0,0"))
+ (rule "add_zero_left" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "30"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_contradInEq1" (formula "97") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "97") (term "0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "closeFalse" (formula "97"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "147"))
+ (rule "replace_int_MIN" (formula "147") (term "0,1"))
+ (rule "replace_int_MAX" (formula "147") (term "1,0"))
+ (rule "replace_known_left" (formula "147") (term "0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "147"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_addComm1" (formula "104") (term "0"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_pullOutFactor1" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "1,0"))
+ (rule "times_zero_1" (formula "101") (term "0"))
+ (rule "qeq_literals" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0"))
+ (rule "add_literals" (formula "104") (term "1,0"))
+ (rule "times_zero_1" (formula "104") (term "0"))
+ (rule "qeq_literals" (formula "104"))
+ (rule "true_left" (formula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "applyEq" (formula "89") (term "0") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "89") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "89") (term "0"))
+ (rule "add_literals" (formula "89") (term "1,1,0"))
+ (rule "times_zero_1" (formula "89") (term "1,0"))
+ (rule "add_zero_right" (formula "89") (term "0"))
+ (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "57"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0"))
+ (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "57"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "86") (term "1") (ifseqformula "57"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1"))
+ (rule "polySimp_rightDist" (formula "103") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "103") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "103") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "89"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1"))
+ (rule "polySimp_elimOne" (formula "89") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,1"))
+ (rule "mul_literals" (formula "72") (term "0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "8"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "91") (ifseqformula "1"))
+ (rule "leq_literals" (formula "91") (term "0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "64"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_contradInEq0" (formula "90") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "closeFalse" (formula "90"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "147"))
+ (rule "replace_int_MIN" (formula "147") (term "0,1"))
+ (rule "replace_int_MAX" (formula "147") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "70"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "103"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_pullOutFactor1" (formula "104") (term "0"))
+ (rule "add_literals" (formula "104") (term "1,0"))
+ (rule "times_zero_1" (formula "104") (term "0"))
+ (rule "qeq_literals" (formula "104"))
+ (rule "true_left" (formula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "mul_literals" (formula "71") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "101") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "101") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "100"))
+ (rule "polySimp_pullOutFactor1" (formula "100") (term "0"))
+ (rule "add_literals" (formula "100") (term "1,0"))
+ (rule "times_zero_1" (formula "100") (term "0"))
+ (rule "qeq_literals" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_homoInEq0" (formula "145") (term "1"))
+ (rule "mul_literals" (formula "145") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "145") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "145") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "145") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "145") (term "0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "145") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "145") (term "0,1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "145") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "145") (term "0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "145") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "145") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "145") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "88"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "88") (term "0"))
+ (rule "add_literals" (formula "88") (term "1,1,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0"))
+ (rule "add_zero_right" (formula "88") (term "0"))
+ (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "56"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1"))
+ (rule "polySimp_rightDist" (formula "102") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "102") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "102") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "mul_literals" (formula "78") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "144") (term "1"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "144") (term "0,1,1"))
+ (rule "mul_literals" (formula "144") (term "0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "144") (term "1,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "144") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "144") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1"))
+ (rule "polySimp_elimOne" (formula "88") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,1"))
+ (rule "mul_literals" (formula "71") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "7"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "65"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_subsumption1" (formula "141") (term "1") (ifseqformula "99"))
+ (rule "inEqSimp_homoInEq0" (formula "141") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "141") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "141") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "141") (term "1,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "141") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "141") (term "0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "141") (term "0,0,1"))
+ (rule "add_literals" (formula "141") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "141") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "141") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "141") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,1"))
+ (rule "add_literals" (formula "141") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "141") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "141") (term "0,0,1"))
+ (rule "qeq_literals" (formula "141") (term "0,1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_leqRight" (formula "141"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "97") (term "0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "97") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "97") (term "0,0,0,0"))
+ (rule "add_literals" (formula "97") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "97") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "97") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "97") (term "0,0"))
+ (rule "add_literals" (formula "97") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "97") (term "1,0,0"))
+ (rule "add_literals" (formula "97") (term "0,0"))
+ (rule "qeq_literals" (formula "97") (term "0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "76"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "29"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "74"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "1,1,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "29"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0,0"))
+ (rule "add_literals" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,1"))
+ (rule "mul_literals" (formula "72") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "99"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "1,1,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0"))
+ (rule "add_zero_right" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "61"))
+ (rule "mul_literals" (formula "82") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0"))
+ (rule "add_literals" (formula "82") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "82"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "19"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "67"))
+ (rule "mul_literals" (formula "82") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1"))
+ (rule "polySimp_rightDist" (formula "82") (term "1"))
+ (rule "mul_literals" (formula "82") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0"))
+ (rule "add_literals" (formula "82") (term "0,0"))
+ (rule "qeq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "mul_literals" (formula "79") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "30"))
+ (rule "leq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "74"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "70"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0"))
+ (rule "add_literals" (formula "79") (term "1,1,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0"))
+ (rule "add_zero_right" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "101"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "47"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "3"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "78"))
+ (rule "mul_literals" (formula "55") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "20"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "99"))
+ (rule "times_zero_1" (formula "65") (term "0,0"))
+ (rule "add_zero_left" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "62"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "2"))
+ (rule "leq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "83"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "39"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "74"))
+ (rule "mul_literals" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "63"))
+ (rule "mul_literals" (formula "69") (term "0,0"))
+ (rule "add_zero_left" (formula "69") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "34"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "76"))
+ (rule "mul_literals" (formula "97") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "add_literals" (formula "97") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "97"))
+ (rule "mul_literals" (formula "97") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "100"))
+ (rule "leq_literals" (formula "97") (term "0"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "57"))
+ (rule "times_zero_1" (formula "32") (term "0,0"))
+ (rule "add_zero_left" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "104"))
+ (rule "inEqSimp_homoInEq0" (formula "32") (term "0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "68"))
+ (rule "times_zero_1" (formula "32") (term "0,0"))
+ (rule "add_zero_left" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "32"))
+ (rule "leq_literals" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "103"))
+ (rule "leq_literals" (formula "99") (term "0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "inEqSimp_contradInEq0" (formula "32") (ifseqformula "102"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ )
+ )
+ (branch "Null reference (_buffers = null)"
+ (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "145")))
+ (rule "closeTrue" (formula "147"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "109"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "wellFormedAnon" (formula "109"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (rule "andRight" (formula "109"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "108") (term "1") (ifseqformula "7"))
+ (rule "leq_literals" (formula "108") (term "0,1"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "inEqSimp_leqRight" (formula "108"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "109"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "22")))
+ (rule "closeTrue" (formula "110"))
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "109"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "110"))
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "109"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "110"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "109") (term "1"))
+ (rule "mul_literals" (formula "109") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "109") (term "0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "109") (term "1"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,1"))
+ (rule "mul_literals" (formula "109") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "109") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58"))
+ (rule "times_zero_1" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1"))
+ (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "51") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "expand_inInt" (formula "51") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "54") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "37"))
+ (rule "inEqSimp_commuteGeq" (formula "51"))
+ (rule "applyEq" (formula "51") (term "1,1,1,1,1,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "66") (term "1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "translateJavaUnaryMinusInt" (formula "66") (term "1,1"))
+ (rule "neg_literal" (formula "66") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "66") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "66") (term "0,0,1"))
+ (rule "polySimp_elimSub" (formula "66") (term "0,1"))
+ (rule "mul_literals" (formula "66") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "66") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,2,1"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "45"))
+ (rule "translateJavaMulInt" (formula "42") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,2,1"))
+ (rule "mul_literals" (formula "45") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,2,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "37"))
+ (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "41"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "40"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "41"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "translateJavaAddInt" (formula "36") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "35") (term "0"))
+ (rule "polySimp_addComm0" (formula "36") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "12")) (ifInst "" (formula "112")) (ifInst "" (formula "12")) (ifInst "" (formula "61")) (ifInst "" (formula "20")))
+ (rule "wellFormedAnon" (formula "58") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "58") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "58") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "58") (term "0,1,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "14")))
+ (rule "polySimp_addComm0" (formula "58") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "58") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0"))
+ (rule "replace_known_left" (formula "58") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "58") (term "0,1,0,0,1") (ifseqformula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0,1"))
+ (rule "applyEq" (formula "58") (term "0,1,0,0,0,1") (ifseqformula "59"))
+ (rule "inEqSimp_commuteGeq" (formula "58") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "58") (term "0,1,0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "58") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "58") (term "0,0,1,1") (ifseqformula "59"))
+ (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "73"))
+ (rule "inEqSimp_commuteGeq" (formula "58") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0"))
+ (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "81"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "replace_known_left" (formula "121") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "inEqSimp_geqRight" (formula "121"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "61") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0"))
+ (rule "qeq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "60"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,0"))
+ (rule "mul_literals" (formula "82") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1"))
+ (rule "polySimp_rightDist" (formula "82") (term "1"))
+ (rule "mul_literals" (formula "82") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "82"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "mul_literals" (formula "73") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "mul_literals" (formula "73") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_rightDist" (formula "65") (term "1"))
+ (rule "mul_literals" (formula "65") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "32") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "106") (term "1") (ifseqformula "63"))
+ (rule "leq_literals" (formula "106") (term "0,1"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "inEqSimp_leqRight" (formula "106"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "1"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "60"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "31") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeFalse" (formula "31"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59"))
+ (rule "times_zero_1" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "times_zero_1" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "13")) (ifInst "" (formula "105")) (ifInst "" (formula "13")) (ifInst "" (formula "57")) (ifInst "" (formula "21")))
+ (rule "wellFormedAnon" (formula "54") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "54") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "54") (term "1,1,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "16")))
+ (rule "polySimp_addComm0" (formula "54") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "54") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,1"))
+ (rule "applyEq" (formula "54") (term "1,0,1,0,1") (ifseqformula "48"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0,0,1") (ifseqformula "55"))
+ (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0") (ifseqformula "48"))
+ (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "54") (term "0,1,0,0,1") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,1"))
+ (rule "applyEq" (formula "54") (term "0,1,0,1") (ifseqformula "69"))
+ (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0"))
+ (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "55"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "78"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "times_zero_1" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "54"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "76"))
+ (rule "mul_literals" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "29"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1"))
+ (rule "polySimp_elimOne" (formula "57") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "59"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,0"))
+ (rule "mul_literals" (formula "81") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "mul_literals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "28"))
+ (rule "leq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "56"))
+ (rule "mul_literals" (formula "53") (term "0,0"))
+ (rule "add_zero_left" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "29"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "61") (term "0"))
+ (rule "translateJavaMulInt" (formula "61") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "61") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "eqSymm" (formula "62"))
+ (rule "applyEqReverse" (formula "61") (term "1") (ifseqformula "62"))
+ (rule "hideAuxiliaryEq" (formula "62"))
+ (rule "elementOfArrayRangeConcrete" (formula "61") (term "0,0,0"))
+ (rule "replace_known_right" (formula "61") (term "0,0,0,0,0") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "12"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "notLeft" (formula "13"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "45") (term "0,2,1"))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "45"))
+ (rule "translateJavaMulInt" (formula "42") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,2,1"))
+ (rule "mul_literals" (formula "45") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "45") (term "0,2,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "37"))
+ (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "41"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "40"))
+ (rule "leq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "41"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "2"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "77") (term "0"))
+ (rule "translateJavaCastInt" (formula "77") (term "0,0"))
+ (rule "castedGetAny" (formula "77") (term "0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "77") (term "1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "1,1,1"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "77") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "77") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "77") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,0"))
+ (rule "replace_known_left" (formula "77") (term "1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0"))
+ (rule "replace_known_left" (formula "77") (term "0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "78"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "80"))
+ (rule "polySimp_rightDist" (formula "87") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "87"))
+ (rule "mul_literals" (formula "87") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "87") (ifseqformula "16"))
+ (rule "leq_literals" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "true_left" (formula "87"))
+ (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "59"))
+ (rule "polySimp_rightDist" (formula "84") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,0,0"))
+ (rule "mul_literals" (formula "84") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "84") (term "0,0,0"))
+ (rule "add_literals" (formula "84") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0"))
+ (rule "add_literals" (formula "84") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0,0"))
+ (rule "add_literals" (formula "84") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "84"))
+ (rule "mul_literals" (formula "84") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "84") (ifseqformula "16"))
+ (rule "leq_literals" (formula "84") (term "0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "59"))
+ (rule "times_zero_1" (formula "55") (term "0,0"))
+ (rule "add_zero_left" (formula "55") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "mul_literals" (formula "55") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "55") (term "0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0"))
+ (rule "qeq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "11") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaAddInt" (formula "11") (term "3,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "4,0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "3,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "4,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "0,4,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "11") (term "4,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,4,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "4,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,4,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,1"))
+ (rule "neg_literal" (formula "81") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "81") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,0,1"))
+ (rule "polySimp_elimSub" (formula "81") (term "0,1"))
+ (rule "mul_literals" (formula "81") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "81") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "replace_known_right" (formula "63") (term "0,0,0,0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_left" (formula "63") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "52") (term "0"))
+ (rule "replace_known_right" (formula "52") (term "0,1,1,0,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "33")) (ifInst "" (formula "13")) (ifInst "" (formula "53")))
+ (rule "true_left" (formula "52"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "translateJavaAddInt" (formula "34") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "65") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "expand_inInt" (formula "65") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "65") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "65") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "translateJavaAddInt" (formula "71") (term "1"))
+ (rule "translateJavaCastInt" (formula "72") (term "0"))
+ (rule "translateJavaMulInt" (formula "65") (term "1"))
+ (rule "translateJavaMulInt" (formula "66") (term "0"))
+ (rule "translateJavaCastInt" (formula "69") (term "0"))
+ (rule "translateJavaCastInt" (formula "68") (term "1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "1"))
+ (rule "castedGetAny" (formula "72") (term "0"))
+ (rule "castedGetAny" (formula "69") (term "0"))
+ (rule "castedGetAny" (formula "68") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "67"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "68"))
+ (rule "applyEq" (formula "68") (term "1,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "66") (term "0,0") (ifseqformula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "applyEq" (formula "69") (term "1,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "49"))
+ (rule "applyEq" (formula "71") (term "1,1") (ifseqformula "49"))
+ (rule "applyEq" (formula "74") (term "0,1,0,0,1,0,0,0") (ifseqformula "49"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "65") (ifseqformula "39"))
+ (rule "greater_literals" (formula "65") (term "0,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "mul_literals" (formula "65") (term "1,0"))
+ (rule "leq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "68"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "38") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "70")) (ifInst "" (formula "73")))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "translateJavaCastInt" (formula "44") (term "0"))
+ (rule "translateJavaAddInt" (formula "43") (term "1"))
+ (rule "translateJavaMulInt" (formula "39") (term "0"))
+ (rule "translateJavaMulInt" (formula "38") (term "1"))
+ (rule "translateJavaCastInt" (formula "42") (term "0"))
+ (rule "translateJavaCastInt" (formula "41") (term "1"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_addComm0" (formula "43") (term "1"))
+ (rule "castedGetAny" (formula "44") (term "0"))
+ (rule "castedGetAny" (formula "42") (term "0"))
+ (rule "castedGetAny" (formula "41") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "76"))
+ (rule "polySimp_homoEq" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0"))
+ (rule "add_zero_left" (formula "42") (term "0,0"))
+ (rule "apply_eq_monomials" (formula "39") (term "0") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "39") (term "0"))
+ (rule "add_literals" (formula "39") (term "1,1,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0"))
+ (rule "add_zero_right" (formula "39") (term "0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "apply_eq_monomials" (formula "38") (term "0") (ifseqformula "53"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "38") (term "0"))
+ (rule "add_literals" (formula "38") (term "1,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0"))
+ (rule "add_zero_right" (formula "38") (term "0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "53"))
+ (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "53"))
+ (rule "polySimp_pullOutFactor2" (formula "41") (term "0"))
+ (rule "add_literals" (formula "41") (term "1,0"))
+ (rule "times_zero_1" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "38") (ifseqformula "42"))
+ (rule "greater_literals" (formula "38") (term "0,0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1,0"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "51"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "53") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "expand_inInt" (formula "53") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "53") (term "1,1,1,1,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "34"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "37") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "expand_inInt" (formula "37") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "translateJavaMulInt" (formula "37") (term "1"))
+ (rule "mul_literals" (formula "37") (term "1"))
+ (rule "eqSymm" (formula "101"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "35"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "42"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "23"))
+ (rule "notLeft" (formula "22"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "nnf_imp2or" (formula "49") (term "0"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "commute_and" (formula "137"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "65") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "134")))
+ (rule "translateJavaAddInt" (formula "65") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "65") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "65") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "65") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "65") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "65") (term "0,0,0,1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0"))
+ (rule "replace_known_left" (formula "65") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "65") (term "0,1,0,1,1,1,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,0,1,1,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "65") (term "0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "65") (term "1,0,1,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "65") (term "1,0,0,0,1") (ifseqformula "50"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "65") (term "0,0,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_subsumption1" (formula "65") (term "1,0,1,1,1,1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "65") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "65") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_subsumption1" (formula "65") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "65") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "66") (term "0,1,1"))
+ (rule "translateJavaCastInt" (formula "66") (term "0,0,1,1"))
+ (rule "polySimp_homoEq" (formula "66"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "castedGetAny" (formula "66") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "96") (term "0"))
+ (rule "translateJavaCastInt" (formula "96") (term "0,0"))
+ (rule "castedGetAny" (formula "96") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "93") (term "0"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "135")))
+ (rule "translateJavaSubInt" (formula "93") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "93") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "93") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "93") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "93") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "93") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "93") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "93") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0"))
+ (rule "replace_known_left" (formula "93") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "93") (term "0,0,0,1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "applyEq" (formula "93") (term "0,1,0,0,0,1,1,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "93") (term "0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "93") (term "1,0,1,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "93") (term "1,0,0,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "93") (term "0,1,0,1,1,1,1") (ifseqformula "50"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "93") (term "0,0,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "inEqSimp_subsumption1" (formula "93") (term "1,0,1,1,1,1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "93") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "93") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "93") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "93") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "93") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "93") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "inEqSimp_subsumption1" (formula "93") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "93") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "93") (term "0,0,0,0"))
+ (rule "add_literals" (formula "93") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "93") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "93") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "93") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "65")))
+ (rule "true_left" (formula "93"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "93") (term "0"))
+ (rule "translateJavaCastInt" (formula "93") (term "0,0"))
+ (rule "castedGetAny" (formula "93") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "98") (term "0"))
+ (rule "translateJavaCastInt" (formula "98") (term "0,0"))
+ (rule "castedGetAny" (formula "98") (term "0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "135")))
+ (rule "translateJavaSubInt" (formula "95") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "95") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "95") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "95") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "95") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "95") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "95") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "95") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "95") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "95") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "95") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "95") (term "0,0,0,1") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "95") (term "0,0,0"))
+ (rule "replace_known_left" (formula "95") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "applyEq" (formula "95") (term "0,1,0,1,1,1,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "95") (term "1,0,1,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "95") (term "0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "95") (term "1,0,0,0,1") (ifseqformula "50"))
+ (rule "applyEq" (formula "95") (term "0,1,0,0,0,1,1,1") (ifseqformula "50"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "95") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "95") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "95") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "95") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "95") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "95") (term "0,0,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_subsumption1" (formula "95") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "95") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0,0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "95") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_subsumption1" (formula "95") (term "1,0,1,1,1,1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "95") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "95") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "95") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "65")))
+ (rule "true_left" (formula "95"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "95") (term "0"))
+ (rule "translateJavaCastInt" (formula "95") (term "0,0"))
+ (rule "castedGetAny" (formula "95") (term "0,0"))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "10") (term "2,0,0,1,1,0"))
+ (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "137"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "14")) (ifInst "" (formula "17")))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "11") (term "1,1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaMod" (formula "64") (term "0"))
+ (rule "jmod_axiom" (formula "64") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "newSym_eq" (formula "64") (inst "l=l_0") (inst "newSymDef=mul(result, Z(0(#)))"))
+ (rule "times_zero_1" (formula "64") (term "1,1"))
+ (rule "add_zero_right" (formula "64") (term "1"))
+ (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "64"))
+ (rule "eqSymm" (formula "65"))
+ (rule "applyEq" (formula "64") (term "0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "61") (term "1") (ifseqformula "65"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "65"))
+ (rule "inEqSimp_homoInEq0" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "65"))
+ (rule "inEqSimp_homoInEq0" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "65"))
+ (rule "applyEq" (formula "62") (term "1") (ifseqformula "65"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "65"))
+ (rule "applyEq" (formula "96") (term "0") (ifseqformula "65"))
+ (rule "inEqSimp_homoInEq1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "96") (term "0"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "65"))
+ (rule "applyEq" (formula "66") (term "1") (ifseqformula "65"))
+ (rule "applyEq" (formula "68") (term "0,1") (ifseqformula "65"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1"))
+ (rule "mul_literals" (formula "60") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "56") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "56") (term "0,0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "elimGcdLeq_antec" (formula "55") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "55") (term "0,0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "55") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "55") (term "0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0"))
+ (rule "qeq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63"))
+ (rule "polySimp_mulAssoc" (formula "62") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "92"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1"))
+ (rule "mul_literals" (formula "61") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "59"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "add_zero_left" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "23") (ifseqformula "56"))
+ (rule "greater_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "59") (ifseqformula "60"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0"))
+ (rule "qeq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "96") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "1,0,0"))
+ (rule "mul_literals" (formula "96") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "96") (term "0"))
+ (rule "add_literals" (formula "96") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "96"))
+ (rule "mul_literals" (formula "96") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "96") (ifseqformula "56"))
+ (rule "mul_literals" (formula "96") (term "1,1,0"))
+ (rule "greater_literals" (formula "96") (term "0,0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "leq_literals" (formula "96") (term "0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "mul_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "57") (ifseqformula "56"))
+ (rule "mul_literals" (formula "57") (term "1,1,0"))
+ (rule "greater_literals" (formula "57") (term "0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "1,1,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0"))
+ (rule "add_zero_right" (formula "60") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "60") (ifseqformula "55"))
+ (rule "greater_literals" (formula "60") (term "0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "0,0"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "59"))
+ (rule "times_zero_1" (formula "23") (term "0,0"))
+ (rule "add_zero_left" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "23") (inst "elimGcdRightDiv=Z(8(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "23") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_subsumption0" (formula "56") (ifseqformula "23"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "63") (term "1"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "91")) (ifInst "" (formula "92")))
+ (rule "translateJavaSubInt" (formula "63") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "63") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,1"))
+ (rule "add_literals" (formula "63") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1,1"))
+ (rule "mul_literals" (formula "63") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "63") (term "1") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "137")))
+ (rule "translateJavaAddInt" (formula "63") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "63") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "63") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "63") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "63") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "63") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "63") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "63") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "63") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "63") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0,0,0"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,0,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0") (ifseqformula "52"))
+ (rule "replace_known_left" (formula "63") (term "1,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "applyEq" (formula "63") (term "1,0,1,0,0,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "63") (term "0,1,0,1,1,1,1") (ifseqformula "52"))
+ (rule "replace_known_left" (formula "63") (term "1,0,1,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "applyEq" (formula "63") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "63") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "63") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "63") (term "0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "inEqSimp_subsumption1" (formula "63") (term "0,0") (ifseqformula "8"))
+ (rule "leq_literals" (formula "63") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "64") (term "0"))
+ (rule "translateJavaCastInt" (formula "64") (term "0,0"))
+ (rule "castedGetAny" (formula "64") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "mul_literals" (formula "101") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1"))
+ (rule "polySimp_rightDist" (formula "101") (term "1"))
+ (rule "mul_literals" (formula "101") (term "0,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "64") (term "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaUnaryMinusInt" (formula "64") (term "1,1"))
+ (rule "neg_literal" (formula "64") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "64") (term "0,0,1"))
+ (rule "polySimp_elimSub" (formula "64") (term "0,1"))
+ (rule "mul_literals" (formula "64") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "64") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "mul_literals" (formula "101") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "101") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "101"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1"))
+ (rule "polySimp_rightDist" (formula "101") (term "1"))
+ (rule "mul_literals" (formula "101") (term "0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "62") (term "0"))
+ (rule "translateJavaCastInt" (formula "62") (term "0,0"))
+ (rule "castedGetAny" (formula "62") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "99"))
+ (rule "polySimp_mulAssoc" (formula "62") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "62") (ifseqformula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0"))
+ (rule "qeq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "64"))
+ (rule "polySimp_mulAssoc" (formula "62") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "140")))
+ (rule "translateJavaSubInt" (formula "57") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "57") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "57") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "57") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "57") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "57") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "57") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0"))
+ (rule "replace_known_left" (formula "57") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "57") (term "0,0,0,1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0"))
+ (rule "applyEq" (formula "57") (term "1,0,0,0,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "57") (term "0,1,0,1,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "57") (term "0,1,0,0,0,1,1,1") (ifseqformula "52"))
+ (rule "applyEq" (formula "57") (term "0,0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "57") (term "1,0,1,0,1") (ifseqformula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "57") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "57") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "57") (term "0,0,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "57") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "57") (term "0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "57") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "57") (term "1,0,1,1,1,1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "57") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "57") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "57") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "57") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "57") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "70")))
+ (rule "true_left" (formula "57"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "57") (term "0"))
+ (rule "translateJavaCastInt" (formula "57") (term "0,0"))
+ (rule "castedGetAny" (formula "57") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "97"))
+ (rule "times_zero_1" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "57") (ifseqformula "25"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "58") (term "0"))
+ (rule "translateJavaCastInt" (formula "58") (term "0,0"))
+ (rule "castedGetAny" (formula "58") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "58"))
+ (rule "polySimp_rightDist" (formula "99") (term "0,0"))
+ (rule "mul_literals" (formula "99") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "99") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "99") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "99") (term "1"))
+ (rule "polySimp_rightDist" (formula "99") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "99") (term "1,1"))
+ (rule "mul_literals" (formula "99") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "times_zero_1" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "57") (ifseqformula "56"))
+ (rule "greater_literals" (formula "57") (term "0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "mul_literals" (formula "57") (term "1,0"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "93")) (ifInst "" (formula "94")))
+ (rule "translateJavaSubInt" (formula "61") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1"))
+ (rule "add_literals" (formula "61") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "61") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,1"))
+ (rule "mul_literals" (formula "61") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "61") (term "1") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "translateJavaAddInt" (formula "61") (term "0,0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "61") (term "1,0"))
+ (rule "neg_literal" (formula "61") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "91")) (ifInst "" (formula "92")))
+ (rule "translateJavaSubInt" (formula "100") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "100") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "100") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "100") (term "0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "100") (term "1"))
+ (rule "mul_literals" (formula "100") (term "1,0,0,1"))
+ (rule "add_literals" (formula "100") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "100") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "100") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "100") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "100") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "100") (term "0,0"))
+ (rule "mul_literals" (formula "100") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "100") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "100") (term "1"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "100") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "100") (term "0,1,1"))
+ (rule "mul_literals" (formula "100") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "100") (term "1") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "translateJavaUnaryMinusInt" (formula "100") (term "1,0"))
+ (rule "neg_literal" (formula "100") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "100") (term "0,0,0"))
+ (rule "translateJavaSubInt" (formula "100") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "100") (term "0,0"))
+ (rule "mul_literals" (formula "100") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "100") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "100") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "49") (term "0"))
+ (rule "expand_inShort" (formula "49"))
+ (rule "replace_short_MIN" (formula "49") (term "0,1"))
+ (rule "replace_short_MAX" (formula "49") (term "1,0"))
+ (rule "andLeft" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "50"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "51"))
+ (rule "leq_literals" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "50"))
+ (rule "qeq_literals" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "arrayLengthIsAShort" (formula "30") (term "0"))
+ (rule "expand_inShort" (formula "30"))
+ (rule "replace_short_MIN" (formula "30") (term "0,1"))
+ (rule "replace_short_MAX" (formula "30") (term "1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthNotNegative" (formula "30") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "49") (term "0"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "50"))
+ (rule "qeq_literals" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "48") (inst "i_0=i_0") (inst "i=i"))
+ (rule "andLeft" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "expand_inInt" (formula "48") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "50"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "48"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "54") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "50") (term "1"))
+ (rule "eqSymm" (formula "56") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "3,0"))
+ (rule "mul_literals" (formula "54") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "56") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "50"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "56") (term "1,0,1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "110") (term "0") (ifseqformula "45"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "45"))
+ (rule "inEqSimp_commuteGeq" (formula "53"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "50"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "50"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "50") (term "1"))
+ (rule "mod_axiom" (formula "50") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "52") (term "1"))
+ (rule "mod_axiom" (formula "52") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "51") (term "0"))
+ (rule "mod_axiom" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "2,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "54") (term "1,3,0"))
+ (rule "mod_axiom" (formula "54") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "46") (term "3,0"))
+ (rule "mod_axiom" (formula "46") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "47"))
+ (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "53") (term "0"))
+ (rule "mod_axiom" (formula "53") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "56") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftDef" (formula "50") (term "0,1"))
+ (rule "eqSymm" (formula "50"))
+ (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "52") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "50"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "shiftLeftDef" (formula "51") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "44") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "54") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,3,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "46") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,3,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,0,0,3,0"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50"))
+ (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "47"))
+ (rule "shiftLeftDef" (formula "53") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0"))
+ (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "56") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "56") (term "1,1,1,0,0,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "55") (term "1,1,1,0,0,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "55") (term "1,1,1,1,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,0"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50"))
+ (rule "eqSymm" (formula "47"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "53"))
+ (rule "mul_literals" (formula "51") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "mul_literals" (formula "51") (term "1"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "nnf_imp2or" (formula "88") (term "0"))
+ (rule "nnf_imp2or" (formula "64") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "59") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "60") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "60") (term "1,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,0,0"))
+ (rule "mul_literals" (formula "60") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "expand_moduloInteger" (formula "50") (term "0"))
+ (rule "replace_int_RANGE" (formula "50") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "12") (term "0,0,1,0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,0,1,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,0,0,1,0,0,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,1,0,0,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,1,0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,1,0,0,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,1,1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0,1,1,0,0,0,0,1,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,1,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "72") (term "0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "148")))
+ (rule "translateJavaAddInt" (formula "72") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "72") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "72") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "72") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "72") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "72") (term "0,1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "72") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "72") (term "0,1,0,1,1,1,1,1"))
+ (rule "add_zero_left" (formula "72") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "72") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "72") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "72") (term "0,0,0,0,1,1,1,1"))
+ (rule "add_zero_left" (formula "72") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "72") (term "0,0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "72") (term "0,0,0"))
+ (rule "mul_literals" (formula "72") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "72") (term "0,0,0,0"))
+ (rule "applyEq" (formula "72") (term "0,1,0,1,1,1,1") (ifseqformula "61"))
+ (rule "replace_known_left" (formula "72") (term "1,0,1,1,1,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "applyEq" (formula "72") (term "1,0,1,0,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "72") (term "1,0,1,0,0,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "72") (term "0,1,0,0,0,1,1,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "72") (term "0,1,0,0") (ifseqformula "61"))
+ (rule "replace_known_left" (formula "72") (term "1,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_invertInEq0" (formula "72") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0,1,1,1,1"))
+ (rule "times_zero_2" (formula "72") (term "1,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "72") (term "0,1,1,1,1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "72") (term "0,0") (ifseqformula "8"))
+ (rule "leq_literals" (formula "72") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "73")))
+ (rule "true_left" (formula "72"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "60") (term "0,0,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,1,1,0,1,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "translateJavaSubInt" (formula "66") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "66") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1,1,1"))
+ (rule "mul_literals" (formula "66") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "66") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "66") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "67") (term "1,0"))
+ (rule "neg_literal" (formula "67") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "67") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "73") (term "0,1,1,1,1"))
+ (rule "translateJavaCastInt" (formula "73") (term "0,0,1,1,1,1"))
+ (rule "castedGetAny" (formula "73") (term "0,0,1,1,1,1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "73") (term "0,1,0,1"))
+ (builtin "One Step Simplification" (formula "73") (ifInst "" (formula "149")))
+ (rule "translateJavaAddInt" (formula "73") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "73") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "73") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "73") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "73") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "73") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "73") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "73") (term "1,0,1,0,0,1") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq1" (formula "73") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "73") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "73") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "73") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "applyEq" (formula "73") (term "0,1,0,0,0,1,1,1") (ifseqformula "61"))
+ (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "73") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "73") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "applyEq" (formula "73") (term "1,0,1,0,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "73") (term "0,1,0,0") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq1" (formula "73") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,0,0"))
+ (rule "add_literals" (formula "73") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "73") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "applyEq" (formula "73") (term "0,1,0,1,1,1") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq1" (formula "73") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "73") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "73") (term "0,1,0,1,1,1"))
+ (rule "leq_literals" (formula "73") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "73") (term "0,0") (ifseqformula "42"))
+ (rule "leq_literals" (formula "73") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "inEqSimp_subsumption1" (formula "73") (term "0,1,1,1") (ifseqformula "42"))
+ (rule "leq_literals" (formula "73") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "105") (term "0"))
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "85")))
+ (rule "translateJavaSubInt" (formula "105") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "105") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "105") (term "1,1,1"))
+ (rule "mul_literals" (formula "105") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "105") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "0"))
+ (rule "applyEq" (formula "105") (term "0,0,0,1") (ifseqformula "106"))
+ (rule "applyEq" (formula "105") (term "1,0,1,1,1") (ifseqformula "106"))
+ (rule "polySimp_addComm1" (formula "105") (term "0,1,1,1"))
+ (rule "applyEq" (formula "105") (term "0,0,1,1") (ifseqformula "106"))
+ (rule "inEqSimp_commuteGeq" (formula "105") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "105") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "105") (term "0,1,1,1"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "60") (term "0,1,0,0,0,1,0"))
+ (rule "replace_known_right" (formula "60") (term "0,1,0,0,0,0") (ifseqformula "118"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "14")) (ifInst "" (formula "20")) (ifInst "" (formula "149")))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "80") (term "0"))
+ (rule "replace_known_right" (formula "80") (term "0,0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "83"))
+ (rule "replace_known_left" (formula "74") (term "1,0,1") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "replace_known_left" (formula "75") (term "1,0,1") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "81"))
+ (rule "polySimp_mulComm0" (formula "80") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "polySimp_elimOne" (formula "80") (term "0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "61") (term "0,1,0,0,0,1,0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,0,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,1,1,0,0,0,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "59") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "translateJavaSubInt" (formula "59") (term "0,0,1,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "59") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "59") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "59") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_addLiterals" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "1,1,1"))
+ (rule "mul_literals" (formula "69") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "69") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "69") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "translateJavaUnaryMinusInt" (formula "69") (term "1,0"))
+ (rule "neg_literal" (formula "69") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "69") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "69") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "69"))
+ (rule "times_zero_1" (formula "68") (term "0,0"))
+ (rule "add_zero_left" (formula "68") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "68") (ifseqformula "66"))
+ (rule "times_zero_1" (formula "68") (term "1,1,0"))
+ (rule "greater_literals" (formula "68") (term "0,0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "leq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "true_left" (formula "68"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "112") (term "0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "translateJavaSubInt" (formula "112") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "112") (term "1,0"))
+ (rule "neg_literal" (formula "112") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "112") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "112") (term "0,0"))
+ (rule "mul_literals" (formula "112") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "112") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "112") (term "0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "110") (term "0"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "108")) (ifInst "" (formula "109")))
+ (rule "translateJavaSubInt" (formula "110") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "110") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "110") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "110") (term "0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "110") (term "1"))
+ (rule "mul_literals" (formula "110") (term "1,0,0,1"))
+ (rule "add_literals" (formula "110") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "110") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "110") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "110") (term "0,0"))
+ (rule "mul_literals" (formula "110") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "110") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "110") (term "1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "110") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "110") (term "0,1,1"))
+ (rule "mul_literals" (formula "110") (term "0,0,1,1"))
+ (rule "replace_known_left" (formula "110") (term "1") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "true_left" (formula "110"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "110") (term "0"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "translateJavaUnaryMinusInt" (formula "110") (term "1,0"))
+ (rule "neg_literal" (formula "110") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "110") (term "0,0,0"))
+ (rule "translateJavaSubInt" (formula "110") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "110") (term "0,0"))
+ (rule "mul_literals" (formula "110") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "110"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,1"))
+ (rule "mul_literals" (formula "72") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "118") (ifseqformula "110"))
+ (rule "polySimp_rightDist" (formula "118") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "1,0,0"))
+ (rule "mul_literals" (formula "118") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "118") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "118") (term "0,0,0"))
+ (rule "add_literals" (formula "118") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "118") (term "0,0"))
+ (rule "add_literals" (formula "118") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "118") (term "1,0,0"))
+ (rule "add_zero_right" (formula "118") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "118"))
+ (rule "mul_literals" (formula "118") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "118") (ifseqformula "16"))
+ (rule "leq_literals" (formula "118") (term "0"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "true_left" (formula "118"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "108") (term "0,0"))
+ (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "109")) (ifInst "" (formula "110")))
+ (rule "translateJavaSubInt" (formula "108") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "108") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "108") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "108") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "108") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "108") (term "0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "108") (term "1"))
+ (rule "mul_literals" (formula "108") (term "1,0,0,1"))
+ (rule "add_literals" (formula "108") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "108") (term "0,0"))
+ (rule "times_zero_2" (formula "108") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "108") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "108") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "108") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "108") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "108") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "108") (term "1"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "108") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "108") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "108") (term "0,1,1"))
+ (rule "mul_literals" (formula "108") (term "0,0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "108") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "108") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "108") (term "1,0,0"))
+ (rule "replace_known_left" (formula "108") (term "0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "108") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "108") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "108") (term "0,0"))
+ (rule "replace_known_left" (formula "108") (term "0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "92") (term "0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "translateJavaMod" (formula "92") (term "0"))
+ (rule "jmod_axiom" (formula "92") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "newSym_eq" (formula "92") (inst "newSymDef=mul(int::final(bucket_pointers,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_1"))
+ (rule "times_zero_1" (formula "92") (term "1,1"))
+ (rule "add_zero_right" (formula "92") (term "1"))
+ (rule "applyEq" (formula "93") (term "0,0") (ifseqformula "92"))
+ (rule "eqSymm" (formula "93"))
+ (rule "applyEq" (formula "89") (term "0") (ifseqformula "93"))
+ (rule "applyEq" (formula "92") (term "0,0") (ifseqformula "93"))
+ (rule "applyEq" (formula "90") (term "1") (ifseqformula "93"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "93"))
+ (rule "elimGcdGeq_antec" (formula "88") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "88") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "88") (term "0,0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "88") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "88") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "88") (term "0,0"))
+ (rule "add_literals" (formula "88") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0,0"))
+ (rule "add_zero_right" (formula "88") (term "0,0"))
+ (rule "leq_literals" (formula "88") (term "0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "elimGcdLeq_antec" (formula "89") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "mul_literals" (formula "89") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "89") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "89") (term "0,0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "mul_literals" (formula "89") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "89") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "89") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "89") (term "0,0"))
+ (rule "add_literals" (formula "89") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "89") (term "1,0,0"))
+ (rule "add_zero_right" (formula "89") (term "0,0"))
+ (rule "qeq_literals" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "inEqSimp_exactShadow3" (formula "90") (ifseqformula "91"))
+ (rule "polySimp_mulAssoc" (formula "90") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "90"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "90") (ifseqformula "89"))
+ (rule "mul_literals" (formula "90") (term "0,1,0"))
+ (rule "greater_literals" (formula "90") (term "0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "leq_literals" (formula "90") (term "0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (term "0"))
+ (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "125")))
+ (rule "andLeft" (formula "10"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "translateJavaSubInt" (formula "74") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "74") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,1,1"))
+ (rule "mul_literals" (formula "74") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "74") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "74") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1,1,1,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "88") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "translateJavaSubInt" (formula "88") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "88") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "88") (term "1,1,1"))
+ (rule "mul_literals" (formula "88") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "88") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "88") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "112") (term "0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "translateJavaMod" (formula "112") (term "0"))
+ (rule "jmod_axiom" (formula "112") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "112"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "0"))
+ (rule "newSym_eq" (formula "112") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(add(mul(begin,
+ Z(neglit(1(#)))),
+ end)),
+ Z(0(#)))") (inst "l=l_2"))
+ (rule "times_zero_1" (formula "112") (term "1,1"))
+ (rule "add_zero_right" (formula "112") (term "1"))
+ (rule "applyEq" (formula "113") (term "0,0") (ifseqformula "112"))
+ (rule "eqSymm" (formula "113"))
+ (rule "applyEq" (formula "112") (term "0,0") (ifseqformula "113"))
+ (rule "applyEq" (formula "114") (term "0") (ifseqformula "113"))
+ (rule "inEqSimp_homoInEq1" (formula "114"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,0"))
+ (rule "applyEq" (formula "111") (term "0") (ifseqformula "113"))
+ (rule "inEqSimp_homoInEq0" (formula "111"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "114"))
+ (rule "polySimp_mulComm0" (formula "114") (term "1"))
+ (rule "polySimp_rightDist" (formula "114") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "114") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "114") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1"))
+ (rule "polySimp_rightDist" (formula "111") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "111") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "111") (term "0,1"))
+ (rule "mul_literals" (formula "111") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "114"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "72") (term "0"))
+ (rule "add_literals" (formula "72") (term "1,1,0"))
+ (rule "times_zero_1" (formula "72") (term "1,0"))
+ (rule "add_zero_right" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "72") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=add(Z(0(#)), l_2)"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "72") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "72") (term "0,0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "add_zero_left" (formula "72") (term "1,1"))
+ (rule "mul_literals" (formula "72") (term "0,1,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "72") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "72") (term "0,0"))
+ (rule "add_literals" (formula "72") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "72") (term "1,0,0"))
+ (rule "add_zero_right" (formula "72") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0,0"))
+ (rule "add_literals" (formula "72") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "72") (term "0,0"))
+ (rule "add_literals" (formula "72") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "72") (term "1,0,0"))
+ (rule "add_zero_right" (formula "72") (term "0,0"))
+ (rule "qeq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "inEqSimp_exactShadow3" (formula "112") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "112") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0"))
+ (rule "polySimp_rightDist" (formula "112") (term "0,0,0"))
+ (rule "mul_literals" (formula "112") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "112") (term "0,0"))
+ (rule "add_literals" (formula "112") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "112"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "0"))
+ (rule "polySimp_elimOne" (formula "112") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "116"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "114") (ifseqformula "33"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "114") (term "0"))
+ (rule "add_literals" (formula "114") (term "1,1,0"))
+ (rule "times_zero_1" (formula "114") (term "1,0"))
+ (rule "add_zero_right" (formula "114") (term "0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0"))
+ (rule "add_literals" (formula "114") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "114"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "114") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "neg_literal" (formula "114") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "114") (term "0,0"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "mul_literals" (formula "114") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "114") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "114") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "114") (term "0,0"))
+ (rule "add_literals" (formula "114") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "114") (term "1,0,0"))
+ (rule "add_zero_right" (formula "114") (term "0,0"))
+ (rule "qeq_literals" (formula "114") (term "0"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "118"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0"))
+ (rule "add_zero_right" (formula "28") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "28") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "74"))
+ (rule "times_zero_1" (formula "69") (term "0,0"))
+ (rule "add_zero_left" (formula "69") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "125") (ifseqformula "114"))
+ (rule "polySimp_rightDist" (formula "125") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "1,0,0"))
+ (rule "mul_literals" (formula "125") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "125") (term "0"))
+ (rule "polySimp_addAssoc" (formula "125") (term "0,0"))
+ (rule "add_literals" (formula "125") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "125"))
+ (rule "polySimp_mulComm0" (formula "125") (term "1"))
+ (rule "polySimp_rightDist" (formula "125") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "1,1"))
+ (rule "mul_literals" (formula "125") (term "0,1"))
+ (rule "elimGcdGeq_antec" (formula "125") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=add(Z(neglit(6(3(7(8(8(3(8(#))))))))), l_2)"))
+ (rule "mul_literals" (formula "125") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "125") (term "0,0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "polySimp_pullOutFactor0b" (formula "125") (term "0,0"))
+ (rule "add_literals" (formula "125") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "125") (term "1,0,0"))
+ (rule "add_zero_right" (formula "125") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "125") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "125") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "125") (term "0,0,0"))
+ (rule "add_literals" (formula "125") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "125") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "125") (term "0,0,0"))
+ (rule "add_literals" (formula "125") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "125") (term "0,0"))
+ (rule "add_literals" (formula "125") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "125") (term "1,0,0"))
+ (rule "add_zero_right" (formula "125") (term "0,0"))
+ (rule "leq_literals" (formula "125") (term "0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "114"))
+ (rule "times_zero_1" (formula "26") (term "0,0"))
+ (rule "add_zero_left" (formula "26") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "26") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcdRightDiv=Z(8(2(1(#))))"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "neg_literal" (formula "26") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_subsumption0" (formula "116") (ifseqformula "26"))
+ (rule "leq_literals" (formula "116") (term "0"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "true_left" (formula "116"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "30"))
+ (rule "mul_literals" (formula "17") (term "1,1,0"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "74"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "76"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "125") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "125") (term "0,0"))
+ (rule "mul_literals" (formula "125") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "125") (term "0"))
+ (rule "add_literals" (formula "125") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "125"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "0"))
+ (rule "polySimp_elimOne" (formula "125") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "125") (ifseqformula "26"))
+ (rule "leq_literals" (formula "125") (term "0"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "true_left" (formula "125"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "12") (term "2,1,1,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaSubInt" (formula "12") (term "3,0,1,2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "3,2,2,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "12") (term "0,0,0,2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "2,0,1,2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "2,2,2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,3,0,1,2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,2,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "0,0,0,2,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "3,0,1,2,1,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,3,0,1,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,0,2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "3,0,1,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,3,1,1,2,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,2,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,2,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,2,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,2,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,2,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,2,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0,0,2,1,1,1,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "102") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "expand_inInt" (formula "102") (term "1,0,0"))
+ (rule "expand_inInt" (formula "102") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "102") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "102") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "102") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "102") (term "0,1,1,0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "102") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "102") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "102") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "102") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "102") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "102") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,1,0"))
+ (rule "applyEq" (formula "102") (term "0,1,0,0,1,0,0,0") (ifseqformula "100"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "102") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "102") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "102") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "100"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "102") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "102") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "102") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "102") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "102") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "102") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "102") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "translateJavaSubInt" (formula "79") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,0"))
+ (rule "neg_literal" (formula "79") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "79") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "79") (term "0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "124") (term "0"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "translateJavaSubInt" (formula "124") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "124") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "124") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "124") (term "1,1,1"))
+ (rule "mul_literals" (formula "124") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "124") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "124") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "124") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "124") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "124") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "124") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "124") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "124") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "124") (term "0"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "translateJavaSubInt" (formula "124") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "124") (term "1,0"))
+ (rule "neg_literal" (formula "124") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "124") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "124") (term "0,0"))
+ (rule "mul_literals" (formula "124") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "124") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "124") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "124"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "72") (ifseqformula "28"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "true_left" (formula "72"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "127") (term "0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "translateJavaSubInt" (formula "127") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "127") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "127") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "127") (term "1,1,1"))
+ (rule "mul_literals" (formula "127") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "127") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "127") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "127") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "127") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "127") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "127") (term "1,1,1,1"))
+ (rule "mul_literals" (formula "127") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "127") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "127") (term "1,1,1,1,1"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "92") (term "0"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "168")) (ifInst "" (formula "21")))
+ (rule "wellFormedAnon" (formula "92") (term "1,0"))
+ (rule "replace_known_left" (formula "92") (term "1,1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "15")))
+ (rule "inEqSimp_ltToLeq" (formula "92") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "92") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "0,0,0"))
+ (rule "replace_known_left" (formula "92") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "applyEq" (formula "92") (term "0,1,0,0,0") (ifseqformula "66"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "92") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "92") (term "0,0,0"))
+ (rule "replace_known_left" (formula "92") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "93") (term "0"))
+ (rule "translateJavaSubInt" (formula "93") (term "0"))
+ (rule "polySimp_elimSub" (formula "93") (term "0"))
+ (rule "polySimp_homoEq" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "93") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "128") (term "0"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "translateJavaUnaryMinusInt" (formula "128") (term "1,0"))
+ (rule "neg_literal" (formula "128") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "128") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "128") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "128") (term "0,0"))
+ (rule "mul_literals" (formula "128") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "128") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "128") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "128") (ifseqformula "73"))
+ (rule "polySimp_rightDist" (formula "128") (term "0,0"))
+ (rule "mul_literals" (formula "128") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "128") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "128") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "128") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "128"))
+ (rule "polySimp_mulComm0" (formula "128") (term "1"))
+ (rule "polySimp_rightDist" (formula "128") (term "1"))
+ (rule "mul_literals" (formula "128") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "128") (term "1,1"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "9") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaAddInt" (formula "9") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "9") (term "4,0,0,1,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "129") (term "0"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "translateJavaSubInt" (formula "129") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "129") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "129") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "129") (term "1,1,1"))
+ (rule "mul_literals" (formula "129") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "129") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "129") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "129") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "129") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "129") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "129") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "129") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "129") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "129") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "129") (term "0"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "translateJavaSubInt" (formula "129") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "129") (term "1,0"))
+ (rule "neg_literal" (formula "129") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "129") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "129") (term "0,0"))
+ (rule "mul_literals" (formula "129") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "129") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "129") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "129"))
+ (rule "polySimp_mulAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0,0"))
+ (rule "add_literals" (formula "79") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0"))
+ (rule "add_literals" (formula "79") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "79") (term "1,0,0"))
+ (rule "add_zero_right" (formula "79") (term "0,0"))
+ (rule "qeq_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "translateJavaSubInt" (formula "82") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "82") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "1,1,1"))
+ (rule "mul_literals" (formula "82") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "82") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "82") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "translateJavaSubInt" (formula "82") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "82") (term "1,0"))
+ (rule "neg_literal" (formula "82") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "82") (term "0,0"))
+ (rule "mul_literals" (formula "82") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "82") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "82"))
+ (rule "polySimp_mulAssoc" (formula "79") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "131") (term "0"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "translateJavaSubInt" (formula "131") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "131") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "131") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "131") (term "1,1,1"))
+ (rule "mul_literals" (formula "131") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "131") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "131") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "131") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "131") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "131") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "131") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "131") (term "1,1,1,1,1"))
+ (rule "mul_literals" (formula "131") (term "0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "131") (term "1,1,1,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "131") (term "0"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "translateJavaSubInt" (formula "131") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "131") (term "1,0"))
+ (rule "neg_literal" (formula "131") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "131") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "131") (term "0,0"))
+ (rule "mul_literals" (formula "131") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "131") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "131") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "131") (ifseqformula "82"))
+ (rule "polySimp_rightDist" (formula "131") (term "0,0"))
+ (rule "mul_literals" (formula "131") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "131") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "131") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "131"))
+ (rule "polySimp_mulComm0" (formula "131") (term "1"))
+ (rule "polySimp_rightDist" (formula "131") (term "1"))
+ (rule "mul_literals" (formula "131") (term "0,1"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "60") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "nnf_notAnd" (formula "104") (term "0,0"))
+ (rule "nnf_notAnd" (formula "69") (term "0,0"))
+ (rule "nnf_imp2or" (formula "69") (term "1,1,0"))
+ (rule "nnf_imp2or" (formula "69") (term "0,1,0"))
+ (rule "commute_and" (formula "60") (term "1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "59") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "expand_inInt" (formula "59") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "59") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0,0,1,0,1,0"))
+ (rule "jdiv_axiom" (formula "83") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "83"))
+ (rule "applyEq" (formula "83") (term "1") (ifseqformula "84"))
+ (rule "inEqSimp_subsumption6" (formula "83") (term "0,0") (ifseqformula "70"))
+ (rule "greater_literals" (formula "83") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "83") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "polyDiv_pullOut" (formula "83") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "polySimp_homoEq" (formula "83"))
+ (rule "polySimp_pullOutFactor0" (formula "83") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "83") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "83") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "83") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "83") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0"))
+ (rule "add_literals" (formula "83") (term "1,0"))
+ (rule "times_zero_1" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "cut_direct" (formula "172") (term "1"))
+ (branch "CUT: bucket_starts[1 + bucket_0] <= 2147483647 TRUE"
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "inEqSimp_geqRight" (formula "173"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "111") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "111") (term "0,0"))
+ (rule "mul_literals" (formula "111") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "111") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "111") (term "0"))
+ (rule "add_literals" (formula "111") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "111"))
+ (rule "mul_literals" (formula "111") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "111"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "115") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "115") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "115") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "115"))
+ (rule "polySimp_mulLiterals" (formula "115") (term "0"))
+ (rule "polySimp_elimOne" (formula "115") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "113") (ifseqformula "115"))
+ (rule "qeq_literals" (formula "113") (term "0"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "closeFalse" (formula "113"))
+ )
+ (branch "CUT: bucket_starts[1 + bucket_0] <= 2147483647 FALSE"
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "false_right" (formula "173"))
+ (rule "inEqSimp_leqRight" (formula "172"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "110"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "1"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_contradInEq0" (formula "29") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "closeFalse" (formula "29"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_known_left" (formula "109") (term "1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "63")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "expand_inInt" (formula "109"))
+ (rule "replace_int_MIN" (formula "109") (term "0,1"))
+ (rule "replace_int_MAX" (formula "109") (term "1,0"))
+ (rule "replace_known_left" (formula "109") (term "1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "61")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "expand_inInt" (formula "75") (term "0,0,1,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,0,0,1,1"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "75"))
+ (rule "translateJavaSubInt" (formula "114") (term "2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "78") (term "2,1,0,0"))
+ (rule "translateJavaAddInt" (formula "79") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "79") (term "2,1,0,1,1,0"))
+ (rule "replace_known_left" (formula "77") (term "0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "polySimp_elimSub" (formula "113") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "113") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "2,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,2,1,0,0"))
+ (rule "polySimp_elimSub" (formula "78") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "78") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "2,1,0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "113") (term "0,2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,2,1,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0"))
+ (rule "commute_and" (formula "78") (term "0,0"))
+ (rule "ifUnfold" (formula "113") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "113") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "113") (term "1"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "replace_known_left" (formula "113") (term "0,0,1,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "45") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "46") (term "0"))
+ (rule "expand_inShort" (formula "46"))
+ (rule "replace_short_MAX" (formula "46") (term "1,0"))
+ (rule "replace_short_MIN" (formula "46") (term "0,1"))
+ (rule "andLeft" (formula "46"))
+ (rule "inEqSimp_commuteLeq" (formula "47"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "48"))
+ (rule "qeq_literals" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "47"))
+ (rule "leq_literals" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "46"))
+ (rule "qeq_literals" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "ifSplit" (formula "113"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "114"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "114"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "113") (term "1"))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "57"))
+ (rule "polySimp_homoEq" (formula "78") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "64"))
+ (rule "mul_literals" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "72"))
+ (rule "mul_literals" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "blockEmpty" (formula "113") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "113") (newnames "exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "eqSymm" (formula "114") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "114") (term "1"))
+ (rule "variableDeclaration" (formula "114") (term "1") (newnames "exc_6_1"))
+ (rule "assignment" (formula "114") (term "1"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "emptyStatement" (formula "114") (term "1"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "emptyStatement" (formula "114") (term "1"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "78") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0"))
+ (rule "add_literals" (formula "61") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "61") (term "1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61"))
+ (rule "mul_literals" (formula "61") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1"))
+ (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "77") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "77") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0,0"))
+ (rule "tryEmpty" (formula "113") (term "1"))
+ (rule "blockEmptyLabel" (formula "113") (term "1"))
+ (rule "blockEmpty" (formula "113") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "31") (term "0"))
+ (rule "expand_inShort" (formula "31"))
+ (rule "replace_short_MAX" (formula "31") (term "1,0"))
+ (rule "replace_short_MIN" (formula "31") (term "0,1"))
+ (rule "andLeft" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "33"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "arrayLengthNotNegative" (formula "43") (term "0"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "43") (term "0"))
+ (rule "expand_inShort" (formula "43"))
+ (rule "replace_short_MAX" (formula "43") (term "1,0"))
+ (rule "replace_short_MIN" (formula "43") (term "0,1"))
+ (rule "andLeft" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "45"))
+ (rule "leq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "commute_or_2" (formula "9") (term "0"))
+ (rule "commute_or" (formula "45") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "11") (term "0,1,1,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0"))
+ (rule "commute_or_2" (formula "45") (term "0,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0"))
+ (rule "commute_or_2" (formula "9") (term "0"))
+ (rule "commute_or_2" (formula "11") (term "0,0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or" (formula "46") (term "0"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or" (formula "46") (term "0"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or" (formula "46") (term "0"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or_2" (formula "45") (term "0"))
+ (rule "shift_paren_or" (formula "46") (term "0"))
+ (rule "commute_or_2" (formula "45") (term "0,0"))
+ (rule "shift_paren_or" (formula "46") (term "0,0"))
+ (rule "commute_or" (formula "45") (term "0,0,0"))
+ (rule "commute_or" (formula "11") (term "1,0,1,1,0"))
+ (rule "methodCallEmpty" (formula "117") (term "1"))
+ (builtin "Use Dependency Contract" (formula "59") (term "0") (ifInst "" (formula "48") (term "0,0,1,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "83") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "83") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "83") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "83") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "83") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "83") (term "0,1,0,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "114")) (ifInst "" (formula "21")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "26")))
+ (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "83") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "83") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "83") (term "0,1,0"))
+ (rule "replace_known_right" (formula "83") (term "0,0,0,1,0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_ltToLeq" (formula "83") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "83") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "83") (term "0,1,0"))
+ (rule "replace_known_left" (formula "83") (term "0,1,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "applyEq" (formula "83") (term "0,1") (ifseqformula "59"))
+ (rule "eqSymm" (formula "83") (term "1"))
+ (rule "applyEq" (formula "83") (term "0,1,0,1,0") (ifseqformula "52"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "83") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0,1,0"))
+ (rule "replace_known_left" (formula "83") (term "1,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_subsumption1" (formula "83") (term "1,0") (ifseqformula "8"))
+ (rule "leq_literals" (formula "83") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_subsumption0" (formula "83") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "emptyModality" (formula "118") (term "1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "closeTrue" (formula "118"))
+ )
+ (branch "Precondition"
+ (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "113"))
+ (rule "wellFormedAnon" (formula "113") (term "0"))
+ (rule "replace_known_left" (formula "113") (term "1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "113"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "114"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "expand_inInt" (formula "79") (term "1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "79") (term "0,1,1,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "79") (term "1,0,1,0,0,1,1"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "81"))
+ (rule "andLeft" (formula "81"))
+ (rule "andLeft" (formula "81"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,0,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,0,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,1,1,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "0,2,1,4,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "4,0"))
+ (rule "replace_known_left" (formula "80") (term "0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,2,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,2,0,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,2,1,1,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,2,1,4,0"))
+ (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "84") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "84") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "84") (term "1,1,0,1,1,1,0") (ifseqformula "39"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "78") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "mul_literals" (formula "72") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "84") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "84") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "84") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "84") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "84") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "84") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0"))
+ (rule "add_literals" (formula "62") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "1,0,0"))
+ (rule "add_zero_right" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "times_zero_1" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "77") (term "0"))
+ (rule "nnf_imp2or" (formula "83") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "77") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "83") (term "0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "83") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "83") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "83") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,0,1,1,0"))
+ (rule "nnf_imp2or" (formula "83") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "83") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "83") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "83") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "83") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "83") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "83") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "83") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "83") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "83") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0,0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "83") (term "0,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "83") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "elim_double_block_2" (formula "118") (term "1"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthNotNegative" (formula "32") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "43") (term "0"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "arrayLengthIsAShort" (formula "43") (term "0"))
+ (rule "expand_inShort" (formula "43"))
+ (rule "replace_short_MIN" (formula "43") (term "0,1"))
+ (rule "replace_short_MAX" (formula "43") (term "1,0"))
+ (rule "andLeft" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "45"))
+ (rule "leq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "44"))
+ (rule "qeq_literals" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "commute_or_2" (formula "9") (term "0"))
+ (rule "commute_or" (formula "83") (term "1,0,0"))
+ (rule "commute_or" (formula "45") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "83") (term "0,1,0"))
+ (rule "cnf_rightDist" (formula "83") (term "1,1,0"))
+ (rule "cnf_rightDist" (formula "11") (term "0,1,1,0"))
+ (rule "commute_or_2" (formula "83") (term "0,0,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0"))
+ (rule "commute_or_2" (formula "45") (term "0,0"))
+ (rule "commute_or_2" (formula "83") (term "0,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0"))
+ (rule "commute_or_2" (formula "9") (term "0,0"))
+ (rule "commute_or_2" (formula "9") (term "0"))
+ (rule "commute_or_2" (formula "83") (term "0,0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or" (formula "46") (term "0"))
+ (rule "commute_or" (formula "84") (term "1,0,1,0"))
+ (rule "commute_or" (formula "84") (term "1,1,1,0"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or" (formula "46") (term "0"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or" (formula "46") (term "0"))
+ (builtin "Use Dependency Contract" (formula "58") (term "0") (ifInst "" (formula "47") (term "0,0,1,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "87") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "87") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "87") (term "1,1,0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "118")) (ifInst "" (formula "21")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "87") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "87") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "87") (term "0,1,0"))
+ (rule "replace_known_right" (formula "87") (term "0,0,0,1,0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,1,0"))
+ (rule "replace_known_left" (formula "87") (term "0,1,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0,1") (ifseqformula "58"))
+ (rule "eqSymm" (formula "87") (term "1"))
+ (rule "applyEq" (formula "87") (term "0,1,0,1,0") (ifseqformula "51"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "replace_known_left" (formula "87") (term "1,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_subsumption0" (formula "87") (term "0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "87") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "0") (ifseqformula "8"))
+ (rule "leq_literals" (formula "87") (term "0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "cnf_rightDist" (formula "45") (term "0"))
+ (rule "distr_forallAnd" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "commute_or_2" (formula "45") (term "0"))
+ (rule "commute_or" (formula "11") (term "1,0,1,1,0"))
+ (rule "shift_paren_or" (formula "46") (term "0"))
+ (rule "commute_or_2" (formula "45") (term "0,0"))
+ (rule "shift_paren_or" (formula "87") (term "0,0,0,0"))
+ (rule "cnf_rightDist" (formula "87") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "46") (term "0,0"))
+ (rule "commute_or" (formula "45") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "87") (term "0,1,1,0"))
+ (rule "commute_or" (formula "87") (term "0,0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "87") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "87") (term "0,0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "commute_or" (formula "87") (term "1,0,1,1,0"))
+ (rule "commute_or" (formula "87") (term "1,0,0,1,0"))
+ (rule "ifUnfold" (formula "123") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "123") (term "1") (newnames "x_9"))
+ (rule "cnf_rightDist" (formula "87") (term "0,0,1,1,0"))
+ (rule "cnf_rightDist" (formula "87") (term "0"))
+ (rule "distr_forallAnd" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "commute_or" (formula "88") (term "0"))
+ (rule "cnf_rightDist" (formula "87") (term "0"))
+ (rule "distr_forallAnd" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "commute_or_2" (formula "88") (term "0"))
+ (rule "shift_paren_or" (formula "88") (term "0,0"))
+ (rule "cnf_rightDist" (formula "89") (term "0"))
+ (rule "distr_forallAnd" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "commute_or_2" (formula "90") (term "0"))
+ (rule "shift_paren_or" (formula "90") (term "0,0"))
+ (rule "cnf_rightDist" (formula "87") (term "0"))
+ (rule "distr_forallAnd" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "commute_or_2" (formula "88") (term "0"))
+ (rule "shift_paren_or" (formula "87") (term "0"))
+ (rule "commute_or_2" (formula "87") (term "0,0"))
+ (rule "shift_paren_or" (formula "88") (term "0,0"))
+ (rule "commute_or_2" (formula "87") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption7" (formula "87") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "87") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "87") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,1,0,0,0"))
+ (rule "qeq_literals" (formula "87") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "cnf_rightDist" (formula "90") (term "0"))
+ (rule "distr_forallAnd" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "commute_or_2" (formula "91") (term "0"))
+ (rule "shift_paren_or" (formula "89") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "92") (term "0,0,0"))
+ (rule "commute_or" (formula "90") (term "1,1,0"))
+ (rule "shift_paren_or" (formula "91") (term "0,0"))
+ (rule "shift_paren_or" (formula "88") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "90") (term "0"))
+ (rule "distr_forallAnd" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "commute_or_2" (formula "91") (term "0"))
+ (rule "shift_paren_or" (formula "90") (term "0"))
+ (rule "commute_or_2" (formula "90") (term "0,0"))
+ (rule "inEqSimp_or_subsumption5" (formula "90") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "90") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,0,1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "90") (term "0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "90") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "90") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0,1,0,0,0,0"))
+ (rule "qeq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "shift_paren_or" (formula "91") (term "0,0"))
+ (rule "commute_or" (formula "89") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption7" (formula "89") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "89") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "89") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "89") (term "1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "89") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "89") (term "0,0,1,0,0,0"))
+ (rule "qeq_literals" (formula "89") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "commute_or" (formula "93") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "92") (term "0,0,0"))
+ (rule "commute_or" (formula "88") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption7" (formula "88") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "88") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "88") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "88") (term "1,1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "88") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "88") (term "0,0,1,0,0,0"))
+ (rule "qeq_literals" (formula "88") (term "0,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "shift_paren_or" (formula "91") (term "0,0,0"))
+ (rule "commute_or" (formula "92") (term "0,0,0,0"))
+ (rule "inequality_comparison_simple" (formula "129") (term "1"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "replace_known_left" (formula "129") (term "0,0,1,0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "commute_or" (formula "91") (term "0,0,0,0"))
+ (rule "all_pull_out1" (formula "11") (term "1,0"))
+ (rule "shift_paren_and" (formula "11") (term "0,1,0"))
+ (rule "allLeft" (formula "44") (inst "t=bucket_0"))
+ (rule "inEqSimp_homoInEq1" (formula "44") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "44") (term "1,0,0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "44") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_contradInEq1" (formula "44") (term "1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "44") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0,1,0"))
+ (rule "add_literals" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "44") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_contradInEq1" (formula "44") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "allLeft" (formula "45") (inst "t=add(Z(1(#)), bucket_0)"))
+ (rule "inEqSimp_homoInEq1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "45") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "45") (term "1,0,0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "45") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_contradInEq1" (formula "45") (term "0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "45") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_contradInEq1" (formula "45") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "45") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "all_pull_out3" (formula "11") (term "0"))
+ (rule "cnf_rightDist" (formula "11") (term "0,0"))
+ (rule "distr_forallAnd" (formula "11") (term "0"))
+ (rule "distr_forallAnd" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0"))
+ (rule "cnf_rightDist" (formula "11") (term "0,0"))
+ (rule "distr_forallAnd" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "distr_forallAnd" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "commute_or_2" (formula "11") (term "0"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0,0"))
+ (rule "allLeft" (formula "53") (inst "t=bucket_0"))
+ (rule "inEqSimp_commuteGeq" (formula "53") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "53") (term "1,0,0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "53") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "inEqSimp_contradInEq1" (formula "53") (term "1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "53") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0,1,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "53") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "53") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "inEqSimp_contradInEq1" (formula "53") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "53") (term "0,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "allLeft" (formula "52") (inst "t=bucket_0"))
+ (rule "inEqSimp_commuteGeq" (formula "52") (term "1,0"))
+ (rule "applyEq" (formula "52") (term "0,0,1,1") (ifseqformula "100"))
+ (rule "inEqSimp_contradInEq1" (formula "52") (term "1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "52") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,0,1,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "52") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "52") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_contradInEq1" (formula "52") (term "0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "52") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_contradInEq0" (formula "52") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq0" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "applyEq" (formula "96") (term "1,1,0") (ifseqformula "52"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0"))
+ (rule "add_literals" (formula "76") (term "1,1,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0"))
+ (rule "add_zero_right" (formula "76") (term "0"))
+ (rule "applyEq" (formula "135") (term "1,2,1,0,1,0,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "135") (term "2,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "135") (term "0,2,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "135") (term "0,0,2,1,0,1,0,0"))
+ (rule "applyEq" (formula "89") (term "1,2,1,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "89") (term "2,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0,2,1,0"))
+ (rule "applyEq" (formula "90") (term "1,2,1,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "90") (term "2,1,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0,2,1,0"))
+ (rule "applyEq" (formula "54") (term "1,0,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "applyEq" (formula "86") (term "1,2,1,0,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "86") (term "2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,0,2,1,0,0"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq1" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0"))
+ (rule "applyEq" (formula "92") (term "1,4,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "92") (term "4,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,4,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0,4,0"))
+ (rule "applyEq" (formula "77") (term "0") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,0"))
+ (rule "applyEq" (formula "92") (term "1,2,1,0,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "92") (term "2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0,0,2,1,0,0"))
+ (rule "applyEq" (formula "86") (term "1,4,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "86") (term "4,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,4,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,0,4,0"))
+ (rule "applyEq" (formula "91") (term "1,2,1,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "91") (term "2,1,0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,2,1,0"))
+ (rule "polySimp_addAssoc" (formula "91") (term "0,0,2,1,0"))
+ (rule "applyEq" (formula "87") (term "1,2,1,0,1,1,1,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "87") (term "2,1,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,2,1,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0,2,1,0,1,1,1,0"))
+ (rule "applyEq" (formula "87") (term "1,3,1,1,1,0") (ifseqformula "52"))
+ (rule "polySimp_addAssoc" (formula "87") (term "3,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,3,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0,3,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "71"))
+ (rule "mul_literals" (formula "74") (term "0,0"))
+ (rule "add_zero_left" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "78"))
+ (rule "times_zero_1" (formula "75") (term "0,0"))
+ (rule "add_zero_left" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0,0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "69"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "73") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0,0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "73") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1"))
+ (rule "mul_literals" (formula "73") (term "0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "73") (ifseqformula "80"))
+ (rule "inEqSimp_homoInEq0" (formula "73") (term "0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0"))
+ (rule "add_zero_right" (formula "73") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0"))
+ (rule "add_zero_right" (formula "73") (term "0,0"))
+ (rule "qeq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "73") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "73") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,0,1"))
+ (rule "mul_literals" (formula "73") (term "0,0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0"))
+ (rule "add_zero_right" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0"))
+ (rule "add_zero_right" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0"))
+ (rule "add_zero_right" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_literals" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "81"))
+ (rule "polySimp_rightDist" (formula "71") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "71") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "71") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "71") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "1,1,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0"))
+ (rule "add_zero_right" (formula "81") (term "0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "1,1,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0"))
+ (rule "add_zero_right" (formula "81") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "81"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "31"))
+ (rule "leq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "1,1,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0"))
+ (rule "add_zero_right" (formula "81") (term "0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "1,1,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0"))
+ (rule "add_zero_right" (formula "81") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1"))
+ (rule "polySimp_elimOne" (formula "81") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "1,1,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0"))
+ (rule "add_zero_right" (formula "81") (term "0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "81") (term "0"))
+ (rule "add_literals" (formula "81") (term "1,1,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0"))
+ (rule "add_zero_right" (formula "81") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "70"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0"))
+ (rule "add_zero_right" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "20"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0"))
+ (rule "add_zero_right" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0"))
+ (rule "add_zero_right" (formula "74") (term "0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "1,1,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0"))
+ (rule "add_zero_right" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "1,1,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0"))
+ (rule "add_zero_right" (formula "75") (term "0"))
+ (rule "polySimp_pullOutFactor3" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0"))
+ (rule "mul_literals" (formula "75") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "75") (ifseqformula "20"))
+ (rule "greater_literals" (formula "75") (term "0,0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "mul_literals" (formula "75") (term "1,0"))
+ (rule "leq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "1,1,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0"))
+ (rule "add_zero_right" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0"))
+ (rule "add_literals" (formula "75") (term "1,1,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0"))
+ (rule "add_zero_right" (formula "75") (term "0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1"))
+ (rule "polySimp_rightDist" (formula "75") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,1"))
+ (rule "mul_literals" (formula "75") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_exactShadow1" (formula "74") (ifseqformula "35"))
+ (rule "greater_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "31"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow1" (formula "74") (ifseqformula "37"))
+ (rule "greater_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "mul_literals" (formula "74") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "74") (term "0"))
+ (rule "add_literals" (formula "74") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "mul_literals" (formula "74") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "30"))
+ (rule "leq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (builtin "Use Dependency Contract" (formula "65") (term "0") (ifInst "" (formula "106") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "107") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "107") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "107") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "107") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "107") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "107") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "107") (term "0,1,0,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "107") (ifInst "" (formula "138")) (ifInst "" (formula "23")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "28")))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "107") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "107") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "107") (term "0,1,0"))
+ (rule "replace_known_right" (formula "107") (term "0,0,0,1,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "107") (term "0,1,0"))
+ (rule "replace_known_left" (formula "107") (term "0,1,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "inEqSimp_commuteLeq" (formula "107") (term "1,0,0"))
+ (rule "applyEq" (formula "107") (term "0,1,0,1,0") (ifseqformula "58"))
+ (rule "applyEq" (formula "107") (term "0,1") (ifseqformula "65"))
+ (rule "eqSymm" (formula "107") (term "1"))
+ (rule "replace_known_left" (formula "107") (term "1") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "true_left" (formula "107"))
+ (rule "ifSplit" (formula "141"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "preincrement" (formula "141") (term "1"))
+ (rule "compound_int_cast_expression" (formula "141") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "141") (term "1"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_10"))
+ (rule "remove_parentheses_right" (formula "141") (term "1"))
+ (rule "assignmentAdditionInt" (formula "141") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "expand_inInt" (formula "141"))
+ (rule "replace_int_MAX" (formula "141") (term "1,0"))
+ (rule "replace_int_MIN" (formula "141") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "141") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "141") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "141") (term "1"))
+ (rule "mul_literals" (formula "141") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,1"))
+ (rule "add_literals" (formula "141") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "141") (term "0"))
+ (rule "polySimp_mulComm0" (formula "141") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,0,0"))
+ (rule "mul_literals" (formula "141") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,0"))
+ (rule "add_literals" (formula "141") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "141") (term "1"))
+ (rule "mul_literals" (formula "141") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "141") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "141") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "141") (term "0,0"))
+ (rule "replace_known_left" (formula "141") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_geqRight" (formula "141"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "translateJavaAddInt" (formula "141") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "141") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "141") (term "1"))
+ (rule "assignment" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "lsContinue" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "polySimp_mulComm0" (formula "141") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "141") (term "0,0"))
+ (rule "mul_literals" (formula "141") (term "0,0,0"))
+ (rule "precOfInt" (formula "141"))
+ (rule "inEqSimp_ltToLeq" (formula "141") (term "1"))
+ (rule "polySimp_rightDist" (formula "141") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "141") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "141") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "141") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "141") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "141") (term "0,1"))
+ (rule "add_literals" (formula "141") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "141") (term "1,0,1"))
+ (rule "add_zero_right" (formula "141") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "141") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "141") (term "0,0,1"))
+ (rule "add_literals" (formula "141") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "141") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "141") (term "0,1"))
+ (rule "add_literals" (formula "141") (term "1,0,1"))
+ (rule "times_zero_1" (formula "141") (term "0,1"))
+ (rule "leq_literals" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_leqRight" (formula "141"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (write)"
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "13")))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "close" (formula "56") (ifseqformula "55"))
+ )
+ (branch "Pre (write)"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "13")) (ifInst "" (formula "24")))
+ (rule "wellFormedAnon" (formula "88") (term "0"))
+ (rule "expand_inInt" (formula "88") (term "1"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1"))
+ (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "15")))
+ (rule "polySimp_homoEq" (formula "10") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "1") (ifseqformula "7"))
+ (rule "leq_literals" (formula "87") (term "0,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_leqRight" (formula "87"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "Null reference (_bucket_pointers = null)"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "SMTRule")
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_4 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86")))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "false_right" (formula "89"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "45") (term "1,1"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "45"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "1") (ifseqformula "40"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "43"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "54") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "expand_inInt" (formula "54") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,2,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "57") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "applyEq" (formula "57") (term "1,1,1,1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteGeq" (formula "56"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55"))
+ (rule "times_zero_1" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1"))
+ (rule "polySimp_elimOne" (formula "54") (term "1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "40") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "expand_inInt" (formula "40") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "translateJavaAddInt" (formula "46") (term "1"))
+ (rule "translateJavaCastInt" (formula "47") (term "0"))
+ (rule "translateJavaMulInt" (formula "40") (term "1"))
+ (rule "translateJavaMulInt" (formula "41") (term "0"))
+ (rule "translateJavaCastInt" (formula "44") (term "0"))
+ (rule "translateJavaCastInt" (formula "43") (term "1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0"))
+ (rule "polySimp_addComm0" (formula "46") (term "1"))
+ (rule "castedGetAny" (formula "47") (term "0"))
+ (rule "castedGetAny" (formula "44") (term "0"))
+ (rule "castedGetAny" (formula "43") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "60"))
+ (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "60"))
+ (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "60"))
+ (rule "applyEq" (formula "49") (term "0,1,0,0,1,0,0,0") (ifseqformula "60"))
+ (rule "applyEq" (formula "46") (term "1,1") (ifseqformula "60"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "50"))
+ (rule "mul_literals" (formula "40") (term "1,1,0"))
+ (rule "greater_literals" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "38") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "translateJavaMulInt" (formula "38") (term "1"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "eqSymm" (formula "71"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "52"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "14"))
+ (rule "notLeft" (formula "13"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "translateJavaAddInt" (formula "34") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "3"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_homoInEq1" (formula "32"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "1,1,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0"))
+ (rule "add_zero_right" (formula "32") (term "0"))
+ (rule "leq_literals" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ )
+ )
+ (branch "Null Reference (_bucket_starts = null)"
+ (builtin "SMTRule")
+ )
+ (branch "Index Out of Bounds (_bucket_starts != null, but bucket Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86")))
+ (rule "false_right" (formula "89"))
+ (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0"))
+ (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,1,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "46") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "45") (term "1,1"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "45"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,2,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,2,0"))
+ (rule "eqSymm" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "1") (ifseqformula "40"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "43"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "translateJavaAddInt" (formula "39") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "0"))
+ (rule "polySimp_addComm0" (formula "39") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "0,0"))
+ (rule "mul_literals" (formula "37") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "37"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockBreak" (formula "86") (term "1"))
+ (rule "lsBreak" (formula "86") (term "1"))
+ (rule "assignment" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "methodCallEmpty" (formula "86") (term "1"))
+ (rule "tryEmpty" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "emptyModality" (formula "86") (term "1"))
+ (rule "andRight" (formula "86"))
+ (branch "Case 1"
+ (rule "impRight" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "closeTrue" (formula "87"))
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+)
+(branch "Exceptional Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "15")))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "close" (formula "32") (ifseqformula "31"))
+)
+(branch "Pre (num_buckets)"
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "15")) (ifInst "" (formula "1")) (ifInst "" (formula "10")))
+ (rule "closeTrue" (formula "64"))
+)
+(branch "Null reference (_classifier = null)"
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "64"))
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_nonoverlapping((I,int,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_nonoverlapping((I,int,(I,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..1bcb251
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_nonoverlapping((I,int,(I,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,2050 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Jun 03 13:38:41 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Jun 03 13:38:41 CEST 2022
+contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "1451")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "3"))
+(rule "translateJavaSubInt" (formula "16") (term "2,0"))
+(rule "translateJavaSubInt" (formula "16") (term "2,1"))
+(rule "translateJavaAddInt" (formula "13") (term "0"))
+(rule "translateJavaAddInt" (formula "15") (term "0"))
+(rule "translateJavaAddInt" (formula "16") (term "0,2,0"))
+(rule "translateJavaAddInt" (formula "16") (term "0,2,1"))
+(rule "replace_known_right" (formula "5") (term "0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "5"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "16") (term "2,0"))
+(rule "mul_literals" (formula "16") (term "1,2,0"))
+(rule "polySimp_elimSub" (formula "16") (term "2,1"))
+(rule "mul_literals" (formula "16") (term "1,2,1"))
+(rule "polySimp_addComm0" (formula "13") (term "0"))
+(rule "polySimp_addComm0" (formula "16") (term "0,2,0"))
+(rule "polySimp_addComm1" (formula "16") (term "2,1"))
+(rule "polySimp_addComm1" (formula "16") (term "2,0"))
+(rule "polySimp_addComm0" (formula "16") (term "0,2,1"))
+(rule "polySimp_addComm0" (formula "16") (term "0,2,0"))
+(rule "disjointDefinition" (formula "16"))
+(rule "disjointArrayRanges" (formula "16"))
+(rule "notLeft" (formula "16"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "9"))
+(rule "inEqSimp_commuteLeq" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "7"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,1"))
+(rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "commute_and_2" (formula "16") (term "0"))
+(rule "commute_and" (formula "16") (term "0,1"))
+(rule "cnf_rightDist" (formula "16") (term "1"))
+(rule "commute_or" (formula "16") (term "0,1"))
+(rule "cnf_rightDist" (formula "16") (term "1,1"))
+(rule "commute_or" (formula "16") (term "0,1,1"))
+(rule "cnf_rightDist" (formula "16") (term "0,1"))
+(rule "commute_or" (formula "16") (term "0,0,1"))
+(rule "shift_paren_and" (formula "16") (term "1"))
+(rule "shift_paren_and" (formula "16"))
+(rule "shift_paren_and" (formula "16") (term "0"))
+(rule "shift_paren_and" (formula "16") (term "0,0"))
+(rule "methodBodyExpand" (formula "19") (term "1") (newnames "heapBefore_copy_nonoverlapping,savedHeapBefore_copy_nonoverlapping,_destBefore_copy_nonoverlapping,_destPosBefore_copy_nonoverlapping,_lengthBefore_copy_nonoverlapping,_srcBefore_copy_nonoverlapping,_srcPosBefore_copy_nonoverlapping"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "for_to_while" (formula "19") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+(rule "variableDeclarationAssign" (formula "19") (term "1"))
+(rule "variableDeclaration" (formula "19") (term "1") (newnames "i"))
+(rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+(rule "commute_and_2" (formula "16") (term "0"))
+(rule "loopScopeInvDia" (formula "19") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+(branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "19"))
+)
+(branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "20") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0"))
+ (rule "impRight" (formula "20"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "23") (term "2,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "0,2,1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,2,1,0,0,1,0"))
+ (rule "eqSymm" (formula "3") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "23") (term "2,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,2,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_1"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0,0"))
+ (rule "ifElseUnfold" (formula "23") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_2"))
+ (rule "less_than_comparison_simple" (formula "23") (term "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "arrayLengthNotNegative" (formula "19") (term "0"))
+ (rule "ifElseSplit" (formula "29"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eval_order_array_access2" (formula "30") (term "1") (inst "#v0=x_2") (inst "#ar1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_3"))
+ (rule "assignmentAdditionInt" (formula "30") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "30"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "1"))
+ (rule "mul_literals" (formula "30") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1"))
+ (rule "mul_literals" (formula "30") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "15"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "18"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "17"))
+ (rule "times_zero_1" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "14"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "28") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0"))
+ (rule "qeq_literals" (formula "28") (term "0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_geqRight" (formula "28"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "23"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "13"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "4"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "translateJavaAddInt" (formula "30") (term "0,1,0"))
+ (rule "eval_order_array_access3" (formula "30") (term "1") (inst "#v1=x_5") (inst "#v2=x_4") (inst "#v0=x_arr_1"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr_1"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_4"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_5"))
+ (rule "eval_order_array_access5" (formula "30") (term "1") (inst "#v1=x_6") (inst "#ar1=x_arr_2"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr_2"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "variableDeclarationAssign" (formula "30") (term "1"))
+ (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_6"))
+ (rule "assignmentAdditionInt" (formula "30") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "30"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,1,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "1"))
+ (rule "mul_literals" (formula "30") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1"))
+ (rule "mul_literals" (formula "30") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "17"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "18"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "17"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "14"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "23"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "13"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "4"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_or_tautInEq0" (formula "25") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "25") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,1,1,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,1,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "25") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_and_subsumption3" (formula "6") (term "0,0,0"))
+ (rule "leq_literals" (formula "6") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0,0"))
+ (rule "commute_and" (formula "28"))
+ (rule "commute_or" (formula "25") (term "1,0"))
+ (rule "commute_or" (formula "25") (term "1,0,0"))
+ (rule "commute_or" (formula "6") (term "0,0,0"))
+ (rule "commute_or_2" (formula "6") (term "0,0"))
+ (rule "commute_and_2" (formula "25"))
+ (rule "cut_direct" (formula "28") (term "1"))
+ (branch "CUT: srcPos <= 2147483647 + i_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_geqRight" (formula "29"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "add_zero_left" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "CUT: srcPos <= 2147483647 + i_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "false_right" (formula "29"))
+ (rule "inEqSimp_leqRight" (formula "28"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "6"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "translateJavaAddInt" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,1,0"))
+ (rule "assignment_array2" (formula "30"))
+ (branch "Normal Execution (x_arr_2 != null)"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "pullOutSelect" (formula "30") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "8")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "assignment_to_primitive_array_component" (formula "31"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "blockEmpty" (formula "31") (term "1"))
+ (rule "preincrement" (formula "31") (term "1"))
+ (rule "compound_int_cast_expression" (formula "31") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "31") (term "1"))
+ (rule "variableDeclaration" (formula "31") (term "1") (newnames "x_7"))
+ (rule "remove_parentheses_right" (formula "31") (term "1"))
+ (rule "assignmentAdditionInt" (formula "31") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,1,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,1"))
+ (rule "add_literals" (formula "31") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "17"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "29") (term "1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "29") (term "0,1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_leqRight" (formula "29"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "translateJavaAddInt" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "31") (term "1"))
+ (rule "assignment" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "blockEmpty" (formula "31") (term "1"))
+ (rule "lsContinue" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "precOfInt" (formula "31"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,1"))
+ (rule "add_literals" (formula "31") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "31") (term "1,0,1"))
+ (rule "add_zero_right" (formula "31") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0,1"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "31") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "31") (term "0,1"))
+ (rule "add_literals" (formula "31") (term "1,0,1"))
+ (rule "times_zero_1" (formula "31") (term "0,1"))
+ (rule "leq_literals" (formula "31") (term "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_leqRight" (formula "31"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,1,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "18"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but x_4 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "false_right" (formula "32"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,1,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,1,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "24"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "16"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20"))
+ (rule "times_zero_1" (formula "17") (term "0,0"))
+ (rule "add_zero_left" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "17"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "25"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "15"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "6") (term "0,0"))
+ (rule "add_zero_left" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "6"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "5"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_or_tautInEq0" (formula "27") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "27") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,1,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "27") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "commute_or" (formula "1"))
+ (rule "commute_or" (formula "27") (term "1,0"))
+ (rule "commute_or" (formula "27") (term "1,0,0"))
+ (rule "commute_or" (formula "8") (term "0,0,0"))
+ (rule "commute_or_2" (formula "8") (term "0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch " src = dest & srcPos >= destPos + i_0 * -1 & srcPos <= -1 + destPos + i_0 * -1 + length TRUE"
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "replace_known_left" (formula "29") (term "0,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "2"))
+ (rule "applyEq" (formula "13") (term "1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "10") (term "1,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "4"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "7"))
+ (rule "times_zero_1" (formula "20") (term "0,0"))
+ (rule "add_zero_left" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1"))
+ (rule "mul_literals" (formula "20") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "3") (ifseqformula "12"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_zero_right" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "28"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "20"))
+ (rule "times_zero_1" (formula "12") (term "0,0"))
+ (rule "add_zero_left" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor3" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "3") (ifseqformula "12"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "commute_and_2" (formula "30"))
+ (rule "cut_direct" (formula "1") (term "1"))
+ (branch "CUT: dest.length <= destPos + i_0 TRUE"
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "27") (term "0,0"))
+ (rule "add_zero_left" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "polySimp_pullOutFactor2" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "31"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_zero_right" (formula "10") (term "0"))
+ (rule "leq_literals" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ (branch "CUT: dest.length <= destPos + i_0 FALSE"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "30"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=destPos") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0"))
+ (rule "neg_literal" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "4"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "12") (term "0,0"))
+ (rule "add_zero_left" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "11") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ )
+ (branch " src = dest & srcPos >= destPos + i_0 * -1 & srcPos <= -1 + destPos + i_0 * -1 + length FALSE"
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "commute_and_2" (formula "27"))
+ (rule "cut_direct" (formula "1") (term "1"))
+ (branch "CUT: dest.length <= destPos + i_0 TRUE"
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor2" (formula "25") (term "0,0,0"))
+ (rule "add_literals" (formula "25") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "25") (term "0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "25"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "CUT: dest.length <= destPos + i_0 FALSE"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "26"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "6") (term "0,0"))
+ (rule "add_zero_left" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_2 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_2 != null, but x_6 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "false_right" (formula "31"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,1,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "17"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "14"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "18"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "15"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "23"))
+ (rule "times_zero_1" (formula "13") (term "0,0"))
+ (rule "add_zero_left" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "13"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "4"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "5") (term "0,0"))
+ (rule "add_zero_left" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "5"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_or_tautInEq0" (formula "26") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "26") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,1,1,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,1,1,0"))
+ (rule "add_zero_right" (formula "26") (term "0,1,1,0"))
+ (rule "leq_literals" (formula "26") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0"))
+ (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "nnf_imp2or" (formula "7") (term "0"))
+ (rule "nnf_notAnd" (formula "7") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0,0"))
+ (rule "commute_or" (formula "1"))
+ (rule "commute_or" (formula "26") (term "1,0"))
+ (rule "commute_or" (formula "26") (term "1,0,0"))
+ (rule "commute_or" (formula "7") (term "0,0,0"))
+ (rule "commute_or_2" (formula "7") (term "0,0"))
+ (rule "commute_and_2" (formula "26"))
+ (rule "cut_direct" (formula "1") (term "1"))
+ (branch "CUT: src.length <= i_0 + srcPos TRUE"
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "18") (term "0,0"))
+ (rule "add_zero_left" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0"))
+ (rule "add_zero_right" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "21"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "CUT: src.length <= i_0 + srcPos FALSE"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "26"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "17") (term "0,0"))
+ (rule "add_zero_left" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "17"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ )
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockBreak" (formula "30") (term "1"))
+ (rule "lsBreak" (formula "30") (term "1"))
+ (rule "assignment" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "methodCallEmpty" (formula "30") (term "1"))
+ (rule "tryEmpty" (formula "30") (term "1"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "emptyModality" (formula "30") (term "1"))
+ (rule "andRight" (formula "30"))
+ (branch "Case 1"
+ (rule "impRight" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeTrue" (formula "31"))
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..88484b1
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,7234 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Jun 03 13:42:31 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Jun 03 13:42:31 CEST 2022
+contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0
+name=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "15560")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "8"))
+(rule "notLeft" (formula "5"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "3"))
+(rule "translateJavaSubInt" (formula "21") (term "0"))
+(rule "translateJavaAddInt" (formula "21") (term "0,0"))
+(rule "translateJavaMulInt" (formula "21") (term "1,0,0"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "11"))
+(rule "polySimp_elimSub" (formula "21") (term "0"))
+(rule "mul_literals" (formula "21") (term "1,0"))
+(rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+(rule "polySimp_addComm1" (formula "21") (term "0"))
+(rule "polySimp_addComm0" (formula "21") (term "0,0"))
+(rule "disjointDefinition" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+(rule "notLeft" (formula "17"))
+(rule "eqSymm" (formula "21"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "methodBodyExpand" (formula "24") (term "1") (newnames "heapBefore_copy_unique,savedHeapBefore_copy_unique,_beginBefore_copy_unique,_countBefore_copy_unique,_endBefore_copy_unique,_stepBefore_copy_unique,_targetBefore_copy_unique,_valuesBefore_copy_unique"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "variableDeclarationAssign" (formula "24") (term "1"))
+(rule "variableDeclaration" (formula "24") (term "1") (newnames "offset"))
+(rule "compound_subtraction_1" (formula "24") (term "1") (inst "#v=x"))
+(rule "variableDeclarationAssign" (formula "24") (term "1"))
+(rule "variableDeclaration" (formula "24") (term "1") (newnames "x"))
+(rule "assignmentAdditionInt" (formula "24") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "24") (userinteraction))
+ (rule "expand_inInt" (formula "24") (userinteraction))
+ (rule "andRight" (formula "24") (userinteraction))
+ (branch "Case 1"
+ (rule "cut" (inst "cutFormula=leq(step<>,
+ mul(step, count))<>") (userinteraction))
+ (branch "CUT: step <= step * count TRUE"
+ (rule "replace_int_MAX" (formula "25") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "25"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "20"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "21"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "21"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "13"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "3"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ (branch "CUT: step <= step * count FALSE"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "24") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "24"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "20"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "17"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaAddInt" (formula "24") (term "0,1,0"))
+ (rule "assignmentSubtractionInt" (formula "24") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (userinteraction))
+ (rule "andRight" (formula "24") (userinteraction))
+ (branch "Case 1"
+ (rule "cut" (inst "cutFormula=lt(sub(add(begin, step), Z(1(#))),
+ end<>)<>") (userinteraction))
+ (branch "CUT: begin + step - 1 < end TRUE"
+ (rule "replace_int_MAX" (formula "25") (term "1"))
+ (rule "polySimp_elimSub" (formula "1") (term "0"))
+ (rule "mul_literals" (formula "1") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0"))
+ (rule "mul_literals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "25"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "20"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "21"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "15"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "CUT: begin + step - 1 < end FALSE"
+ (rule "cut" (inst "cutFormula=leq(step<>,
+ mul(step, count))<>") (userinteraction))
+ (branch "CUT: step <= step * count TRUE"
+ (rule "replace_int_MAX" (formula "26") (term "1"))
+ (rule "polySimp_elimSub" (formula "22") (term "0"))
+ (rule "mul_literals" (formula "22") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "0"))
+ (rule "mul_literals" (formula "26") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "26"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "22"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "21"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "16"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "21"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "3"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "CUT: step <= step * count FALSE"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "24") (term "0"))
+ (rule "polySimp_elimSub" (formula "24") (term "1"))
+ (rule "mul_literals" (formula "24") (term "1,1"))
+ (rule "polySimp_addComm1" (formula "24") (term "1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1"))
+ (rule "inEqSimp_leqRight" (formula "24"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "20"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "17"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "17"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "24"))
+ (builtin "Block Contract (Internal)" (formula "24") (newnames "result_43,exc_51,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "12")) (ifInst "" (formula "1")))
+ (rule "true_left" (formula "21"))
+ (rule "eqSymm" (formula "24") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "24") (term "1"))
+ (rule "variableDeclaration" (formula "24") (term "1") (newnames "exc_51_1"))
+ (rule "assignment" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "emptyStatement" (formula "24") (term "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "emptyStatement" (formula "24") (term "1"))
+ (rule "tryEmpty" (formula "24") (term "1"))
+ (rule "blockEmptyLabel" (formula "24") (term "1"))
+ (rule "blockEmpty" (formula "24") (term "1"))
+ (rule "methodCallEmpty" (formula "24") (term "1"))
+ (rule "emptyModality" (formula "24") (term "1"))
+ (rule "andRight" (formula "24"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeTrue" (formula "24"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeTrue" (formula "24"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "24"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "24"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "24"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0"))
+ (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0"))
+ (rule "mul_literals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "elim_double_block_2" (formula "28") (term "1"))
+ (rule "ifUnfold" (formula "28") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_1"))
+ (rule "inequality_comparison_simple" (formula "28") (term "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "replace_known_left" (formula "28") (term "0,0,1,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "ifSplit" (formula "34"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "34") (term "1"))
+ (rule "eval_order_array_access3" (formula "34") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_2"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_3"))
+ (rule "assignment_array2" (formula "34"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "assignment_to_primitive_array_component" (formula "34"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "target_offset"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "compound_assignment_op_plus" (formula "34") (term "1"))
+ (rule "compound_int_cast_expression" (formula "34") (term "1") (inst "#v=x"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_4"))
+ (rule "remove_parentheses_right" (formula "34") (term "1"))
+ (rule "compound_addition_2" (formula "34") (term "1") (inst "#v1=x_6") (inst "#v0=x_5"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_5"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_6"))
+ (rule "remove_parentheses_right" (formula "34") (term "1"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "assignmentAdditionInt" (formula "34") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "expand_inInt" (formula "34"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "34") (term "0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "34") (term "1,1"))
+ (rule "inEqSimp_gtToGeq" (formula "24"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "25"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "1"))
+ (rule "mul_literals" (formula "34") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,1"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1"))
+ (rule "mul_literals" (formula "34") (term "0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "13"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "22"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "21"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "18"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "13"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "25"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "mul_literals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "19"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "commute_and" (formula "29"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0"))
+ (rule "cut_direct" (formula "29") (term "1"))
+ (branch "CUT: step * 2 <= 2147483648 + begin * -1 TRUE"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "inEqSimp_geqRight" (formula "30"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow2" (formula "21") (ifseqformula "1"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ (branch "CUT: step * 2 <= 2147483648 + begin * -1 FALSE"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "false_right" (formula "30"))
+ (rule "inEqSimp_leqRight" (formula "29"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "26"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow1" (formula "2") (ifseqformula "6"))
+ (rule "mul_literals" (formula "2") (term "1,0,1"))
+ (rule "greater_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "10"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "12"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "translateJavaAddInt" (formula "34") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "34") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "34") (term "1"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "for_to_while" (formula "34") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "variableDeclarationAssign" (formula "34") (term "1"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "i"))
+ (rule "assignment" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "elim_double_block_3" (formula "34") (term "1"))
+ (rule "loopScopeInvDia" (formula "34") (term "1") (newnames "i_0,offset_0,target_offset_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "34"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,1,0,1,0,0"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0,0"))
+ (rule "impRight" (formula "35"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "2,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0,1,0"))
+ (rule "eqSymm" (formula "6"))
+ (rule "translateJavaSubInt" (formula "6") (term "0"))
+ (rule "translateJavaAddInt" (formula "6") (term "0,0"))
+ (rule "translateJavaMulInt" (formula "6") (term "1,0,0"))
+ (rule "translateJavaAddInt" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "2,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,2,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "0"))
+ (rule "mul_literals" (formula "6") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_7"))
+ (rule "commute_and" (formula "9") (term "1,0,0"))
+ (rule "commute_and" (formula "9") (term "0,0,0"))
+ (rule "commute_and" (formula "8") (term "0,0,0"))
+ (rule "commute_and" (formula "8") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "9") (term "0,0"))
+ (rule "commute_and_2" (formula "9") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "8") (term "0,0"))
+ (rule "commute_and_2" (formula "8") (term "0,0,0"))
+ (rule "commute_and" (formula "8") (term "1,0,0,1,0"))
+ (rule "commute_and" (formula "8") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "8") (term "0,0,1,0"))
+ (rule "shift_paren_and" (formula "8") (term "0,0,0,1,0"))
+ (rule "ifElseUnfold" (formula "44") (term "1") (inst "#boolv=x_8"))
+ (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_8"))
+ (rule "less_than_comparison_simple" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "ifElseSplit" (formula "44"))
+ (branch "if x_8 true"
+ (builtin "Block Contract (Internal)" (formula "45") (newnames "result_44,exc_52,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "23")))
+ (rule "eqSymm" (formula "46") (term "0,0,1,0,1"))
+ (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "variableDeclarationAssign" (formula "46") (term "1"))
+ (rule "variableDeclaration" (formula "46") (term "1") (newnames "exc_52_1"))
+ (rule "assignment" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "emptyStatement" (formula "46") (term "1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "emptyStatement" (formula "46") (term "1"))
+ (rule "tryEmpty" (formula "46") (term "1"))
+ (rule "blockEmptyLabel" (formula "46") (term "1"))
+ (rule "blockEmpty" (formula "46") (term "1"))
+ (rule "methodCallEmpty" (formula "46") (term "1"))
+ (rule "emptyModality" (formula "46") (term "1"))
+ (rule "andRight" (formula "46"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "closeTrue" (formula "46"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "closeTrue" (formula "46"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "45"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "23")))
+ (rule "closeTrue" (formula "45"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "wellFormedAnon" (formula "45"))
+ (rule "wellFormedStorePrimitiveArray" (formula "45") (term "0"))
+ (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_left" (formula "45") (term "1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "45"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "42") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "translateJavaMulInt" (formula "46") (term "1,1"))
+ (rule "translateJavaMulInt" (formula "46") (term "0,1"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "46") (term "0,0,1"))
+ (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_left" (formula "45") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "44"))
+ (rule "elim_double_block_2" (formula "49") (term "1"))
+ (rule "ifUnfold" (formula "49") (term "1") (inst "#boolv=x_8"))
+ (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "49") (term "1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "replace_known_left" (formula "49") (term "0,0,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "ifSplit" (formula "49"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "49") (term "1"))
+ (rule "ifUnfold" (formula "49") (term "1") (inst "#boolv=x_8"))
+ (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_10"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "49") (term "1"))
+ (rule "variableDeclarationAssign" (formula "49") (term "1"))
+ (rule "variableDeclaration" (formula "49") (term "1") (newnames "var"))
+ (rule "eval_order_array_access5" (formula "49") (term "1") (inst "#v1=x_11") (inst "#ar1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "49") (term "1"))
+ (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_arr_1"))
+ (rule "assignment" (formula "49") (term "1"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "variableDeclarationAssign" (formula "49") (term "1"))
+ (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_11"))
+ (rule "assignmentSubtractionInt" (formula "49") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "7"))
+ (rule "polySimp_elimSub" (formula "49") (term "1,1"))
+ (rule "mul_literals" (formula "49") (term "1,1,1"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "35"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "36"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1"))
+ (rule "mul_literals" (formula "49") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,1"))
+ (rule "add_literals" (formula "49") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "applyEq" (formula "45") (term "0,1,0,1") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "45") (term "0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "45") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0,1"))
+ (rule "add_literals" (formula "45") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "mul_literals" (formula "35") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36"))
+ (rule "mul_literals" (formula "36") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "37") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1"))
+ (rule "mul_literals" (formula "49") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "45") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "36"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "27"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "44") (term "1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "44") (term "0,1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_leqRight" (formula "44"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "31"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "28"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "3"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "24"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "35"))
+ (rule "mul_literals" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "mul_literals" (formula "30") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "3"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "translateJavaSubInt" (formula "49") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,1,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,1,0"))
+ (rule "assignment_array2" (formula "49"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "pullOutSelect" (formula "49") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "50") (term "1"))
+ (rule "variableDeclaration" (formula "50") (term "1") (newnames "var_1"))
+ (rule "assignment_array2" (formula "50"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "pullOutSelect" (formula "50") (term "0,1,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "51") (term "0,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "51") (term "1") (inst "#v0=x_11"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_12"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "a"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "b"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "methodBodyExpand" (formula "51") (term "1") (newnames "heapBefore_cmp,savedHeapBefore_cmp"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "returnUnfold" (formula "51") (term "1") (inst "#v0=x_13"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_13"))
+ (rule "less_than_comparison_simple" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "methodCallReturn" (formula "51") (term "1"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "methodCallEmpty" (formula "51") (term "1"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (rule "ifSplit" (formula "51"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eval_order_array_access3" (formula "52") (term "1") (inst "#v1=x_9") (inst "#v2=x_8") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_arr_2"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_14"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_15"))
+ (rule "assignment_array2" (formula "52"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "replaceKnownSelect_taclet00112011001211_1" (formula "52") (term "0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet00112011001211_3" (formula "52") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "52"))
+ (branch "Normal Execution (x_arr_2 != null)"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "compound_assignment_op_plus" (formula "52") (term "1"))
+ (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_16"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "compound_addition_2" (formula "52") (term "1") (inst "#v1=x_18") (inst "#v0=x_17"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_17"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_18"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "assignmentAdditionInt" (formula "52") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "38"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "27"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "48") (term "1") (ifseqformula "6"))
+ (rule "leq_literals" (formula "48") (term "0,1"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_leqRight" (formula "48"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "3") (term "0,0") (ifseqformula "1"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "33"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "3") (term "0,0,0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "5"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "37"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "25"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "blockEmpty" (formula "52") (term "1"))
+ (rule "compound_assignment_op_plus" (formula "52") (term "1"))
+ (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_19"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "compound_addition_2" (formula "52") (term "1") (inst "#v1=x_21") (inst "#v0=x_20"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_20"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_21"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "assignmentAdditionInt" (formula "52") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "38"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1"))
+ (rule "mul_literals" (formula "52") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "24"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "27"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "5"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "38"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "mul_literals" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "32"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "9"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_and_subsumption3" (formula "15") (term "0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "expand_inInt" (formula "28") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "28") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "28") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0"))
+ (rule "commute_and" (formula "46"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "target_offset_0 = 1 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "3") (term "0,0,0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEqRigid" (formula "13") (term "1,1,0,0,0,0") (ifseqformula "2"))
+ (rule "add_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "6"))
+ (rule "applyEq" (formula "11") (term "1,0,0,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_or_tautInEq2" (formula "12") (term "0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "1,1,0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "commute_or" (formula "24") (term "1,0,0"))
+ (rule "commute_or_2" (formula "24") (term "0,0"))
+ (rule "commute_or" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption3" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_or_antiSymm0" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "commute_or" (formula "24") (term "0,0,0"))
+ (rule "cut_direct" (formula "38") (term "0"))
+ (branch "CUT: i_0 <= -2 + count TRUE"
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "37"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "38"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "6"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "commute_and" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "commute_and_2" (formula "9") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "9") (term "0,0,1,0"))
+ (rule "cut_direct" (formula "43") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "false_right" (formula "44"))
+ (rule "inEqSimp_leqRight" (formula "43"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "35"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "41"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "CUT: i_0 <= -2 + count FALSE"
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_leqRight" (formula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4"))
+ (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "qeq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "polySimp_sepNegMonomial" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "commute_and" (formula "10") (term "0,0,0,0,1,0"))
+ (rule "commute_and_2" (formula "10") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "10") (term "0,0,1,0"))
+ (rule "ex_pull_out3" (formula "10") (term "0"))
+ (rule "cnf_rightDist" (formula "10") (term "0,0"))
+ (rule "commute_or" (formula "10") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "10") (term "0,0,0"))
+ (rule "commute_or" (formula "10") (term "1,0,0,0"))
+ (rule "cnf_rightDist" (formula "10") (term "0,0,0,0"))
+ (rule "commute_or" (formula "10") (term "1,0,0,0,0"))
+ (rule "cnf_rightDist" (formula "10") (term "0,0,0,0,0"))
+ (rule "commute_or" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "cut_direct" (formula "39") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_geqRight" (formula "40"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeFalse" (formula "8"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "false_right" (formula "40"))
+ (rule "inEqSimp_leqRight" (formula "39"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "33"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "2"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "25"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "target_offset_0 = 1 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_strengthen1" (formula "6") (ifseqformula "42"))
+ (rule "add_literals" (formula "6") (term "1"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_contradEq7" (formula "42") (ifseqformula "6"))
+ (rule "mul_literals" (formula "42") (term "1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "false_right" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "6"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "5"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "commute_or" (formula "13") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0"))
+ (rule "commute_or_2" (formula "27") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "commute_and" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "commute_or" (formula "27") (term "0,0,0"))
+ (rule "cut_direct" (formula "41") (term "0"))
+ (branch "CUT: i_0 <= -2 + count TRUE"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "40"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "41"))
+ (rule "mul_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "8"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "commute_or" (formula "25") (term "0,0,0,0"))
+ (rule "commute_and_2" (formula "11") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "11") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "target_offset_0 <= count TRUE"
+ (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "cut_direct" (formula "46") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "1"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "false_right" (formula "47"))
+ (rule "inEqSimp_leqRight" (formula "46"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "37"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "3"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "closeFalse" (formula "26"))
+ )
+ )
+ (branch "target_offset_0 <= count FALSE"
+ (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "41"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "CUT: i_0 <= -2 + count FALSE"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "8") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "qeq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "commute_or" (formula "25") (term "0,0,0,0"))
+ (rule "commute_and_2" (formula "11") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "11") (term "0,0,1,0"))
+ (rule "cut_direct" (formula "41") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_geqRight" (formula "42"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1"))
+ (rule "mul_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "false_right" (formula "42"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "13"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "2"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "27"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "blockEmpty" (formula "52") (term "1"))
+ (rule "preincrement" (formula "52") (term "1"))
+ (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_22"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "assignmentAdditionInt" (formula "52") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "38"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "50") (term "1") (ifseqformula "5"))
+ (rule "leq_literals" (formula "50") (term "0,1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "inEqSimp_leqRight" (formula "50"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "37"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "26"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1"))
+ (rule "polySimp_rightDist" (formula "8") (term "1"))
+ (rule "mul_literals" (formula "8") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeFalse" (formula "31"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "blockEmpty" (formula "52") (term "1"))
+ (rule "lsContinue" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "precOfInt" (formula "52"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "38"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "52") (term "1,0,1"))
+ (rule "add_zero_right" (formula "52") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0,1"))
+ (rule "add_literals" (formula "52") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "52") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "1,0,1"))
+ (rule "times_zero_1" (formula "52") (term "0,1"))
+ (rule "leq_literals" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_leqRight" (formula "52"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "49") (term "0,1,0,1") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "38"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "1"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr_2 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_2 != null, but x_14 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "false_right" (formula "53"))
+ (rule "polySimp_homoEq" (formula "3") (term "0,0"))
+ (rule "times_zero_2" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_gtToGeq" (formula "40"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "49") (term "0,1,0,1") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "38"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "31"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "25"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "28"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "30") (term "0,0"))
+ (rule "add_zero_left" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "7"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "32"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "6"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "40"))
+ (rule "mul_literals" (formula "35") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1"))
+ (rule "mul_literals" (formula "35") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "35"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "34"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "31") (ifseqformula "5"))
+ (rule "andLeft" (formula "31"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "1,1,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0"))
+ (rule "add_literals" (formula "31") (term "0"))
+ (rule "leq_literals" (formula "31"))
+ (rule "closeFalse" (formula "31"))
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "51")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but offset Out of Bounds!)"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "52"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "compound_assignment_op_plus" (formula "52") (term "1"))
+ (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_14"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "compound_addition_2" (formula "52") (term "1") (inst "#v1=x_16") (inst "#v0=x_15"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_15"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_16"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "assignmentAdditionInt" (formula "52") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "38"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1"))
+ (rule "mul_literals" (formula "52") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "39"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "26"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "33"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "38"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "mul_literals" (formula "33") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "33"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "5"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "27"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "32"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0"))
+ (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "13") (term "0,0,0"))
+ (rule "leq_literals" (formula "13") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "expand_inInt" (formula "26") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "commute_and" (formula "46"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "target_offset_0 = 1 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEqRigid" (formula "3") (term "1,0,2,1,0") (ifseqformula "2"))
+ (rule "add_literals" (formula "3") (term "0,2,1,0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "3") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0"))
+ (rule "applyEq" (formula "3") (term "0,0,0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "applyEq" (formula "11") (term "1,1,0,0,0,0") (ifseqformula "2"))
+ (rule "add_literals" (formula "11") (term "1,0,0,0,0"))
+ (rule "applyEq" (formula "10") (term "1,0,0,0,0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "6"))
+ (rule "inEqSimp_or_tautInEq2" (formula "10") (term "0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "1,1,0,0,0"))
+ (rule "qeq_literals" (formula "10") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "commute_or_2" (formula "22") (term "0,0"))
+ (rule "commute_or" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_or_antiSymm0" (formula "9") (term "0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "add_literals" (formula "9") (term "1,0,0,0,0"))
+ (rule "commute_or" (formula "9") (term "0,0"))
+ (rule "commute_or" (formula "22") (term "0,0,0"))
+ (rule "cut_direct" (formula "38") (term "0"))
+ (branch "CUT: i_0 <= -2 + count TRUE"
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "38"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "37"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "38"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "5"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "commute_or" (formula "22") (term "0,0,0,0"))
+ (rule "applyEq_or_int0" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "commute_and" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "commute_and_2" (formula "9") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "9") (term "0,0,1,0"))
+ (rule "cut_direct" (formula "43") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_geqRight" (formula "44"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "19") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "closeFalse" (formula "19"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "false_right" (formula "44"))
+ (rule "inEqSimp_leqRight" (formula "43"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "41"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "3"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "closeFalse" (formula "23"))
+ )
+ )
+ (branch "CUT: i_0 <= -2 + count FALSE"
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_leqRight" (formula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "1,0") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "0"))
+ (rule "polySimp_homoEq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "commute_or" (formula "21") (term "0,0,0,0"))
+ (rule "applyEq_or_int0" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "commute_and" (formula "8") (term "0,0,0,0,1,0"))
+ (rule "commute_and_2" (formula "8") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "8") (term "0,0,1,0"))
+ (rule "ex_pull_out3" (formula "8") (term "0"))
+ (rule "cnf_rightDist" (formula "8") (term "0,0"))
+ (rule "commute_or" (formula "8") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "8") (term "0,0,0"))
+ (rule "commute_or" (formula "8") (term "1,0,0,0"))
+ (rule "cnf_rightDist" (formula "8") (term "0,0,0,0"))
+ (rule "commute_or" (formula "8") (term "1,0,0,0,0"))
+ (rule "cnf_rightDist" (formula "8") (term "0,0,0,0,0"))
+ (rule "commute_or" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "cut_direct" (formula "39") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_geqRight" (formula "40"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "6"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "false_right" (formula "40"))
+ (rule "inEqSimp_leqRight" (formula "39"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "33"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "11"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "3"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "23"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "target_offset_0 = 1 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_strengthen1" (formula "6") (ifseqformula "42"))
+ (rule "add_literals" (formula "6") (term "1"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_contradEq7" (formula "42") (ifseqformula "6"))
+ (rule "mul_literals" (formula "42") (term "1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "false_right" (formula "42"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "6"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "5"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "commute_or" (formula "11") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0"))
+ (rule "commute_or" (formula "25") (term "1,0,0"))
+ (rule "commute_or_2" (formula "11") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "commute_or_2" (formula "25") (term "0,0"))
+ (rule "commute_and" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "commute_or" (formula "25") (term "0,0,0"))
+ (rule "cut_direct" (formula "41") (term "0"))
+ (branch "CUT: i_0 <= -2 + count TRUE"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "40"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "41"))
+ (rule "mul_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "30") (term "0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "qeq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "7"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "commute_and_2" (formula "11") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "11") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "target_offset_0 <= count TRUE"
+ (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "cut_direct" (formula "46") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "1"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "10"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "false_right" (formula "47"))
+ (rule "inEqSimp_leqRight" (formula "46"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "closeFalse" (formula "27"))
+ )
+ )
+ (branch "target_offset_0 <= count FALSE"
+ (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "41"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "CUT: i_0 <= -2 + count FALSE"
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "8") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "polySimp_sepNegMonomial" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "commute_and_2" (formula "9") (term "0,0,0,1,0"))
+ (rule "commute_and_2" (formula "9") (term "0,0,1,0"))
+ (rule "cut_direct" (formula "41") (term "1"))
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "inEqSimp_geqRight" (formula "42"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1"))
+ (rule "mul_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "7"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE"
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "false_right" (formula "42"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "36"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "12"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "1"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow1" (formula "3") (ifseqformula "25"))
+ (rule "mul_literals" (formula "3") (term "1,0,1"))
+ (rule "greater_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "33") (ifseqformula "3"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "blockEmpty" (formula "52") (term "1"))
+ (rule "preincrement" (formula "52") (term "1"))
+ (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_17"))
+ (rule "remove_parentheses_right" (formula "52") (term "1"))
+ (rule "assignmentAdditionInt" (formula "52") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "expand_inInt" (formula "52"))
+ (rule "replace_int_MIN" (formula "52") (term "0,1"))
+ (rule "replace_int_MAX" (formula "52") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1"))
+ (rule "polySimp_rightDist" (formula "44") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1"))
+ (rule "mul_literals" (formula "52") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "27"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "36"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "34"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "46") (term "1") (ifseqformula "5"))
+ (rule "leq_literals" (formula "46") (term "0,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_leqRight" (formula "46"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "translateJavaAddInt" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "52") (term "1"))
+ (rule "assignment" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "blockEmpty" (formula "52") (term "1"))
+ (rule "lsContinue" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "precOfInt" (formula "52"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "39"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "38"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "1"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "52") (term "1,0,1"))
+ (rule "add_zero_right" (formula "52") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0,1"))
+ (rule "add_literals" (formula "52") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "52") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2" (formula "52") (term "0,1"))
+ (rule "add_literals" (formula "52") (term "1,0,1"))
+ (rule "times_zero_1" (formula "52") (term "0,1"))
+ (rule "leq_literals" (formula "52") (term "1"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_leqRight" (formula "52"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,1"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "49") (term "0,1,0,1") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1"))
+ (rule "polySimp_rightDist" (formula "41") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "49") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "38"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "25"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "43") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "43") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,0"))
+ (rule "add_literals" (formula "43") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "43") (term "0,0,0"))
+ (rule "leq_literals" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "5"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but offset Out of Bounds!)"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but x_11 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49")))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "false_right" (formula "50"))
+ (rule "polySimp_homoEq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "42") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "36"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "37"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "add_zero_left" (formula "1") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "applyEq" (formula "46") (term "0,1,0,1") (ifseqformula "8"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0,1,0,1"))
+ (rule "mul_literals" (formula "46") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "46") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0,1"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "36"))
+ (rule "mul_literals" (formula "36") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1"))
+ (rule "polySimp_rightDist" (formula "38") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0,1,1"))
+ (rule "mul_literals" (formula "46") (term "0,0,0,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "35"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "4"))
+ (rule "qeq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "8"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "27") (term "0,0"))
+ (rule "add_zero_left" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "28"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "30"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "37"))
+ (rule "mul_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "3"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "7"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "29") (term "0,0"))
+ (rule "mul_literals" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "mul_literals" (formula "29") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "42") (term "0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0"))
+ (rule "leq_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "29"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "45"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "blockBreak" (formula "44") (term "1"))
+ (rule "lsBreak" (formula "44") (term "1"))
+ (rule "assignment" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "methodCallReturn" (formula "44") (term "1"))
+ (rule "assignment" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "methodCallEmpty" (formula "44") (term "1"))
+ (rule "tryEmpty" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "emptyModality" (formula "44") (term "1"))
+ (rule "andRight" (formula "44"))
+ (branch "Case 1"
+ (rule "impRight" (formula "44"))
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "closeTrue" (formula "45"))
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "44"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_2 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (rule "false_right" (formula "35"))
+ (rule "less_literals" (formula "1") (term "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "25"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "24"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "23"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "18"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_antiSymm" (formula "17") (ifseqformula "1"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "17"))
+ (rule "inEqSimp_commuteGeq" (formula "19"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "17"))
+ (rule "leq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but offset Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")))
+ (rule "false_right" (formula "35"))
+ (rule "inEqSimp_gtToGeq" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "25"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "24"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "23"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "15"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "19"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "26"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "20"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "13") (term "0"))
+ (rule "replace_known_left" (formula "13") (term "1,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "29")) (ifInst "" (formula "14")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "commute_or" (formula "1"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "13") (term "0"))
+ (rule "replace_known_left" (formula "13") (term "0,1") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "30")) (ifInst "" (formula "2")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0,1,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "0,0,0,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0,1,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "cut_direct" (formula "1") (term "0"))
+ (branch "CUT: step <= begin * -1 TRUE"
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ (branch "CUT: step <= begin * -1 FALSE"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "28"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "2"))
+ (rule "mul_literals" (formula "11") (term "0,0"))
+ (rule "add_zero_left" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,1"))
+ (rule "mul_literals" (formula "13") (term "0,0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "29"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "1,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0"))
+ (rule "add_literals" (formula "13") (term "0"))
+ (rule "leq_literals" (formula "13"))
+ (rule "closeFalse" (formula "13"))
+ )
+ )
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__fill((I,int,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__fill((I,int,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..d8e7ce3
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__fill((I,int,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,680 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Jun 03 13:42:47 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Jun 03 13:42:47 CEST 2022
+contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:fill([I,int,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Functions[de.wiesler.Functions\\:\\:fill([I,int,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "366")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "3"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+(rule "methodBodyExpand" (formula "14") (term "1") (newnames "heapBefore_fill,savedHeapBefore_fill,_beginBefore_fill,_endBefore_fill,_valueBefore_fill,_valuesBefore_fill"))
+ (builtin "One Step Simplification" (formula "14"))
+(rule "for_to_while" (formula "14") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+(rule "variableDeclarationAssign" (formula "14") (term "1"))
+(rule "variableDeclaration" (formula "14") (term "1") (newnames "i"))
+(rule "assignment" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+(rule "loopScopeInvDia" (formula "14") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+(branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "14"))
+)
+(branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "impRight" (formula "15"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "18") (term "2,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "18") (term "2,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,2,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "variableDeclaration" (formula "18") (term "1") (newnames "x_1"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0,0"))
+ (rule "ifElseUnfold" (formula "18") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "18") (term "1") (newnames "x_2"))
+ (rule "less_than_comparison_simple" (formula "18") (term "1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "ifElseSplit" (formula "18"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "assignment_to_primitive_array_component" (formula "19"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "blockEmpty" (formula "19") (term "1"))
+ (rule "postincrement" (formula "19") (term "1"))
+ (rule "compound_int_cast_expression" (formula "19") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "19") (term "1"))
+ (rule "variableDeclaration" (formula "19") (term "1") (newnames "x_3"))
+ (rule "remove_parentheses_right" (formula "19") (term "1"))
+ (rule "assignmentAdditionInt" (formula "19") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "expand_inInt" (formula "19"))
+ (rule "replace_int_MIN" (formula "19") (term "0,1"))
+ (rule "replace_int_MAX" (formula "19") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1"))
+ (rule "add_literals" (formula "19") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "8"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "2"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "commute_and" (formula "17"))
+ (rule "commute_or" (formula "5") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "5") (term "0,0,0"))
+ (rule "commute_or_2" (formula "5") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "17"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "17"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "cut_direct" (formula "19") (term "1"))
+ (branch "CUT: i_0 <= 2147483646 TRUE"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_geqRight" (formula "20"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "15") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "closeFalse" (formula "15"))
+ )
+ (branch "CUT: i_0 <= 2147483646 FALSE"
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "false_right" (formula "20"))
+ (rule "inEqSimp_leqRight" (formula "19"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeFalse" (formula "16"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "19") (term "1"))
+ (rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "blockEmpty" (formula "19") (term "1"))
+ (rule "lsContinue" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "precOfInt" (formula "19"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,1"))
+ (rule "add_literals" (formula "19") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "19") (term "1,0,1"))
+ (rule "add_zero_right" (formula "19") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "19") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2" (formula "19") (term "0,1"))
+ (rule "add_literals" (formula "19") (term "1,0,1"))
+ (rule "times_zero_1" (formula "19") (term "0,1"))
+ (rule "leq_literals" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_leqRight" (formula "19"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (rule "false_right" (formula "20"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)"
+ (rule "false_right" (formula "20"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19")))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "16"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "3"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "commute_or" (formula "1"))
+ (rule "commute_or" (formula "6") (term "0,0,0,0"))
+ (rule "commute_or_2" (formula "6") (term "0,0,0"))
+ (rule "commute_or_2" (formula "6") (term "0,0"))
+ (rule "arrayLengthNotNegative" (formula "16") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "4"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "cut_direct" (formula "1") (term "1"))
+ (branch "CUT: values.length <= i_0 TRUE"
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "19") (ifseqformula "2"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "1,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0"))
+ (rule "add_zero_right" (formula "19") (term "0"))
+ (rule "leq_literals" (formula "19"))
+ (rule "closeFalse" (formula "19"))
+ )
+ (branch "CUT: values.length <= i_0 FALSE"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "6"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockBreak" (formula "19") (term "1"))
+ (rule "lsBreak" (formula "19") (term "1"))
+ (rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "methodCallEmpty" (formula "19") (term "1"))
+ (rule "tryEmpty" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "emptyModality" (formula "19") (term "1"))
+ (rule "andRight" (formula "19"))
+ (branch
+ (rule "impRight" (formula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "closeTrue" (formula "20"))
+ )
+ (branch
+ (rule "impRight" (formula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__max(int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__max(int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..ec13307
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__max(int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,105 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Jun 03 13:43:00 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Jun 03 13:43:00 CEST 2022
+contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:max(int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Functions[de.wiesler.Functions\\:\\:max(int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "38")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0"))
+(rule "expand_inInt" (formula "1") (term "0,1,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "inEqSimp_commuteLeq" (formula "3"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "assignment" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_max,savedHeapBefore_max"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "returnUnfold" (formula "7") (term "1") (inst "#v0=x"))
+(rule "variableDeclarationAssign" (formula "7") (term "1"))
+(rule "variableDeclaration" (formula "7") (term "1") (newnames "x"))
+(rule "condition_not_simple" (formula "7") (term "1") (inst "#v0=x_1"))
+(rule "variableDeclarationAssign" (formula "7") (term "1"))
+(rule "variableDeclaration" (formula "7") (term "1") (newnames "x_1"))
+(rule "remove_parentheses_right" (formula "7") (term "1"))
+(rule "greater_equal_than_comparison_simple" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "inEqSimp_commuteGeq" (formula "7") (term "0,0,1,0"))
+(rule "condition_simple" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "methodCallReturn" (formula "7") (term "1"))
+(rule "assignment" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "methodCallEmpty" (formula "7") (term "1"))
+(rule "tryEmpty" (formula "7") (term "1"))
+(rule "emptyModality" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "closeTrue" (formula "7"))
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__min(int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__min(int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..a198e30
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__min(int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,106 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Jun 03 13:43:19 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Jun 03 13:43:19 CEST 2022
+contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:min(int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Functions[de.wiesler.Functions\\:\\:min(int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "24")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0"))
+(rule "expand_inInt" (formula "1") (term "0,1,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "inEqSimp_commuteLeq" (formula "3"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "assignment" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_min,savedHeapBefore_min"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "returnUnfold" (formula "7") (term "1") (inst "#v0=x"))
+(rule "variableDeclarationAssign" (formula "7") (term "1"))
+(rule "variableDeclaration" (formula "7") (term "1") (newnames "x"))
+(rule "condition_not_simple" (formula "7") (term "1") (inst "#v0=x_1"))
+(rule "variableDeclarationAssign" (formula "7") (term "1"))
+(rule "variableDeclaration" (formula "7") (term "1") (newnames "x_1"))
+(rule "remove_parentheses_right" (formula "7") (term "1"))
+(rule "less_equal_than_comparison_simple" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,1,0"))
+(rule "condition_simple" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "methodCallReturn" (formula "7") (term "1"))
+(rule "assignment" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "methodCallEmpty" (formula "7") (term "1"))
+(rule "tryEmpty" (formula "7") (term "1"))
+(rule "emptyModality" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "closeTrue" (formula "7"))
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__select_n((I,int,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__select_n((I,int,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..edb1364
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__select_n((I,int,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,113 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Jun 03 13:45:25 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Jun 03 13:45:25 CEST 2022
+contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:select_n([I,int,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Functions[de.wiesler.Functions\\:\\:select_n([I,int,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "29")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "3"))
+(rule "translateJavaSubInt" (formula "14") (term "1"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "14") (term "1"))
+(rule "polySimp_addComm0" (formula "14") (term "1"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+(rule "methodBodyExpand" (formula "16") (term "1") (newnames "heapBefore_select_n,savedHeapBefore_select_n"))
+ (builtin "One Step Simplification" (formula "16"))
+(rule "methodCallEmpty" (formula "16") (term "1"))
+(rule "tryEmpty" (formula "16") (term "1"))
+(rule "emptyModality" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+(rule "closeTrue" (formula "16"))
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..30b32d3
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,165 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:08:52 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:08:52 CEST 2022
+contract=de.wiesler.Increment[de.wiesler.Increment\\:\\:Increment(boolean,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Increment[de.wiesler.Increment\\:\\:Increment(boolean,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "53")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "3"))
+(rule "assignment" (formula "5") (term "1"))
+ (builtin "One Step Simplification" (formula "5"))
+(rule "variableDeclarationAssign" (formula "5") (term "1"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "self_77"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=i"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "i"))
+(rule "methodBodyExpand" (formula "5") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "5"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "__NEW__"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=i_1"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "i_1"))
+(rule "allocateInstance" (formula "5"))
+ (builtin "One Step Simplification" (formula "6"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallWithinClass" (formula "8") (term "1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallSuper" (formula "8") (term "1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "methodCallReturnIgnoreResult" (formula "8") (term "1"))
+(rule "methodCallReturn" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "var"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "var_1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallSuper" (formula "8") (term "1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment_write_attribute" (formula "8"))
+(branch "Normal Execution (self_77 != null)"
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "tryEmpty" (formula "8") (term "1"))
+ (rule "emptyModality" (formula "8") (term "1"))
+ (rule "andRight" (formula "8"))
+ (branch
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Increment" (formula "8"))
+ (rule "closeTrue" (formula "8"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeTrue" (formula "8"))
+ )
+)
+(branch "Null Reference (self_77 = null)"
+ (rule "false_right" (formula "9"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")))
+ (rule "closeFalse" (formula "1"))
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Partition(de.wiesler.Partition__partition((I,int,int,(I,de.wiesler.Classifier,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Partition(de.wiesler.Partition__partition((I,int,int,(I,de.wiesler.Classifier,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..7842774
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Partition(de.wiesler.Partition__partition((I,int,int,(I,de.wiesler.Classifier,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,9727 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Sep 05 21:30:41 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Sep 05 21:30:41 CEST 2022
+contract=de.wiesler.Partition[de.wiesler.Partition\\:\\:partition([I,int,int,[I,de.wiesler.Classifier,de.wiesler.Storage)].JML normal_behavior operation contract.0
+name=de.wiesler.Partition[de.wiesler.Partition\\:\\:partition([I,int,int,[I,de.wiesler.Classifier,de.wiesler.Storage)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "57883")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "7"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "8"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "9"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "22"))
+(rule "translateJavaSubInt" (formula "16") (term "0"))
+(rule "translateJavaAddInt" (formula "17") (term "1"))
+(rule "add_literals" (formula "17") (term "1"))
+(rule "translateJavaSubInt" (formula "19") (term "0"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "16") (term "0"))
+(rule "polySimp_elimSub" (formula "19") (term "0"))
+(rule "polySimp_addComm0" (formula "16") (term "0"))
+(rule "polySimp_addComm0" (formula "19") (term "0"))
+(rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66"))
+(rule "notLeft" (formula "66"))
+(rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+(rule "notLeft" (formula "65"))
+(rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+(rule "notLeft" (formula "64"))
+(rule "eqSymm" (formula "64"))
+(rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+(rule "notLeft" (formula "63"))
+(rule "eqSymm" (formula "63"))
+(rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+(rule "notLeft" (formula "62"))
+(rule "eqSymm" (formula "62"))
+(rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+(rule "notLeft" (formula "61"))
+(rule "eqSymm" (formula "61"))
+(rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+(rule "notLeft" (formula "60"))
+(rule "eqSymm" (formula "60"))
+(rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+(rule "notLeft" (formula "59"))
+(rule "eqSymm" (formula "59"))
+(rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+(rule "notLeft" (formula "58"))
+(rule "eqSymm" (formula "58"))
+(rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+(rule "notLeft" (formula "57"))
+(rule "eqSymm" (formula "57"))
+(rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+(rule "notLeft" (formula "56"))
+(rule "eqSymm" (formula "56"))
+(rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+(rule "notLeft" (formula "55"))
+(rule "eqSymm" (formula "55"))
+(rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+(rule "notLeft" (formula "54"))
+(rule "eqSymm" (formula "54"))
+(rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+(rule "notLeft" (formula "53"))
+(rule "eqSymm" (formula "53"))
+(rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+(rule "notLeft" (formula "52"))
+(rule "eqSymm" (formula "52"))
+(rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+(rule "notLeft" (formula "51"))
+(rule "eqSymm" (formula "51"))
+(rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+(rule "notLeft" (formula "50"))
+(rule "eqSymm" (formula "50"))
+(rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+(rule "notLeft" (formula "49"))
+(rule "eqSymm" (formula "49"))
+(rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+(rule "notLeft" (formula "48"))
+(rule "eqSymm" (formula "48"))
+(rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+(rule "notLeft" (formula "47"))
+(rule "eqSymm" (formula "47"))
+(rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+(rule "notLeft" (formula "46"))
+(rule "eqSymm" (formula "46"))
+(rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+(rule "notLeft" (formula "45"))
+(rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+(rule "notLeft" (formula "44"))
+(rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+(rule "notLeft" (formula "43"))
+(rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+(rule "notLeft" (formula "42"))
+(rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "notLeft" (formula "41"))
+(rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+(rule "notLeft" (formula "40"))
+(rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+(rule "notLeft" (formula "39"))
+(rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+(rule "notLeft" (formula "38"))
+(rule "eqSymm" (formula "38"))
+(rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+(rule "notLeft" (formula "37"))
+(rule "eqSymm" (formula "37"))
+(rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+(rule "notLeft" (formula "36"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "notLeft" (formula "35"))
+(rule "eqSymm" (formula "35"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "eqSymm" (formula "34"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "33"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "eqSymm" (formula "32"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "31"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "eqSymm" (formula "30"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "29"))
+(rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+(rule "notLeft" (formula "28"))
+(rule "eqSymm" (formula "28"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "eqSymm" (formula "27"))
+(rule "inEqSimp_commuteLeq" (formula "15"))
+(rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "eqSymm" (formula "26"))
+(rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "notLeft" (formula "25"))
+(rule "eqSymm" (formula "25"))
+(rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "notLeft" (formula "24"))
+(rule "eqSymm" (formula "24"))
+(rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+(rule "notLeft" (formula "22"))
+(rule "disjointDefinition" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+(rule "notLeft" (formula "22"))
+(rule "eqSymm" (formula "22"))
+(rule "inEqSimp_commuteLeq" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "14"))
+(rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "71") (term "1"))
+ (builtin "One Step Simplification" (formula "71"))
+(rule "applyEq" (formula "18") (term "1,1,0,0,0") (ifseqformula "17"))
+(rule "commute_and" (formula "18") (term "1,0,0"))
+(rule "arrayLengthNotNegative" (formula "17") (term "0"))
+(rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+(rule "qeq_literals" (formula "17"))
+(rule "true_left" (formula "17"))
+(rule "arrayLengthIsAShort" (formula "17") (term "0"))
+(rule "expand_inShort" (formula "17"))
+(rule "replace_short_MIN" (formula "17") (term "0,1"))
+(rule "replace_short_MAX" (formula "17") (term "1,0"))
+(rule "andLeft" (formula "17"))
+(rule "inEqSimp_commuteLeq" (formula "18"))
+(rule "applyEq" (formula "17") (term "0") (ifseqformula "19"))
+(rule "leq_literals" (formula "17"))
+(rule "true_left" (formula "17"))
+(rule "applyEq" (formula "17") (term "0") (ifseqformula "18"))
+(rule "qeq_literals" (formula "17"))
+(rule "true_left" (formula "17"))
+(rule "commute_and" (formula "18") (term "0,0,0"))
+(rule "shift_paren_and" (formula "18") (term "0,0"))
+(rule "commute_and_2" (formula "18") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "71") (term "1") (newnames "heapBefore_partition,savedHeapBefore_partition"))
+ (builtin "One Step Simplification" (formula "71"))
+(rule "variableDeclarationAssign" (formula "71") (term "1"))
+(rule "variableDeclaration" (formula "71") (term "1") (newnames "buffers"))
+(rule "instanceCreationAssignmentUnfoldArguments" (formula "71") (term "1"))
+(rule "variableDeclarationAssign" (formula "71") (term "1"))
+(rule "variableDeclaration" (formula "71") (term "1") (newnames "var"))
+(rule "assignment_read_attribute_final" (formula "71"))
+(branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "variableDeclarationAssign" (formula "71") (term "1"))
+ (rule "variableDeclaration" (formula "71") (term "1") (newnames "var_1"))
+ (rule "assignment_read_attribute_final" (formula "71"))
+ (branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "variableDeclarationAssign" (formula "71") (term "1"))
+ (rule "variableDeclaration" (formula "71") (term "1") (newnames "var_2"))
+ (builtin "Use Operation Contract" (formula "71") (newnames "heapBefore_num_buckets,result_175,exc_207") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0"))
+ (branch "Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "21")) (ifInst "" (formula "12")))
+ (rule "expand_inInt" (formula "22") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "22") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "22") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "eqSymm" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (builtin "Use Operation Contract" (formula "75") (newnames "heapBefore_Buffers,self_207,exc_208,heapAfter_Buffers,anon_heap_Buffers") (contract "de.wiesler.Buffers[de.wiesler.Buffers::Buffers([I,[I,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (Buffers)"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "andLeft" (formula "27"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (term "1,1,0,0,1,0") (ifseqformula "27"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "29"))
+ (rule "translateJavaSubInt" (formula "27") (term "2,1,0"))
+ (rule "eqSymm" (formula "32"))
+ (rule "eqSymm" (formula "33"))
+ (rule "replace_known_right" (formula "29") (term "0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "polySimp_elimSub" (formula "27") (term "2,1,0"))
+ (rule "mul_literals" (formula "27") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "2,1,0"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "blockEmpty" (formula "88") (term "1"))
+ (rule "variableDeclarationAssign" (formula "88") (term "1"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "first_empty_position"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "75") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "69"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "33"))
+ (rule "eqSymm" (formula "65"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "64"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "59") (term "1") (ifseqformula "33"))
+ (rule "applyEq" (formula "78") (term "1") (ifseqformula "33"))
+ (rule "applyEq" (formula "80") (term "1") (ifseqformula "33"))
+ (rule "applyEq" (formula "79") (term "1") (ifseqformula "33"))
+ (rule "applyEq" (formula "74") (term "0") (ifseqformula "33"))
+ (rule "eqSymm" (formula "74"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "33"))
+ (rule "eqSymm" (formula "70"))
+ (rule "applyEq" (formula "76") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "77") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "27") (term "0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "74") (term "0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "74"))
+ (builtin "Use Operation Contract" (formula "88") (newnames "heapBefore_classify_locally,result_176,exc_209,heapAfter_classify_locally,anon_heap_classify_locally") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify_locally)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "38") (term "0,0,0,1,1,1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "38") (term "0,1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,0,0,0,1,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,0,0,0,1,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,0,1,0,1"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "translateJavaMulInt" (formula "38") (term "0,2,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "2,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "1"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,2,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "2,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "49") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "49") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "49") (term "0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "2,0,1,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,2,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "1"))
+ (rule "polySimp_elimSub" (formula "38") (term "2,1,1,1,0"))
+ (rule "mul_literals" (formula "38") (term "1,2,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "2,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "1"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,0"))
+ (rule "assignment" (formula "106") (term "1"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "variableDeclarationGhostAssign" (formula "106") (term "1"))
+ (rule "variableDeclarationGhost" (formula "106") (term "1") (newnames "heapAfterClassify"))
+ (rule "assignment" (formula "106") (term "1"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "variableDeclarationAssign" (formula "106") (term "1"))
+ (rule "variableDeclaration" (formula "106") (term "1") (newnames "bucket_pointers"))
+ (rule "applyEq" (formula "47") (term "2,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "38") (term "0,1,2,1,1,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "38") (term "2,1,0,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "38") (term "1,2,0,1,1,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "48") (term "0,2,0") (ifseqformula "24"))
+ (rule "applyEq" (formula "49") (term "1,1,0,0,0") (ifseqformula "24"))
+ (rule "pullOutSelect" (formula "48") (term "0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "105")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,0,0") (ifseqformula "27"))
+ (rule "replace_known_left" (formula "48") (term "0,0,1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "elementOfUnion" (formula "48") (term "0,0"))
+ (rule "elementOfUnion" (formula "48") (term "1,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "48") (term "1,1,0,0"))
+ (rule "eqSymm" (formula "48") (term "0,0,1,1,0,0"))
+ (rule "replace_known_right" (formula "48") (term "0,0,1,1,0,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "elementOfArrayRangeConcrete" (formula "48") (term "1,0,0"))
+ (rule "eqSymm" (formula "48") (term "0,0,1,0,0"))
+ (rule "replace_known_right" (formula "48") (term "0,0,1,0,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "elementOfUnion" (formula "48") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "48") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0,0"))
+ (rule "eqSymm" (formula "48") (term "0,0,0,0,0"))
+ (rule "replace_known_right" (formula "48") (term "0,0,0,0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "48") (term "2,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "106")) (ifInst "" (formula "7")))
+ (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0"))
+ (rule "eqSymm" (formula "48") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "48") (term "0,0,0,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "applyEqReverse" (formula "49") (term "2,0") (ifseqformula "48"))
+ (rule "hideAuxiliaryEq" (formula "48"))
+ (rule "commuteUnion" (formula "38") (term "0,1,0"))
+ (rule "commuteUnion" (formula "38") (term "1,1,0"))
+ (rule "commute_and" (formula "51") (term "0,0"))
+ (rule "commute_and" (formula "50") (term "1,0,0"))
+ (rule "commute_and" (formula "50") (term "0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "15") (term "0"))
+ (rule "expand_inShort" (formula "15"))
+ (rule "replace_short_MAX" (formula "15") (term "1,0"))
+ (rule "replace_short_MIN" (formula "15") (term "0,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "shift_paren_and" (formula "53") (term "0,0"))
+ (rule "commute_and_2" (formula "53") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "41") (term "1,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "79") (term "1") (ifseqformula "1") (ifseqformula "9"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "96") (term "0") (ifseqformula "2") (ifseqformula "10"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "96") (term "0") (ifseqformula "3") (ifseqformula "11"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "92") (term "1") (ifseqformula "4") (ifseqformula "11"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "92") (term "0") (ifseqformula "5") (ifseqformula "13"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "83") (term "0,0") (ifseqformula "6") (ifseqformula "13"))
+ (rule "instanceCreationAssignmentUnfoldArguments" (formula "116") (term "1"))
+ (rule "variableDeclarationAssign" (formula "116") (term "1"))
+ (rule "variableDeclaration" (formula "116") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "116") (term "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "variableDeclarationAssign" (formula "116") (term "1"))
+ (rule "variableDeclaration" (formula "116") (term "1") (newnames "var_4"))
+ (builtin "Use Operation Contract" (formula "116") (newnames "heapBefore_num_buckets_0,result_177,exc_210") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0"))
+ (branch "Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "62")) (ifInst "" (formula "64")))
+ (rule "expand_inInt" (formula "65") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "65") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "65") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "eqSymm" (formula "67"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "assignment" (formula "120") (term "1"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "variableDeclarationAssign" (formula "120") (term "1"))
+ (rule "variableDeclaration" (formula "120") (term "1") (newnames "var_5"))
+ (rule "applyEq" (formula "67") (term "0") (ifseqformula "33"))
+ (rule "eqSymm" (formula "67"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "67"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "66"))
+ (rule "applyEq" (formula "118") (term "0,1,0") (ifseqformula "65"))
+ (rule "assignmentSubtractionInt" (formula "118") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "expand_inInt" (formula "118"))
+ (rule "replace_int_MIN" (formula "118") (term "0,1"))
+ (rule "replace_int_MAX" (formula "118") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "60") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "59") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "118") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "118") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "118") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "57") (term "0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "57") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "57") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "118") (term "1"))
+ (rule "mul_literals" (formula "118") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "118") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "118") (term "0"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "118") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "118") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "118") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "118") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1"))
+ (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "58"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0"))
+ (rule "add_zero_right" (formula "28") (term "0"))
+ (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "1,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0"))
+ (rule "add_zero_right" (formula "25") (term "0"))
+ (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,0") (ifseqformula "58"))
+ (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "60") (term "3,1,1,1,0") (ifseqformula "58"))
+ (rule "polySimp_sepNegMonomial" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "118") (term "1"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "118") (term "1,1"))
+ (rule "mul_literals" (formula "118") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "118") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "118") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "118") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "times_zero_2" (formula "20") (term "1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "118") (term "1") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq0" (formula "118") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "118") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "118") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "118") (term "0,0,1"))
+ (rule "add_literals" (formula "118") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "118") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "118") (term "0,0,1"))
+ (rule "qeq_literals" (formula "118") (term "0,1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "inEqSimp_leqRight" (formula "118"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "28"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "qeq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11"))
+ (rule "times_zero_1" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "24"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49"))
+ (rule "mul_literals" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeFalse" (formula "24"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "translateJavaSubInt" (formula "118") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "118") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "118") (term "1"))
+ (rule "variableDeclaration" (formula "118") (term "1") (newnames "var_6"))
+ (rule "assignment_read_attribute_final" (formula "118"))
+ (branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "118"))
+ (builtin "Use Operation Contract" (formula "118") (newnames "heapBefore_BucketPointers,self_208,exc_211,heapAfter_BucketPointers,anon_heap_BucketPointers") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::BucketPointers([I,int,int,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (BucketPointers)"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,1,0,0,1,0,1") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,1,0,1") (ifseqformula "36"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,1,0,0,1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,1,0,0,1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,0,1,1,0,0,1,0") (ifseqformula "36"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "74"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "71"))
+ (rule "notLeft" (formula "70"))
+ (rule "andLeft" (formula "78"))
+ (rule "notLeft" (formula "70"))
+ (rule "andLeft" (formula "78"))
+ (rule "orRight" (formula "81"))
+ (rule "orRight" (formula "81"))
+ (rule "translateJavaSubInt" (formula "68") (term "2,1,0"))
+ (rule "eqSymm" (formula "75"))
+ (rule "eqSymm" (formula "73"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1,0,1,0"))
+ (rule "eqSymm" (formula "78") (term "1,0"))
+ (rule "translateJavaMulInt" (formula "68") (term "0,2,1,0"))
+ (rule "translateJavaCastInt" (formula "75") (term "0"))
+ (rule "translateJavaAddInt" (formula "77") (term "0,2,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "0,2,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1,0"))
+ (rule "replace_known_right" (formula "70") (term "1,0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "81")) (ifInst "" (formula "82")))
+ (rule "polySimp_elimSub" (formula "68") (term "2,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,2,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,2,0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,2,1,0,0,1,0"))
+ (rule "castedGetAny" (formula "75") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0,0"))
+ (rule "assignment" (formula "136") (term "1"))
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "blockEmpty" (formula "136") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "136") (newnames "exc_212,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "16")))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "eqSymm" (formula "137") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "137") (term "1"))
+ (rule "variableDeclaration" (formula "137") (term "1") (newnames "exc_212_1"))
+ (rule "assignment" (formula "137") (term "1"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "emptyStatement" (formula "137") (term "1"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "emptyStatement" (formula "137") (term "1"))
+ (rule "applyEq" (formula "106") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "119") (term "0") (ifseqformula "73"))
+ (rule "eqSymm" (formula "119"))
+ (rule "applyEq" (formula "99") (term "0") (ifseqformula "73"))
+ (rule "applyEq" (formula "122") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "121") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "120") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "6") (term "1,0,1") (ifseqformula "73"))
+ (rule "applyEq" (formula "91") (term "0") (ifseqformula "73"))
+ (rule "applyEq" (formula "118") (term "0") (ifseqformula "73"))
+ (rule "eqSymm" (formula "118"))
+ (rule "applyEq" (formula "112") (term "0") (ifseqformula "73"))
+ (rule "eqSymm" (formula "112"))
+ (rule "applyEq" (formula "68") (term "0,1,0") (ifseqformula "73"))
+ (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "73"))
+ (rule "pullOutSelect" (formula "75") (term "1") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "75") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "136")))
+ (rule "replaceKnownSelect_taclet00000_0" (formula "75") (term "2,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,0,1,0,0") (ifseqformula "36"))
+ (rule "applyEqReverse" (formula "75") (term "1") (ifseqformula "76"))
+ (rule "hideAuxiliaryEq" (formula "76"))
+ (rule "replace_known_left" (formula "75") (term "0,0,0,1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "elementOfArrayRangeConcrete" (formula "75") (term "0,0"))
+ (rule "eqSymm" (formula "75") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "75") (term "0,0,0,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "eqSymm" (formula "75"))
+ (rule "applyEqReverse" (formula "57") (term "1") (ifseqformula "75"))
+ (rule "applyEqReverse" (formula "58") (term "0") (ifseqformula "75"))
+ (rule "hideAuxiliaryEq" (formula "75"))
+ (rule "applyEq" (formula "57") (term "1") (ifseqformula "58"))
+ (rule "commute_and_2" (formula "77") (term "0,0"))
+ (rule "commute_and" (formula "76") (term "0,0,0"))
+ (rule "commute_and" (formula "76") (term "1,0,0"))
+ (rule "tryEmpty" (formula "136") (term "1"))
+ (rule "blockEmptyLabel" (formula "136") (term "1"))
+ (rule "blockEmpty" (formula "136") (term "1"))
+ (rule "commute_and" (formula "77") (term "1,0,0,0"))
+ (rule "shift_paren_and" (formula "76") (term "0,0"))
+ (rule "commute_and_2" (formula "76") (term "0,0,0"))
+ (rule "methodCallEmpty" (formula "136") (term "1"))
+ (rule "shift_paren_and" (formula "77") (term "0,0,0"))
+ (rule "commute_and" (formula "77") (term "0,0,0,0"))
+ (rule "emptyModality" (formula "136") (term "1"))
+ (rule "andRight" (formula "136"))
+ (branch
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "closeTrue" (formula "136"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "closeTrue" (formula "136"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "136"))
+ (branch
+ (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "136"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "136"))
+ (rule "wellFormedAnonEQ" (formula "136") (ifseqformula "68"))
+ (rule "wellFormedAnonEQ" (formula "136") (term "0") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "136") (term "0,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "136") (term "1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "7")) (ifInst "" (formula "35")) (ifInst "" (formula "46")))
+ (rule "closeTrue" (formula "136"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "81"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "81") (term "1,1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "81") (term "0,1,1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "81") (term "0,0,1,1,0") (ifseqformula "36"))
+ (rule "andLeft" (formula "81"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "81"))
+ (rule "eqSymm" (formula "84"))
+ (rule "translateJavaSubInt" (formula "84") (term "0,1"))
+ (rule "replace_known_left" (formula "82") (term "0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "polySimp_elimSub" (formula "83") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,1"))
+ (rule "applyEq" (formula "121") (term "0") (ifseqformula "73"))
+ (rule "eqSymm" (formula "121"))
+ (rule "applyEq" (formula "6") (term "1,0,1") (ifseqformula "73"))
+ (rule "applyEq" (formula "122") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "108") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "101") (term "0") (ifseqformula "73"))
+ (rule "applyEq" (formula "120") (term "0") (ifseqformula "73"))
+ (rule "eqSymm" (formula "120"))
+ (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "73"))
+ (rule "applyEq" (formula "114") (term "0") (ifseqformula "73"))
+ (rule "eqSymm" (formula "114"))
+ (rule "applyEq" (formula "93") (term "0") (ifseqformula "73"))
+ (rule "applyEq" (formula "124") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "123") (term "1") (ifseqformula "73"))
+ (rule "applyEq" (formula "68") (term "0,1,0") (ifseqformula "73"))
+ (rule "applyEq" (formula "83") (term "1,0") (ifseqformula "72"))
+ (rule "pullOutSelect" (formula "75") (term "1") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "75") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "138")))
+ (rule "replaceKnownSelect_taclet00000_0" (formula "75") (term "2,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,0,1,0,0") (ifseqformula "36"))
+ (rule "applyEqReverse" (formula "75") (term "1") (ifseqformula "76"))
+ (rule "hideAuxiliaryEq" (formula "76"))
+ (rule "replace_known_left" (formula "75") (term "0,0,0,1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "elementOfArrayRangeConcrete" (formula "75") (term "0,0"))
+ (rule "eqSymm" (formula "75") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "75") (term "0,0,0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "eqSymm" (formula "75"))
+ (rule "applyEqReverse" (formula "58") (term "0") (ifseqformula "75"))
+ (rule "applyEqReverse" (formula "57") (term "1") (ifseqformula "75"))
+ (rule "hideAuxiliaryEq" (formula "75"))
+ (rule "applyEq" (formula "57") (term "1") (ifseqformula "58"))
+ (rule "commute_and_2" (formula "77") (term "0,0"))
+ (rule "commute_and" (formula "76") (term "0,0,0"))
+ (rule "commute_and" (formula "76") (term "1,0,0"))
+ (rule "commute_and" (formula "77") (term "1,0,0,0"))
+ (rule "elim_double_block_2" (formula "138") (term "1"))
+ (rule "shift_paren_and" (formula "76") (term "0,0"))
+ (rule "commute_and_2" (formula "76") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "77") (term "0,0,0"))
+ (rule "commute_and" (formula "77") (term "0,0,0,0"))
+ (rule "ifUnfold" (formula "138") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "138") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "138") (term "1"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "replace_known_left" (formula "138") (term "0,0,1,0") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "ifSplit" (formula "138"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "139"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "139"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "138") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "138") (newnames "exc_0,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "16")))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "eqSymm" (formula "139") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "139") (term "1"))
+ (rule "variableDeclaration" (formula "139") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "139") (term "1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "emptyStatement" (formula "139") (term "1"))
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "emptyStatement" (formula "139") (term "1"))
+ (rule "tryEmpty" (formula "139") (term "1"))
+ (rule "blockEmptyLabel" (formula "139") (term "1"))
+ (rule "blockEmpty" (formula "139") (term "1"))
+ (rule "methodCallEmpty" (formula "139") (term "1"))
+ (rule "emptyModality" (formula "139") (term "1"))
+ (rule "andRight" (formula "139"))
+ (branch
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "closeTrue" (formula "139"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "139"))
+ (rule "closeTrue" (formula "139"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "138"))
+ (branch
+ (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "138"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "wellFormedAnonEQ" (formula "138") (ifseqformula "68"))
+ (rule "wellFormedAnonEQ" (formula "138") (term "0") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "138") (term "0,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "138") (term "1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "7")) (ifInst "" (formula "35")) (ifInst "" (formula "46")))
+ (rule "closeTrue" (formula "138"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "139"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "1,1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,1,1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,0,1,1,0") (ifseqformula "36"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "85"))
+ (rule "replace_known_left" (formula "84") (term "0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "elim_double_block_2" (formula "142") (term "1"))
+ (rule "ifUnfold" (formula "142") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "142") (term "1") (newnames "x_1"))
+ (rule "inequality_comparison_simple" (formula "142") (term "1"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "replace_known_left" (formula "142") (term "0,0,1,0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (rule "expand_inShort" (formula "24"))
+ (rule "replace_short_MIN" (formula "24") (term "0,1"))
+ (rule "replace_short_MAX" (formula "24") (term "1,0"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "22") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "26") (term "0"))
+ (rule "expand_inShort" (formula "26"))
+ (rule "replace_short_MIN" (formula "26") (term "0,1"))
+ (rule "replace_short_MAX" (formula "26") (term "1,0"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "arrayLengthNotNegative" (formula "26") (term "0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "ifSplit" (formula "142"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "143"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "143"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "142") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "142") (newnames "exc_1,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "16")))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "eqSymm" (formula "143") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "143") (term "1"))
+ (rule "variableDeclaration" (formula "143") (term "1") (newnames "exc_1_1"))
+ (rule "assignment" (formula "143") (term "1"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "emptyStatement" (formula "143") (term "1"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "emptyStatement" (formula "143") (term "1"))
+ (rule "tryEmpty" (formula "143") (term "1"))
+ (rule "blockEmptyLabel" (formula "143") (term "1"))
+ (rule "blockEmpty" (formula "143") (term "1"))
+ (rule "methodCallEmpty" (formula "143") (term "1"))
+ (rule "emptyModality" (formula "143") (term "1"))
+ (rule "andRight" (formula "143"))
+ (branch
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "closeTrue" (formula "143"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "closeTrue" (formula "143"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "142"))
+ (branch
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "142"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "wellFormedAnonEQ" (formula "142") (ifseqformula "68"))
+ (rule "wellFormedAnonEQ" (formula "142") (term "0") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "142") (term "0,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "142") (term "1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "7")) (ifInst "" (formula "35")) (ifInst "" (formula "46")))
+ (rule "closeTrue" (formula "142"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "87"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,1,1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,0,1,1,0") (ifseqformula "36"))
+ (rule "expand_inInt" (formula "87") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "eqSymm" (formula "89") (term "1,0"))
+ (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0"))
+ (rule "applyEq" (formula "88") (term "1,1,0,0,0") (ifseqformula "33"))
+ (rule "commute_and" (formula "88") (term "1,0,0"))
+ (rule "commute_and" (formula "88") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "88") (term "0,0"))
+ (rule "commute_and_2" (formula "88") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "144") (term "1"))
+ (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_2"))
+ (rule "inequality_comparison_simple" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "seqGetAlphaCast" (formula "58") (term "0"))
+ (rule "castedGetAny" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "115") (term "1") (ifseqformula "35") (ifseqformula "38"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "132") (term "1") (ifseqformula "36") (ifseqformula "39"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "129") (term "1") (ifseqformula "69") (ifseqformula "72"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "45") (term "0") (ifseqformula "10") (ifseqformula "18"))
+ (rule "applyEq" (formula "45") (term "1,0,1") (ifseqformula "46"))
+ (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "46"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "44") (term "0") (ifseqformula "10") (ifseqformula "18"))
+ (rule "applyEq" (formula "44") (term "1,0,1") (ifseqformula "45"))
+ (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "45"))
+ (rule "ifSplit" (formula "149"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "149") (term "1"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "overflow"))
+ (rule "assignment_read_attribute_final" (formula "149"))
+ (branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "methodCallUnfoldArguments" (formula "149") (term "1"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_7"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_8"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_9"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_10"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_11"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_12"))
+ (rule "assignment_read_attribute_final" (formula "149"))
+ (branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_13"))
+ (rule "assignment_read_attribute_final" (formula "149"))
+ (branch "Normal Execution (_storage != null)"
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_14"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "Use Operation Contract" (formula "149") (newnames "heapBefore_permute,exc_2,heapAfter_permute,anon_heap_permute") (contract "de.wiesler.Permute[de.wiesler.Permute::permute([I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (permute)"
+ (builtin "One Step Simplification" (formula "151"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "expand_inInt" (formula "95") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "95") (term "0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "95") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "95") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "95") (term "0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "95") (term "1,0,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "99"))
+ (rule "translateJavaSubInt" (formula "95") (term "2,0,0,1,0"))
+ (rule "eqSymm" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "95") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "95") (term "1,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "95") (term "2,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "97") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "97") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "98") (term "1,0,0"))
+ (rule "blockEmpty" (formula "158") (term "1"))
+ (rule "applyEq" (formula "97") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "commuteUnion" (formula "95") (term "1,1,0"))
+ (rule "commuteUnion" (formula "95") (term "0,1,0"))
+ (rule "commuteUnion_2" (formula "95") (term "1,0"))
+ (rule "commute_and_2" (formula "97") (term "1,0"))
+ (rule "commute_and" (formula "98") (term "0,0"))
+ (rule "commute_and" (formula "97") (term "1,0,0"))
+ (rule "commute_and" (formula "97") (term "0,0,0"))
+ (rule "commute_and" (formula "97") (term "0,1,0"))
+ (rule "commute_and_2" (formula "97") (term "1,0"))
+ (rule "shift_paren_and" (formula "97") (term "0,0"))
+ (rule "commute_and_2" (formula "97") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "95") (term "0,1,0"))
+ (rule "associativeLawUnion" (formula "95") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "158") (newnames "heapBefore_cleanup,exc_3,heapAfter_cleanup,anon_heap_cleanup") (contract "de.wiesler.Cleanup[de.wiesler.Cleanup::cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (cleanup)"
+ (builtin "One Step Simplification" (formula "160"))
+ (builtin "Block Contract (Internal)" (formula "160") (newnames "exc_4,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "104"))
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "19")))
+ (builtin "One Step Simplification" (formula "161"))
+ (rule "expand_inInt" (formula "104") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "104") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "104") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "104") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "104") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "104") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "eqSymm" (formula "164") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "104") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "106") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "4,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,2,5,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,2,1,4,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "104") (term "2,1,0"))
+ (rule "mul_literals" (formula "104") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,2,5,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,2,1,4,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "104") (term "2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "106") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "1,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "164") (term "1"))
+ (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_4_1"))
+ (rule "assignment" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (rule "applyEq" (formula "105") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "commute_and" (formula "106") (term "0,0"))
+ (rule "commute_and" (formula "105") (term "1,0,0"))
+ (rule "commute_and" (formula "105") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "105") (term "0,0"))
+ (rule "commute_and_2" (formula "105") (term "0,0,0"))
+ (rule "tryEmpty" (formula "164") (term "1"))
+ (rule "blockEmptyLabel" (formula "164") (term "1"))
+ (rule "blockEmpty" (formula "164") (term "1"))
+ (rule "methodCallEmpty" (formula "164") (term "1"))
+ (rule "emptyModality" (formula "164") (term "1"))
+ (rule "andRight" (formula "164"))
+ (branch
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "160"))
+ (branch
+ (builtin "One Step Simplification" (formula "104"))
+ (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "160"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "104"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "expand_inInt" (formula "104") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "104") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "104") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "104") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "104") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "104") (term "0,1,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "104"))
+ (rule "wellFormedAnonEQ" (formula "161") (ifseqformula "104"))
+ (rule "wellFormedAnonEQ" (formula "161") (term "0") (ifseqformula "95"))
+ (rule "wellFormedAnonEQ" (formula "161") (term "0,0") (ifseqformula "73"))
+ (rule "wellFormedAnonEQ" (formula "161") (term "0,0,0") (ifseqformula "52"))
+ (rule "wellFormedAnonEQ" (formula "161") (term "0,0,0,0") (ifseqformula "39"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "translateJavaSubInt" (formula "104") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "106") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "4,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,2,5,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,2,1,4,0,0,1,0"))
+ (rule "replace_known_left" (formula "163") (term "1,0,0,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "72")) (ifInst "" (formula "94")) (ifInst "" (formula "103")))
+ (rule "closeTrue" (formula "163"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "104"))
+ (builtin "One Step Simplification" (formula "161"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "expand_inInt" (formula "104") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "104") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "104") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "104") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "104") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "104") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "104"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,1") (ifseqformula "104"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,1,1") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,0,1,1") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,0,0,1,1") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,0,0,0,1,1") (ifseqformula "39"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "107"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "translateJavaSubInt" (formula "104") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,2,1,4,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "106") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "0,2,5,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "105") (term "4,0,0,1,0"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "true_left" (formula "109"))
+ (rule "polySimp_elimSub" (formula "104") (term "2,1,0"))
+ (rule "mul_literals" (formula "104") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,2,5,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,2,1,4,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "104") (term "2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "105") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "106") (term "1,0,0"))
+ (rule "applyEq" (formula "109") (term "2,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "105") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "commute_and" (formula "106") (term "0,0"))
+ (rule "commute_and" (formula "105") (term "1,0,0"))
+ (rule "commute_and" (formula "105") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "165") (term "1"))
+ (rule "shift_paren_and" (formula "105") (term "0,0"))
+ (rule "commute_and_2" (formula "105") (term "0,0,0"))
+ (builtin "Use Dependency Contract" (formula "69") (ifInst "" (formula "165") (term "1,0,0,1")) (ifInst "" (formula "52")) (ifInst "" (formula "39")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "110") (term "1,1,0,0,0") (ifseqformula "52"))
+ (rule "wellFormedAnonEQ" (formula "110") (term "0,1,1,0,0,0") (ifseqformula "39"))
+ (rule "replace_known_left" (formula "110") (term "1,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "163")) (ifInst "" (formula "17")) (ifInst "" (formula "10")) (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51")) (ifInst "" (formula "69")) (ifInst "" (formula "21")))
+ (rule "true_left" (formula "110"))
+ (rule "ifUnfold" (formula "165") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "165") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "165") (term "1"))
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "replace_known_left" (formula "165") (term "0,0,1,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "ifSplit" (formula "165"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "165") (term "1"))
+ (rule "emptyStatement" (formula "165") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "165") (newnames "exc_5,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "19")))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "eqSymm" (formula "166") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "166") (term "1"))
+ (rule "variableDeclaration" (formula "166") (term "1") (newnames "exc_5_1"))
+ (rule "assignment" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "emptyStatement" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "emptyStatement" (formula "166") (term "1"))
+ (rule "tryEmpty" (formula "166") (term "1"))
+ (rule "blockEmptyLabel" (formula "166") (term "1"))
+ (rule "blockEmpty" (formula "166") (term "1"))
+ (rule "methodCallEmpty" (formula "166") (term "1"))
+ (rule "emptyModality" (formula "166") (term "1"))
+ (rule "andRight" (formula "166"))
+ (branch
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "closeTrue" (formula "166"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "closeTrue" (formula "166"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "165"))
+ (branch
+ (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "165"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "wellFormedAnonEQ" (formula "165") (ifseqformula "104"))
+ (rule "wellFormedAnonEQ" (formula "165") (term "0") (ifseqformula "95"))
+ (rule "wellFormedAnonEQ" (formula "165") (term "0,0") (ifseqformula "73"))
+ (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0") (ifseqformula "52"))
+ (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0,0") (ifseqformula "39"))
+ (rule "replace_known_left" (formula "165") (term "1,0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51")) (ifInst "" (formula "72")) (ifInst "" (formula "103")))
+ (rule "closeTrue" (formula "165"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1,1,0") (ifseqformula "104"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1,1,0") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,0,1,1,0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,0,0,1,1,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,0,0,0,1,1,0") (ifseqformula "39"))
+ (rule "andLeft" (formula "110"))
+ (rule "andLeft" (formula "110"))
+ (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "true_left" (formula "111"))
+ (rule "applyEq" (formula "111") (term "5,0") (ifseqformula "36"))
+ (rule "elim_double_block_2" (formula "167") (term "1"))
+ (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "167") (term "1"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "replace_known_left" (formula "167") (term "0,0,1,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "ifSplit" (formula "167"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "167") (term "1"))
+ (rule "emptyStatement" (formula "167") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "167") (newnames "exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "19")))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "eqSymm" (formula "168") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "168") (term "1"))
+ (rule "variableDeclaration" (formula "168") (term "1") (newnames "exc_6_1"))
+ (rule "assignment" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "emptyStatement" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "emptyStatement" (formula "168") (term "1"))
+ (rule "tryEmpty" (formula "168") (term "1"))
+ (rule "blockEmptyLabel" (formula "168") (term "1"))
+ (rule "blockEmpty" (formula "168") (term "1"))
+ (rule "methodCallEmpty" (formula "168") (term "1"))
+ (rule "emptyModality" (formula "168") (term "1"))
+ (rule "andRight" (formula "168"))
+ (branch
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "closeTrue" (formula "168"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "closeTrue" (formula "168"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "167"))
+ (branch
+ (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "167"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "wellFormedAnonEQ" (formula "167") (ifseqformula "104"))
+ (rule "wellFormedAnonEQ" (formula "167") (term "0") (ifseqformula "95"))
+ (rule "wellFormedAnonEQ" (formula "167") (term "0,0") (ifseqformula "73"))
+ (rule "wellFormedAnonEQ" (formula "167") (term "0,0,0") (ifseqformula "52"))
+ (rule "wellFormedAnonEQ" (formula "167") (term "0,0,0,0") (ifseqformula "39"))
+ (rule "replace_known_left" (formula "167") (term "1") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51")) (ifInst "" (formula "72")) (ifInst "" (formula "94")))
+ (rule "closeTrue" (formula "167"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1,1,0") (ifseqformula "104"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,1,1,0") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,1,1,0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,0,1,1,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,0,0,1,1,0") (ifseqformula "39"))
+ (rule "expand_inInt" (formula "112") (term "0,0,1"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,0,0,1"))
+ (rule "andLeft" (formula "112"))
+ (rule "andLeft" (formula "112"))
+ (rule "replace_known_left" (formula "113") (term "0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "true_left" (formula "113"))
+ (rule "inEqSimp_commuteLeq" (formula "113") (term "1,0,0"))
+ (rule "commute_and" (formula "113") (term "0,0"))
+ (rule "elim_double_block_2" (formula "169") (term "1"))
+ (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "ifSplit" (formula "169"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "169") (term "1"))
+ (rule "emptyStatement" (formula "169") (term "1"))
+ (rule "methodCallEmpty" (formula "169") (term "1"))
+ (rule "tryEmpty" (formula "169") (term "1"))
+ (rule "emptyModality" (formula "169") (term "1"))
+ (rule "andRight" (formula "169"))
+ (branch
+ (rule "andRight" (formula "169"))
+ (branch
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "polySimp_homoEq" (formula "106") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "105") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "62") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "106") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "105") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0"))
+ (rule "qeq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_and_subsumption3" (formula "102") (term "0,0,0"))
+ (rule "leq_literals" (formula "102") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0"))
+ (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0"))
+ (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0"))
+ (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "nnf_imp2or" (formula "95") (term "0"))
+ (rule "nnf_imp2or" (formula "110") (term "0"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "103") (term "0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "nnf_imp2or" (formula "102") (term "0"))
+ (rule "nnf_imp2or" (formula "90") (term "0"))
+ (rule "nnf_imp2or" (formula "78") (term "0"))
+ (rule "nnf_imp2or" (formula "94") (term "0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "95") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "95") (term "0,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "95") (term "0,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "95") (term "1,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "95") (term "1,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "110") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "110") (term "0,0,0"))
+ (rule "mul_literals" (formula "110") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "110") (term "0,0,0"))
+ (rule "mul_literals" (formula "110") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "110") (term "1,0,0"))
+ (rule "mul_literals" (formula "110") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "110") (term "1,0,0"))
+ (rule "mul_literals" (formula "110") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "62") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "103") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "103") (term "0,0,0"))
+ (rule "mul_literals" (formula "103") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "103") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "103") (term "0,0,0"))
+ (rule "mul_literals" (formula "103") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "103") (term "1,0,0"))
+ (rule "mul_literals" (formula "103") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "103") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103") (term "1,0,0"))
+ (rule "mul_literals" (formula "103") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "79") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "102") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "102") (term "1,0,0"))
+ (rule "mul_literals" (formula "102") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "102") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102") (term "1,0,0"))
+ (rule "mul_literals" (formula "102") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "90") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "78") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "94") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "94") (term "1,0,0"))
+ (rule "mul_literals" (formula "94") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "94") (term "1,0,0"))
+ (rule "mul_literals" (formula "94") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_initialReadAreasCountBucketElements_in_de_wiesler_BucketPointers" (formula "88") (term "0") (inst "bucket=bucket"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "expand_inInt" (formula "88") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "88") (term "4,0,1,0"))
+ (rule "eqSymm" (formula "88") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "88") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0"))
+ (rule "applyEq" (formula "88") (term "1,4,1,1,0") (ifseqformula "76"))
+ (rule "polySimp_addAssoc" (formula "88") (term "4,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "88") (term "0,4,1,1,0"))
+ (rule "add_literals" (formula "88") (term "1,0,4,1,1,0"))
+ (rule "times_zero_1" (formula "88") (term "0,4,1,1,0"))
+ (rule "add_zero_left" (formula "88") (term "4,1,1,0"))
+ (rule "applyEq" (formula "88") (term "0,1,0,0,1,0,0,0") (ifseqformula "74"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "80") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "expand_inInt" (formula "80") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "80") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "80") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "translateJavaAddInt" (formula "86") (term "1"))
+ (rule "translateJavaCastInt" (formula "87") (term "0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0"))
+ (rule "translateJavaMulInt" (formula "80") (term "1"))
+ (rule "translateJavaCastInt" (formula "84") (term "0"))
+ (rule "translateJavaCastInt" (formula "83") (term "1"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1"))
+ (rule "polySimp_addComm0" (formula "86") (term "1"))
+ (rule "castedGetAny" (formula "87") (term "0"))
+ (rule "castedGetAny" (formula "84") (term "0"))
+ (rule "castedGetAny" (formula "83") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "89") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "89") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "89") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "80"))
+ (rule "inEqSimp_commuteLeq" (formula "83"))
+ (rule "applyEq" (formula "84") (term "1,0") (ifseqformula "74"))
+ (rule "applyEq" (formula "80") (term "0,0") (ifseqformula "74"))
+ (rule "applyEq" (formula "83") (term "1,0") (ifseqformula "74"))
+ (rule "applyEq" (formula "82") (term "0") (ifseqformula "76"))
+ (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "74"))
+ (rule "inEqSimp_commuteLeq" (formula "81"))
+ (rule "applyEq" (formula "85") (term "0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "83") (term "1") (ifseqformula "76"))
+ (rule "applyEq" (formula "84") (term "0") (ifseqformula "60"))
+ (rule "inEqSimp_homoInEq0" (formula "84"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0"))
+ (rule "applyEq" (formula "85") (term "1,1") (ifseqformula "74"))
+ (rule "applyEq" (formula "88") (term "0,1,0,0,1,0,0,0") (ifseqformula "74"))
+ (rule "applyEq" (formula "83") (term "0") (ifseqformula "60"))
+ (rule "inEqSimp_homoInEq1" (formula "83"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "83") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0,0"))
+ (rule "polySimp_pullOutFactor2" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,0,0"))
+ (rule "add_zero_left" (formula "83") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1"))
+ (rule "polySimp_elimOne" (formula "82") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "83"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "86") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "86") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1"))
+ (rule "polySimp_elimOne" (formula "82") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "80") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=result_175") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "80") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "80") (term "0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "80") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "80") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0"))
+ (rule "add_literals" (formula "80") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "replace_known_left" (formula "59") (term "0,0") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "80"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "Definition_axiom_for_isAtInitialState_in_de_wiesler_BucketPointers" (formula "76") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "expand_inInt" (formula "76") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "76") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "76") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,1,0,0"))
+ (rule "applyEq" (formula "76") (term "0,1,0,0,1,0,0,0") (ifseqformula "73"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "76") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "65") (term "1,1"))
+ (rule "eqSymm" (formula "68"))
+ (rule "eqSymm" (formula "65"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,2,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "68"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,2,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "68"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "65") (term "1") (ifseqformula "32"))
+ (rule "inEqSimp_subsumption1" (formula "85") (ifseqformula "63"))
+ (rule "leq_literals" (formula "85") (term "0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "true_left" (formula "85"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "64"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "pullOutSelect" (formula "67") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "68") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,1,0,0") (ifseqformula "34"))
+ (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "67") (term "0,1,1,0,0") (ifseqformula "34"))
+ (rule "elementOfUnion" (formula "68") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "68") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "68") (term "0,0,1,0,0,0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "elementOfUnion" (formula "67") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0,0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfUnion" (formula "68") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "68") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "68") (term "0,0,1,0,0,0") (ifseqformula "151"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "elementOfUnion" (formula "67") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,1,0,0,0") (ifseqformula "151"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfUnion" (formula "68") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "68") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "68") (term "0,0,1,0,0,0") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "elementOfArrayRangeConcrete" (formula "68") (term "0,0,0"))
+ (rule "replace_known_right" (formula "68") (term "0,0,0,0,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "elementOfUnion" (formula "67") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0,0,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0,0") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "pullOutSelect" (formula "68") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "68") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "elementOfArrayRangeConcrete" (formula "68") (term "0,0,0"))
+ (rule "replace_known_right" (formula "68") (term "0,0,0,0,0") (ifseqformula "153"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "pullOutSelect" (formula "67") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0,0") (ifseqformula "154"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "65")))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "eqSymm" (formula "34"))
+ (rule "eqSymm" (formula "32"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "32") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,2,1"))
+ (rule "mul_literals" (formula "34") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,2,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "73") (term "2,0") (ifseqformula "34"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "48") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "expand_inInt" (formula "48") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0"))
+ (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "43"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "96"))
+ (rule "notLeft" (formula "96"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "30") (term "1") (ifseqformula "34"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "179"))
+ (rule "applyEq" (formula "179") (term "0,0,1,0,0,0") (ifseqformula "45"))
+ (rule "applyEq" (formula "179") (term "0,0,1,0,0,0,0") (ifseqformula "43"))
+ (rule "applyEq" (formula "179") (term "0,0,1,0,0,0,0,0") (ifseqformula "84"))
+ (rule "replace_known_right" (formula "179") (term "0,1,0,0,0,0,0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "179"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "109"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "67")))
+ (rule "andLeft" (formula "109"))
+ (rule "andLeft" (formula "109"))
+ (rule "andLeft" (formula "109"))
+ (rule "andLeft" (formula "109"))
+ (rule "andLeft" (formula "109"))
+ (rule "eqSymm" (formula "113"))
+ (rule "eqSymm" (formula "111"))
+ (rule "translateJavaSubInt" (formula "113") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "113") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "111") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "113") (term "0,2,0"))
+ (rule "mul_literals" (formula "113") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "113"))
+ (rule "polySimp_elimSub" (formula "113") (term "0,2,0"))
+ (rule "mul_literals" (formula "113") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "113"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "113") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "113") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "109"))
+ (rule "applyEq" (formula "111") (term "0") (ifseqformula "30"))
+ (rule "eqSymm" (formula "111"))
+ (rule "pullOutSelect" (formula "112") (term "1") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfAnonEQ" (formula "113") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,1,1,0,0") (ifseqformula "79"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,0,1,1,0,0") (ifseqformula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,0,0,1,1,0,0") (ifseqformula "37"))
+ (rule "simplifySelectOfAnonEQ" (formula "112") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,1,1,0,0") (ifseqformula "79"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,1,1,0,0") (ifseqformula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,0,1,1,0,0") (ifseqformula "37"))
+ (rule "elementOfUnion" (formula "113") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "113") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "113") (term "0,0,1,0,0,0") (ifseqformula "137"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "elementOfUnion" (formula "112") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "112") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "112") (term "0,0,1,0,0,0") (ifseqformula "137"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "elementOfUnion" (formula "113") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "eqSymm" (formula "113") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "113") (term "1,0,0,0") (ifseqformula "163"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "elementOfUnion" (formula "112") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "eqSymm" (formula "112") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "112") (term "1,0,0,0") (ifseqformula "163"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "elementOfUnion" (formula "113") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "eqSymm" (formula "113") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "113") (term "1,0,0,0") (ifseqformula "162"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "elementOfUnion" (formula "112") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "eqSymm" (formula "112") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "112") (term "1,0,0,0") (ifseqformula "162"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "elementOfUnion" (formula "113") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "159")))
+ (rule "eqSymm" (formula "113") (term "0,0,0"))
+ (rule "replace_known_right" (formula "113") (term "0,0,0") (ifseqformula "164"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "elementOfUnion" (formula "112") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "159")))
+ (rule "eqSymm" (formula "112") (term "0,0,0"))
+ (rule "replace_known_right" (formula "112") (term "0,0,0") (ifseqformula "164"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "pullOutSelect" (formula "113") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnonEQ" (formula "113") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "replaceKnownSelect_taclet0012121200000121212001000000_6" (formula "113") (term "2,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,1,1,0,0") (ifseqformula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,0,1,1,0,0") (ifseqformula "37"))
+ (rule "elementOfArrayRangeConcrete" (formula "113") (term "0,0,0"))
+ (rule "replace_known_right" (formula "113") (term "0,0,0,0,0") (ifseqformula "160"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "pullOutSelect" (formula "112") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnonEQ" (formula "112") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "replaceKnownSelect_taclet0012121200000121212001000000_7" (formula "112") (term "2,0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,1,1,0,0") (ifseqformula "50"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,1,1,0,0") (ifseqformula "37"))
+ (rule "elementOfArrayRangeConcrete" (formula "112") (term "0,0,0"))
+ (rule "replace_known_right" (formula "112") (term "0,0,0,0,0") (ifseqformula "161"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "75"))
+ (rule "andLeft" (formula "75"))
+ (rule "notLeft" (formula "76"))
+ (rule "notLeft" (formula "75"))
+ (rule "replace_known_right" (formula "69") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "replace_known_right" (formula "71") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "replace_known_right" (formula "111") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "replace_known_right" (formula "72") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "replace_known_right" (formula "113") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "replace_known_right" (formula "114") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "replace_known_right" (formula "70") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "replace_known_right" (formula "112") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "replace_known_left" (formula "113") (term "0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "applyEqReverse" (formula "114") (term "2,0") (ifseqformula "113"))
+ (rule "hideAuxiliaryEq" (formula "113"))
+ (rule "replace_known_left" (formula "72") (term "0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "72"))
+ (rule "applyEqReverse" (formula "111") (term "2,0") (ifseqformula "72"))
+ (rule "applyEqReverse" (formula "113") (term "2,0") (ifseqformula "72"))
+ (rule "hideAuxiliaryEq" (formula "72"))
+ (rule "replace_known_left" (formula "112") (term "0,0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "applyEqReverse" (formula "111") (term "1") (ifseqformula "112"))
+ (rule "hideAuxiliaryEq" (formula "112"))
+ (rule "replace_known_left" (formula "111") (term "0,0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "111"))
+ (rule "applyEqReverse" (formula "110") (term "2,0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "6")))
+ (rule "true_left" (formula "110"))
+ (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "110"))
+ (rule "hideAuxiliaryEq" (formula "110"))
+ (rule "replace_known_left" (formula "71") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "71"))
+ (rule "hideAuxiliaryEq" (formula "71"))
+ (rule "replace_known_left" (formula "70") (term "0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "replace_known_left" (formula "69") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "applyEqReverse" (formula "70") (term "0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "hideAuxiliaryEq" (formula "69"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "notLeft" (formula "90"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "17"))
+ (rule "notLeft" (formula "17"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "185") (term "0,1,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "185") (ifInst "" (formula "120")) (ifInst "" (formula "119")) (ifInst "" (formula "124")) (ifInst "" (formula "126")))
+ (rule "applyEq" (formula "123") (term "0") (ifseqformula "44"))
+ (rule "replace_known_right" (formula "185") (term "0,1") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "185"))
+ (rule "notRight" (formula "185"))
+ (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "120") (term "0") (ifseqformula "77"))
+ (rule "applyEq" (formula "120") (term "0") (ifseqformula "41"))
+ (rule "close" (formula "120") (ifseqformula "1"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "polySimp_homoEq" (formula "106") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "106") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "106") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "105") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "62") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "106") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "105") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "24"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "27"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0"))
+ (rule "qeq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_and_subsumption3" (formula "102") (term "0,0,0"))
+ (rule "leq_literals" (formula "102") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0"))
+ (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0"))
+ (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0"))
+ (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "nnf_imp2or" (formula "110") (term "0"))
+ (rule "nnf_imp2or" (formula "95") (term "0"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "103") (term "0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "nnf_imp2or" (formula "102") (term "0"))
+ (rule "nnf_imp2or" (formula "94") (term "0"))
+ (rule "nnf_imp2or" (formula "78") (term "0"))
+ (rule "nnf_imp2or" (formula "90") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "86") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0,0") (ifseqformula "70"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "1,0,0,0") (ifseqformula "70"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "0,1,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,1,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "86") (term "0,1,0,0,0,0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "166")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "69")) (ifInst "" (formula "112")) (ifInst "" (formula "113")) (ifInst "" (formula "114")) (ifInst "" (formula "72")) (ifInst "" (formula "115")) (ifInst "" (formula "81")) (ifInst "" (formula "87")) (ifInst "" (formula "80")))
+ (rule "true_left" (formula "86"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "66"))
+ (rule "notLeft" (formula "65"))
+ (rule "replace_known_right" (formula "43") (term "0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "41") (term "0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "97"))
+ (rule "notLeft" (formula "97"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "80"))
+ (rule "notLeft" (formula "80"))
+ (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "85") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,0,0") (ifseqformula "69"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,1,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "85") (term "1,0,0,0") (ifseqformula "69"))
+ (rule "wellFormedAnonEQ" (formula "85") (term "0,1,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,0,1,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnonEQ" (formula "85") (term "0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "eqSymm" (formula "85") (term "0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "4,0,0,1,1,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "85") (term "0,0,1,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "85") (term "1,0,1,0,0,0,0"))
+ (rule "replace_known_left" (formula "85") (term "0,1,1") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "76")) (ifInst "" (formula "164")) (ifInst "" (formula "166")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "68")) (ifInst "" (formula "112")) (ifInst "" (formula "113")) (ifInst "" (formula "114")) (ifInst "" (formula "71")) (ifInst "" (formula "115")) (ifInst "" (formula "79")))
+ (rule "polySimp_elimSub" (formula "85") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "1,0,1,0"))
+ (rule "castedGetAny" (formula "85") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "85") (term "0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,0"))
+ (rule "replace_known_left" (formula "85") (term "1,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "applyEq" (formula "85") (term "1,0,0,1,0") (ifseqformula "73"))
+ (rule "replace_known_left" (formula "85") (term "0,1,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "applyEq" (formula "85") (term "1,4,0,0,1,0") (ifseqformula "75"))
+ (rule "polySimp_addAssoc" (formula "85") (term "4,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "85") (term "0,4,0,0,1,0"))
+ (rule "add_literals" (formula "85") (term "1,0,4,0,0,1,0"))
+ (rule "times_zero_1" (formula "85") (term "0,4,0,0,1,0"))
+ (rule "add_zero_left" (formula "85") (term "4,0,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "85") (term "0,0") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,0,0"))
+ (rule "add_literals" (formula "85") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "85") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "85") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "85") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "96"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "eqSymm" (formula "101"))
+ (rule "translateJavaMulInt" (formula "98") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "101") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "101") (term "0,2,0"))
+ (rule "eqSymm" (formula "98"))
+ (rule "polySimp_elimSub" (formula "101") (term "0,2,1"))
+ (rule "mul_literals" (formula "101") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "101") (term "0,2,0"))
+ (rule "mul_literals" (formula "101") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "96"))
+ (rule "applyEq" (formula "96") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "97") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "98") (term "1") (ifseqformula "33"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "97"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "95"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "57") (term "0,0") (ifseqformula "94"))
+ (rule "leq_literals" (formula "57") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "pullOutSelect" (formula "99") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0,0") (ifseqformula "67"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,0,1,1,0,0") (ifseqformula "34"))
+ (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,1,0,0") (ifseqformula "67"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,1,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,0,1,1,0,0") (ifseqformula "34"))
+ (rule "elementOfUnion" (formula "99") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,1,0,0,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,1,0,0,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "eqSymm" (formula "99") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "1,0,0,0") (ifseqformula "151"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "eqSymm" (formula "100") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "100") (term "1,0,0,0") (ifseqformula "151"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "eqSymm" (formula "99") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "1,0,0,0") (ifseqformula "150"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "eqSymm" (formula "100") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "100") (term "1,0,0,0") (ifseqformula "150"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "147")))
+ (rule "eqSymm" (formula "99") (term "0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "147")))
+ (rule "eqSymm" (formula "100") (term "0,0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "pullOutSelect" (formula "99") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,1,0,0") (ifseqformula "34"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "148"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "pullOutSelect" (formula "101") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnonEQ" (formula "101") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,1,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,0,1,1,0,0") (ifseqformula "34"))
+ (rule "elementOfArrayRangeConcrete" (formula "101") (term "0,0,0"))
+ (rule "replace_known_right" (formula "101") (term "0,0,0,0,0") (ifseqformula "149"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "pullOutSelect" (formula "99") (term "2,0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0,0") (ifseqformula "34"))
+ (rule "elementOfUnion" (formula "99") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,1,0,0,0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "99") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,1,0,0,0") (ifseqformula "151"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "99") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0,0,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "pullOutSelect" (formula "102") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnonEQ" (formula "102") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "102") (term "0,1,1,0,0") (ifseqformula "34"))
+ (rule "elementOfUnion" (formula "102") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "102") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "102") (term "0,0,1,0,0,0") (ifseqformula "153"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "elementOfUnion" (formula "102") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "102") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "102") (term "0,0,1,0,0,0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "elementOfUnion" (formula "102") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "102") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "102") (term "0,0,1,0,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "elementOfArrayRangeConcrete" (formula "102") (term "0,0,0"))
+ (rule "replace_known_right" (formula "102") (term "0,0,0,0,0") (ifseqformula "137"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "pullOutSelect" (formula "99") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "154"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "pullOutSelect" (formula "103") (term "2,0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnonEQ" (formula "103") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "elementOfArrayRangeConcrete" (formula "103") (term "0,0,0"))
+ (rule "replace_known_right" (formula "103") (term "0,0,0,0,0") (ifseqformula "155"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "Contract_axiom_for_initialReadAreasCountBucketElements_in_BucketPointers" (formula "85") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,0,0") (ifseqformula "67"))
+ (rule "wellFormedAnonEQ" (formula "85") (term "1,0,0,0") (ifseqformula "67"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "85") (term "0,1,0,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,0,1,0,0") (ifseqformula "34"))
+ (rule "wellFormedAnonEQ" (formula "85") (term "0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "replace_known_right" (formula "85") (term "0,1,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "176")) (ifInst "" (formula "178")) (ifInst "" (formula "10")) (ifInst "" (formula "33")) (ifInst "" (formula "46")) (ifInst "" (formula "66")) (ifInst "" (formula "124")) (ifInst "" (formula "125")) (ifInst "" (formula "126")) (ifInst "" (formula "69")) (ifInst "" (formula "86")) (ifInst "" (formula "77")))
+ (rule "Contract_axiom_for_isAtInitialState_in_BucketPointers" (formula "74") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "74") (term "1,0,0") (ifseqformula "67"))
+ (rule "wellFormedAnonEQ" (formula "74") (term "1,0,0,0") (ifseqformula "67"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "74") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "74") (term "0,1,0,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "74") (term "0,0,1,0,0") (ifseqformula "34"))
+ (rule "wellFormedAnonEQ" (formula "74") (term "0,0,1,0,0,0") (ifseqformula "34"))
+ (rule "replace_known_right" (formula "74") (term "0,1,0") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "10")) (ifInst "" (formula "33")) (ifInst "" (formula "46")) (ifInst "" (formula "66")) (ifInst "" (formula "125")) (ifInst "" (formula "126")) (ifInst "" (formula "127")) (ifInst "" (formula "69")) (ifInst "" (formula "78")))
+ (rule "true_left" (formula "74"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "179"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "98")))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "translateJavaSubInt" (formula "66") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "66") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "64") (term "1,1"))
+ (rule "eqSymm" (formula "66"))
+ (rule "eqSymm" (formula "64"))
+ (rule "polySimp_elimSub" (formula "66") (term "0,2,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "66"))
+ (rule "polySimp_elimSub" (formula "66") (term "0,2,0"))
+ (rule "mul_literals" (formula "66") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,2,1"))
+ (rule "replaceKnownSelect_taclet1012121200000121212001000000_10" (formula "66") (term "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,1,1,0,0") (ifseqformula "34"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,2,2,0"))
+ (rule "replaceKnownSelect_taclet1012121200000121212001000000_13" (formula "66") (term "2,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "101") (term "0") (ifseqformula "63"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "62") (term "1") (ifseqformula "31"))
+ (rule "elementOfUnion" (formula "64") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "64") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "64") (term "0,0,1,0,0,0") (ifseqformula "158"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "elementOfUnion" (formula "64") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "64") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "64") (term "0,0,1,0,0,0") (ifseqformula "157"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "elementOfUnion" (formula "64") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "64") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "64") (term "0,0,0,0,0,0") (ifseqformula "142"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "elementOfArrayRangeConcrete" (formula "64") (term "0,0,0"))
+ (rule "replace_known_right" (formula "64") (term "0,0,0,0,0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "107"))
+ (rule "applyEqReverse" (formula "103") (term "1") (ifseqformula "64"))
+ (rule "applyEqReverse" (formula "104") (term "2,0") (ifseqformula "64"))
+ (rule "hideAuxiliaryEq" (formula "64"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "45"))
+ (rule "andLeft" (formula "45"))
+ (rule "notLeft" (formula "46"))
+ (rule "notLeft" (formula "45"))
+ (rule "Definition_axiom_for_bucketCountsToTotalCount_in_de_wiesler_Partition" (formula "118") (term "0") (inst "b=b") (inst "element=element") (inst "bucket=bucket"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "expand_inInt" (formula "118") (term "1,0,0"))
+ (rule "expand_inInt" (formula "118") (term "0,0,1,0"))
+ (rule "replace_int_MAX" (formula "118") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "118") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "118") (term "1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "118") (term "0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "2,2,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,2,1,3,2,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "3,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "3,2,0,0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "118") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,2,1,3,2,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118") (term "1,0,0,1,0"))
+ (rule "Definition_axiom_for_initialReadAreasBlockClassified_in_de_wiesler_BucketPointers" (formula "85") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "expand_inInt" (formula "85") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "85") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "85") (term "1,1,0,0"))
+ (rule "applyEq" (formula "85") (term "0,1,0,0,1,0,0,0") (ifseqformula "72"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "85") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "85") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "85") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "18"))
+ (rule "close" (formula "179") (ifseqformula "18"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "closeTrue" (formula "169"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (cleanup)"
+ (builtin "One Step Simplification" (formula "104"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "andLeft" (formula "104"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "1,0") (ifseqformula "104"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,1,0") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,1,0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,1,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,1,0") (ifseqformula "39"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "105"))
+ (rule "notLeft" (formula "105"))
+ (rule "close" (formula "107") (ifseqformula "106"))
+ )
+ (branch "Pre (cleanup)"
+ (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "101")) (ifInst "" (formula "102")) (ifInst "" (formula "157")) (ifInst "" (formula "108")) (ifInst "" (formula "156")) (ifInst "" (formula "106")) (ifInst "" (formula "155")) (ifInst "" (formula "157")) (ifInst "" (formula "108")) (ifInst "" (formula "156")) (ifInst "" (formula "106")) (ifInst "" (formula "155")))
+ (rule "andRight" (formula "158"))
+ (branch "Case 1"
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "62") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0"))
+ (rule "qeq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0"))
+ (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0"))
+ (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0"))
+ (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "nnf_imp2or" (formula "95") (term "0"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "nnf_imp2or" (formula "90") (term "0"))
+ (rule "nnf_imp2or" (formula "94") (term "0"))
+ (rule "nnf_imp2or" (formula "78") (term "0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_notAnd" (formula "95") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "95") (term "0,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "95") (term "0,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "95") (term "1,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "95") (term "1,0,0"))
+ (rule "mul_literals" (formula "95") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "62") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "79") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "90") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "94") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "94") (term "1,0,0"))
+ (rule "mul_literals" (formula "94") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "94") (term "1,0,0"))
+ (rule "mul_literals" (formula "94") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "78") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "83"))
+ (rule "andLeft" (formula "83"))
+ (rule "notLeft" (formula "84"))
+ (rule "notLeft" (formula "83"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "Contract_axiom_for_initialReadAreasCountBucketElements_in_BucketPointers" (formula "87") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,0,0") (ifseqformula "70"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,1,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "87") (term "1,0,0,0") (ifseqformula "70"))
+ (rule "wellFormedAnonEQ" (formula "87") (term "0,1,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,0,1,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnonEQ" (formula "87") (term "0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "87") (term "0,1,1") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "81")) (ifInst "" (formula "154")) (ifInst "" (formula "156")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "69")) (ifInst "" (formula "102")) (ifInst "" (formula "103")) (ifInst "" (formula "104")) (ifInst "" (formula "72")) (ifInst "" (formula "105")) (ifInst "" (formula "81")) (ifInst "" (formula "80")))
+ (rule "true_left" (formula "87"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "17"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEq" (formula "100") (term "0") (ifseqformula "74"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "applyEq" (formula "101") (term "0") (ifseqformula "41"))
+ (rule "replace_known_right" (formula "40") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEq" (formula "102") (term "0") (ifseqformula "43"))
+ (rule "replace_known_right" (formula "42") (term "0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "translateJavaMod" (formula "54") (term "0"))
+ (rule "jmod_axiom" (formula "54") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "newSym_eq" (formula "54") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_176, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "54") (term "1,1,1"))
+ (rule "times_zero_1" (formula "54") (term "0,1,1"))
+ (rule "add_zero_left" (formula "54") (term "1,1"))
+ (rule "add_zero_right" (formula "54") (term "1"))
+ (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "54"))
+ (rule "polySimp_homoEq" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1"))
+ (rule "applyEq" (formula "56") (term "4,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "62") (term "3,0,1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq1" (formula "52"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0"))
+ (rule "add_zero_right" (formula "52") (term "0"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq1" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "applyEq" (formula "54") (term "1,0,0") (ifseqformula "55"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq0" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "50") (term "0"))
+ (rule "applyEq" (formula "89") (term "4,1,1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "76") (term "1,1") (ifseqformula "55"))
+ (rule "polySimp_addAssoc" (formula "76") (term "1"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "76") (term "1"))
+ (rule "add_literals" (formula "76") (term "1,1,1"))
+ (rule "times_zero_1" (formula "76") (term "1,1"))
+ (rule "add_zero_right" (formula "76") (term "1"))
+ (rule "applyEq" (formula "61") (term "4,1,0,1,0,1,0") (ifseqformula "55"))
+ (rule "inEqSimp_invertInEq0" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "times_zero_2" (formula "52") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "52") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "50"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "add_zero_left" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "18") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "leq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "neg_literal" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "18") (term "0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,0"))
+ (rule "mul_literals" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "1,1,0"))
+ (rule "greater_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "54") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "54"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "51") (term "0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0"))
+ (rule "qeq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "54") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "54") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "1,1,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "54") (ifseqformula "18"))
+ (rule "greater_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "0,0"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "53"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "86") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0,0") (ifseqformula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "1,0,0,0") (ifseqformula "71"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "0,1,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,1,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "0,0,1,0,0,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "86") (term "1,1,1") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "82")) (ifInst "" (formula "165")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "70")) (ifInst "" (formula "111")) (ifInst "" (formula "112")) (ifInst "" (formula "113")) (ifInst "" (formula "73")) (ifInst "" (formula "114")) (ifInst "" (formula "82")) (ifInst "" (formula "87")))
+ (rule "true_left" (formula "86"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "84") (term "1"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "translateJavaSubInt" (formula "84") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "84") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "84") (term "1,1,1"))
+ (rule "mul_literals" (formula "84") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "84") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "0,0"))
+ (rule "mul_literals" (formula "84") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "84") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "84") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "84") (term "1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "84") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "84") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "84") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "84") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,1,0"))
+ (rule "replace_known_left" (formula "84") (term "1,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_subsumption1" (formula "84") (term "0") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "84") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0,0"))
+ (rule "add_literals" (formula "84") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0,0,0"))
+ (rule "add_literals" (formula "84") (term "0,0,0"))
+ (rule "qeq_literals" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "85"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "87") (term "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,0,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "87") (term "1,1"))
+ (rule "neg_literal" (formula "87") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "87") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "87") (term "0,1"))
+ (rule "mul_literals" (formula "87") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "87") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,0,1"))
+ (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "45") (term "0") (inst "element=element"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "1,0,0") (ifseqformula "36"))
+ (rule "wellFormedAnonEQ" (formula "45") (term "1,0,0,0") (ifseqformula "36"))
+ (rule "expand_inInt" (formula "45") (term "0,0,1,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,0,0,1,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "replace_known_left" (formula "45") (term "0,0,1,1,1") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "48")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "118")) (ifInst "" (formula "38")) (ifInst "" (formula "119")) (ifInst "" (formula "48")) (ifInst "" (formula "46")) (ifInst "" (formula "47")))
+ (rule "andLeft" (formula "45"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,0"))
+ (rule "Definition_axiom_for_isAtInitialState_in_de_wiesler_BucketPointers" (formula "80") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "expand_inInt" (formula "80") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "80") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "80") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "80") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "1,1,0,0"))
+ (rule "applyEq" (formula "80") (term "0,1,0,0,1,0,0,0") (ifseqformula "77"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "80") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "80") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "80") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "101") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "expand_inInt" (formula "101") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "101") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "101") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "102"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "102"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "103"))
+ (rule "translateJavaCastInt" (formula "108") (term "0"))
+ (rule "translateJavaAddInt" (formula "107") (term "1"))
+ (rule "translateJavaMulInt" (formula "102") (term "0"))
+ (rule "translateJavaMulInt" (formula "101") (term "1"))
+ (rule "translateJavaCastInt" (formula "105") (term "0"))
+ (rule "translateJavaCastInt" (formula "104") (term "1"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0"))
+ (rule "polySimp_mulComm0" (formula "101") (term "1"))
+ (rule "polySimp_addComm0" (formula "107") (term "1"))
+ (rule "castedGetAny" (formula "108") (term "0"))
+ (rule "castedGetAny" (formula "105") (term "0"))
+ (rule "castedGetAny" (formula "104") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "110") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "110") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "103"))
+ (rule "inEqSimp_commuteLeq" (formula "101"))
+ (rule "inEqSimp_commuteLeq" (formula "104"))
+ (rule "applyEq" (formula "104") (term "1,0") (ifseqformula "77"))
+ (rule "applyEq" (formula "104") (term "1") (ifseqformula "79"))
+ (rule "applyEq" (formula "101") (term "0,0") (ifseqformula "77"))
+ (rule "applyEq" (formula "105") (term "1,0") (ifseqformula "77"))
+ (rule "applyEq" (formula "103") (term "0") (ifseqformula "79"))
+ (rule "applyEq" (formula "106") (term "0,0") (ifseqformula "79"))
+ (rule "applyEq" (formula "102") (term "0,0") (ifseqformula "77"))
+ (rule "inEqSimp_commuteLeq" (formula "102"))
+ (rule "applyEq" (formula "104") (term "0") (ifseqformula "63"))
+ (rule "inEqSimp_homoInEq1" (formula "104"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "104") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0"))
+ (rule "applyEq" (formula "107") (term "1,1") (ifseqformula "77"))
+ (rule "applyEq" (formula "110") (term "0,1,0,0,1,0,0,0") (ifseqformula "77"))
+ (rule "applyEq" (formula "105") (term "0") (ifseqformula "63"))
+ (rule "inEqSimp_homoInEq0" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "105") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "105") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "105") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "105") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "109") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "109") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "103") (ifseqformula "54"))
+ (rule "greater_literals" (formula "103") (term "0,0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "mul_literals" (formula "103") (term "1,0"))
+ (rule "leq_literals" (formula "103") (term "0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "elimGcdGeq_antec" (formula "101") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=result_175") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "101") (term "0,0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "add_zero_right" (formula "101") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0"))
+ (rule "mul_literals" (formula "101") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "101") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "101") (term "0,0"))
+ (rule "add_literals" (formula "101") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "101") (term "1,0,0"))
+ (rule "add_literals" (formula "101") (term "0,0"))
+ (rule "leq_literals" (formula "101") (term "0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "replace_known_left" (formula "62") (term "0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "101"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "82") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "105")))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "translateJavaCastInt" (formula "89") (term "0"))
+ (rule "translateJavaAddInt" (formula "88") (term "1"))
+ (rule "translateJavaMulInt" (formula "83") (term "0"))
+ (rule "translateJavaMulInt" (formula "82") (term "1"))
+ (rule "translateJavaCastInt" (formula "86") (term "0"))
+ (rule "translateJavaCastInt" (formula "85") (term "1"))
+ (rule "polySimp_mulComm0" (formula "83") (term "0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1"))
+ (rule "polySimp_addComm0" (formula "88") (term "1"))
+ (rule "castedGetAny" (formula "89") (term "0"))
+ (rule "castedGetAny" (formula "86") (term "0"))
+ (rule "castedGetAny" (formula "85") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "89") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "89") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "89") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "85"))
+ (rule "applyEq" (formula "110") (term "0") (ifseqformula "88"))
+ (rule "polySimp_homoEq" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0"))
+ (rule "mul_literals" (formula "110") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0"))
+ (rule "add_literals" (formula "110") (term "0,0,0"))
+ (rule "add_zero_left" (formula "110") (term "0,0"))
+ (rule "applyEq" (formula "87") (term "0,0") (ifseqformula "78"))
+ (rule "applyEq" (formula "83") (term "0,0") (ifseqformula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "83"))
+ (rule "applyEq" (formula "82") (term "0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "84") (term "1") (ifseqformula "78"))
+ (rule "applyEq" (formula "85") (term "1,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "83") (term "0") (ifseqformula "78"))
+ (rule "applyEq" (formula "84") (term "1,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0,1,0,0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "108") (term "0,1,0") (ifseqformula "76"))
+ (rule "polySimp_pullOutFactor1" (formula "108") (term "0"))
+ (rule "add_literals" (formula "108") (term "1,0"))
+ (rule "times_zero_1" (formula "108") (term "0"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "true_left" (formula "108"))
+ (rule "applyEq" (formula "85") (term "0") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "85"))
+ (rule "polySimp_mulComm0" (formula "85") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "85") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "85") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "85") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "85") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "85") (term "0"))
+ (rule "applyEq" (formula "84") (term "0") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq1" (formula "84"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0"))
+ (rule "applyEq" (formula "86") (term "1,1") (ifseqformula "76"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "87") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "85"))
+ (rule "polySimp_mulLiterals" (formula "85") (term "0"))
+ (rule "polySimp_elimOne" (formula "85") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "84"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "103"))
+ (rule "times_zero_1" (formula "82") (term "1,1,0"))
+ (rule "greater_literals" (formula "82") (term "0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "53"))
+ (rule "mul_literals" (formula "82") (term "1,1,0"))
+ (rule "greater_literals" (formula "82") (term "0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "leq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "67"))
+ (rule "andLeft" (formula "67"))
+ (rule "notLeft" (formula "68"))
+ (rule "notLeft" (formula "67"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "46") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "46") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "174"))
+ (rule "replace_known_right" (formula "174") (term "0,1") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "174") (ifInst "" (formula "112")))
+ (rule "closeTrue" (formula "174"))
+ )
+ (branch "Case 2"
+ (rule "notRight" (formula "158"))
+ (rule "replace_known_left" (formula "9") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "62") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "applyEq" (formula "147") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "147"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "147"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "147"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "applyEq" (formula "98") (term "5,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "117") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "117"))
+ (rule "applyEq" (formula "149") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "149"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "149"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "149"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "applyEq" (formula "151") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "151"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEq" (formula "124") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "124"))
+ (rule "applyEq" (formula "136") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "136"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEq" (formula "141") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "141"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEq" (formula "151") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "151"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEq" (formula "97") (term "6,0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "130") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "95") (term "0,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "25"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "qeq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0"))
+ (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0"))
+ (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0"))
+ (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "commuteUnion" (formula "92") (term "0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "95") (term "0"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_imp2or" (formula "90") (term "0"))
+ (rule "nnf_imp2or" (formula "94") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "81"))
+ (rule "notLeft" (formula "81"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "96"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "translateJavaSubInt" (formula "101") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "101") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "98") (term "1,1"))
+ (rule "eqSymm" (formula "101"))
+ (rule "eqSymm" (formula "98"))
+ (rule "polySimp_elimSub" (formula "101") (term "0,2,1"))
+ (rule "mul_literals" (formula "101") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "101") (term "0,2,0"))
+ (rule "mul_literals" (formula "101") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "101") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "96"))
+ (rule "applyEq" (formula "97") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "96") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "98") (term "1") (ifseqformula "33"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "97"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_subsumption1" (formula "58") (term "0,0") (ifseqformula "95"))
+ (rule "leq_literals" (formula "58") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "95"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "pullOutSelect" (formula "99") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,0,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,0,1,0,0") (ifseqformula "34"))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,0,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,0,1,0,0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "100") (term "0,0,0,0,1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "replace_known_left" (formula "99") (term "0,0,0,0,1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,1,0,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,1,0,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "eqSymm" (formula "100") (term "1,0,0"))
+ (rule "replace_known_right" (formula "100") (term "1,0,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "eqSymm" (formula "99") (term "1,0,0"))
+ (rule "replace_known_right" (formula "99") (term "1,0,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "eqSymm" (formula "100") (term "1,0,0"))
+ (rule "replace_known_right" (formula "100") (term "1,0,0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "eqSymm" (formula "99") (term "1,0,0"))
+ (rule "replace_known_right" (formula "99") (term "1,0,0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137")) (ifInst "" (formula "132")))
+ (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,1,0,0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "100") (term "0,0,0,1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,0,0") (ifseqformula "132"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,0,0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "100") (term "0,0,1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137")) (ifInst "" (formula "132")))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,0,0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "99") (term "0,0,0,1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0") (ifseqformula "132"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,0,0") (ifseqformula "34"))
+ (rule "replace_known_left" (formula "99") (term "0,0,1,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,1,0,0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,1,0,0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,1,0,0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,1,0,0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfUnion" (formula "100") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,0,0,0") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,0,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137")) (ifInst "" (formula "7")))
+ (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0"))
+ (rule "replace_known_right" (formula "100") (term "0,0,0,0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "applyEqReverse" (formula "99") (term "1") (ifseqformula "100"))
+ (rule "hideAuxiliaryEq" (formula "100"))
+ (rule "elementOfUnion" (formula "99") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "118"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "pullOutSelect" (formula "99") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137")) (ifInst "" (formula "7")))
+ (rule "eqSymm" (formula "100"))
+ (rule "applyEqReverse" (formula "99") (term "1") (ifseqformula "100"))
+ (rule "hideAuxiliaryEq" (formula "100"))
+ (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0"))
+ (rule "replace_known_right" (formula "99") (term "0,0,0,0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "eqSymm" (formula "99"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "81") (term "0"))
+ (rule "translateJavaCastInt" (formula "81") (term "0,0"))
+ (rule "castedGetAny" (formula "81") (term "0,0"))
+ (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "54") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "expand_inInt" (formula "54") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "4,0,1,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0"))
+ (rule "translateJavaDivInt" (formula "54") (term "1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "54") (term "1,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "54") (term "1,3,0,1,0"))
+ (rule "translateJavaSubInt" (formula "54") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0,1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "54") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "44") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "45"))
+ (rule "andLeft" (formula "44"))
+ (rule "andLeft" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "translateJavaMulInt" (formula "44") (term "1"))
+ (rule "mul_literals" (formula "44") (term "1"))
+ (rule "eqSymm" (formula "106"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "46") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "96"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "63") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "45")))
+ (rule "expand_inInt" (formula "63") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "translateJavaMulInt" (formula "63") (term "1"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "eqSymm" (formula "106"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,1,0,0,0") (ifseqformula "38"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "translateJavaMod" (formula "55") (term "0"))
+ (rule "jmod_axiom" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "newSym_eq" (formula "55") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_176, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "55") (term "0,1,1"))
+ (rule "times_zero_1" (formula "55") (term "1,1,1"))
+ (rule "add_zero_right" (formula "55") (term "1,1"))
+ (rule "add_zero_right" (formula "55") (term "1"))
+ (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "55"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "applyEq" (formula "57") (term "1,1,1,0,0,0") (ifseqformula "55"))
+ (rule "polySimp_sepPosMonomial" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,1"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq0" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq1" (formula "52"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "56"))
+ (rule "inEqSimp_homoInEq1" (formula "53"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "53") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "1,1,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0"))
+ (rule "add_zero_right" (formula "53") (term "0"))
+ (rule "applyEq" (formula "55") (term "1,0,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0"))
+ (rule "applyEq" (formula "63") (term "3,0,1,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "78") (term "1,1") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "78") (term "1"))
+ (rule "polySimp_addComm0" (formula "78") (term "0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "1"))
+ (rule "add_literals" (formula "78") (term "1,1,1"))
+ (rule "times_zero_1" (formula "78") (term "1,1"))
+ (rule "add_zero_right" (formula "78") (term "1"))
+ (rule "applyEq" (formula "90") (term "4,1,1,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "62") (term "4,1,0,1,0,1,0") (ifseqformula "56"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "53"))
+ (rule "times_zero_2" (formula "53") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "97"))
+ (rule "leq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "elimGcdGeq_antec" (formula "53") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "53") (term "0,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0,0,0,0"))
+ (rule "add_zero_right" (formula "53") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "51"))
+ (rule "times_zero_1" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "mul_literals" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "53") (ifseqformula "55"))
+ (rule "greater_literals" (formula "53") (term "0,0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "mul_literals" (formula "53") (term "1,0"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0"))
+ (rule "add_literals" (formula "52") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "52") (term "1,0,0"))
+ (rule "add_zero_right" (formula "52") (term "0,0"))
+ (rule "qeq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "1,1,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "55") (term "0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "55") (ifseqformula "19"))
+ (rule "greater_literals" (formula "55") (term "0,0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "0,0"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "54"))
+ (rule "times_zero_1" (formula "20") (term "0,0"))
+ (rule "add_zero_left" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "20") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "notLeft" (formula "49"))
+ (rule "notLeft" (formula "48"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "44") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "44") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0"))
+ (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0"))
+ (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "86") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0,0") (ifseqformula "71"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0,0") (ifseqformula "49"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "1,0,0,0") (ifseqformula "71"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "0,1,0,0,0") (ifseqformula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,1,0,0") (ifseqformula "35"))
+ (rule "wellFormedAnonEQ" (formula "86") (term "0,0,1,0,0,0") (ifseqformula "35"))
+ (rule "translateJavaAddInt" (formula "86") (term "4,0,0,1,1,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "86") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "86") (term "0,0,1,0,0,0,0"))
+ (rule "eqSymm" (formula "86") (term "0,1,0,0,0,0"))
+ (rule "replace_known_right" (formula "86") (term "0,1,0") (ifseqformula "109"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "78")) (ifInst "" (formula "156")) (ifInst "" (formula "158")) (ifInst "" (formula "10")) (ifInst "" (formula "34")) (ifInst "" (formula "48")) (ifInst "" (formula "70")) (ifInst "" (formula "106")) (ifInst "" (formula "107")) (ifInst "" (formula "108")) (ifInst "" (formula "73")) (ifInst "" (formula "87")) (ifInst "" (formula "81")))
+ (rule "polySimp_elimSub" (formula "86") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "1,0,1,0"))
+ (rule "castedGetAny" (formula "86") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "1,0,0"))
+ (rule "replace_known_left" (formula "86") (term "1,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0"))
+ (rule "replace_known_left" (formula "86") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "applyEq" (formula "86") (term "1,0,0,1,0") (ifseqformula "75"))
+ (rule "replace_known_left" (formula "86") (term "0,1,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "applyEq" (formula "86") (term "1,4,0,0,1,0") (ifseqformula "77"))
+ (rule "polySimp_addComm0" (formula "86") (term "4,0,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "86") (term "0,0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0,0,0"))
+ (rule "add_literals" (formula "86") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "86") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "86") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "86") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "104"))
+ (rule "notLeft" (formula "104"))
+ (rule "Definition_axiom_for_initialReadAreasBlockClassified_in_de_wiesler_BucketPointers" (formula "87") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "expand_inInt" (formula "87") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,1,0,0"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0,1,0,0,0") (ifseqformula "75"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "87") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_initialReadAreasCountBucketElements_in_de_wiesler_BucketPointers" (formula "88") (term "0") (inst "bucket=bucket"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "expand_inInt" (formula "88") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0"))
+ (rule "eqSymm" (formula "88") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "88") (term "4,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "88") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0"))
+ (rule "applyEq" (formula "88") (term "0,1,0,0,1,0,0,0") (ifseqformula "75"))
+ (rule "applyEq" (formula "88") (term "1,4,1,1,0") (ifseqformula "77"))
+ (rule "polySimp_addComm0" (formula "88") (term "4,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "65"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "100")))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "eqSymm" (formula "69"))
+ (rule "translateJavaMulInt" (formula "67") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,2,0"))
+ (rule "eqSymm" (formula "67"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,2,1"))
+ (rule "mul_literals" (formula "69") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,2,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,2,1"))
+ (rule "replaceKnownSelect_taclet1020000121212001000000_11" (formula "69") (term "1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1020000121212001000000_13" (formula "69") (term "1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,2,0"))
+ (rule "replaceKnownSelect_taclet1020000121212001000000_9" (formula "69") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1020000121212001000000_13" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "applyEq" (formula "103") (term "0") (ifseqformula "67"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "65") (term "1") (ifseqformula "32"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "close" (formula "106") (ifseqformula "1"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "andRight" (formula "158"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "158") (ifseqformula "95"))
+ (rule "wellFormedAnonEQ" (formula "158") (term "0") (ifseqformula "73"))
+ (rule "wellFormedAnonEQ" (formula "158") (term "0,0") (ifseqformula "52"))
+ (rule "wellFormedAnonEQ" (formula "158") (term "0,0,0") (ifseqformula "39"))
+ (rule "replace_known_left" (formula "158") (term "1,0,0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "10")) (ifInst "" (formula "51")) (ifInst "" (formula "72")) (ifInst "" (formula "94")))
+ (rule "closeTrue" (formula "158"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "close" (formula "158") (ifseqformula "11"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "158"))
+ (rule "replace_int_MAX" (formula "158") (term "1,0"))
+ (rule "replace_int_MIN" (formula "158") (term "0,1"))
+ (rule "replace_known_left" (formula "158") (term "0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "158"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "158"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "98") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0"))
+ (rule "add_literals" (formula "63") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "63") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "98") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "98") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "98") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "98") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "158"))
+ (rule "replace_int_MAX" (formula "158") (term "1,0"))
+ (rule "replace_int_MIN" (formula "158") (term "0,1"))
+ (rule "replace_known_left" (formula "158") (term "0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "158"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "158"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "98") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0"))
+ (rule "add_literals" (formula "63") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "63") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "98") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "98") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "98") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "98") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_contradInEq0" (formula "14") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "closeFalse" (formula "14"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "close" (formula "158") (ifseqformula "41"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "close" (formula "158") (ifseqformula "16"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "close" (formula "159") (ifseqformula "75"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "orRight" (formula "158"))
+ (rule "close" (formula "158") (ifseqformula "17"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "158"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (term "0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (term "0,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (term "0,0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "159"))
+ (rule "orRight" (formula "159"))
+ (rule "orRight" (formula "159"))
+ (rule "orRight" (formula "159"))
+ (rule "replace_known_right" (formula "8") (term "1") (ifseqformula "159"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "158")))
+ (rule "closeFalse" (formula "8"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (permute)"
+ (builtin "One Step Simplification" (formula "95"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "andLeft" (formula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0") (ifseqformula "95"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,1,0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,0,1,0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,0,0,1,0") (ifseqformula "39"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "98"))
+ (rule "notLeft" (formula "96"))
+ (rule "close" (formula "100") (ifseqformula "99"))
+ )
+ (branch "Pre (permute)"
+ (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "84")) (ifInst "" (formula "86")) (ifInst "" (formula "148")) (ifInst "" (formula "146")) (ifInst "" (formula "97")) (ifInst "" (formula "148")) (ifInst "" (formula "146")) (ifInst "" (formula "97")))
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "notRight" (formula "149"))
+ (rule "replace_known_left" (formula "6") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "62") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "applyEq" (formula "114") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "114"))
+ (rule "applyEq" (formula "131") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "131"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEq" (formula "138") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "138"))
+ (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "138"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "138"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "141") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEq" (formula "120") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "126") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "126"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEq" (formula "135") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "135"))
+ (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEq" (formula "142") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "142"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "142"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEq" (formula "106") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "106"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "qeq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0"))
+ (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0"))
+ (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "nnf_imp2or" (formula "90") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_imp2or" (formula "78") (term "0"))
+ (rule "nnf_notAnd" (formula "62") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "79") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "90") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "78") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "32") (term "1,1"))
+ (rule "eqSymm" (formula "35"))
+ (rule "eqSymm" (formula "32"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "32") (term "1") (ifseqformula "39"))
+ (rule "inEqSimp_subsumption0" (formula "37") (ifseqformula "31"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "64") (term "0,0") (ifseqformula "30"))
+ (rule "leq_literals" (formula "64") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "30"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "notLeft" (formula "88"))
+ (rule "notLeft" (formula "87"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "89") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "1,0,0") (ifseqformula "74"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,1,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "89") (term "1,0,0,0") (ifseqformula "74"))
+ (rule "wellFormedAnonEQ" (formula "89") (term "0,1,0,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,1,0,0") (ifseqformula "40"))
+ (rule "wellFormedAnonEQ" (formula "89") (term "0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "replace_known_left" (formula "89") (term "1,1,1") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "85")) (ifInst "" (formula "148")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "52")) (ifInst "" (formula "73")) (ifInst "" (formula "96")) (ifInst "" (formula "97")) (ifInst "" (formula "98")) (ifInst "" (formula "76")) (ifInst "" (formula "99")) (ifInst "" (formula "85")) (ifInst "" (formula "90")))
+ (rule "true_left" (formula "89"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "68"))
+ (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "33")))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "68"))
+ (rule "translateJavaSubInt" (formula "72") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "72") (term "0,2,1"))
+ (rule "translateJavaMulInt" (formula "70") (term "1,1"))
+ (rule "eqSymm" (formula "72"))
+ (rule "eqSymm" (formula "70"))
+ (rule "polySimp_elimSub" (formula "72") (term "0,2,1"))
+ (rule "mul_literals" (formula "72") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "72") (term "0,2,0"))
+ (rule "mul_literals" (formula "72") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "70"))
+ (rule "pullOutSelect" (formula "71") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "71") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "131")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,1,0,0") (ifseqformula "39"))
+ (rule "simplifySelectOfAnonEQ" (formula "72") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "131")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,1,0,0") (ifseqformula "39"))
+ (rule "replace_known_left" (formula "72") (term "0,0,1,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "replace_known_left" (formula "71") (term "0,0,1,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "elementOfUnion" (formula "72") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "72") (term "1,0,0"))
+ (rule "replace_known_right" (formula "72") (term "0,0,1,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "elementOfUnion" (formula "71") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "71") (term "1,0,0"))
+ (rule "replace_known_right" (formula "71") (term "0,0,1,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "elementOfUnion" (formula "72") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "72") (term "1,0,0"))
+ (rule "replace_known_right" (formula "72") (term "0,0,1,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "elementOfUnion" (formula "71") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "71") (term "1,0,0"))
+ (rule "replace_known_right" (formula "71") (term "0,0,1,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "elementOfUnion" (formula "72") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0,0"))
+ (rule "replace_known_right" (formula "72") (term "0,0,0,0,0") (ifseqformula "115"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0"))
+ (rule "replace_known_right" (formula "72") (term "0,0,0,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "simplifySelectOfAnonEQ" (formula "72") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "131")) (ifInst "" (formula "6")))
+ (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0"))
+ (rule "replace_known_right" (formula "72") (term "0,0,0,0") (ifseqformula "130"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "72"))
+ (rule "hideAuxiliaryEq" (formula "72"))
+ (rule "applyEq" (formula "71") (term "1") (ifseqformula "34"))
+ (rule "elementOfUnion" (formula "71") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "71") (term "1,0,0"))
+ (rule "replace_known_right" (formula "71") (term "0,0,1,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "elementOfArrayRangeConcrete" (formula "71") (term "0,0"))
+ (rule "replace_known_right" (formula "71") (term "0,0,0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "pullOutSelect" (formula "71") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "71") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "131")) (ifInst "" (formula "6")))
+ (rule "eqSymm" (formula "72"))
+ (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "hideAuxiliaryEq" (formula "72"))
+ (rule "elementOfArrayRangeConcrete" (formula "71") (term "0,0"))
+ (rule "replace_known_right" (formula "71") (term "0,0,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "applyEq" (formula "68") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "67") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "67") (term "1") (ifseqformula "36"))
+ (rule "Definition_axiom_for_initialReadAreasCount_in_de_wiesler_BucketPointers" (formula "90") (term "0") (inst "element=element"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "expand_inInt" (formula "90") (term "0,0"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,0,0"))
+ (rule "eqSymm" (formula "90") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "3,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "1,0,0"))
+ (rule "applyEq" (formula "90") (term "1,3,1,1,0") (ifseqformula "81"))
+ (rule "polySimp_addAssoc" (formula "90") (term "3,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "90") (term "0,3,1,1,0"))
+ (rule "add_literals" (formula "90") (term "1,0,3,1,1,0"))
+ (rule "times_zero_1" (formula "90") (term "0,3,1,1,0"))
+ (rule "add_zero_left" (formula "90") (term "3,1,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "translateJavaMod" (formula "58") (term "0"))
+ (rule "jmod_axiom" (formula "58") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "newSym_eq" (formula "58") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_176, Z(0(#))))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "58") (term "0,1,1"))
+ (rule "times_zero_1" (formula "58") (term "1,1,1"))
+ (rule "add_zero_left" (formula "58") (term "1,1"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "58"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "59"))
+ (rule "inEqSimp_homoInEq1" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "applyEq" (formula "58") (term "1,0,0") (ifseqformula "59"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "54"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0"))
+ (rule "applyEq" (formula "66") (term "3,0,1,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "applyEq" (formula "60") (term "4,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "59"))
+ (rule "inEqSimp_homoInEq1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "56") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "1,1,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0"))
+ (rule "add_zero_right" (formula "56") (term "0"))
+ (rule "applyEq" (formula "91") (term "3,1,1,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "95") (term "4,1,1,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "82") (term "1,1") (ifseqformula "59"))
+ (rule "polySimp_addAssoc" (formula "82") (term "1"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "82") (term "1"))
+ (rule "add_literals" (formula "82") (term "1,1,1"))
+ (rule "times_zero_1" (formula "82") (term "1,1"))
+ (rule "add_zero_right" (formula "82") (term "1"))
+ (rule "applyEq" (formula "65") (term "4,1,0,1,0,1,0") (ifseqformula "59"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "times_zero_2" (formula "56") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "56") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "56") (term "0,0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "add_literals" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55"))
+ (rule "mul_literals" (formula "55") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "55") (ifseqformula "57"))
+ (rule "mul_literals" (formula "55") (term "1,1,0"))
+ (rule "greater_literals" (formula "55") (term "0,0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "54"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "add_zero_left" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq0" (formula "55") (term "0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "55") (term "0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0"))
+ (rule "add_literals" (formula "55") (term "0,0"))
+ (rule "qeq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "58") (term "0"))
+ (rule "add_literals" (formula "58") (term "1,1,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0"))
+ (rule "add_zero_right" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "58") (ifseqformula "19"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "greater_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "57"))
+ (rule "times_zero_1" (formula "20") (term "0,0"))
+ (rule "add_zero_left" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "neg_literal" (formula "20") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "73"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "notLeft" (formula "73"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "translateJavaMulInt" (formula "33") (term "1"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "translateJavaMulInt" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "1"))
+ (rule "disjointDefinition" (formula "66"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "181")))
+ (rule "true_left" (formula "66"))
+ (rule "disjointDefinition" (formula "65"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "disjointDefinition" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "129"))
+ (rule "disjointDefinition" (formula "63"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "notLeft" (formula "63"))
+ (rule "eqSymm" (formula "128"))
+ (rule "disjointDefinition" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "127"))
+ (rule "disjointDefinition" (formula "61"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "notLeft" (formula "61"))
+ (rule "eqSymm" (formula "126"))
+ (rule "disjointDefinition" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "eqSymm" (formula "125"))
+ (rule "disjointDefinition" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "notLeft" (formula "59"))
+ (rule "eqSymm" (formula "124"))
+ (rule "disjointDefinition" (formula "58"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "notLeft" (formula "58"))
+ (rule "eqSymm" (formula "123"))
+ (rule "disjointDefinition" (formula "57"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "notLeft" (formula "57"))
+ (rule "eqSymm" (formula "122"))
+ (rule "disjointDefinition" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "notLeft" (formula "56"))
+ (rule "eqSymm" (formula "121"))
+ (rule "disjointDefinition" (formula "55"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "120"))
+ (rule "disjointDefinition" (formula "54"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "119"))
+ (rule "disjointDefinition" (formula "53"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "notLeft" (formula "53"))
+ (rule "eqSymm" (formula "118"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "notLeft" (formula "52"))
+ (rule "eqSymm" (formula "117"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notLeft" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "115"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "114"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "applyEq" (formula "130") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "130"))
+ (rule "applyEq" (formula "128") (term "1") (ifseqformula "56"))
+ (rule "applyEq" (formula "128") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "126") (term "1") (ifseqformula "56"))
+ (rule "applyEq" (formula "127") (term "1") (ifseqformula "56"))
+ (rule "applyEq" (formula "124") (term "1") (ifseqformula "54"))
+ (rule "applyEq" (formula "125") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "125"))
+ (rule "applyEq" (formula "124") (term "1") (ifseqformula "54"))
+ (rule "applyEq" (formula "123") (term "1") (ifseqformula "54"))
+ (rule "applyEq" (formula "123") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "123"))
+ (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "54"))
+ (rule "applyEq" (formula "34") (term "0,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "89"))
+ (rule "applyEq" (formula "38") (term "0,1,0,1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "38") (term "0,1,1,0,1") (ifseqformula "54"))
+ (rule "applyEq" (formula "122") (term "1") (ifseqformula "54"))
+ (rule "applyEq" (formula "121") (term "1") (ifseqformula "89"))
+ (rule "applyEq" (formula "120") (term "1") (ifseqformula "89"))
+ (rule "applyEq" (formula "118") (term "1") (ifseqformula "89"))
+ (rule "applyEq" (formula "119") (term "1") (ifseqformula "89"))
+ (rule "applyEq" (formula "120") (term "0") (ifseqformula "56"))
+ (rule "applyEq" (formula "38") (term "0,0,1,0,1") (ifseqformula "89"))
+ (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "38") (term "0,0,0,1,1") (ifseqformula "56"))
+ (rule "applyEq" (formula "118") (term "0") (ifseqformula "56"))
+ (rule "applyEq" (formula "117") (term "0") (ifseqformula "54"))
+ (rule "eqSymm" (formula "117"))
+ (rule "applyEq" (formula "114") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "114"))
+ (rule "applyEq" (formula "113") (term "1") (ifseqformula "56"))
+ (rule "applyEq" (formula "118") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "118"))
+ (rule "applyEq" (formula "111") (term "1") (ifseqformula "89"))
+ (rule "applyEq" (formula "112") (term "1") (ifseqformula "54"))
+ (rule "applyEq" (formula "107") (term "1") (ifseqformula "56"))
+ (rule "applyEq" (formula "106") (term "1") (ifseqformula "54"))
+ (rule "applyEq" (formula "104") (term "1") (ifseqformula "89"))
+ (rule "applyEq" (formula "108") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "117") (term "0") (ifseqformula "89"))
+ (rule "eqSymm" (formula "117"))
+ (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "57") (term "0") (inst "element=element"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "1,0,0") (ifseqformula "48"))
+ (rule "wellFormedAnonEQ" (formula "57") (term "1,0,0,0") (ifseqformula "48"))
+ (rule "expand_inInt" (formula "57") (term "0,0,1,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "57") (term "0,1,0,0,1,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "57") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "replace_known_right" (formula "57") (term "0,1,0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "60")) (ifInst "" (formula "10")) (ifInst "" (formula "47")) (ifInst "" (formula "123")) (ifInst "" (formula "50")) (ifInst "" (formula "60")) (ifInst "" (formula "58")) (ifInst "" (formula "58")) (ifInst "" (formula "59")))
+ (rule "andLeft" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "97"))
+ (rule "notLeft" (formula "97"))
+ (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "101") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "1,0,0") (ifseqformula "86"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,1,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnonEQ" (formula "101") (term "1,0,0,0") (ifseqformula "86"))
+ (rule "wellFormedAnonEQ" (formula "101") (term "0,1,0,0,0") (ifseqformula "63"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,0,1,0,0") (ifseqformula "48"))
+ (rule "wellFormedAnonEQ" (formula "101") (term "0,0,1,0,0,0") (ifseqformula "48"))
+ (rule "translateJavaAddInt" (formula "101") (term "4,0,0,1,1,1,0,0,0,0"))
+ (rule "eqSymm" (formula "101") (term "0,1,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "101") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "101") (term "0,0,1,0,0,0,0"))
+ (rule "replace_known_left" (formula "101") (term "1,1,1") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "93")) (ifInst "" (formula "170")) (ifInst "" (formula "172")) (ifInst "" (formula "10")) (ifInst "" (formula "47")) (ifInst "" (formula "62")) (ifInst "" (formula "85")) (ifInst "" (formula "120")) (ifInst "" (formula "121")) (ifInst "" (formula "122")) (ifInst "" (formula "88")) (ifInst "" (formula "123")) (ifInst "" (formula "102")))
+ (rule "polySimp_elimSub" (formula "101") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "101") (term "1,0,1,0"))
+ (rule "castedGetAny" (formula "101") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "101") (term "1,0,0"))
+ (rule "replace_known_left" (formula "101") (term "1,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "inEqSimp_commuteLeq" (formula "101") (term "0,0,0"))
+ (rule "replace_known_left" (formula "101") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "inEqSimp_commuteLeq" (formula "101") (term "0,0"))
+ (rule "applyEq" (formula "101") (term "1,0,0,1,0") (ifseqformula "90"))
+ (rule "replace_known_left" (formula "101") (term "0,1,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "applyEq" (formula "101") (term "1,4,0,0,1,0") (ifseqformula "92"))
+ (rule "polySimp_addComm0" (formula "101") (term "4,0,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "101") (term "0,0") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "101") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "101") (term "0,0,0,0"))
+ (rule "add_literals" (formula "101") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "101") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "101") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "101") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "notLeft" (formula "62"))
+ (rule "notLeft" (formula "61"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "close" (formula "106") (ifseqformula "1"))
+ )
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "notRight" (formula "149"))
+ (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "62") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "applyEq" (formula "133") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "133"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEq" (formula "115") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "115"))
+ (rule "applyEq" (formula "107") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "107"))
+ (rule "applyEq" (formula "138") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "138"))
+ (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "138"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "138"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "120") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "142") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "142"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "142"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEq" (formula "140") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "140"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEq" (formula "135") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "135"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "applyEq" (formula "126") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "126"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "126"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "30"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "24"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "qeq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "22"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "28"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0"))
+ (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0"))
+ (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "nnf_imp2or" (formula "90") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_imp2or" (formula "78") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "close" (formula "92") (ifseqformula "1"))
+ )
+ (branch
+ (rule "notRight" (formula "149"))
+ (rule "replace_known_left" (formula "9") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "31"))
+ (rule "mul_literals" (formula "31") (term "1,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "62") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "62") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0"))
+ (rule "applyEq" (formula "108") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "108"))
+ (rule "applyEq" (formula "122") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "137") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "137"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "137"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "137"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "applyEq" (formula "143") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "143"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEq" (formula "133") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "133"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "133"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEq" (formula "142") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "142"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEq" (formula "140") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "140"))
+ (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "128") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "128"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEq" (formula "115") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "115"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "mul_literals" (formula "31") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "29"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1"))
+ (rule "polySimp_elimOne" (formula "53") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "53") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0"))
+ (rule "add_literals" (formula "53") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "53") (term "1,0,0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "qeq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25"))
+ (rule "mul_literals" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0"))
+ (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0"))
+ (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0"))
+ (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0"))
+ (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "79") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "nnf_imp2or" (formula "78") (term "0"))
+ (rule "nnf_imp2or" (formula "90") (term "0"))
+ (rule "nnf_notAnd" (formula "62") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "79") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "26") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "78") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "90") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "90") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0"))
+ (rule "mul_literals" (formula "90") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isAtInitialState_in_de_wiesler_BucketPointers" (formula "77") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "expand_inInt" (formula "77") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0"))
+ (rule "applyEq" (formula "77") (term "0,1,0,0,1,0,0,0") (ifseqformula "74"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "32") (term "1,1"))
+ (rule "eqSymm" (formula "35"))
+ (rule "eqSymm" (formula "32"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,1"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "32") (term "1") (ifseqformula "39"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "30"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption0" (formula "37") (ifseqformula "31"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption1" (formula "63") (term "0,0") (ifseqformula "30"))
+ (rule "leq_literals" (formula "63") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "61") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "61") (term "0,4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "61") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0"))
+ (rule "applyEq" (formula "61") (term "0,1,0,0,1,0,0,0") (ifseqformula "44"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "70"))
+ (rule "andLeft" (formula "70"))
+ (rule "notLeft" (formula "71"))
+ (rule "notLeft" (formula "70"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "90") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,0,0") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,0,0") (ifseqformula "53"))
+ (rule "wellFormedAnonEQ" (formula "90") (term "1,0,0,0") (ifseqformula "73"))
+ (rule "wellFormedAnonEQ" (formula "90") (term "0,1,0,0,0") (ifseqformula "53"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,1,0,0") (ifseqformula "40"))
+ (rule "wellFormedAnonEQ" (formula "90") (term "0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "translateJavaSubInt" (formula "90") (term "0,0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "4,0,0,1,1,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "90") (term "1,0,1,0,0,0,0"))
+ (rule "eqSymm" (formula "90") (term "0,1,0,0,0,0"))
+ (rule "replace_known_left" (formula "90") (term "1,1,1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "84")) (ifInst "" (formula "146")) (ifInst "" (formula "148")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "52")) (ifInst "" (formula "72")) (ifInst "" (formula "96")) (ifInst "" (formula "97")) (ifInst "" (formula "98")) (ifInst "" (formula "75")) (ifInst "" (formula "99")) (ifInst "" (formula "84")) (ifInst "" (formula "91")))
+ (rule "true_left" (formula "90"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "99")))
+ (rule "translateJavaAddInt" (formula "87") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "87") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "87") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "87") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "87") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "87") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0"))
+ (rule "add_literals" (formula "87") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "87") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "87") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "1,0,1,0,1") (ifseqformula "77"))
+ (rule "applyEq" (formula "87") (term "1,1,0,1,1,1") (ifseqformula "88"))
+ (rule "applyEq" (formula "87") (term "0,0,0,1,1") (ifseqformula "88"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0,0,1,1,1") (ifseqformula "77"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "87") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "1,0,1,0,0,1") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "87") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "87") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "87") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0,1,0,1,1,1") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "87") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "87") (term "0,1,0,1,1,1"))
+ (rule "leq_literals" (formula "87") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0,0,0,1") (ifseqformula "88"))
+ (rule "applyEq" (formula "87") (term "0,1,0,1") (ifseqformula "88"))
+ (rule "applyEq" (formula "87") (term "1,1,1,1,1") (ifseqformula "88"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "0,0") (ifseqformula "30"))
+ (rule "leq_literals" (formula "87") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "0,1,1,1") (ifseqformula "30"))
+ (rule "leq_literals" (formula "87") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "88") (term "0"))
+ (rule "translateJavaCastInt" (formula "88") (term "0,0"))
+ (rule "castedGetAny" (formula "88") (term "0,0"))
+ (rule "applyEq" (formula "88") (term "0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "49") (term "0") (inst "element=element"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "49") (term "1,0,0") (ifseqformula "40"))
+ (rule "wellFormedAnonEQ" (formula "49") (term "1,0,0,0") (ifseqformula "40"))
+ (rule "expand_inInt" (formula "49") (term "0,0,1,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,0,0,1,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "replace_known_left" (formula "49") (term "0,0,1,1") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "52")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "100")) (ifInst "" (formula "42")) (ifInst "" (formula "101")) (ifInst "" (formula "52")) (ifInst "" (formula "50")) (ifInst "" (formula "51")))
+ (rule "andLeft" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,0"))
+ (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "91") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "1,0,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0,0") (ifseqformula "55"))
+ (rule "wellFormedAnonEQ" (formula "91") (term "1,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "91") (term "0,1,0,0,0") (ifseqformula "55"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,0,1,0,0") (ifseqformula "40"))
+ (rule "wellFormedAnonEQ" (formula "91") (term "0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "replace_known_left" (formula "91") (term "1,1,1") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "86")) (ifInst "" (formula "150")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "54")) (ifInst "" (formula "74")) (ifInst "" (formula "98")) (ifInst "" (formula "99")) (ifInst "" (formula "100")) (ifInst "" (formula "77")) (ifInst "" (formula "101")) (ifInst "" (formula "86")) (ifInst "" (formula "92")))
+ (rule "true_left" (formula "91"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "62") (term "0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "expand_inInt" (formula "62") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "0,1,4,0,1,0"))
+ (rule "translateJavaDivInt" (formula "62") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "4,0,1,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "62") (term "1,3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "62") (term "1,4,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,1,4,0,1,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,4,0,1,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,4,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "4,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "19"))
+ (rule "close" (formula "97") (ifseqformula "1"))
+ )
+ )
+ )
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "andRight" (formula "149"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "149") (ifseqformula "73"))
+ (rule "wellFormedAnonEQ" (formula "149") (term "0") (ifseqformula "52"))
+ (rule "wellFormedAnonEQ" (formula "149") (term "0,0") (ifseqformula "39"))
+ (rule "replace_known_left" (formula "149") (term "1") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51")))
+ (rule "closeTrue" (formula "149"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "149"))
+ (rule "orRight" (formula "149"))
+ (rule "orRight" (formula "149"))
+ (rule "close" (formula "149") (ifseqformula "11"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "149"))
+ (rule "replace_int_MAX" (formula "149") (term "1,0"))
+ (rule "replace_int_MIN" (formula "149") (term "0,1"))
+ (rule "replace_known_left" (formula "149") (term "0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "149"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0"))
+ (rule "add_literals" (formula "63") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "63") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq0" (formula "23") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0"))
+ (rule "qeq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "149"))
+ (rule "replace_int_MAX" (formula "149") (term "1,0"))
+ (rule "replace_int_MIN" (formula "149") (term "0,1"))
+ (rule "replace_known_left" (formula "149") (term "0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "polySimp_homoEq" (formula "64") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "149"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "1,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0"))
+ (rule "add_literals" (formula "63") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "63") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "mul_literals" (formula "32") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "32"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeFalse" (formula "16"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "149"))
+ (rule "orRight" (formula "149"))
+ (rule "orRight" (formula "149"))
+ (rule "close" (formula "149") (ifseqformula "17"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "149"))
+ (rule "close" (formula "150") (ifseqformula "75"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "149"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "150"))
+ (rule "orRight" (formula "150"))
+ (rule "orRight" (formula "150"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "149"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "150")))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "149"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "150"))
+ (rule "orRight" (formula "150"))
+ (rule "orRight" (formula "150"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "149"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "150")))
+ (rule "closeFalse" (formula "7"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "149"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (ifseqformula "73"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0") (ifseqformula "52"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0") (ifseqformula "39"))
+ (rule "orRight" (formula "150"))
+ (rule "orRight" (formula "150"))
+ (rule "orRight" (formula "150"))
+ (rule "replace_known_right" (formula "8") (term "1") (ifseqformula "150"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "149")))
+ (rule "closeFalse" (formula "8"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_storage = null)"
+ (rule "false_right" (formula "150"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "146")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (_storage = null)"
+ (rule "false_right" (formula "150"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "146")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (_storage = null)"
+ (rule "false_right" (formula "150"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "146")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (BucketPointers)"
+ (builtin "One Step Simplification" (formula "68"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,1,0,0,1,0,1") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,1,0,1") (ifseqformula "36"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,0,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,0,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,0,1,0,0") (ifseqformula "36"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,1,0,0,1,0") (ifseqformula "68"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,1,0,0,1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,0,1,1,0,0,1,0") (ifseqformula "36"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "73"))
+ (rule "notLeft" (formula "69"))
+ (rule "close" (formula "76") (ifseqformula "75"))
+ )
+ (branch "Pre (BucketPointers)"
+ (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "116")) (ifInst "" (formula "116")))
+ (rule "andRight" (formula "118"))
+ (branch
+ (rule "notRight" (formula "118"))
+ (rule "replace_known_left" (formula "7") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "60") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "57") (term "0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "57") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "57") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "101") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEq" (formula "102") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEq" (formula "99") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "99"))
+ (rule "applyEq" (formula "80") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "80"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "72"))
+ (rule "applyEq" (formula "85") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "91") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "91"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "98") (term "0") (ifseqformula "1"))
+ (rule "eqSymm" (formula "98"))
+ (rule "applyEq" (formula "101") (term "1") (ifseqformula "1"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1"))
+ (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,0") (ifseqformula "58"))
+ (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "1,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0"))
+ (rule "add_zero_right" (formula "25") (term "0"))
+ (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "58"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0"))
+ (rule "add_zero_right" (formula "28") (term "0"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "60") (term "3,1,1,1,0") (ifseqformula "58"))
+ (rule "polySimp_sepNegMonomial" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "times_zero_2" (formula "20") (term "1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "27"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "21") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "49"))
+ (rule "mul_literals" (formula "47") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1"))
+ (rule "polySimp_rightDist" (formula "47") (term "1"))
+ (rule "mul_literals" (formula "47") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0"))
+ (rule "add_zero_right" (formula "48") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "25"))
+ (rule "leq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "26"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20"))
+ (rule "times_zero_1" (formula "17") (term "0,0"))
+ (rule "add_zero_left" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "17"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_and_subsumption3" (formula "56") (term "0,0,0"))
+ (rule "leq_literals" (formula "56") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_and_subsumption3" (formula "24") (term "0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "nnf_imp2or" (formula "57") (term "0"))
+ (rule "nnf_imp2or" (formula "56") (term "0"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "translateJavaAddInt" (formula "55") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "54") (term "0"))
+ (rule "polySimp_addComm0" (formula "55") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "54") (term "0"))
+ (rule "add_literals" (formula "54") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54"))
+ (rule "mul_literals" (formula "54") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "53"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption1" (formula "55") (term "0,0") (ifseqformula "51"))
+ (rule "leq_literals" (formula "55") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "applyEqReverse" (formula "42") (term "1,0,2,1,0,0,1,0") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "21") (term "0,1,1") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "17") (term "0") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "25") (term "0") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "22") (term "0,1") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "47") (term "0,1") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "58") (term "0,3,1,1,1,0") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "10") (term "0,1,1") (ifseqformula "55"))
+ (rule "applyEqReverse" (formula "56") (term "0,1") (ifseqformula "55"))
+ (rule "hideAuxiliaryEq" (formula "55"))
+ (rule "polySimp_homoEq" (formula "55"))
+ (rule "polySimp_addComm1" (formula "42") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "1"))
+ (rule "polySimp_addComm0" (formula "47") (term "1"))
+ (rule "polySimp_addComm0" (formula "57") (term "3,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,1"))
+ (rule "applyEq" (formula "47") (term "1,0") (ifseqformula "55"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "47") (term "0,0,0"))
+ (rule "add_literals" (formula "47") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "47") (term "0,0,0"))
+ (rule "add_zero_left" (formula "47") (term "0,0"))
+ (rule "applyEq" (formula "22") (term "1,0") (ifseqformula "55"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0"))
+ (rule "applyEq" (formula "10") (term "0,1,0") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "applyEq" (formula "42") (term "1,2,1,0,0,1,0") (ifseqformula "55"))
+ (rule "polySimp_addAssoc" (formula "42") (term "2,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,2,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "42") (term "0,2,1,0,0,1,0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "applyEq" (formula "21") (term "0,1,0") (ifseqformula "55"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "55"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "applyEq" (formula "57") (term "1,3,1,1,1,0") (ifseqformula "55"))
+ (rule "polySimp_addAssoc" (formula "57") (term "3,1,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "57") (term "0,3,1,1,1,0"))
+ (rule "add_literals" (formula "57") (term "1,0,3,1,1,1,0"))
+ (rule "times_zero_1" (formula "57") (term "0,3,1,1,1,0"))
+ (rule "add_zero_left" (formula "57") (term "3,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "pullOutSelect" (formula "54") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "54") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "112")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "54") (term "0,1,0,0") (ifseqformula "31"))
+ (rule "replace_known_left" (formula "54") (term "0,0,1,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "applyEq" (formula "54") (term "1") (ifseqformula "55"))
+ (rule "ifEqualsInteger" (formula "54"))
+ (rule "elementOfUnion" (formula "54") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0,1"))
+ (rule "leq_literals" (formula "54") (term "1,0,1,0,0,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "eqSymm" (formula "54") (term "0,1,0,0,1"))
+ (rule "replace_known_right" (formula "54") (term "0,1,0,0,1") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "elementOfUnion" (formula "54") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0"))
+ (rule "leq_literals" (formula "54") (term "1,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "eqSymm" (formula "54") (term "0,1,0,0"))
+ (rule "replace_known_right" (formula "54") (term "0,1,0,0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "elementOfUnion" (formula "54") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0,1"))
+ (rule "leq_literals" (formula "54") (term "1,0,1,0,0,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "eqSymm" (formula "54") (term "0,1,0,0,1"))
+ (rule "replace_known_right" (formula "54") (term "0,1,0,0,1") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "elementOfUnion" (formula "54") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0"))
+ (rule "leq_literals" (formula "54") (term "1,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "eqSymm" (formula "54") (term "0,1,0,0"))
+ (rule "replace_known_right" (formula "54") (term "0,1,0,0") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "elementOfUnion" (formula "54") (term "0,0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "54") (term "0,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "54") (term "0,0,1,0,0,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "leq_literals" (formula "54") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "54") (term "0,0,1") (ifseqformula "51"))
+ (rule "leq_literals" (formula "54") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "elementOfUnion" (formula "54"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "leq_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "elementOfArrayRangeConcrete" (formula "54") (term "1"))
+ (rule "eqSymm" (formula "54") (term "0,0,1"))
+ (rule "replace_known_right" (formula "54") (term "0,0,1") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "51"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "47"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1"))
+ (rule "polySimp_elimOne" (formula "46") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "25"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "qeq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "47"))
+ (rule "mul_literals" (formula "45") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45"))
+ (rule "mul_literals" (formula "45") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "25"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "50") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "expand_inInt" (formula "50") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "50") (term "4,0,1,0"))
+ (rule "translateJavaMulInt" (formula "50") (term "3,0,1,0"))
+ (rule "translateJavaMulInt" (formula "50") (term "0,4,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0"))
+ (rule "applyEq" (formula "50") (term "0,1,0,0,1,0,0,0") (ifseqformula "35"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "39") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "translateJavaMulInt" (formula "39") (term "1"))
+ (rule "mul_literals" (formula "39") (term "1"))
+ (rule "eqSymm" (formula "69"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "35"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "54"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "67") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "64") (term "1,1"))
+ (rule "eqSymm" (formula "67"))
+ (rule "eqSymm" (formula "64"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,2,1"))
+ (rule "mul_literals" (formula "67") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,2,0"))
+ (rule "mul_literals" (formula "67") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "28"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "28"))
+ (rule "applyEq" (formula "62") (term "1") (ifseqformula "28"))
+ (rule "pullOutSelect" (formula "65") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "96")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,1,0,0") (ifseqformula "31"))
+ (rule "simplifySelectOfAnonEQ" (formula "65") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "96")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,1,0,0") (ifseqformula "31"))
+ (rule "replace_known_left" (formula "66") (term "0,0,1,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "replace_known_left" (formula "65") (term "0,0,1,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "elementOfUnion" (formula "66") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "66") (term "1,0,0"))
+ (rule "replace_known_right" (formula "66") (term "0,0,1,0,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "elementOfUnion" (formula "65") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0"))
+ (rule "replace_known_right" (formula "65") (term "0,0,1,0,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "elementOfUnion" (formula "66") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "66") (term "1,0,0"))
+ (rule "replace_known_right" (formula "66") (term "0,0,1,0,0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "elementOfUnion" (formula "65") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0"))
+ (rule "replace_known_right" (formula "65") (term "0,0,1,0,0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "elementOfUnion" (formula "66") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0,0"))
+ (rule "replace_known_right" (formula "66") (term "0,0,0,0,0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0"))
+ (rule "replace_known_right" (formula "66") (term "0,0,0,0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "96")) (ifInst "" (formula "4")))
+ (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0"))
+ (rule "replace_known_right" (formula "66") (term "0,0,0,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "applyEqReverse" (formula "65") (term "1") (ifseqformula "66"))
+ (rule "hideAuxiliaryEq" (formula "66"))
+ (rule "elementOfUnion" (formula "65") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0"))
+ (rule "replace_known_right" (formula "65") (term "0,0,1,0,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "elementOfArrayRangeConcrete" (formula "65") (term "0,0"))
+ (rule "replace_known_right" (formula "65") (term "0,0,0,0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "pullOutSelect" (formula "65") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "65") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "96")) (ifInst "" (formula "4")))
+ (rule "eqSymm" (formula "66"))
+ (rule "applyEqReverse" (formula "65") (term "1") (ifseqformula "66"))
+ (rule "hideAuxiliaryEq" (formula "66"))
+ (rule "elementOfArrayRangeConcrete" (formula "65") (term "0,0"))
+ (rule "replace_known_right" (formula "65") (term "0,0,0,0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "eqSymm" (formula "65"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "15"))
+ (rule "close" (formula "71") (ifseqformula "1"))
+ )
+ (branch
+ (rule "andRight" (formula "118"))
+ (branch
+ (rule "andRight" (formula "118"))
+ (branch
+ (rule "andRight" (formula "118"))
+ (branch
+ (rule "andRight" (formula "118"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "118") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "118") (term "0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "118") (term "1") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "7")) (ifInst "" (formula "35")))
+ (rule "closeTrue" (formula "118"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (term "0") (ifseqformula "36"))
+ (rule "orRight" (formula "118"))
+ (rule "orRight" (formula "118"))
+ (rule "close" (formula "118") (ifseqformula "13"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "118"))
+ (rule "replace_int_MIN" (formula "118") (term "0,1"))
+ (rule "replace_int_MAX" (formula "118") (term "1,0"))
+ (rule "replace_known_left" (formula "118") (term "0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "polySimp_homoEq" (formula "59") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "118"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "58") (term "0,1,0,0"))
+ (rule "add_literals" (formula "58") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "58") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "58") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "applyEq" (formula "26") (term "0,1,0") (ifseqformula "59"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_zero_right" (formula "26") (term "0"))
+ (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "59"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "1,1,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0"))
+ (rule "add_zero_right" (formula "29") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "59"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0"))
+ (rule "add_zero_right" (formula "21") (term "0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "59"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "applyEq" (formula "53") (term "1") (ifseqformula "59"))
+ (rule "applyEq" (formula "25") (term "1") (ifseqformula "59"))
+ (rule "applyEq" (formula "48") (term "1,2,1,0,0,1,0") (ifseqformula "59"))
+ (rule "polySimp_addAssoc" (formula "48") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "61") (term "3,1,1,1,0") (ifseqformula "59"))
+ (rule "polySimp_sepNegMonomial" (formula "60") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_invertInEq0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "33") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "closeFalse" (formula "33"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "118"))
+ (rule "replace_int_MIN" (formula "118") (term "0,1"))
+ (rule "replace_int_MAX" (formula "118") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "60") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_homoEq" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "57") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "57") (term "0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "57") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "57") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "118") (term "1"))
+ (rule "mul_literals" (formula "118") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "118") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "118") (term "0"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "118") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "118") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "118") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "118") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "58") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1"))
+ (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "1,1,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0"))
+ (rule "add_zero_right" (formula "25") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,0") (ifseqformula "58"))
+ (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "1,1,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0"))
+ (rule "add_zero_right" (formula "20") (term "0"))
+ (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "58"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,1,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0"))
+ (rule "add_zero_right" (formula "28") (term "0"))
+ (rule "applyEq" (formula "52") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "11") (term "0") (ifseqformula "58"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "applyEq" (formula "24") (term "1") (ifseqformula "58"))
+ (rule "applyEq" (formula "60") (term "3,1,1,1,0") (ifseqformula "58"))
+ (rule "polySimp_sepNegMonomial" (formula "59") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "118") (term "1"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "118") (term "1,1"))
+ (rule "mul_literals" (formula "118") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "118") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "118") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "118") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "118") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "times_zero_2" (formula "20") (term "1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "118") (term "1") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq0" (formula "118") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "118") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "118") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "118") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "118") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "118") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "118") (term "0,0,1"))
+ (rule "add_literals" (formula "118") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "118") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "118") (term "0,0,1"))
+ (rule "qeq_literals" (formula "118") (term "0,1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "inEqSimp_leqRight" (formula "118"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "28"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,0"))
+ (rule "add_literals" (formula "49") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "49") (term "1,0,0"))
+ (rule "add_zero_right" (formula "49") (term "0,0"))
+ (rule "qeq_literals" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "27"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49"))
+ (rule "mul_literals" (formula "48") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "1"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeFalse" (formula "18"))
+ )
+ )
+ (branch
+ (rule "orRight" (formula "118"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0") (ifseqformula "36"))
+ (rule "orRight" (formula "119"))
+ (rule "orRight" (formula "119"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "118"))
+ (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "119")))
+ (rule "closeFalse" (formula "6"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_storage = null)"
+ (rule "false_right" (formula "119"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "115")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Exceptional Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "64")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0") (ifseqformula "47"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,1,0") (ifseqformula "36"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "65"))
+ (rule "notLeft" (formula "65"))
+ (rule "close" (formula "67") (ifseqformula "66"))
+ )
+ (branch "Pre (num_buckets)"
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "64")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "116") (term "0") (ifseqformula "47"))
+ (rule "wellFormedAnonEQ" (formula "116") (term "0,0") (ifseqformula "36"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "0,1") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "116") (term "1,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "7")) (ifInst "" (formula "46")) (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "116"))
+ )
+ (branch "Null reference (_classifier = null)"
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "113")))
+ (rule "closeTrue" (formula "116"))
+ )
+ )
+ (branch "Exceptional Post (classify_locally)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "andLeft" (formula "38"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "1,0") (ifseqformula "38"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "0,1,0") (ifseqformula "27"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "39"))
+ (rule "close" (formula "42") (ifseqformula "41"))
+ )
+ (branch "Pre (classify_locally)"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "87")) (ifInst "" (formula "86")) (ifInst "" (formula "38")) (ifInst "" (formula "87")) (ifInst "" (formula "86")) (ifInst "" (formula "38")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,1") (ifseqformula "27"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,1") (ifseqformula "27"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,0,0,0,1") (ifseqformula "27"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,0,0,0,0,1") (ifseqformula "27"))
+ (rule "wellFormedAnonEQ" (formula "88") (term "0,0,0,0,0,0,1") (ifseqformula "27"))
+ (rule "expand_inInt" (formula "88") (term "1,0,0,0,1"))
+ (rule "expand_inInt" (formula "88") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,1"))
+ (rule "replace_known_right" (formula "88") (term "0,1,1") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "1")) (ifInst "" (formula "26")) (ifInst "" (formula "8")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "5")) (ifInst "" (formula "7")) (ifInst "" (formula "29")))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,1"))
+ (rule "replace_known_left" (formula "88") (term "0,1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1"))
+ (rule "replace_known_left" (formula "88") (term "1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "13"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "17"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_and_subsumption3" (formula "15") (term "0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "32") (term "0") (inst "element=element"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "32") (term "1,0,0") (ifseqformula "25"))
+ (rule "wellFormedAnonEQ" (formula "32") (term "1,0,0,0") (ifseqformula "25"))
+ (rule "expand_inInt" (formula "32") (term "0,0,1,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,0,0,1,0,1,1,1"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "replace_known_left" (formula "32") (term "0,0,1,1,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "35")) (ifInst "" (formula "1")) (ifInst "" (formula "24")) (ifInst "" (formula "36")) (ifInst "" (formula "27")) (ifInst "" (formula "37")) (ifInst "" (formula "35")) (ifInst "" (formula "33")) (ifInst "" (formula "34")))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "33") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "applyEq" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "28"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "33") (term "0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,2,0"))
+ (rule "eqSymm" (formula "20"))
+ (rule "eqSymm" (formula "23"))
+ (rule "translateJavaMulInt" (formula "20") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,2,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,2,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,2,0"))
+ (rule "eqSymm" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "27"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "27"))
+ (rule "applyEq" (formula "20") (term "1") (ifseqformula "27"))
+ (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "19"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "18"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "40"))
+ (rule "notLeft" (formula "39"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "38") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "translateJavaMulInt" (formula "38") (term "1"))
+ (rule "mul_literals" (formula "38") (term "1"))
+ (rule "eqSymm" (formula "43"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "32"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "18"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "10"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "32"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaMulInt" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "132")))
+ (rule "true_left" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "130")))
+ (rule "true_left" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "73"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "72"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "71"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "70"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "69"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "68"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "67"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "66"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "65"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "64"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "63"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "62"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "61"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "23") (term "0,0,0,1,1") (ifseqformula "40"))
+ (rule "applyEq" (formula "23") (term "0,1,1,0,1") (ifseqformula "39"))
+ (rule "applyEq" (formula "68") (term "1") (ifseqformula "40"))
+ (rule "applyEq" (formula "67") (term "1") (ifseqformula "40"))
+ (rule "applyEq" (formula "63") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "63") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "40"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "40"))
+ (rule "eqSymm" (formula "62"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "40"))
+ (rule "eqSymm" (formula "61"))
+ (rule "applyEq" (formula "62") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "38"))
+ (rule "eqSymm" (formula "59"))
+ (rule "applyEq" (formula "54") (term "1") (ifseqformula "38"))
+ (rule "applyEq" (formula "48") (term "1") (ifseqformula "38"))
+ (rule "applyEq" (formula "49") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "55") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "38"))
+ (rule "eqSymm" (formula "59"))
+ (rule "commuteUnion" (formula "22") (term "0,0,1"))
+ (rule "commuteUnion" (formula "22") (term "1,1,1"))
+ (rule "commuteUnion" (formula "22") (term "1,0,1"))
+ (rule "commuteUnion_2" (formula "22") (term "0,1"))
+ (rule "commuteUnion" (formula "22") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "22") (term "1"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "120"))
+ (rule "replace_known_right" (formula "120") (term "0,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "67")))
+ (rule "closeTrue" (formula "120"))
+ )
+ (branch "Null reference (_classifier = null)"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "85")))
+ (rule "closeTrue" (formula "88"))
+ )
+ )
+ (branch "Exceptional Post (Buffers)"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "andLeft" (formula "27"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (term "1,0,0") (ifseqformula "27"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (term "1,1,0,0,1,0") (ifseqformula "27"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "28"))
+ (rule "close" (formula "35") (ifseqformula "34"))
+ )
+ (branch "Pre (Buffers)"
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "75") (term "1,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,1"))
+ (rule "replace_known_left" (formula "75") (term "0,1,1") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1"))
+ (rule "replace_known_left" (formula "75") (term "1,1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "13"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "17"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_and_subsumption3" (formula "15") (term "0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "19"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "21") (term "1,1"))
+ (rule "eqSymm" (formula "24"))
+ (rule "eqSymm" (formula "21"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,2,1"))
+ (rule "mul_literals" (formula "24") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,2,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "28"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "28"))
+ (rule "applyEq" (formula "21") (term "1") (ifseqformula "28"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "19"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "20"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "replace_known_right" (formula "84") (term "0,1,1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "30")) (ifInst "" (formula "31")) (ifInst "" (formula "30")))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaMulInt" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "translateJavaMulInt" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "disjointDefinition" (formula "52"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "116")))
+ (rule "true_left" (formula "52"))
+ (rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "114")))
+ (rule "true_left" (formula "51"))
+ (rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "notLeft" (formula "50"))
+ (rule "eqSymm" (formula "59"))
+ (rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "58"))
+ (rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "notLeft" (formula "48"))
+ (rule "eqSymm" (formula "57"))
+ (rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notLeft" (formula "47"))
+ (rule "eqSymm" (formula "56"))
+ (rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "55"))
+ (rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "notLeft" (formula "45"))
+ (rule "eqSymm" (formula "54"))
+ (rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "notLeft" (formula "44"))
+ (rule "eqSymm" (formula "53"))
+ (rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "notLeft" (formula "43"))
+ (rule "eqSymm" (formula "52"))
+ (rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "notLeft" (formula "42"))
+ (rule "eqSymm" (formula "51"))
+ (rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "50"))
+ (rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "49"))
+ (rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "48"))
+ (rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "47"))
+ (rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "notLeft" (formula "36"))
+ (rule "eqSymm" (formula "45"))
+ (rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "notLeft" (formula "35"))
+ (rule "eqSymm" (formula "44"))
+ (rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "notLeft" (formula "32"))
+ (rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "notLeft" (formula "27"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "notLeft" (formula "25"))
+ (rule "commuteUnion" (formula "24") (term "1,1,1"))
+ (rule "commuteUnion" (formula "24") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "24") (term "0,1"))
+ (rule "commuteUnion" (formula "24") (term "0,0,1"))
+ (rule "commuteUnion_2" (formula "24") (term "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "31") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "32") (term "1,0,0"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "31"))
+ (rule "notLeft" (formula "31"))
+ (rule "eqSymm" (formula "39") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "37") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "33") (term "1"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "37") (term "3,0"))
+ (rule "mul_literals" (formula "37") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "36") (term "1") (ifseqformula "33"))
+ (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "28"))
+ (rule "inEqSimp_commuteGeq" (formula "36"))
+ (rule "applyEq" (formula "35") (term "1") (ifseqformula "33"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "28"))
+ (rule "applyEq" (formula "29") (term "3,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "39") (term "1,0,1,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "37") (term "1,3,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "27") (term "2,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33"))
+ (rule "eqSymm" (formula "30"))
+ (rule "applyEq" (formula "27") (term "0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "38") (term "0,1,0,0,1,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33"))
+ (rule "eqSymm" (formula "30"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "1"))
+ (rule "mod_axiom" (formula "33") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "36") (term "0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "35") (term "1"))
+ (rule "mod_axiom" (formula "35") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "29") (term "3,0"))
+ (rule "mod_axiom" (formula "29") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "34") (term "0"))
+ (rule "mod_axiom" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "1,3,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "2,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "30") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "mod_axiom" (formula "30") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "33") (term "0,1"))
+ (rule "eqSymm" (formula "33"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "36") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "35") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,1"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "35"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "shiftLeftDef" (formula "29") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "29") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "29") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "29") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "29") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,3,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "29") (term "3,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "34") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "37") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "37") (term "1,3,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "27") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,2,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,2,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "27") (term "2,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "27") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "27") (term "0,1,0") (ifseqformula "33"))
+ (rule "javaShiftLeftIntDef" (formula "30") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "30") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,1,0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "38") (term "1,1,1,1,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "38") (term "1,1,1,0,0,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "30") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33"))
+ (rule "shiftLeftDef" (formula "30") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "36"))
+ (rule "mul_literals" (formula "34") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "mul_literals" (formula "34") (term "1"))
+ (rule "expand_moduloInteger" (formula "33") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "33") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "33") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "39") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "39") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "39") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_or_subsumption3" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "39") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "39") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "39") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "39") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "39") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "39") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "39") (term "0,0,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0"))
+ (rule "commute_and" (formula "39") (term "1,0,0"))
+ (rule "associativeLawUnion" (formula "24") (term "0,1"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "nnf_notAnd" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "29") (term "0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "nnf_imp2or" (formula "29") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,1,0,0"))
+ (rule "nnf_imp2or" (formula "38") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "38") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "22") (term "0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "arrayLengthNotNegative" (formula "21") (term "0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "arrayLengthIsAShort" (formula "23") (term "0"))
+ (rule "expand_inShort" (formula "23"))
+ (rule "replace_short_MAX" (formula "23") (term "1,0"))
+ (rule "replace_short_MIN" (formula "23") (term "0,1"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "25"))
+ (rule "leq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthNotNegative" (formula "23") (term "0"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+ (rule "qeq_literals" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "arrayLengthIsAShort" (formula "18") (term "0"))
+ (rule "expand_inShort" (formula "18"))
+ (rule "replace_short_MAX" (formula "18") (term "1,0"))
+ (rule "replace_short_MIN" (formula "18") (term "0,1"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "arrayLengthIsAShort" (formula "19") (term "0"))
+ (rule "expand_inShort" (formula "19"))
+ (rule "replace_short_MAX" (formula "19") (term "1,0"))
+ (rule "replace_short_MIN" (formula "19") (term "0,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "21"))
+ (rule "leq_literals" (formula "19"))
+ (rule "closeFalse" (formula "19"))
+ )
+ )
+ (branch "Exceptional Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "12")))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "close" (formula "24") (ifseqformula "23"))
+ )
+ (branch "Pre (num_buckets)"
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "12")) (ifInst "" (formula "1")) (ifInst "" (formula "8")))
+ (rule "closeTrue" (formula "71"))
+ )
+ (branch "Null reference (_classifier = null)"
+ (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "68")))
+ (rule "closeTrue" (formula "71"))
+ )
+ )
+ (branch "Null Reference (_storage = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "68")))
+ (rule "closeFalse" (formula "1"))
+ )
+)
+(branch "Null Reference (_storage = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "68")))
+ (rule "closeFalse" (formula "1"))
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..6089b22
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,165 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:09:03 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:09:03 CEST 2022
+contract=de.wiesler.PartitionResult[de.wiesler.PartitionResult\\:\\:PartitionResult(int,boolean)].JML normal_behavior operation contract.0
+name=de.wiesler.PartitionResult[de.wiesler.PartitionResult\\:\\:PartitionResult(int,boolean)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "60")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "3"))
+(rule "assignment" (formula "5") (term "1"))
+ (builtin "One Step Simplification" (formula "5"))
+(rule "variableDeclarationAssign" (formula "5") (term "1"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "self_103"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=p"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "p"))
+(rule "methodBodyExpand" (formula "5") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "5"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "__NEW__"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=p_1"))
+(rule "variableDeclaration" (formula "5") (term "1") (newnames "p_1"))
+(rule "allocateInstance" (formula "5"))
+ (builtin "One Step Simplification" (formula "6"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallWithinClass" (formula "8") (term "1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallSuper" (formula "8") (term "1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "methodCallReturnIgnoreResult" (formula "8") (term "1"))
+(rule "methodCallReturn" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "var"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "var_1"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallSuper" (formula "8") (term "1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "assignment_write_attribute_this" (formula "8"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "methodCallEmpty" (formula "8") (term "1"))
+(rule "blockEmpty" (formula "8") (term "1"))
+(rule "assignment_write_attribute" (formula "8"))
+(branch "Normal Execution (self_103 != null)"
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "tryEmpty" (formula "8") (term "1"))
+ (rule "emptyModality" (formula "8") (term "1"))
+ (rule "andRight" (formula "8"))
+ (branch
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "Class_invariant_axiom_for_de_wiesler_PartitionResult" (formula "8"))
+ (rule "closeTrue" (formula "8"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeTrue" (formula "8"))
+ )
+)
+(branch "Null Reference (self_103 = null)"
+ (rule "false_right" (formula "9"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")))
+ (rule "closeFalse" (formula "1"))
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__permute((I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__permute((I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..b6afc4a
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__permute((I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,5204 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Sun Jun 05 14:58:55 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Sun Jun 05 14:58:55 CEST 2022
+contract=de.wiesler.Permute[de.wiesler.Permute\\:\\:permute([I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0
+name=de.wiesler.Permute[de.wiesler.Permute\\:\\:permute([I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "164050")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "12"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "11"))
+(rule "notLeft" (formula "10"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "17"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "13"))
+(rule "notLeft" (formula "12"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "24"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "15"))
+(rule "notLeft" (formula "14"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "27"))
+(rule "andLeft" (formula "24"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "21"))
+(rule "translateJavaSubInt" (formula "45") (term "0"))
+(rule "translateJavaCastInt" (formula "46") (term "0"))
+(rule "translateJavaSubInt" (formula "46") (term "1"))
+(rule "translateJavaSubInt" (formula "47") (term "1"))
+(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "10"))
+(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "11"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "7"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "45") (term "0"))
+(rule "polySimp_elimSub" (formula "46") (term "1"))
+(rule "polySimp_elimSub" (formula "47") (term "1"))
+(rule "polySimp_addComm0" (formula "45") (term "0"))
+(rule "polySimp_addComm0" (formula "46") (term "1"))
+(rule "polySimp_addComm0" (formula "47") (term "1"))
+(rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "notLeft" (formula "41"))
+(rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+(rule "notLeft" (formula "40"))
+(rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+(rule "notLeft" (formula "39"))
+(rule "eqSymm" (formula "46"))
+(rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+(rule "notLeft" (formula "38"))
+(rule "eqSymm" (formula "45"))
+(rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+(rule "notLeft" (formula "37"))
+(rule "eqSymm" (formula "44"))
+(rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+(rule "notLeft" (formula "36"))
+(rule "eqSymm" (formula "43"))
+(rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "notLeft" (formula "35"))
+(rule "eqSymm" (formula "42"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "eqSymm" (formula "41"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "40"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "38"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "eqSymm" (formula "37"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+(rule "notLeft" (formula "28"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "eqSymm" (formula "34"))
+(rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "eqSymm" (formula "33"))
+(rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "notLeft" (formula "25"))
+(rule "eqSymm" (formula "32"))
+(rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "notLeft" (formula "24"))
+(rule "eqSymm" (formula "31"))
+(rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+(rule "notLeft" (formula "23"))
+(rule "disjointDefinition" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+(rule "notLeft" (formula "21"))
+(rule "disjointDefinition" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+(rule "notLeft" (formula "21"))
+(rule "castedGetAny" (formula "25") (term "0"))
+(rule "inEqSimp_commuteLeq" (formula "23"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "21"))
+(rule "inEqSimp_commuteLeq" (formula "22"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0"))
+(rule "assignment" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+(rule "applyEq" (formula "25") (term "1,0") (ifseqformula "17"))
+(rule "applyEq" (formula "27") (term "1,1,0,0,0") (ifseqformula "17"))
+(rule "commute_and" (formula "27") (term "0,1,0"))
+(rule "commute_and_2" (formula "27") (term "1,0"))
+(rule "commute_and" (formula "27") (term "1,0,0"))
+(rule "commute_and" (formula "27") (term "0,0,0"))
+(rule "shift_paren_and" (formula "27") (term "0,0"))
+(rule "commute_and_2" (formula "27") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "55") (term "1") (newnames "heapBefore_permute,savedHeapBefore_permute,_beginBefore_permute,_bucket_pointersBefore_permute,_classifierBefore_permute,_endBefore_permute,_overflowBefore_permute,_swap_1Before_permute,_swap_2Before_permute,_valuesBefore_permute"))
+ (builtin "One Step Simplification" (formula "55"))
+ (builtin "Block Contract (Internal)" (formula "55") (newnames "exc_311,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+(branch "Validity"
+ (builtin "One Step Simplification" (formula "56"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "12")) (ifInst "" (formula "1")))
+ (rule "true_left" (formula "28"))
+ (rule "eqSymm" (formula "55") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "55") (term "1"))
+ (rule "variableDeclaration" (formula "55") (term "1") (newnames "exc_311_1"))
+ (rule "assignment" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "emptyStatement" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "emptyStatement" (formula "55") (term "1"))
+ (rule "tryEmpty" (formula "55") (term "1"))
+ (rule "blockEmptyLabel" (formula "55") (term "1"))
+ (rule "blockEmpty" (formula "55") (term "1"))
+ (rule "methodCallEmpty" (formula "55") (term "1"))
+ (rule "emptyModality" (formula "55") (term "1"))
+ (rule "andRight" (formula "55"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "closeTrue" (formula "55"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "closeTrue" (formula "55"))
+ )
+)
+(branch "Precondition"
+ (rule "andRight" (formula "55"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "55"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "55"))
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "28"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "translateJavaSubInt" (formula "30") (term "0,1"))
+ (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,1"))
+ (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "17"))
+ (rule "elim_double_block_2" (formula "57") (term "1"))
+ (rule "ifUnfold" (formula "57") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "57") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "57") (term "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "replace_known_left" (formula "57") (term "0,0,1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "ifSplit" (formula "57"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "57") (term "1"))
+ (rule "variableDeclarationFinalAssign" (formula "57") (term "1"))
+ (rule "variableDeclarationFinal" (formula "57") (term "1") (newnames "num_buckets"))
+ (builtin "Use Operation Contract" (formula "57") (newnames "heapBefore_num_buckets,result,exc_0") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0"))
+ (branch "Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "16")) (ifInst "" (formula "14")))
+ (rule "expand_inInt" (formula "30") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "30") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "30") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "eqSymm" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "17"))
+ (rule "applyEq" (formula "27") (term "1,0,0,0,0,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "32"))
+ (rule "for_to_while" (formula "61") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "variableDeclarationAssign" (formula "61") (term "1"))
+ (rule "variableDeclaration" (formula "61") (term "1") (newnames "bucket"))
+ (rule "assignment" (formula "61") (term "1"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "loopScopeInvDia" (formula "61") (term "1") (newnames "bucket_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "61"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "expand_inInt" (formula "62") (term "0,0,1,0"))
+ (rule "expand_inInt" (formula "62") (term "1,0,0,1,0,0"))
+ (rule "expand_inInt" (formula "62") (term "1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "impRight" (formula "62"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "69") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,0,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "69") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "69") (term "1,2,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "6") (term "1,1,0,0,0") (ifseqformula "25"))
+ (rule "commuteUnion_2" (formula "69") (term "1,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "1,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,1,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "5") (term "1,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "3") (term "1,1,0"))
+ (rule "commuteUnion" (formula "4") (term "1,1,0"))
+ (rule "commuteUnion" (formula "69") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "0,1,0,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "0,1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "0,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "3") (term "0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0"))
+ (rule "commuteUnion" (formula "69") (term "0,1,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "5") (term "0,1,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "6") (term "1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,0,0,1,1,0"))
+ (rule "commuteUnion_2" (formula "3") (term "1,0"))
+ (rule "commuteUnion" (formula "4") (term "1,0"))
+ (rule "commuteUnion_2" (formula "69") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "5") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "0,1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "3") (term "0,1,0"))
+ (rule "commuteUnion" (formula "69") (term "0,1,0,1,0,1,0"))
+ (rule "commute_and" (formula "7") (term "0,0"))
+ (rule "commute_and" (formula "6") (term "1,0,0"))
+ (rule "commute_and" (formula "5") (term "1,0,0"))
+ (rule "commute_and" (formula "5") (term "0,0,0"))
+ (rule "commute_and" (formula "6") (term "0,0,0"))
+ (rule "commute_and" (formula "6") (term "0,1,0"))
+ (rule "commute_and_2" (formula "6") (term "1,0"))
+ (rule "shift_paren_and" (formula "5") (term "0,0"))
+ (rule "commute_and_2" (formula "5") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "6") (term "0,0"))
+ (rule "commute_and_2" (formula "6") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "4") (term "1,0"))
+ (rule "associativeLawUnion" (formula "3") (term "0,0,1,0"))
+ (rule "associativeLawUnion" (formula "7") (term "1,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "4") (term "0,0,1,0"))
+ (rule "associativeLawUnion" (formula "5") (term "1,0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "26") (term "0"))
+ (rule "expand_inShort" (formula "26"))
+ (rule "replace_short_MIN" (formula "26") (term "0,1"))
+ (rule "replace_short_MAX" (formula "26") (term "1,0"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "arrayLengthNotNegative" (formula "28") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "32") (term "0"))
+ (rule "expand_inShort" (formula "32"))
+ (rule "replace_short_MIN" (formula "32") (term "0,1"))
+ (rule "replace_short_MAX" (formula "32") (term "1,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthIsAShort" (formula "28") (term "0"))
+ (rule "expand_inShort" (formula "28"))
+ (rule "replace_short_MIN" (formula "28") (term "0,1"))
+ (rule "replace_short_MAX" (formula "28") (term "1,0"))
+ (rule "andLeft" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "30"))
+ (rule "leq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "29"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (rule "expand_inShort" (formula "27"))
+ (rule "replace_short_MIN" (formula "27") (term "0,1"))
+ (rule "replace_short_MAX" (formula "27") (term "1,0"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "29"))
+ (rule "leq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "26") (term "0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "ifElseUnfold" (formula "72") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "72") (term "1") (newnames "x_2"))
+ (rule "less_than_comparison_simple" (formula "72") (term "1"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "associativeLawUnion" (formula "6") (term "1,0,0,1,1,0"))
+ (rule "associativeLawUnion" (formula "6") (term "1,0,0,1,0,1,0"))
+ (rule "seqGetAlphaCast" (formula "36") (term "0"))
+ (rule "castedGetAny" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "associativeLawUnion" (formula "7") (term "0,0,1,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "6") (term "0,0,1,0,0,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "6") (term "0,0,1,0,0,1,1,0"))
+ (rule "associativeLawUnion" (formula "6") (term "0,0,1,0,0,1,0,1,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "59") (term "0") (ifseqformula "9") (ifseqformula "16"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "59") (term "0,0") (ifseqformula "10") (ifseqformula "16"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "66") (term "0") (ifseqformula "11") (ifseqformula "17"))
+ (rule "ifElseSplit" (formula "75"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "76"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elim_double_block_3" (formula "76") (term "1"))
+ (rule "loopScopeInvDia" (formula "76") (term "1") (newnames "o,f") (inst "#x=x_3") (inst "#variant=x_2") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_1") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_1") (inst "anon_heap_LOOP=anon_heap_LOOP_1"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "76"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "expand_inInt" (formula "77") (term "1,0,0,1,0,0,0"))
+ (rule "expand_inInt" (formula "77") (term "1,0,0,1,0,0"))
+ (rule "expand_inInt" (formula "77") (term "0,0,1,0"))
+ (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "77") (term "0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "77") (term "1,0,0,0,1,0"))
+ (rule "impRight" (formula "77"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "82") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "82") (term "2,0,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "3") (term "2,0,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "2") (term "2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "82") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "82") (term "1,2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "82") (term "2,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "82") (term "1,2,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "2") (term "1,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "2,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "2,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0"))
+ (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_3"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "35"))
+ (rule "commuteUnion" (formula "82") (term "1,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "82") (term "1,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "5") (term "1,1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "4") (term "1,1,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "4") (term "1,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "4") (term "1,1,0,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "3") (term "1,1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "2") (term "1,1,0"))
+ (rule "commuteUnion_2" (formula "1") (term "1,1,0"))
+ (rule "commuteUnion" (formula "82") (term "0,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "82") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "3") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "1") (term "0,1,0"))
+ (rule "commuteUnion" (formula "2") (term "0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,1,0,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "3") (term "0,1,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "2") (term "0,1,1,0"))
+ (rule "commuteUnion" (formula "1") (term "0,1,1,0"))
+ (rule "commuteUnion" (formula "82") (term "1,0,0,1,1,0"))
+ (rule "commuteUnion_2" (formula "82") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "5") (term "1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "4") (term "1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "1,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "4") (term "1,0,0,1,1,0"))
+ (rule "commuteUnion_2" (formula "3") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "2") (term "1,0"))
+ (rule "commuteUnion" (formula "1") (term "1,0"))
+ (rule "commuteUnion" (formula "82") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "3") (term "0,1,0,0,1,0"))
+ (rule "commute_and" (formula "5") (term "0,0"))
+ (rule "commute_and" (formula "4") (term "1,0,0"))
+ (rule "commute_and" (formula "3") (term "0,0,0"))
+ (rule "commute_and" (formula "3") (term "1,0,0"))
+ (rule "commute_and" (formula "4") (term "0,0,0"))
+ (rule "commute_and" (formula "4") (term "0,1,0"))
+ (rule "commute_and_2" (formula "4") (term "1,0"))
+ (rule "shift_paren_and" (formula "3") (term "0,0"))
+ (rule "commute_and_2" (formula "3") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "2") (term "1,0"))
+ (rule "shift_paren_and" (formula "4") (term "0,0"))
+ (rule "commute_and_2" (formula "4") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "1") (term "1,0"))
+ (rule "associativeLawUnion" (formula "5") (term "1,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "82") (term "1,0,0,1,1,0"))
+ (rule "ifElseUnfold" (formula "82") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_4"))
+ (rule "associativeLawUnion" (formula "4") (term "1,0,0,1,1,0"))
+ (rule "associativeLawUnion" (formula "82") (term "0,0,1,0,0,1,0"))
+ (builtin "Use Operation Contract" (formula "82") (newnames "heapBefore_hasRemainingRead,result_0,exc_1") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::hasRemainingRead(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (hasRemainingRead)"
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "eqSymm" (formula "55"))
+ (rule "assignment" (formula "85") (term "1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "associativeLawUnion" (formula "5") (term "0,0,1,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "85") (term "0,0,1,0,0,1,1,0,0"))
+ (builtin "Use Dependency Contract" (formula "13") (ifInst "" (formula "85") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "85") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "58") (term "1,1,0,0,0"))
+ (rule "replace_known_right" (formula "58") (term "0,0,0,0,0,0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "25")) (ifInst "" (formula "19")) (ifInst "" (formula "19")) (ifInst "" (formula "18")) (ifInst "" (formula "32")) (ifInst "" (formula "14")) (ifInst "" (formula "32")))
+ (rule "true_left" (formula "58"))
+ (rule "ifElseSplit" (formula "85"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "variableDeclarationGhostAssign" (formula "86") (term "1"))
+ (rule "variableDeclarationGhost" (formula "86") (term "1") (newnames "heapAtLoopBegin"))
+ (rule "assignment" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "Block Contract (Internal)" (formula "86") (newnames "exc_2,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "31")))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "eqSymm" (formula "87") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "87") (term "1"))
+ (rule "variableDeclaration" (formula "87") (term "1") (newnames "exc_2_1"))
+ (rule "assignment" (formula "87") (term "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "emptyStatement" (formula "87") (term "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "emptyStatement" (formula "87") (term "1"))
+ (rule "applyEq" (formula "56") (term "1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "tryEmpty" (formula "87") (term "1"))
+ (rule "blockEmptyLabel" (formula "87") (term "1"))
+ (rule "blockEmpty" (formula "87") (term "1"))
+ (rule "methodCallEmpty" (formula "87") (term "1"))
+ (rule "emptyModality" (formula "87") (term "1"))
+ (rule "andRight" (formula "87"))
+ (branch
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "closeTrue" (formula "87"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "closeTrue" (formula "87"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "86"))
+ (branch
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "86"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "wellFormedAnon" (formula "86"))
+ (rule "wellFormedAnon" (formula "86") (term "0"))
+ (rule "replace_known_left" (formula "86") (term "1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "20")) (ifInst "" (formula "19")))
+ (rule "closeTrue" (formula "86"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "87"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "59"))
+ (rule "translateJavaSubInt" (formula "61") (term "5,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "0,4,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "0,5,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "4,0"))
+ (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "polySimp_elimSub" (formula "60") (term "5,0"))
+ (rule "mul_literals" (formula "60") (term "1,5,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "4,0"))
+ (rule "mul_literals" (formula "61") (term "1,4,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "5,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,5,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,4,0"))
+ (rule "applyEq" (formula "56") (term "1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "elim_double_block_2" (formula "89") (term "1"))
+ (rule "ifUnfold" (formula "89") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "89") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "89") (term "1"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "replace_known_left" (formula "89") (term "0,0,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "ifSplit" (formula "89"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "89") (term "1"))
+ (rule "variableDeclarationAssign" (formula "89") (term "1"))
+ (rule "variableDeclaration" (formula "89") (term "1") (newnames "read"))
+ (builtin "Use Operation Contract" (formula "89") (newnames "heapBefore_decrement_read,result_1,exc_3,heapAfter_decrement_read,anon_heap_decrement_read") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::decrement_read(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (decrement_read)"
+ (builtin "One Step Simplification" (formula "63"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "expand_inInt" (formula "63") (term "0,1,0,1"))
+ (rule "replace_int_MIN" (formula "63") (term "0,1,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "63") (term "1,0,0,1,0,1"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "68"))
+ (rule "andLeft" (formula "69"))
+ (rule "translateJavaMulInt" (formula "63") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "67"))
+ (rule "eqSymm" (formula "68"))
+ (rule "translateJavaAddInt" (formula "69") (term "1"))
+ (rule "translateJavaAddInt" (formula "68") (term "1"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "1"))
+ (rule "polySimp_addComm0" (formula "68") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "66"))
+ (rule "assignment" (formula "99") (term "1"))
+ (builtin "One Step Simplification" (formula "99"))
+ (builtin "Block Contract (Internal)" (formula "99") (newnames "exc_4,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "31")))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "eqSymm" (formula "100") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "100") (term "1"))
+ (rule "variableDeclaration" (formula "100") (term "1") (newnames "exc_4_1"))
+ (rule "assignment" (formula "100") (term "1"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "emptyStatement" (formula "100") (term "1"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "emptyStatement" (formula "100") (term "1"))
+ (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "69"))
+ (rule "polySimp_addAssoc" (formula "61") (term "4,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,4,0"))
+ (rule "add_literals" (formula "61") (term "0,0,4,0"))
+ (rule "add_zero_left" (formula "61") (term "0,4,0"))
+ (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "69"))
+ (rule "polySimp_addAssoc" (formula "60") (term "5,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,5,0"))
+ (rule "add_literals" (formula "60") (term "0,0,5,0"))
+ (rule "add_zero_left" (formula "60") (term "0,5,0"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "68"))
+ (rule "applyEq" (formula "69") (term "1,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "67"))
+ (rule "tryEmpty" (formula "100") (term "1"))
+ (rule "blockEmptyLabel" (formula "100") (term "1"))
+ (rule "blockEmpty" (formula "100") (term "1"))
+ (rule "methodCallEmpty" (formula "100") (term "1"))
+ (rule "emptyModality" (formula "100") (term "1"))
+ (rule "andRight" (formula "100"))
+ (branch
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "closeTrue" (formula "100"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "closeTrue" (formula "100"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "99"))
+ (branch
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "99"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "wellFormedAnonEQ" (formula "99") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "99") (term "0"))
+ (rule "wellFormedAnon" (formula "99") (term "0,0"))
+ (rule "replace_known_left" (formula "99") (term "1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "99"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "72"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "72"))
+ (rule "translateJavaAddInt" (formula "74") (term "0"))
+ (rule "translateJavaAddInt" (formula "74") (term "0,0"))
+ (rule "replace_known_left" (formula "73") (term "0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "69"))
+ (rule "polySimp_addAssoc" (formula "60") (term "5,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,5,0"))
+ (rule "add_literals" (formula "60") (term "0,0,5,0"))
+ (rule "add_zero_left" (formula "60") (term "0,5,0"))
+ (rule "applyEq" (formula "101") (term "0,1,0,0,0,0") (ifseqformula "68"))
+ (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "69"))
+ (rule "polySimp_addAssoc" (formula "61") (term "4,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,4,0"))
+ (rule "add_literals" (formula "61") (term "0,0,4,0"))
+ (rule "add_zero_left" (formula "61") (term "0,4,0"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "68"))
+ (rule "applyEq" (formula "69") (term "1,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "67"))
+ (rule "elim_double_block_2" (formula "101") (term "1"))
+ (rule "ifUnfold" (formula "101") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "replace_known_left" (formula "101") (term "0,0,1,0") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "ifSplit" (formula "101"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "102"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "102"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "101") (term "1"))
+ (rule "methodCallUnfoldArguments" (formula "101") (term "1"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "var"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_1"))
+ (rule "assignmentAdditionInt" (formula "101") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "expand_inInt" (formula "101") (userinteraction))
+ (rule "andRight" (formula "101"))
+ (branch
+ (rule "replace_int_MAX" (formula "101") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "101"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "57"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0"))
+ (rule "qeq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "50"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "44"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "1"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "72"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "44") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "closeFalse" (formula "44"))
+ )
+ (branch
+ (rule "replace_int_MIN" (formula "101") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "101"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "times_zero_2" (formula "57") (term "1"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0"))
+ (rule "qeq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "64"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "63") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "closeFalse" (formula "63"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "translateJavaAddInt" (formula "101") (term "0,1,0"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_2"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "variableDeclarationAssign" (formula "101") (term "1"))
+ (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_4"))
+ (rule "assignment" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (builtin "Use Operation Contract" (formula "101") (newnames "heapBefore_copy_nonoverlapping,exc_5,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "103"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "expand_inInt" (formula "75") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "75") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "translateJavaSubInt" (formula "75") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "76") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "76") (term "0,2,0,1,0"))
+ (rule "add_zero_left" (formula "76") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "3,0,1,0"))
+ (rule "add_zero_left" (formula "77") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "75") (term "0,2,1,0"))
+ (rule "add_zero_left" (formula "75") (term "0,2,1,0"))
+ (rule "sub_literals" (formula "75") (term "2,1,0"))
+ (rule "eqSymm" (formula "76") (term "1,0"))
+ (rule "eqSymm" (formula "77") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,3,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,1,0,0"))
+ (rule "blockEmpty" (formula "106") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "106") (newnames "exc_6,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "107"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "107") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "107") (term "1"))
+ (rule "variableDeclaration" (formula "107") (term "1") (newnames "exc_6_1"))
+ (rule "assignment" (formula "107") (term "1"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "emptyStatement" (formula "107") (term "1"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "emptyStatement" (formula "107") (term "1"))
+ (rule "commute_and" (formula "77") (term "0,0"))
+ (rule "commute_and" (formula "76") (term "0,0,0"))
+ (rule "commute_and" (formula "76") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "76") (term "0,0"))
+ (rule "commute_and_2" (formula "76") (term "0,0,0"))
+ (rule "tryEmpty" (formula "107") (term "1"))
+ (rule "blockEmptyLabel" (formula "107") (term "1"))
+ (rule "blockEmpty" (formula "107") (term "1"))
+ (rule "methodCallEmpty" (formula "107") (term "1"))
+ (rule "emptyModality" (formula "107") (term "1"))
+ (rule "andRight" (formula "107"))
+ (branch
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "closeTrue" (formula "107"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "closeTrue" (formula "107"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "106"))
+ (branch
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "106"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "wellFormedAnonEQ" (formula "106") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "106") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "106") (term "0,0"))
+ (rule "wellFormedAnon" (formula "106") (term "0,0,0"))
+ (rule "replace_known_left" (formula "106") (term "0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "106"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "107"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "79") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "79") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "81"))
+ (rule "replace_known_left" (formula "80") (term "0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "commute_and" (formula "77") (term "0,0"))
+ (rule "commute_and" (formula "76") (term "0,0,0"))
+ (rule "commute_and" (formula "76") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "76") (term "0,0"))
+ (rule "commute_and_2" (formula "76") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "109") (term "1"))
+ (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "ifSplit" (formula "109"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "109") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "109") (newnames "exc_7,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "31")))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "eqSymm" (formula "110") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "110") (term "1"))
+ (rule "variableDeclaration" (formula "110") (term "1") (newnames "exc_7_1"))
+ (rule "assignment" (formula "110") (term "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "emptyStatement" (formula "110") (term "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "emptyStatement" (formula "110") (term "1"))
+ (rule "tryEmpty" (formula "110") (term "1"))
+ (rule "blockEmptyLabel" (formula "110") (term "1"))
+ (rule "blockEmpty" (formula "110") (term "1"))
+ (rule "methodCallEmpty" (formula "110") (term "1"))
+ (rule "emptyModality" (formula "110") (term "1"))
+ (rule "andRight" (formula "110"))
+ (branch
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "closeTrue" (formula "110"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "closeTrue" (formula "110"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "109"))
+ (branch
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "109"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "wellFormedAnonEQ" (formula "109") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "109") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "109") (term "0,0"))
+ (rule "wellFormedAnon" (formula "109") (term "0,0,0"))
+ (rule "replace_known_left" (formula "109") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "109"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "110"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "84"))
+ (rule "eqSymm" (formula "85"))
+ (rule "replace_known_left" (formula "83") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "elim_double_block_2" (formula "112") (term "1"))
+ (rule "ifUnfold" (formula "112") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "112") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "112") (term "1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "replace_known_left" (formula "112") (term "0,0,1,0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "112") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "112") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "85") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "85") (term "0,1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "111")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "33")) (ifInst "" (formula "33")))
+ (rule "true_left" (formula "85"))
+ (rule "ifSplit" (formula "112"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "113"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "113"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "112") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "112") (newnames "exc_8,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "113"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "113") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "113") (term "1"))
+ (rule "variableDeclaration" (formula "113") (term "1") (newnames "exc_8_1"))
+ (rule "assignment" (formula "113") (term "1"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "emptyStatement" (formula "113") (term "1"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "emptyStatement" (formula "113") (term "1"))
+ (rule "tryEmpty" (formula "113") (term "1"))
+ (rule "blockEmptyLabel" (formula "113") (term "1"))
+ (rule "blockEmpty" (formula "113") (term "1"))
+ (rule "methodCallEmpty" (formula "113") (term "1"))
+ (rule "emptyModality" (formula "113") (term "1"))
+ (rule "andRight" (formula "113"))
+ (branch
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "closeTrue" (formula "113"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "closeTrue" (formula "113"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "112"))
+ (branch
+ (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "112"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "wellFormedAnonEQ" (formula "112") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "112") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "112") (term "0,0"))
+ (rule "wellFormedAnon" (formula "112") (term "0,0,0"))
+ (rule "replace_known_left" (formula "112") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "112"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "113"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "85"))
+ (rule "replace_known_left" (formula "86") (term "0") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "true_left" (formula "86"))
+ (rule "applyEq" (formula "87") (term "1") (ifseqformula "68"))
+ (rule "elim_double_block_2" (formula "115") (term "1"))
+ (rule "ifUnfold" (formula "115") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "replace_known_left" (formula "115") (term "0,0,1,0") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "ifSplit" (formula "115"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "115") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "115") (newnames "exc_9,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "31")))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "eqSymm" (formula "116") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "116") (term "1"))
+ (rule "variableDeclaration" (formula "116") (term "1") (newnames "exc_9_1"))
+ (rule "assignment" (formula "116") (term "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "emptyStatement" (formula "116") (term "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "emptyStatement" (formula "116") (term "1"))
+ (rule "tryEmpty" (formula "116") (term "1"))
+ (rule "blockEmptyLabel" (formula "116") (term "1"))
+ (rule "blockEmpty" (formula "116") (term "1"))
+ (rule "methodCallEmpty" (formula "116") (term "1"))
+ (rule "emptyModality" (formula "116") (term "1"))
+ (rule "andRight" (formula "116"))
+ (branch
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "closeTrue" (formula "116"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "closeTrue" (formula "116"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "115"))
+ (branch
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "115"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "wellFormedAnonEQ" (formula "115") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "115") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "115") (term "0,0"))
+ (rule "wellFormedAnon" (formula "115") (term "0,0,0"))
+ (rule "replace_known_left" (formula "115") (term "0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "115"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "88"))
+ (rule "replace_known_left" (formula "89") (term "0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "elim_double_block_2" (formula "117") (term "1"))
+ (rule "ifUnfold" (formula "117") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "117") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "117") (term "1"))
+ (builtin "One Step Simplification" (formula "117"))
+ (rule "replace_known_left" (formula "117") (term "0,0,1,0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "117"))
+ (builtin "Use Dependency Contract" (formula "67") (term "0") (ifInst "" (formula "69") (term "0")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "115")) (ifInst "" (formula "2")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "90") (term "1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "90") (term "0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "90") (term "0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "90") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "90") (term "1"))
+ (rule "translateJavaMulInt" (formula "90") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "90") (term "1,0,0,0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "20")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "90") (term "1,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (builtin "Use Dependency Contract" (formula "68") (term "1,1") (ifInst "" (formula "68") (term "0")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "115")) (ifInst "" (formula "2")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "90") (term "1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "90") (term "0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "90") (term "0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "90") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "90") (term "1"))
+ (rule "translateJavaMulInt" (formula "90") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "90") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "90") (term "1,0,0,0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "90") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "90") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "90") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "1,0,0,0"))
+ (rule "applyEq" (formula "90") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "90") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "applyEq" (formula "90") (term "0,1") (ifseqformula "68"))
+ (rule "elementOfUnion" (formula "90") (term "0,1,0"))
+ (rule "elementOfSingleton" (formula "90") (term "1,0,1,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "elementOfSingleton" (formula "90") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "ifSplit" (formula "117"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "118"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "118"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "117") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "117") (newnames "exc_10,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "118"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "118") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "118") (term "1"))
+ (rule "variableDeclaration" (formula "118") (term "1") (newnames "exc_10_1"))
+ (rule "assignment" (formula "118") (term "1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "emptyStatement" (formula "118") (term "1"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "emptyStatement" (formula "118") (term "1"))
+ (rule "tryEmpty" (formula "118") (term "1"))
+ (rule "blockEmptyLabel" (formula "118") (term "1"))
+ (rule "blockEmpty" (formula "118") (term "1"))
+ (rule "methodCallEmpty" (formula "118") (term "1"))
+ (rule "emptyModality" (formula "118") (term "1"))
+ (rule "andRight" (formula "118"))
+ (branch
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "closeTrue" (formula "118"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "closeTrue" (formula "118"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "117"))
+ (branch
+ (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "117"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "117"))
+ (rule "wellFormedAnonEQ" (formula "117") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "117") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "117") (term "0,0"))
+ (rule "wellFormedAnon" (formula "117") (term "0,0,0"))
+ (rule "replace_known_left" (formula "117") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "117"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "118"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "translateJavaSubInt" (formula "92") (term "0,0"))
+ (rule "replace_known_left" (formula "91") (term "0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "true_left" (formula "91"))
+ (rule "polySimp_elimSub" (formula "91") (term "0,0"))
+ (rule "elim_double_block_2" (formula "119") (term "1"))
+ (builtin "Use Dependency Contract" (formula "68") (term "0") (ifInst "" (formula "16") (term "0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "117")) (ifInst "" (formula "14")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "92") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "92") (term "1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "92") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "92") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "92") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "92") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "92") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "92") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "92") (term "0,0,0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "92") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "92") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0,0"))
+ (rule "applyEq" (formula "92") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "92") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "applyEq" (formula "92") (term "0,1") (ifseqformula "68"))
+ (rule "eqSymm" (formula "92") (term "1"))
+ (rule "distributeIntersection" (formula "92") (term "0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "1,0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,0,0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,1,0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,0,0,0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,0,1,0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,0,0,0,0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,0,0,1,0,1,0"))
+ (rule "unionEqualsEmpty" (formula "92") (term "1,0"))
+ (rule "unionEqualsEmpty" (formula "92") (term "0,1,0"))
+ (rule "disjointWithSingleton1" (formula "92") (term "1,0,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "92") (term "0,1,0,1,0"))
+ (rule "replace_known_right" (formula "92") (term "0,0,0,1,0,1,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "unionEqualsEmpty" (formula "92") (term "1,1,0"))
+ (rule "disjointWithSingleton1" (formula "92") (term "1,1,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "92") (term "0,1,1,1,0"))
+ (rule "replace_known_right" (formula "92") (term "0,0,0,1,1,1,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "unionEqualsEmpty" (formula "92") (term "1,1,0"))
+ (rule "disjointWithSingleton1" (formula "92") (term "1,1,1,0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "ifUnfold" (formula "119") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "119") (term "1") (newnames "x_11"))
+ (rule "inequality_comparison_simple" (formula "119") (term "1"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "replace_known_left" (formula "119") (term "0,0,1,0") (ifseqformula "90"))
+ (builtin "One Step Simplification" (formula "119"))
+ (builtin "Use Dependency Contract" (formula "56") (term "1,0") (ifInst "" (formula "16") (term "0,1,0")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "117")) (ifInst "" (formula "14")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "92") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "92") (term "1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "92") (term "0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "92") (term "0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "92") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "92") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "92") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "92") (term "1"))
+ (rule "translateJavaAddInt" (formula "92") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "92") (term "0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "92") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "92") (term "1,1,0,0,0,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "92") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "92") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "92") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "applyEq" (formula "92") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "92") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,1,0"))
+ (rule "unionEqualsEmpty" (formula "92") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "92") (term "0,1,0"))
+ (rule "distributeIntersection_2" (formula "92") (term "0,1,1,0"))
+ (rule "elementOfUnion" (formula "92") (term "0,0,1,0"))
+ (rule "elementOfSingleton" (formula "92") (term "1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "elementOfSingleton" (formula "92") (term "0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "ifSplit" (formula "119"))
+ (branch "if x_11 true"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_11 false"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "119") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "119") (newnames "exc_11,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "120") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "120") (term "1"))
+ (rule "variableDeclaration" (formula "120") (term "1") (newnames "exc_11_1"))
+ (rule "assignment" (formula "120") (term "1"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "emptyStatement" (formula "120") (term "1"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "emptyStatement" (formula "120") (term "1"))
+ (rule "tryEmpty" (formula "120") (term "1"))
+ (rule "blockEmptyLabel" (formula "120") (term "1"))
+ (rule "blockEmpty" (formula "120") (term "1"))
+ (rule "methodCallEmpty" (formula "120") (term "1"))
+ (rule "emptyModality" (formula "120") (term "1"))
+ (rule "andRight" (formula "120"))
+ (branch
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "closeTrue" (formula "120"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "closeTrue" (formula "120"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "119"))
+ (branch
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "119"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "wellFormedAnonEQ" (formula "119") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "119") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "119") (term "0,0"))
+ (rule "wellFormedAnon" (formula "119") (term "0,0,0"))
+ (rule "replace_known_left" (formula "119") (term "1,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "20")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "119"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "92"))
+ (rule "translateJavaSubInt" (formula "94") (term "1,0"))
+ (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "true_left" (formula "93"))
+ (rule "polySimp_elimSub" (formula "93") (term "1,0"))
+ (rule "elim_double_block_2" (formula "121") (term "1"))
+ (rule "ifUnfold" (formula "121") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "121") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "121") (term "1"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "replace_known_left" (formula "121") (term "0,0,1,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "121"))
+ (builtin "Use Dependency Contract" (formula "83") (term "0") (ifInst "" (formula "67") (term "0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,0,0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "119")) (ifInst "" (formula "71")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "94") (term "1,0,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "94") (term "0,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "94") (term "0,1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "94") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "94") (term "1"))
+ (rule "translateJavaMulInt" (formula "94") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "94") (term "1,0,0,0,0,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "94") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "94") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,1,0"))
+ (rule "replace_known_right" (formula "94") (term "0,0,0,1,0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "0,1,0"))
+ (rule "replace_known_left" (formula "94") (term "0,1,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "applyEq" (formula "94") (term "0,1") (ifseqformula "67"))
+ (rule "eqSymm" (formula "94") (term "1"))
+ (rule "replace_known_left" (formula "94") (term "1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (builtin "Use Dependency Contract" (formula "84") (term "1") (ifInst "" (formula "84") (term "0")) (ifInst "" (formula "75")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "119")) (ifInst "" (formula "2")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "94") (term "1,0,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "94") (term "0,1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "94") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "94") (term "1"))
+ (rule "translateJavaAddInt" (formula "94") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "94") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "94") (term "0,0,0,0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")) (ifInst "" (formula "84")))
+ (rule "true_left" (formula "94"))
+ (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "121") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "121") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "94") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "94") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "120")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "15")) (ifInst "" (formula "33")))
+ (rule "true_left" (formula "94"))
+ (builtin "Use Dependency Contract" (formula "87") (term "0") (ifInst "" (formula "121") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "94") (term "1,1,0,0,0,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,0,0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "119")) (ifInst "" (formula "74")) (ifInst "" (formula "71")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "94") (term "0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "94") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "94") (term "0,0,1,1,1,1,0"))
+ (rule "eqSymm" (formula "94") (term "1"))
+ (rule "translateJavaMulInt" (formula "94") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "94") (term "0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "94") (term "0,0,0,0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "94") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "94") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "applyEq" (formula "94") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "94") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "distributeIntersection" (formula "94") (term "0,1,0"))
+ (rule "unionEqualsEmpty" (formula "94") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "94") (term "0,1,0"))
+ (rule "disjointWithSingleton1" (formula "94") (term "1,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,0,1,0"))
+ (rule "replace_known_right" (formula "94") (term "0,0,0,0,1,0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,1,0"))
+ (rule "replace_known_right" (formula "94") (term "0,0,0,1,0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "commute_and" (formula "94") (term "0"))
+ (rule "ifSplit" (formula "122"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "123"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "123"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "122") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "122") (newnames "exc_12,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "123"))
+ (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "123") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "123") (term "1"))
+ (rule "variableDeclaration" (formula "123") (term "1") (newnames "exc_12_1"))
+ (rule "assignment" (formula "123") (term "1"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "emptyStatement" (formula "123") (term "1"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "emptyStatement" (formula "123") (term "1"))
+ (rule "tryEmpty" (formula "123") (term "1"))
+ (rule "blockEmptyLabel" (formula "123") (term "1"))
+ (rule "blockEmpty" (formula "123") (term "1"))
+ (rule "methodCallEmpty" (formula "123") (term "1"))
+ (rule "emptyModality" (formula "123") (term "1"))
+ (rule "andRight" (formula "123"))
+ (branch
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "closeTrue" (formula "123"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "closeTrue" (formula "123"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "122"))
+ (branch
+ (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "122"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "wellFormedAnonEQ" (formula "122") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "122") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "122") (term "0,0"))
+ (rule "wellFormedAnon" (formula "122") (term "0,0,0"))
+ (rule "replace_known_left" (formula "122") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "122"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "95"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "95") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "95") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "translateJavaSubInt" (formula "97") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "97") (term "0,0,0"))
+ (rule "replace_known_left" (formula "96") (term "0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "polySimp_elimSub" (formula "96") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "124") (term "1"))
+ (rule "ifUnfold" (formula "124") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "124") (term "1") (newnames "x_13"))
+ (rule "inequality_comparison_simple" (formula "124") (term "1"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "replace_known_left" (formula "124") (term "0,0,1,0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "ifSplit" (formula "124"))
+ (branch "if x_13 true"
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_13 false"
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "124") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "124") (newnames "exc_13,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "125") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "125") (term "1"))
+ (rule "variableDeclaration" (formula "125") (term "1") (newnames "exc_13_1"))
+ (rule "assignment" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "emptyStatement" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "emptyStatement" (formula "125") (term "1"))
+ (rule "tryEmpty" (formula "125") (term "1"))
+ (rule "blockEmptyLabel" (formula "125") (term "1"))
+ (rule "blockEmpty" (formula "125") (term "1"))
+ (rule "methodCallEmpty" (formula "125") (term "1"))
+ (rule "emptyModality" (formula "125") (term "1"))
+ (rule "andRight" (formula "125"))
+ (branch
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "124"))
+ (branch
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "124"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "wellFormedAnonEQ" (formula "124") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "124") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "124") (term "0,0"))
+ (rule "wellFormedAnon" (formula "124") (term "0,0,0"))
+ (rule "replace_known_left" (formula "124") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "124"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "97"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "97"))
+ (rule "translateJavaAddInt" (formula "99") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "99") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "99") (term "0,4,0"))
+ (rule "replace_known_left" (formula "98") (term "0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "true_left" (formula "98"))
+ (rule "polySimp_addComm1" (formula "98") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0,4,0"))
+ (rule "elim_double_block_2" (formula "126") (term "1"))
+ (rule "ifUnfold" (formula "126") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "126") (term "1") (newnames "x_14"))
+ (rule "inequality_comparison_simple" (formula "126") (term "1"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "replace_known_left" (formula "126") (term "0,0,1,0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "ifSplit" (formula "126"))
+ (branch "if x_14 true"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_14 false"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "126") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "126") (newnames "exc_14,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "127") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "127") (term "1"))
+ (rule "variableDeclaration" (formula "127") (term "1") (newnames "exc_14_1"))
+ (rule "assignment" (formula "127") (term "1"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "emptyStatement" (formula "127") (term "1"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "emptyStatement" (formula "127") (term "1"))
+ (rule "tryEmpty" (formula "127") (term "1"))
+ (rule "blockEmptyLabel" (formula "127") (term "1"))
+ (rule "blockEmpty" (formula "127") (term "1"))
+ (rule "methodCallEmpty" (formula "127") (term "1"))
+ (rule "emptyModality" (formula "127") (term "1"))
+ (rule "andRight" (formula "127"))
+ (branch
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "closeTrue" (formula "127"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "closeTrue" (formula "127"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "126"))
+ (branch
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "126"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "wellFormedAnonEQ" (formula "126") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "126") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "126") (term "0,0"))
+ (rule "wellFormedAnon" (formula "126") (term "0,0,0"))
+ (rule "replace_known_left" (formula "126") (term "1,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "126"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "99"))
+ (rule "translateJavaAddInt" (formula "101") (term "5,0"))
+ (rule "translateJavaAddInt" (formula "101") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "101") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "101") (term "0,5,0"))
+ (rule "replace_known_left" (formula "100") (term "0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "true_left" (formula "100"))
+ (rule "polySimp_addComm1" (formula "100") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,5,0"))
+ (rule "elim_double_block_2" (formula "128") (term "1"))
+ (rule "ifUnfold" (formula "128") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "128") (term "1") (newnames "x_15"))
+ (rule "inequality_comparison_simple" (formula "128") (term "1"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "replace_known_left" (formula "128") (term "0,0,1,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "ifSplit" (formula "128"))
+ (branch "if x_15 true"
+ (builtin "One Step Simplification" (formula "129"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_15 false"
+ (builtin "One Step Simplification" (formula "129"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "128") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "128") (newnames "exc_15,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "31")))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "eqSymm" (formula "129") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "129") (term "1"))
+ (rule "variableDeclaration" (formula "129") (term "1") (newnames "exc_15_1"))
+ (rule "assignment" (formula "129") (term "1"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "emptyStatement" (formula "129") (term "1"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "emptyStatement" (formula "129") (term "1"))
+ (rule "tryEmpty" (formula "129") (term "1"))
+ (rule "blockEmptyLabel" (formula "129") (term "1"))
+ (rule "blockEmpty" (formula "129") (term "1"))
+ (rule "methodCallEmpty" (formula "129") (term "1"))
+ (rule "emptyModality" (formula "129") (term "1"))
+ (rule "andRight" (formula "129"))
+ (branch
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "closeTrue" (formula "129"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "closeTrue" (formula "129"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "128"))
+ (branch
+ (builtin "One Step Simplification" (formula "128") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "128"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "wellFormedAnonEQ" (formula "128") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "128") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "128") (term "0,0"))
+ (rule "wellFormedAnon" (formula "128") (term "0,0,0"))
+ (rule "replace_known_left" (formula "128") (term "1,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "128") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "128"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "129"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "101"))
+ (rule "translateJavaAddInt" (formula "103") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "103") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "103") (term "0,4,0"))
+ (rule "replace_known_left" (formula "102") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "polySimp_addComm1" (formula "102") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,4,0"))
+ (rule "elim_double_block_2" (formula "130") (term "1"))
+ (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_16"))
+ (rule "inequality_comparison_simple" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "Use Dependency Contract" (formula "83") (term "0") (ifInst "" (formula "69") (term "0")) (ifInst "" (formula "75")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "128")) (ifInst "" (formula "2")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "103") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "103") (term "1,0,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnon" (formula "103") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "103") (term "0,1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "103") (term "0,0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "103") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "103") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "103") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "103") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "103") (term "1"))
+ (rule "translateJavaMulInt" (formula "103") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "103") (term "1,0,0,0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "103") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "103") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "103") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "103") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "inEqSimp_commuteLeq" (formula "103") (term "1,0,0,0"))
+ (rule "applyEq" (formula "103") (term "0,1") (ifseqformula "69"))
+ (rule "eqSymm" (formula "103") (term "1"))
+ (rule "applyEq" (formula "103") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "103") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "applyEq" (formula "103") (term "0,1") (ifseqformula "83"))
+ (rule "elementOfUnion" (formula "103") (term "0,1,0"))
+ (rule "elementOfSingleton" (formula "103") (term "1,0,1,0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "ifSplit" (formula "130"))
+ (branch "if x_16 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_16 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (rule "variableDeclarationAssign" (formula "130") (term "1"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "first_value"))
+ (rule "assignment_array2" (formula "130"))
+ (branch "Normal Execution (_swap_1 != null)"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "Block Contract (Internal)" (formula "130") (newnames "exc_16,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "131") (term "0,0,1,0,1"))
+ (rule "pullOutSelect" (formula "131") (term "0,1,0,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "128")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "132") (term "0,1,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "131") (term "1"))
+ (rule "variableDeclaration" (formula "131") (term "1") (newnames "exc_16_1"))
+ (rule "assignment" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "emptyStatement" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "emptyStatement" (formula "131") (term "1"))
+ (rule "tryEmpty" (formula "131") (term "1"))
+ (rule "blockEmptyLabel" (formula "131") (term "1"))
+ (rule "blockEmpty" (formula "131") (term "1"))
+ (rule "methodCallEmpty" (formula "131") (term "1"))
+ (rule "emptyModality" (formula "131") (term "1"))
+ (rule "andRight" (formula "131"))
+ (branch
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "closeTrue" (formula "131"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "closeTrue" (formula "131"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "130"))
+ (branch
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "wellFormedAnonEQ" (formula "130") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "130") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "130") (term "0,0"))
+ (rule "wellFormedAnon" (formula "130") (term "0,0,0"))
+ (rule "replace_known_left" (formula "130") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "103"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "expand_inInt" (formula "103") (term "1"))
+ (rule "replace_int_MAX" (formula "103") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "103") (term "0,1,1"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "103"))
+ (rule "replace_known_left" (formula "104") (term "0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "true_left" (formula "104"))
+ (rule "inEqSimp_commuteLeq" (formula "105"))
+ (rule "pullOutSelect" (formula "133") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "applyEq" (formula "106") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "105") (term "0") (ifseqformula "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "130")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "106") (term "0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "134") (term "0,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "105") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "elim_double_block_2" (formula "133") (term "1"))
+ (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_17"))
+ (rule "inequality_comparison_simple" (formula "133") (term "1"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "133"))
+ (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "133") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "133") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "106") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "106") (term "0,1") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "132")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "33")) (ifInst "" (formula "33")))
+ (rule "true_left" (formula "106"))
+ (builtin "Use Dependency Contract" (formula "87") (term "0") (ifInst "" (formula "133") (term "1,0,1,0,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "106") (term "1,1,0,0,0,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,0,0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "131")) (ifInst "" (formula "74")) (ifInst "" (formula "71")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "106") (term "0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "106") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "106") (term "0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "106") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "106") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "106") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "106") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "106") (term "0,1,1,1,1,0"))
+ (rule "eqSymm" (formula "106") (term "1"))
+ (rule "translateJavaMulInt" (formula "106") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "106") (term "0,0,0,0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "106") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "106") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "106") (term "1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "106") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "106") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "applyEq" (formula "106") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "106") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "distributeIntersection" (formula "106") (term "0,1,0"))
+ (rule "unionEqualsEmpty" (formula "106") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "106") (term "1,1,0"))
+ (rule "disjointWithSingleton1" (formula "106") (term "0,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "106") (term "0,1,1,0"))
+ (rule "replace_known_right" (formula "106") (term "0,0,0,1,1,0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "elementOfArrayRangeConcrete" (formula "106") (term "0,1,0"))
+ (rule "replace_known_right" (formula "106") (term "0,0,0,1,0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "commute_and" (formula "106") (term "0"))
+ (rule "ifSplit" (formula "133"))
+ (branch "if x_17 true"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_17 false"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "133") (term "1"))
+ (rule "variableDeclarationAssign" (formula "133") (term "1"))
+ (rule "variableDeclaration" (formula "133") (term "1") (newnames "target_bucket"))
+ (builtin "Use Operation Contract" (formula "133") (newnames "heapBefore_classify,result_2,exc_17") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify)"
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "80")))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "expand_inInt" (formula "106") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "106") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "106") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "107"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "108"))
+ (rule "andLeft" (formula "110"))
+ (rule "andLeft" (formula "111"))
+ (rule "eqSymm" (formula "111"))
+ (rule "inEqSimp_commuteLeq" (formula "107"))
+ (rule "inEqSimp_commuteLeq" (formula "108"))
+ (rule "assignment" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "Block Contract (Internal)" (formula "141") (newnames "exc_18,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "142") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "142") (term "1"))
+ (rule "variableDeclaration" (formula "142") (term "1") (newnames "exc_18_1"))
+ (rule "assignment" (formula "142") (term "1"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "emptyStatement" (formula "142") (term "1"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "emptyStatement" (formula "142") (term "1"))
+ (rule "applyEq" (formula "109") (term "1") (ifseqformula "36"))
+ (rule "tryEmpty" (formula "142") (term "1"))
+ (rule "blockEmptyLabel" (formula "142") (term "1"))
+ (rule "blockEmpty" (formula "142") (term "1"))
+ (rule "methodCallEmpty" (formula "142") (term "1"))
+ (rule "emptyModality" (formula "142") (term "1"))
+ (rule "andRight" (formula "142"))
+ (branch
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "closeTrue" (formula "142"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "closeTrue" (formula "142"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "141"))
+ (branch
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "wellFormedAnonEQ" (formula "141") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "141") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "141") (term "0,0"))
+ (rule "wellFormedAnon" (formula "141") (term "0,0,0"))
+ (rule "replace_known_left" (formula "141") (term "0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "114") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "114") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "andLeft" (formula "114"))
+ (rule "translateJavaAddInt" (formula "116") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "0,4,0"))
+ (rule "replace_known_left" (formula "115") (term "0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "true_left" (formula "115"))
+ (rule "polySimp_addComm1" (formula "115") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "115") (term "0,4,0"))
+ (rule "applyEq" (formula "109") (term "1") (ifseqformula "36"))
+ (rule "elim_double_block_2" (formula "143") (term "1"))
+ (builtin "Use Dependency Contract" (formula "94") (term "1,1") (ifInst "" (formula "143") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,0,0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "141")) (ifInst "" (formula "71")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "116") (term "1,0,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "116") (term "0,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "116") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "116") (term "0,1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "116") (term "0,0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "116") (term "0,0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "116") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "116") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "116") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "116") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "116") (term "1"))
+ (rule "translateJavaMulInt" (formula "116") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "116") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "116") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "116") (term "1,0,0,0,0,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "polySimp_mulComm0" (formula "116") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "116") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "116") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "116") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "inEqSimp_commuteLeq" (formula "116") (term "1,0,0,0"))
+ (rule "distributeIntersection" (formula "116") (term "0,1,0"))
+ (rule "applyEq" (formula "116") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "116") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "unionEqualsEmpty" (formula "116") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "116") (term "1,1,0"))
+ (rule "disjointWithSingleton1" (formula "116") (term "0,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "116") (term "0,1,1,0"))
+ (rule "replace_known_right" (formula "116") (term "0,0,0,1,1,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "elementOfArrayRangeConcrete" (formula "116") (term "0,1,0"))
+ (rule "replace_known_right" (formula "116") (term "0,0,0,1,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "commute_and" (formula "116") (term "0"))
+ (rule "ifUnfold" (formula "143") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "143") (term "1") (newnames "x_18"))
+ (rule "inequality_comparison_simple" (formula "143") (term "1"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "replace_known_left" (formula "143") (term "0,0,1,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "ifSplit" (formula "143"))
+ (branch "if x_18 true"
+ (builtin "One Step Simplification" (formula "144"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_18 false"
+ (builtin "One Step Simplification" (formula "144"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "143") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "143") (newnames "exc_19,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "144"))
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "144") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "144") (term "1"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "exc_19_1"))
+ (rule "assignment" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "emptyStatement" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "emptyStatement" (formula "144") (term "1"))
+ (rule "tryEmpty" (formula "144") (term "1"))
+ (rule "blockEmptyLabel" (formula "144") (term "1"))
+ (rule "blockEmpty" (formula "144") (term "1"))
+ (rule "methodCallEmpty" (formula "144") (term "1"))
+ (rule "emptyModality" (formula "144") (term "1"))
+ (rule "andRight" (formula "144"))
+ (branch
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "closeTrue" (formula "144"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "closeTrue" (formula "144"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "143"))
+ (branch
+ (builtin "One Step Simplification" (formula "143") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "143"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "wellFormedAnonEQ" (formula "143") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "143") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "143") (term "0,0"))
+ (rule "wellFormedAnon" (formula "143") (term "0,0,0"))
+ (rule "replace_known_left" (formula "143") (term "1,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "143") (ifInst "" (formula "20")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")))
+ (rule "closeTrue" (formula "143"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "144"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "118"))
+ (rule "translateJavaAddInt" (formula "118") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "119") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "0,4,0"))
+ (rule "translateJavaAddInt" (formula "118") (term "4,0"))
+ (rule "replace_known_left" (formula "117") (term "0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "117"))
+ (rule "true_left" (formula "117"))
+ (rule "polySimp_addComm1" (formula "117") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "117") (term "0,4,0"))
+ (rule "elim_double_block_2" (formula "146") (term "1"))
+ (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_19"))
+ (rule "inequality_comparison_simple" (formula "146") (term "1"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "ifSplit" (formula "146"))
+ (branch "if x_19 true"
+ (builtin "One Step Simplification" (formula "147"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_19 false"
+ (builtin "One Step Simplification" (formula "147"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "146") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "146") (newnames "exc_20,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "147"))
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "147") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "147") (term "1"))
+ (rule "variableDeclaration" (formula "147") (term "1") (newnames "exc_20_1"))
+ (rule "assignment" (formula "147") (term "1"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "emptyStatement" (formula "147") (term "1"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "emptyStatement" (formula "147") (term "1"))
+ (rule "tryEmpty" (formula "147") (term "1"))
+ (rule "blockEmptyLabel" (formula "147") (term "1"))
+ (rule "blockEmpty" (formula "147") (term "1"))
+ (rule "methodCallEmpty" (formula "147") (term "1"))
+ (rule "emptyModality" (formula "147") (term "1"))
+ (rule "andRight" (formula "147"))
+ (branch
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "closeTrue" (formula "147"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "closeTrue" (formula "147"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "146"))
+ (branch
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "146"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "146"))
+ (rule "wellFormedAnonEQ" (formula "146") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "146") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "146") (term "0,0"))
+ (rule "wellFormedAnon" (formula "146") (term "0,0,0"))
+ (rule "replace_known_left" (formula "146") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "146"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "147"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "andLeft" (formula "119"))
+ (rule "andLeft" (formula "119"))
+ (rule "translateJavaAddInt" (formula "121") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "121") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "121") (term "0,4,0"))
+ (rule "replace_known_left" (formula "120") (term "0") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "true_left" (formula "120"))
+ (rule "polySimp_addComm1" (formula "120") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "120") (term "0,4,0"))
+ (rule "elim_double_block_2" (formula "148") (term "1"))
+ (rule "ifUnfold" (formula "148") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_20"))
+ (rule "inequality_comparison_simple" (formula "148") (term "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "replace_known_left" (formula "148") (term "0,0,1,0") (ifseqformula "119"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "ifSplit" (formula "148"))
+ (branch "if x_20 true"
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_20 false"
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "148") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "148") (newnames "exc_21,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "149") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "exc_21_1"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "emptyStatement" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "emptyStatement" (formula "149") (term "1"))
+ (rule "tryEmpty" (formula "149") (term "1"))
+ (rule "blockEmptyLabel" (formula "149") (term "1"))
+ (rule "blockEmpty" (formula "149") (term "1"))
+ (rule "methodCallEmpty" (formula "149") (term "1"))
+ (rule "emptyModality" (formula "149") (term "1"))
+ (rule "andRight" (formula "149"))
+ (branch
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "closeTrue" (formula "149"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "closeTrue" (formula "149"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "148"))
+ (branch
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "148"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "wellFormedAnonEQ" (formula "148") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0,0"))
+ (rule "replace_known_left" (formula "148") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "148"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "121"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "121") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "121") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "expand_inInt" (formula "121") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "121") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "121") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "121"))
+ (rule "andLeft" (formula "121"))
+ (rule "translateJavaAddInt" (formula "123") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "123") (term "1,1,0"))
+ (rule "replace_known_left" (formula "122") (term "0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "true_left" (formula "122"))
+ (rule "inEqSimp_commuteLeq" (formula "122") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "122") (term "1,1,0,0"))
+ (rule "applyEq" (formula "122") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "commute_and" (formula "122") (term "1,0"))
+ (rule "commute_and" (formula "122") (term "1,0,0"))
+ (rule "commute_and" (formula "122") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "122") (term "0,0"))
+ (rule "commute_and_2" (formula "122") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "150") (term "1"))
+ (rule "ifUnfold" (formula "150") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "150") (term "1") (newnames "x_21"))
+ (rule "inequality_comparison_simple" (formula "150") (term "1"))
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "replace_known_left" (formula "150") (term "0,0,1,0") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "150"))
+ (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "150") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "150") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "123") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "123") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "149")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "15")) (ifInst "" (formula "33")))
+ (rule "true_left" (formula "123"))
+ (builtin "Use Dependency Contract" (formula "87") (term "0") (ifInst "" (formula "150") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "123") (term "1,0,0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "148")) (ifInst "" (formula "71")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "123") (term "1,0,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "123") (term "0,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "123") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "123") (term "0,1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "123") (term "0,0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "123") (term "0,0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "123") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "123") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "123") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "123") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "123") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "123") (term "0,1,1,1,1,0"))
+ (rule "eqSymm" (formula "123") (term "1"))
+ (rule "translateJavaMulInt" (formula "123") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "123") (term "1,1,0,0,0,0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "polySimp_mulComm0" (formula "123") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "123") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "123") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "123") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "123") (term "1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "123") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "123") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "applyEq" (formula "123") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "123") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "distributeIntersection" (formula "123") (term "0,1,0"))
+ (rule "unionEqualsEmpty" (formula "123") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "123") (term "1,1,0"))
+ (rule "disjointWithSingleton1" (formula "123") (term "0,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "123") (term "0,1,1,0"))
+ (rule "replace_known_right" (formula "123") (term "0,0,0,1,1,0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "elementOfArrayRangeConcrete" (formula "123") (term "0,1,0"))
+ (rule "replace_known_right" (formula "123") (term "0,0,0,1,0") (ifseqformula "134"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "commute_and" (formula "123") (term "0"))
+ (rule "ifSplit" (formula "150"))
+ (branch "if x_21 true"
+ (builtin "One Step Simplification" (formula "151"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_21 false"
+ (builtin "One Step Simplification" (formula "151"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "150") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "150") (newnames "exc_22,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "151"))
+ (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "31")))
+ (rule "eqSymm" (formula "151") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "151") (term "1"))
+ (rule "variableDeclaration" (formula "151") (term "1") (newnames "exc_22_1"))
+ (rule "assignment" (formula "151") (term "1"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "emptyStatement" (formula "151") (term "1"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "emptyStatement" (formula "151") (term "1"))
+ (rule "tryEmpty" (formula "151") (term "1"))
+ (rule "blockEmptyLabel" (formula "151") (term "1"))
+ (rule "blockEmpty" (formula "151") (term "1"))
+ (rule "methodCallEmpty" (formula "151") (term "1"))
+ (rule "emptyModality" (formula "151") (term "1"))
+ (rule "andRight" (formula "151"))
+ (branch
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "closeTrue" (formula "151"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "closeTrue" (formula "151"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "150"))
+ (branch
+ (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "150"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "wellFormedAnonEQ" (formula "150") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "150") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "150") (term "0,0"))
+ (rule "wellFormedAnon" (formula "150") (term "0,0,0"))
+ (rule "replace_known_left" (formula "150") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "150"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "151"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "123") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "123") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "expand_inInt" (formula "123") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "123") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "123") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "123"))
+ (rule "andLeft" (formula "123"))
+ (rule "translateJavaAddInt" (formula "125") (term "0,1,0"))
+ (rule "replace_known_left" (formula "124") (term "0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "true_left" (formula "124"))
+ (rule "inEqSimp_commuteLeq" (formula "124") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0,0,0"))
+ (rule "applyEq" (formula "124") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "commute_and" (formula "124") (term "1,0,0"))
+ (rule "commute_and" (formula "124") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "124") (term "0,0"))
+ (rule "commute_and_2" (formula "124") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "152") (term "1"))
+ (rule "ifUnfold" (formula "152") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "152") (term "1") (newnames "x_22"))
+ (rule "inequality_comparison_simple" (formula "152") (term "1"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "replace_known_left" (formula "152") (term "0,0,1,0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "152"))
+ (builtin "Use Dependency Contract" (formula "94") (term "1,1") (ifInst "" (formula "152") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,0,0,0,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "150")) (ifInst "" (formula "71")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "125") (term "1,0,0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "125") (term "0,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "125") (term "0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "125") (term "0,1,0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "125") (term "0,0,0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "125") (term "0,0,1,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "125") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "125") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "125") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "125") (term "0,1,1,1,1,0"))
+ (rule "eqSymm" (formula "125") (term "1"))
+ (rule "translateJavaMulInt" (formula "125") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "125") (term "1,1,0,0,0,0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "polySimp_mulComm0" (formula "125") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "125") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "125") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "125") (term "0,1,0,0"))
+ (rule "replace_known_left" (formula "125") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "inEqSimp_commuteLeq" (formula "125") (term "1,0,0,0"))
+ (rule "distributeIntersection" (formula "125") (term "0,1,0"))
+ (rule "applyEq" (formula "125") (term "1,1,0,0") (ifseqformula "54"))
+ (rule "replace_known_left" (formula "125") (term "1,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "unionEqualsEmpty" (formula "125") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "125") (term "1,1,0"))
+ (rule "disjointWithSingleton1" (formula "125") (term "0,1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "125") (term "0,1,1,0"))
+ (rule "replace_known_right" (formula "125") (term "0,0,0,1,1,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "elementOfArrayRangeConcrete" (formula "125") (term "0,1,0"))
+ (rule "replace_known_right" (formula "125") (term "0,0,0,1,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "commute_and" (formula "125") (term "0"))
+ (rule "ifSplit" (formula "152"))
+ (branch "if x_22 true"
+ (builtin "One Step Simplification" (formula "153"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_22 false"
+ (builtin "One Step Simplification" (formula "153"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "152") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "152") (newnames "exc_23,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "31")))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "eqSymm" (formula "153") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "153") (term "1"))
+ (rule "variableDeclaration" (formula "153") (term "1") (newnames "exc_23_1"))
+ (rule "assignment" (formula "153") (term "1"))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "emptyStatement" (formula "153") (term "1"))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "emptyStatement" (formula "153") (term "1"))
+ (rule "tryEmpty" (formula "153") (term "1"))
+ (rule "blockEmptyLabel" (formula "153") (term "1"))
+ (rule "blockEmpty" (formula "153") (term "1"))
+ (rule "methodCallEmpty" (formula "153") (term "1"))
+ (rule "emptyModality" (formula "153") (term "1"))
+ (rule "andRight" (formula "153"))
+ (branch
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "closeTrue" (formula "153"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "closeTrue" (formula "153"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "152"))
+ (branch
+ (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "152"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "wellFormedAnonEQ" (formula "152") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "152") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "152") (term "0,0"))
+ (rule "wellFormedAnon" (formula "152") (term "0,0,0"))
+ (rule "replace_known_left" (formula "152") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "152"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "125"))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "expand_inInt" (formula "125") (term "0,0,1"))
+ (rule "replace_int_MIN" (formula "125") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "125") (term "1,0,0,0,1"))
+ (rule "andLeft" (formula "125"))
+ (rule "andLeft" (formula "125"))
+ (rule "eqSymm" (formula "127") (term "1,1,0"))
+ (rule "eqSymm" (formula "127") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "127") (term "1,0,1,0"))
+ (rule "replace_known_left" (formula "126") (term "0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "true_left" (formula "126"))
+ (rule "polySimp_addComm0" (formula "126") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "126") (term "1,0,0"))
+ (rule "commute_and" (formula "126") (term "0,0"))
+ (rule "elim_double_block_2" (formula "154") (term "1"))
+ (rule "ifUnfold" (formula "154") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "154") (term "1") (newnames "x_23"))
+ (rule "inequality_comparison_simple" (formula "154") (term "1"))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "replace_known_left" (formula "154") (term "0,0,1,0") (ifseqformula "125"))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "ifSplit" (formula "154"))
+ (branch "if x_23 true"
+ (builtin "One Step Simplification" (formula "155"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_23 false"
+ (builtin "One Step Simplification" (formula "155"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "154") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "154") (newnames "exc_24,heap_Before_BLOCK_19,savedHeap_Before_BLOCK_19,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "31")))
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "eqSymm" (formula "155") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "155") (term "1"))
+ (rule "variableDeclaration" (formula "155") (term "1") (newnames "exc_24_1"))
+ (rule "assignment" (formula "155") (term "1"))
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "emptyStatement" (formula "155") (term "1"))
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "emptyStatement" (formula "155") (term "1"))
+ (rule "tryEmpty" (formula "155") (term "1"))
+ (rule "blockEmptyLabel" (formula "155") (term "1"))
+ (rule "blockEmpty" (formula "155") (term "1"))
+ (rule "methodCallEmpty" (formula "155") (term "1"))
+ (rule "emptyModality" (formula "155") (term "1"))
+ (rule "andRight" (formula "155"))
+ (branch
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "closeTrue" (formula "155"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "closeTrue" (formula "155"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "154"))
+ (branch
+ (builtin "One Step Simplification" (formula "154") (ifInst "" (formula "31")))
+ (rule "closeTrue" (formula "154"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "wellFormedAnonEQ" (formula "154") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "154") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "154") (term "0,0"))
+ (rule "wellFormedAnon" (formula "154") (term "0,0,0"))
+ (rule "replace_known_left" (formula "154") (term "1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "154") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")))
+ (rule "closeTrue" (formula "154"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "155"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "1,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,1,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "expand_inInt" (formula "127") (term "0,0,1"))
+ (rule "replace_int_MIN" (formula "127") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "127") (term "1,0,0,0,1"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "127"))
+ (rule "translateJavaAddInt" (formula "129") (term "0,1,0"))
+ (rule "replace_known_left" (formula "128") (term "0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "128"))
+ (rule "true_left" (formula "128"))
+ (rule "polySimp_addComm0" (formula "128") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "128") (term "1,0,0"))
+ (rule "commute_and" (formula "128") (term "0,0"))
+ (rule "elim_double_block_2" (formula "156") (term "1"))
+ (rule "ifUnfold" (formula "156") (term "1") (inst "#boolv=x_4"))
+ (rule "variableDeclaration" (formula "156") (term "1") (newnames "x_24"))
+ (rule "inequality_comparison_simple" (formula "156") (term "1"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "replace_known_left" (formula "156") (term "0,0,1,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "ifSplit" (formula "156"))
+ (branch "if x_24 true"
+ (builtin "One Step Simplification" (formula "157"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_24 false"
+ (builtin "One Step Simplification" (formula "157"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "156") (term "1"))
+ (builtin "Use Operation Contract" (formula "156") (newnames "heapBefore_place_block,exc_25,heapAfter_place_block,anon_heap_place_block") (contract "de.wiesler.Permute[de.wiesler.Permute::place_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (place_block)"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "One Step Simplification" (formula "158"))
+ (rule "expand_inInt" (formula "130") (term "0,0,0,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "130") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "130") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "130") (term "0,1,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "130") (term "1,0,0,0,0,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "130") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "130") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "130") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "130") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "130"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "133"))
+ (rule "andLeft" (formula "132"))
+ (rule "andLeft" (formula "134"))
+ (rule "andLeft" (formula "133"))
+ (rule "andLeft" (formula "134"))
+ (rule "andLeft" (formula "135"))
+ (rule "translateJavaSubInt" (formula "130") (term "2,0,0,1,0"))
+ (rule "eqSymm" (formula "132") (term "0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "134") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "132") (term "0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "130") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "130") (term "1,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "134") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "130") (term "2,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "132") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "132") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "133") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "133") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "134") (term "1,0,0"))
+ (rule "blockEmpty" (formula "166") (term "1"))
+ (rule "applyEq" (formula "132") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "133") (term "1,1,0,0,0") (ifseqformula "36"))
+ (rule "commuteUnion_2" (formula "130") (term "1,1,0"))
+ (rule "commuteUnion" (formula "130") (term "0,1,0"))
+ (rule "commuteUnion" (formula "130") (term "0,1,1,0"))
+ (rule "commuteUnion" (formula "130") (term "1,0"))
+ (rule "commute_and" (formula "134") (term "0,0"))
+ (rule "commute_and" (formula "132") (term "0,1,0"))
+ (rule "commute_and_2" (formula "132") (term "1,0"))
+ (rule "commute_and" (formula "132") (term "1,0,0"))
+ (rule "commute_and" (formula "133") (term "1,0,0"))
+ (rule "commute_and" (formula "132") (term "0,0,0"))
+ (rule "commute_and" (formula "133") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "132") (term "0,0"))
+ (rule "commute_and_2" (formula "132") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "133") (term "0,0"))
+ (rule "commute_and_2" (formula "133") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "130") (term "1,0"))
+ (rule "lsContinue" (formula "166") (term "1"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "precOfInt" (formula "166") (userinteraction))
+ (rule "andRight" (formula "166") (userinteraction))
+ (branch "Case 1"
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "166") (term "1") (userinteraction))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "131"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "76"))
+ (rule "wellFormedAnonEQ" (formula "1") (term "1,0,0,0") (ifseqformula "131"))
+ (rule "wellFormedAnonEQ" (formula "1") (term "0,1,0,0,0") (ifseqformula "76"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,1,0,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "138")) (ifInst "" (formula "75")) (ifInst "" (formula "130")) (ifInst "" (formula "164")) (ifInst "" (formula "138")) (ifInst "" (formula "136")) (ifInst "" (formula "28")))
+ (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "64"))
+ (rule "wellFormedAnon" (formula "1") (term "0,1,0"))
+ (rule "wellFormedAnon" (formula "1") (term "0,0,1,0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,1,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21")) (ifInst "" (formula "8")) (ifInst "" (formula "63")))
+ (rule "polySimp_homoEq" (formula "133") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "123") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "129") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "125") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "133") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "123") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "129") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "133") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "133") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "123") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "123") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "129") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "129") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "125") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "167"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_addAssoc" (formula "134") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "134") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "124") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "124") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "130") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "130") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "126") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "134") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "134") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "89"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "126") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "126") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "124") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "135") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0"))
+ (rule "add_literals" (formula "89") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "89") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0"))
+ (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,1,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "add_literals" (formula "58") (term "0,0"))
+ (rule "add_zero_left" (formula "58") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "applyEq" (formula "2") (term "0,1,0,0") (ifseqformula "56"))
+ (rule "replace_known_left" (formula "2") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "polySimp_sepNegMonomial" (formula "135") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "135") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "135") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "125") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "125") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "131") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "131") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "131") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "127") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "127") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "127") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "135") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "135") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "135") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "135") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "135") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "79") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "112"))
+ (rule "polySimp_mulComm0" (formula "112") (term "1"))
+ (rule "polySimp_rightDist" (formula "112") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "112") (term "1,1"))
+ (rule "mul_literals" (formula "112") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "112") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "127") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "127") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "127") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "127") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "127") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "127") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "125") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "125") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "125") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "125") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "136") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "136") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "136") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "136") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "136") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "136") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "90"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0"))
+ (rule "polySimp_elimOne" (formula "90") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "76"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "59"))
+ (rule "times_zero_2" (formula "59") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "43"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "96") (term "0,0") (ifseqformula "15"))
+ (rule "leq_literals" (formula "96") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "108") (ifseqformula "109"))
+ (rule "leq_literals" (formula "108") (term "0"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "true_left" (formula "108"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "instAll" (formula "166") (term "2,0") (ifseqformula "133") (userinteraction))
+ (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "9")))
+ (rule "polySimp_homoEq" (formula "129") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "123") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "125") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "133") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "129") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "123") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "133") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "129") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "129") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "123") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "123") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "125") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "133") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "133") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "129") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "129") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "123") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "123") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "125") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "133") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "133") (term "0,0,1,1,0"))
+ (rule "inEqSimp_ltRight" (formula "167"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "126") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "126") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "134") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "134") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "89"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0,0"))
+ (rule "mul_literals" (formula "89") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "135") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "124") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0,0"))
+ (rule "add_literals" (formula "89") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "89") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "add_literals" (formula "58") (term "0,0"))
+ (rule "add_zero_left" (formula "58") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,1,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "130") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "130") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "130") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "124") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "124") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "124") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "126") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "126") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "126") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "134") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "134") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "134") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "126") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "126") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "126") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "126") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "126") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "126") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "134") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "134") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "134") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "134") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "134") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "134") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1"))
+ (rule "polySimp_rightDist" (formula "111") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "111") (term "1,1"))
+ (rule "mul_literals" (formula "111") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "111") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "135") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "135") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "135") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "135") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "135") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "124") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "124") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "124") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "124") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "124") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "89"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0"))
+ (rule "polySimp_elimOne" (formula "89") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "58"))
+ (rule "times_zero_2" (formula "58") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "42"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "94") (term "0,0") (ifseqformula "14"))
+ (rule "leq_literals" (formula "94") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "inEqSimp_subsumption1" (formula "107") (ifseqformula "108"))
+ (rule "leq_literals" (formula "107") (term "0"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "true_left" (formula "107"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "94") (term "0") (ifseqformula "10"))
+ (rule "leq_literals" (formula "94") (term "0,0"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "94"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "94"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0"))
+ (rule "add_literals" (formula "87") (term "1,1,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0"))
+ (rule "add_zero_right" (formula "87") (term "0"))
+ (rule "leq_literals" (formula "87"))
+ (rule "true_left" (formula "87"))
+ (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "93"))
+ (rule "applyEq" (formula "68") (term "1,1") (ifseqformula "93"))
+ (rule "inEqSimp_subsumption0" (formula "2") (term "0") (ifseqformula "10"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (place_block)"
+ (builtin "One Step Simplification" (formula "158"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "andLeft" (formula "130"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,0") (ifseqformula "130"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "0,1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "0,0,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "132"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "133"))
+ (rule "notLeft" (formula "131"))
+ (rule "close" (formula "135") (ifseqformula "134"))
+ )
+ (branch "Pre (place_block)"
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "81")) (ifInst "" (formula "80")) (ifInst "" (formula "155")) (ifInst "" (formula "154")) (ifInst "" (formula "153")) (ifInst "" (formula "152")) (ifInst "" (formula "150")) (ifInst "" (formula "151")) (ifInst "" (formula "155")) (ifInst "" (formula "154")) (ifInst "" (formula "153")) (ifInst "" (formula "152")) (ifInst "" (formula "150")) (ifInst "" (formula "151")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "30")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "29")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "28")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "27")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "26")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1,0,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1,0,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "21")))
+ (rule "wellFormedAnonEQ" (formula "156") (term "0,0,0") (ifseqformula "75"))
+ (rule "wellFormedAnonEQ" (formula "156") (term "0,0,0,0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "156") (term "0,0,0,0,0"))
+ (rule "wellFormedAnon" (formula "156") (term "0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "156") (term "1,0,0"))
+ (rule "expand_inInt" (formula "156") (term "1"))
+ (rule "expand_inInt" (formula "156") (term "1,0"))
+ (rule "replace_int_MIN" (formula "156") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "156") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "156") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "156") (term "1,0,1"))
+ (rule "replace_int_MAX" (formula "156") (term "1,0,1,0"))
+ (rule "replace_int_MIN" (formula "156") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "156") (term "1,0,0,0") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "106")) (ifInst "" (formula "22")) (ifInst "" (formula "24")))
+ (rule "polySimp_homoEq" (formula "122") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "124") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "128") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "122") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "124") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "128") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "122") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "122") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "124") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "124") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "128") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "128") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "76") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "124") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "87"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "109"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "122") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "122") (term "1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "122") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "122") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "124") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "128") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "128") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "156") (term "1"))
+ (rule "replace_known_left" (formula "156") (term "1") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "inEqSimp_homoInEq1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "0,0"))
+ (rule "add_zero_left" (formula "56") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "0,1,0"))
+ (rule "mul_literals" (formula "73") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "156") (term "0"))
+ (rule "replace_known_left" (formula "156") (term "0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "inEqSimp_leqRight" (formula "156"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "123") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "123") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "123") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "125") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "125") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "129") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "129") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "129") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "125") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "125") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "125") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "125") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "125") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "125") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "110"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1"))
+ (rule "polySimp_rightDist" (formula "110") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "1,1"))
+ (rule "mul_literals" (formula "110") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "110") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "123") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "123") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "123") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "123") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "123") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "123") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "times_zero_2" (formula "57") (term "1"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "24") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "closeFalse" (formula "24"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (classify)"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "80")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "106"))
+ (rule "notLeft" (formula "106"))
+ (rule "close" (formula "108") (ifseqformula "107"))
+ )
+ (branch "Pre (classify)"
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "80")))
+ (rule "wellFormedAnonEQ" (formula "133") (term "0,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "133") (term "1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "133") (term "0,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "74")) (ifInst "" (formula "26")))
+ (rule "wellFormedAnonEQ" (formula "133") (term "0") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "133") (term "0,0"))
+ (rule "wellFormedAnon" (formula "133") (term "0,0,0"))
+ (rule "expand_inInt" (formula "133") (term "1"))
+ (rule "replace_int_MAX" (formula "133") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "133") (term "0,1,1"))
+ (rule "replace_known_left" (formula "133") (term "1,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "104")))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "87"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0"))
+ (rule "add_literals" (formula "87") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "76") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "133"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "88"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "57"))
+ (rule "times_zero_2" (formula "57") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "95") (term "0,0") (ifseqformula "13"))
+ (rule "leq_literals" (formula "95") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "106"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Null reference (_classifier = null)"
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "131")))
+ (rule "closeTrue" (formula "133"))
+ )
+ )
+ )
+ )
+ (branch "Null Reference (_swap_1 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "127")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_swap_1 != null, but 0 Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "127")))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "false_right" (formula "131"))
+ (rule "less_literals" (formula "1") (term "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "88"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0,0"))
+ (rule "add_literals" (formula "88") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "38"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "103"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "andLeft" (formula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,0") (ifseqformula "75"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "0,1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "notLeft" (formula "76"))
+ (rule "close" (formula "78") (ifseqformula "77"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "100")) (ifInst "" (formula "97")) (ifInst "" (formula "100")) (ifInst "" (formula "97")))
+ (rule "andRight" (formula "101"))
+ (branch "Case 1"
+ (rule "andRight" (formula "101"))
+ (branch "Case 1"
+ (rule "andRight" (formula "101"))
+ (branch "Case 1"
+ (rule "andRight" (formula "101"))
+ (branch
+ (rule "andRight" (formula "101"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "101") (ifseqformula "63"))
+ (rule "wellFormedAnon" (formula "101") (term "0"))
+ (rule "wellFormedAnon" (formula "101") (term "0,0"))
+ (rule "replace_known_left" (formula "101") (term "1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "101"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "101"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "101") (userinteraction))
+ (rule "andRight" (formula "101"))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "101") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "101"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_invertInEq0" (formula "57"))
+ (rule "mul_literals" (formula "57") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43"))
+ (rule "leq_literals" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0"))
+ (rule "qeq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "50"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "44"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "64"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "1"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "72"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "44") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "44") (term "0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "closeFalse" (formula "44"))
+ )
+ (branch
+ (rule "replace_int_MIN" (formula "101") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "101"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "0,0"))
+ (rule "add_zero_left" (formula "57") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_invertInEq0" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "times_zero_2" (formula "57") (term "1"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "64") (term "0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0"))
+ (rule "qeq_literals" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "true_left" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "add_literals" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "64"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "63") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "closeFalse" (formula "63"))
+ )
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "101"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "101"))
+ (rule "replace_int_MIN" (formula "101") (term "0,1"))
+ (rule "replace_int_MAX" (formula "101") (term "1,0"))
+ (rule "leq_literals" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "leq_literals" (formula "101"))
+ (rule "closeTrue" (formula "101"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "101"))
+ (rule "replace_int_MIN" (formula "101") (term "0,1"))
+ (rule "replace_int_MAX" (formula "101") (term "1,0"))
+ (rule "leq_literals" (formula "101") (term "1"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "leq_literals" (formula "101"))
+ (rule "closeTrue" (formula "101"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (decrement_read)"
+ (builtin "One Step Simplification" (formula "91"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "1,0") (ifseqformula "63"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "66"))
+ (rule "notLeft" (formula "64"))
+ (rule "close" (formula "67") (ifseqformula "66"))
+ )
+ (branch "Pre (decrement_read)"
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "2")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnon" (formula "89") (term "0"))
+ (rule "wellFormedAnon" (formula "89") (term "0,0"))
+ (rule "expand_inInt" (formula "89") (term "1"))
+ (rule "replace_int_MIN" (formula "89") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "89") (term "1,0,1"))
+ (rule "replace_known_left" (formula "89") (term "1,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "20")) (ifInst "" (formula "19")))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "89") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_subsumption1" (formula "87") (term "1") (ifseqformula "12"))
+ (rule "leq_literals" (formula "87") (term "0,1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_leqRight" (formula "87"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "14") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0"))
+ (rule "qeq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "42"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "43"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ (branch "Null reference (_bucket_pointers = null)"
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "86")))
+ (rule "closeTrue" (formula "89"))
+ )
+ )
+ )
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "apply_eq_boolean" (formula "55") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "elim_double_block_2" (formula "86") (term "1"))
+ (rule "blockBreak" (formula "86") (term "1"))
+ (rule "lsBreak" (formula "86") (term "1"))
+ (rule "assignment" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "preincrement" (formula "86") (term "1"))
+ (rule "compound_int_cast_expression" (formula "86") (term "1") (inst "#v=x_2"))
+ (rule "variableDeclarationAssign" (formula "86") (term "1"))
+ (rule "variableDeclaration" (formula "86") (term "1") (newnames "x_5"))
+ (rule "remove_parentheses_right" (formula "86") (term "1"))
+ (rule "assignmentAdditionInt" (formula "86") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "expand_inInt" (formula "86"))
+ (rule "replace_int_MIN" (formula "86") (term "0,1"))
+ (rule "replace_int_MAX" (formula "86") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "1,1"))
+ (rule "inEqSimp_geqRight" (formula "57"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "0"))
+ (rule "polySimp_mulComm0" (formula "86") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "1,0,0"))
+ (rule "mul_literals" (formula "86") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,0"))
+ (rule "add_literals" (formula "86") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "1"))
+ (rule "mul_literals" (formula "86") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "86") (term "0,1"))
+ (rule "add_literals" (formula "86") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "86") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "86") (term "1"))
+ (rule "mul_literals" (formula "86") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "83") (term "1") (ifseqformula "12"))
+ (rule "leq_literals" (formula "83") (term "0,1"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_leqRight" (formula "83"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "49"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "86") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "86") (term "1"))
+ (rule "assignment" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "blockEmpty" (formula "86") (term "1"))
+ (rule "lsContinue" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "polySimp_mulComm0" (formula "86") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "86") (term "0,0"))
+ (rule "mul_literals" (formula "86") (term "0,0,0"))
+ (rule "precOfInt" (formula "86"))
+ (rule "inEqSimp_geqRight" (formula "57"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "86") (term "1"))
+ (rule "polySimp_rightDist" (formula "86") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "86") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "86") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "86") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "86") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "86") (term "0,1"))
+ (rule "add_literals" (formula "86") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "86") (term "1,0,1"))
+ (rule "add_zero_right" (formula "86") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "86") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "86") (term "0,0,1"))
+ (rule "add_literals" (formula "86") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "86") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "86") (term "0,1"))
+ (rule "add_literals" (formula "86") (term "1,0,1"))
+ (rule "times_zero_1" (formula "86") (term "0,1"))
+ (rule "leq_literals" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "inEqSimp_leqRight" (formula "86"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "1"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0"))
+ (rule "add_zero_right" (formula "9") (term "0"))
+ (rule "leq_literals" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ )
+ (branch "Exceptional Post (hasRemainingRead)"
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "55"))
+ (rule "close" (formula "57") (ifseqformula "56"))
+ )
+ (branch "Pre (hasRemainingRead)"
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "1")) (ifInst "" (formula "26")))
+ (rule "wellFormedAnon" (formula "82") (term "0"))
+ (rule "wellFormedAnon" (formula "82") (term "0,0"))
+ (rule "expand_inInt" (formula "82") (term "1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1"))
+ (rule "replace_known_left" (formula "82") (term "1,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "19")) (ifInst "" (formula "18")))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "81") (term "1") (ifseqformula "11"))
+ (rule "leq_literals" (formula "81") (term "0,1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_leqRight" (formula "81"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "42"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,0"))
+ (rule "mul_literals" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Null reference (_bucket_pointers = null)"
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "79")))
+ (rule "closeTrue" (formula "82"))
+ )
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "76"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockBreak" (formula "76") (term "1"))
+ (rule "lsBreak" (formula "76") (term "1"))
+ (rule "assignment" (formula "76") (term "1"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "methodCallEmpty" (formula "76") (term "1"))
+ (rule "tryEmpty" (formula "76") (term "1"))
+ (rule "emptyModality" (formula "76") (term "1"))
+ (rule "andRight" (formula "76"))
+ (branch
+ (rule "impRight" (formula "76"))
+ (rule "andRight" (formula "77"))
+ (branch
+ (rule "andRight" (formula "77"))
+ (branch
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "77"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "8")))
+ (rule "closeTrue" (formula "77"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "closeTrue" (formula "77"))
+ )
+ )
+ (branch
+ (rule "impRight" (formula "76"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (num_buckets)"
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "14")))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "notLeft" (formula "30"))
+ (rule "close" (formula "32") (ifseqformula "31"))
+ )
+ (branch "Pre (num_buckets)"
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "14")) (ifInst "" (formula "1")) (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "57"))
+ )
+ (branch "Null reference (_classifier = null)"
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "55")))
+ (rule "closeTrue" (formula "57"))
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__place_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__place_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..6037f7d
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__place_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,5910 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Sep 05 21:31:30 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Sep 05 21:31:30 CEST 2022
+contract=de.wiesler.Permute[de.wiesler.Permute\\:\\:place_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0
+name=de.wiesler.Permute[de.wiesler.Permute\\:\\:place_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "136003")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "8"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "13"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "10"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "10"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "18"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "12"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "19"))
+(rule "andLeft" (formula "2"))
+(rule "notLeft" (formula "13"))
+(rule "notLeft" (formula "12"))
+(rule "andLeft" (formula "24"))
+(rule "andLeft" (formula "21"))
+(rule "andLeft" (formula "18"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "29"))
+(rule "andLeft" (formula "28"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "34"))
+(rule "andLeft" (formula "22"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "37"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "23"))
+(rule "translateJavaSubInt" (formula "47") (term "0"))
+(rule "translateJavaCastInt" (formula "50") (term "0"))
+(rule "translateJavaSubInt" (formula "50") (term "1"))
+(rule "translateJavaSubInt" (formula "51") (term "1"))
+(rule "translateJavaAddInt" (formula "53") (term "0,0,0,1,0"))
+(rule "replace_known_right" (formula "13") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "13"))
+(rule "replace_known_right" (formula "12") (term "0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "11"))
+(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "10"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "4"))
+(rule "polySimp_elimSub" (formula "47") (term "0"))
+(rule "polySimp_elimSub" (formula "50") (term "1"))
+(rule "polySimp_elimSub" (formula "51") (term "1"))
+(rule "polySimp_addComm0" (formula "47") (term "0"))
+(rule "polySimp_addComm0" (formula "50") (term "1"))
+(rule "polySimp_addComm0" (formula "51") (term "1"))
+(rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+(rule "notLeft" (formula "43"))
+(rule "eqSymm" (formula "53"))
+(rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+(rule "notLeft" (formula "42"))
+(rule "eqSymm" (formula "52"))
+(rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "notLeft" (formula "41"))
+(rule "eqSymm" (formula "51"))
+(rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+(rule "notLeft" (formula "40"))
+(rule "eqSymm" (formula "50"))
+(rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+(rule "notLeft" (formula "39"))
+(rule "eqSymm" (formula "49"))
+(rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+(rule "notLeft" (formula "38"))
+(rule "eqSymm" (formula "48"))
+(rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+(rule "notLeft" (formula "37"))
+(rule "eqSymm" (formula "47"))
+(rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+(rule "notLeft" (formula "36"))
+(rule "eqSymm" (formula "46"))
+(rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "notLeft" (formula "35"))
+(rule "eqSymm" (formula "45"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "eqSymm" (formula "43"))
+(rule "disjointDefinition" (formula "32"))
+ (builtin "One Step Simplification" (formula "32"))
+(rule "notLeft" (formula "32"))
+(rule "eqSymm" (formula "42"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "eqSymm" (formula "41"))
+(rule "disjointDefinition" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+(rule "notLeft" (formula "30"))
+(rule "disjointDefinition" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+(rule "notLeft" (formula "29"))
+(rule "eqSymm" (formula "39"))
+(rule "disjointDefinition" (formula "28"))
+ (builtin "One Step Simplification" (formula "28"))
+(rule "notLeft" (formula "28"))
+(rule "eqSymm" (formula "38"))
+(rule "disjointDefinition" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+(rule "notLeft" (formula "27"))
+(rule "eqSymm" (formula "37"))
+(rule "disjointDefinition" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+(rule "notLeft" (formula "26"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "notLeft" (formula "25"))
+(rule "disjointDefinition" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+(rule "notLeft" (formula "24"))
+(rule "disjointDefinition" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+(rule "notLeft" (formula "23"))
+(rule "castedGetAny" (formula "29") (term "0"))
+(rule "inEqSimp_commuteLeq" (formula "25"))
+(rule "inEqSimp_commuteLeq" (formula "24"))
+(rule "inEqSimp_commuteLeq" (formula "23"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "27"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "3"))
+(rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+(rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+(rule "applyEq" (formula "32") (term "1,1,0,0,0") (ifseqformula "19"))
+(rule "applyEq" (formula "29") (term "1,0") (ifseqformula "19"))
+(rule "applyEq" (formula "28") (term "1") (ifseqformula "19"))
+(rule "commute_and" (formula "32") (term "0,1,0"))
+(rule "commute_and_2" (formula "32") (term "1,0"))
+(rule "commute_and" (formula "32") (term "1,0,0"))
+(rule "commute_and" (formula "32") (term "0,0,0"))
+(rule "shift_paren_and" (formula "32") (term "0,0"))
+(rule "commute_and_2" (formula "32") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_place_block,savedHeapBefore_place_block,_beginBefore_place_block,_bucket_pointersBefore_place_block,_classifierBefore_place_block,_endBefore_place_block,_overflowBefore_place_block,_swap_1Before_place_block,_swap_2Before_place_block,_target_bucketBefore_place_block,_valuesBefore_place_block"))
+ (builtin "One Step Simplification" (formula "60"))
+(rule "variableDeclarationGhostAssign" (formula "60") (term "1"))
+(rule "variableDeclarationGhost" (formula "60") (term "1") (newnames "first_target_bucket"))
+(rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+(rule "variableDeclarationAssign" (formula "60") (term "1"))
+(rule "variableDeclaration" (formula "60") (term "1") (newnames "first_is_current_swap"))
+(rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+(rule "arrayLengthNotNegative" (formula "22") (term "0"))
+(rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+(rule "qeq_literals" (formula "22"))
+(rule "true_left" (formula "22"))
+(rule "arrayLengthIsAShort" (formula "22") (term "0"))
+(rule "expand_inShort" (formula "22"))
+(rule "replace_short_MIN" (formula "22") (term "0,1"))
+(rule "replace_short_MAX" (formula "22") (term "1,0"))
+(rule "andLeft" (formula "22"))
+(rule "inEqSimp_commuteLeq" (formula "23"))
+(rule "applyEq" (formula "23") (term "0") (ifseqformula "24"))
+(rule "qeq_literals" (formula "23"))
+(rule "true_left" (formula "23"))
+(rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+(rule "leq_literals" (formula "22"))
+(rule "true_left" (formula "22"))
+(rule "arrayLengthIsAShort" (formula "20") (term "0"))
+(rule "expand_inShort" (formula "20"))
+(rule "replace_short_MIN" (formula "20") (term "0,1"))
+(rule "replace_short_MAX" (formula "20") (term "1,0"))
+(rule "andLeft" (formula "20"))
+(rule "inEqSimp_commuteLeq" (formula "21"))
+(rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+(rule "leq_literals" (formula "20"))
+(rule "true_left" (formula "20"))
+(rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+(rule "qeq_literals" (formula "20"))
+(rule "true_left" (formula "20"))
+(rule "arrayLengthNotNegative" (formula "21") (term "0"))
+(rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+(rule "qeq_literals" (formula "21"))
+(rule "true_left" (formula "21"))
+(rule "arrayLengthNotNegative" (formula "20") (term "0"))
+(rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+(rule "qeq_literals" (formula "20"))
+(rule "true_left" (formula "20"))
+(rule "arrayLengthIsAShort" (formula "21") (term "0"))
+(rule "expand_inShort" (formula "21"))
+(rule "replace_short_MIN" (formula "21") (term "0,1"))
+(rule "replace_short_MAX" (formula "21") (term "1,0"))
+(rule "andLeft" (formula "21"))
+(rule "inEqSimp_commuteLeq" (formula "22"))
+(rule "applyEq" (formula "22") (term "0") (ifseqformula "23"))
+(rule "qeq_literals" (formula "22"))
+(rule "true_left" (formula "22"))
+(rule "applyEq" (formula "21") (term "0") (ifseqformula "22"))
+(rule "leq_literals" (formula "21"))
+(rule "true_left" (formula "21"))
+(rule "loopScopeInvDia" (formula "60") (term "1") (newnames "_target_bucket_0,first_is_current_swap_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1"))
+(branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "60"))
+)
+(branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "expand_inInt" (formula "61") (term "0,0,1,0"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0,1,0,0,0"))
+ (rule "expand_inInt" (formula "61") (term "1,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,0,0,0,0,0,0"))
+ (rule "impRight" (formula "61"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "translateJavaCastInt" (formula "69") (term "0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "69") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "69") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "8") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "7") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "1") (term "1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "1") (term "0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "69") (term "2,0,0,1,0,2,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,0,0,1,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "69") (term "1,2,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "1,2,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "69") (term "2,0,0,1,0,2,0,1,1,0"))
+ (rule "mul_literals" (formula "69") (term "1,2,0,0,1,0,2,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "2,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "2,0,0,1,0,2,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,0,0,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "5") (term "1,1,0,0,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "1") (term "1,1,0,0,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "69") (term "1,0,1,1,0") (ifseqformula "28"))
+ (rule "applyEq" (formula "3") (term "1") (ifseqformula "28"))
+ (rule "commuteUnion_2" (formula "69") (term "1,1,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "7") (term "1,1,0"))
+ (rule "commuteUnion_2" (formula "6") (term "1,1,0"))
+ (rule "commuteUnion" (formula "5") (term "1,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "1,1,0,0"))
+ (rule "commuteUnion" (formula "1") (term "1,1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "1") (term "1,1,0,0,1,1,0"))
+ (rule "commuteUnion_2" (formula "69") (term "1,1,0,2,0,1,1,0"))
+ (rule "commuteUnion_2" (formula "1") (term "1,1,0,0,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "69") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "6") (term "0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "0,1,0"))
+ (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0,0"))
+ (rule "commuteUnion" (formula "1") (term "0,1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "1") (term "0,1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "69") (term "0,1,0,2,0,1,1,0"))
+ (rule "commuteUnion" (formula "1") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "8") (term "1,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "1,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "69") (term "0,1,1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "0,1,1,0"))
+ (rule "commuteUnion" (formula "6") (term "0,1,1,0"))
+ (rule "commuteUnion" (formula "69") (term "0,1,1,0,2,0,1,1,0"))
+ (rule "commuteUnion" (formula "1") (term "0,1,1,0,0,0,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "5") (term "1,0,0,1,0"))
+ (rule "commuteUnion_2" (formula "4") (term "1,0,0"))
+ (rule "commuteUnion" (formula "1") (term "1,0,0,1,1,0"))
+ (rule "commuteUnion" (formula "1") (term "1,0,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,1,1,0,1,0,1,0"))
+ (rule "commuteUnion_2" (formula "8") (term "0,1,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "1,1,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "69") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "7") (term "1,0"))
+ (rule "commuteUnion" (formula "6") (term "1,0"))
+ (rule "commuteUnion" (formula "69") (term "1,0,2,0,1,1,0"))
+ (rule "commuteUnion_2" (formula "1") (term "1,0,0,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0"))
+ (rule "commuteUnion" (formula "4") (term "0,1,0,0"))
+ (rule "commuteUnion_2" (formula "8") (term "1,0,1,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,0,1,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "1") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "commuteUnion" (formula "8") (term "0,1,0,1,0,1,0"))
+ (rule "commute_and" (formula "8") (term "0,0"))
+ (rule "commute_and" (formula "5") (term "1,0,0"))
+ (rule "commute_and" (formula "1") (term "1,0,0"))
+ (rule "commute_and" (formula "5") (term "0,0,0"))
+ (rule "commute_and" (formula "1") (term "0,0,0"))
+ (rule "commute_and" (formula "1") (term "0,1,0"))
+ (rule "commute_and_2" (formula "1") (term "1,0"))
+ (rule "associativeLawUnion" (formula "7") (term "1,0"))
+ (rule "associativeLawUnion" (formula "6") (term "1,0"))
+ (rule "shift_paren_and" (formula "5") (term "0,0"))
+ (rule "commute_and_2" (formula "5") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "1") (term "0,0"))
+ (rule "commute_and_2" (formula "1") (term "0,0,0"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "seqGetAlphaCast" (formula "41") (term "0"))
+ (rule "castedGetAny" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0"))
+ (rule "associativeLawUnion" (formula "72") (term "1,0,1,0,1,0"))
+ (rule "associativeLawUnion" (formula "8") (term "1,0,0,0,1,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "64") (term "1") (ifseqformula "10") (ifseqformula "19"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "66") (term "0,0") (ifseqformula "11") (ifseqformula "19"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "67") (term "1") (ifseqformula "12") (ifseqformula "20"))
+ (rule "associativeLawUnion" (formula "75") (term "1,0,2,0,1,1,0"))
+ (rule "associativeLawUnion" (formula "8") (term "0,0,1,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "4") (term "1,0,0,1,0,1,0"))
+ (rule "associativeLawUnion" (formula "4") (term "1,0,0,0,0,1,0"))
+ (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0,1,0,1,0"))
+ (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0,0,0,1,0"))
+ (rule "ifElseSplit" (formula "75"))
+ (branch "if true true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "new_target"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "75") (term "1"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_1"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_2"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_3"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_4"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_5"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_6"))
+ (rule "condition_simple" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_7"))
+ (rule "condition_simple" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "variableDeclarationAssign" (formula "75") (term "1"))
+ (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_8"))
+ (rule "assignment" (formula "75") (term "1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (builtin "Use Operation Contract" (formula "75") (newnames "heapBefore_swap_block,result_21,exc_25,heapAfter_swap_block,anon_heap_swap_block") (contract "de.wiesler.Permute[de.wiesler.Permute::swap_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0"))
+ (branch "Post (swap_block)"
+ (builtin "One Step Simplification" (formula "49"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "49") (term "0,0,0,1,1,1,1,1,0,1"))
+ (rule "expand_inInt" (formula "49") (term "0,1,0,1"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,0,0,0,1,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,0,1,0,1"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "52"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "57"))
+ (rule "translateJavaSubInt" (formula "49") (term "2,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "1,1,0"))
+ (rule "translateJavaMulInt" (formula "49") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "1,2,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "1,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,1,1,0,1,0"))
+ (rule "ifthenelse_negated" (formula "56") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0"))
+ (rule "assignment" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "blockEmpty" (formula "88") (term "1"))
+ (rule "applyEq" (formula "55") (term "1,1,1,1") (ifseqformula "31"))
+ (rule "applyEq" (formula "53") (term "1,1,0,0,0") (ifseqformula "31"))
+ (rule "commuteUnion" (formula "49") (term "1,1,0"))
+ (rule "commuteUnion" (formula "49") (term "0,1,0"))
+ (rule "commute_and" (formula "56") (term "0,0"))
+ (rule "commute_and_2" (formula "53") (term "0,1,0"))
+ (rule "commute_and" (formula "55") (term "1,1"))
+ (rule "commute_and" (formula "53") (term "1,0,0"))
+ (rule "commute_and" (formula "53") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "55") (term "1"))
+ (rule "commute_and" (formula "53") (term "0,0,1,0"))
+ (rule "commute_and_2" (formula "53") (term "0,1,0"))
+ (rule "commute_and_2" (formula "53") (term "1,0"))
+ (rule "shift_paren_and" (formula "53") (term "0,0"))
+ (rule "commute_and_2" (formula "53") (term "0,0,0"))
+ (rule "associativeLawUnion" (formula "49") (term "1,0"))
+ (rule "commuteUnion_2" (formula "49") (term "0,1,0"))
+ (rule "commuteUnion" (formula "49") (term "0,0,1,0"))
+ (rule "ifUnfold" (formula "88") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_2"))
+ (rule "equality_comparison_simple" (formula "88") (term "1"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "ifSplit" (formula "88"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_left" (formula "57") (term "0,0,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "add_zero_left" (formula "57") (term "0,1,0"))
+ (rule "replace_known_left" (formula "56") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "applyEq" (formula "88") (term "0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "53") (term "0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "applyEq" (formula "52") (term "1,0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "blockBreak" (formula "86") (term "1"))
+ (rule "blockBreak" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "lsBreak" (formula "86") (term "1"))
+ (rule "assignment" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "methodCallEmpty" (formula "86") (term "1"))
+ (rule "tryEmpty" (formula "86") (term "1"))
+ (rule "emptyModality" (formula "86") (term "1"))
+ (rule "andRight" (formula "86"))
+ (branch
+ (rule "impRight" (formula "86"))
+ (rule "andRight" (formula "87"))
+ (branch
+ (rule "andRight" (formula "87"))
+ (branch
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "87"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "59")))
+ (rule "closeTrue" (formula "87"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "closeTrue" (formula "87"))
+ )
+ )
+ (branch
+ (rule "impRight" (formula "86"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "89"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "replace_known_right" (formula "56") (term "0,0,0,1,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "replace_known_right" (formula "55") (term "0,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "compound_assignment_1_new" (formula "91") (term "1"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "assignment" (formula "91") (term "1"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "blockEmpty" (formula "91") (term "1"))
+ (rule "lsContinue" (formula "91") (term "1"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "precOfInt" (formula "91") (userinteraction))
+ (rule "andRight" (formula "91") (userinteraction))
+ (branch "Case 1"
+ (rule "leq_to_geq" (formula "91") (userinteraction))
+ (rule "bsum_positive" (formula "91") (userinteraction))
+ (rule "allRight" (formula "91") (inst "sk=b_0") (userinteraction))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "91") (term "0,1") (userinteraction))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "91") (term "1,0,1") (userinteraction))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62")) (ifInst "" (formula "89")) (ifInst "" (formula "62")) (ifInst "" (formula "60")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "50"))
+ (rule "wellFormedAnon" (formula "1") (term "0,1,0"))
+ (rule "impRight" (formula "92"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaSubInt" (formula "94") (term "0"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "94") (term "1,0,0"))
+ (rule "replace_known_left" (formula "3") (term "1,1,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "polySimp_homoEq" (formula "61") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "56") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "7") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "94") (term "0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "94") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,1,1,0"))
+ (rule "inEqSimp_geqRight" (formula "95"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,0"))
+ (rule "inEqSimp_geqRight" (formula "95"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0"))
+ (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "2") (term "1,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "36"))
+ (rule "replace_known_left" (formula "5") (term "0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "polySimp_sepPosMonomial" (formula "67") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "67") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "62") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "20") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "13") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "66"))
+ (rule "add_zero_left" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "48"))
+ (rule "leq_literals" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "50"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "43"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "63"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (ifseqformula "1"))
+ (rule "andLeft" (formula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0"))
+ (rule "add_zero_right" (formula "7") (term "0"))
+ (rule "leq_literals" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Case 2"
+ (rule "applyEqReverse" (formula "91") (term "1,1") (ifseqformula "31") (userinteraction))
+ (rule "bsum_less_same_index" (formula "91") (userinteraction))
+ (rule "andRight" (formula "91") (userinteraction))
+ (branch "Case 1"
+ (rule "allRight" (formula "91") (inst "sk=b0_0") (userinteraction))
+ (rule "impRight" (formula "91") (userinteraction))
+ (rule "allLeftHide" (formula "54") (inst "t=b0_0") (userinteraction))
+ (rule "impLeft" (formula "54") (userinteraction))
+ (branch "Case 1"
+ (rule "andLeft" (formula "1"))
+ (rule "replace_known_left" (formula "64") (term "1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "59") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0"))
+ (rule "inEqSimp_leqRight" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "35"))
+ (rule "replace_known_left" (formula "66") (term "0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "applyEq" (formula "1") (term "1,0,0") (ifseqformula "35"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "61") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "8") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "67") (ifseqformula "60"))
+ (rule "add_zero_left" (formula "67") (term "0,0"))
+ (rule "mul_literals" (formula "67") (term "0,0"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "false_right" (formula "67"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "43"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "65") (term "0") (ifseqformula "3"))
+ (rule "leq_literals" (formula "65") (term "0,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_leqRight" (formula "65"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "59"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "45"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "42"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "37"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0"))
+ (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_and_subsumption3" (formula "48") (term "0,0,0"))
+ (rule "leq_literals" (formula "48") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "57") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "57") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "57") (term "1,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "1,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "57") (term "0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0"))
+ (rule "mul_literals" (formula "57") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "48") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "59"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "eqSymm" (formula "64"))
+ (rule "translateJavaMulInt" (formula "61") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,2,0"))
+ (rule "eqSymm" (formula "61"))
+ (rule "polySimp_elimSub" (formula "64") (term "0,2,1"))
+ (rule "mul_literals" (formula "64") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "64") (term "0,2,0"))
+ (rule "mul_literals" (formula "64") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59"))
+ (rule "applyEq" (formula "60") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "59") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "61") (term "1") (ifseqformula "31"))
+ (rule "pullOutSelect" (formula "64") (term "1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "65") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "simplifySelectOfAnonEQ" (formula "64") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "elementOfUnion" (formula "65") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "eqSymm" (formula "65") (term "1,0,0,0"))
+ (rule "elementOfUnion" (formula "64") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "eqSymm" (formula "64") (term "1,0,0,0"))
+ (rule "elementOfUnion" (formula "65") (term "0,0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0,0,0"))
+ (rule "replace_known_right" (formula "65") (term "0,0,1,0,0,0,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "elementOfUnion" (formula "64") (term "0,0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "64") (term "1,0,0,0,0"))
+ (rule "replace_known_right" (formula "64") (term "0,0,1,0,0,0,0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "elementOfUnion" (formula "65") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "85")))
+ (rule "elementOfSingleton" (formula "65") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "87")))
+ (rule "elementOfUnion" (formula "64") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "85")))
+ (rule "elementOfSingleton" (formula "64") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "87")))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "60"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "Case 2"
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "eqTermCut" (formula "96") (term "2,1") (inst "s=_target_bucket_0") (userinteraction))
+ (branch "Assume b0_0 = _target_bucket_0"
+ (rule "eqSymm" (formula "59") (term "0,1,0"))
+ (rule "replace_known_left" (formula "59") (term "0,1,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "polySimp_homoEq" (formula "7") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "14") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "64") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "98"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "58") (term "6,0") (ifseqformula "3"))
+ (rule "applyEqRigid" (formula "59") (term "7,0") (ifseqformula "3"))
+ (rule "applyEqRigid" (formula "60") (term "2,0") (ifseqformula "3"))
+ (rule "applyEqRigid" (formula "2") (term "2,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "35"))
+ (rule "applyEqRigid" (formula "59") (term "2,1") (ifseqformula "3"))
+ (rule "applyEq" (formula "60") (term "4,1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "1") (term "1,0,0") (ifseqformula "35"))
+ (rule "applyEqRigid" (formula "2") (term "2,1,0,0") (ifseqformula "3"))
+ (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "59") (term "1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEqRigid" (formula "59") (term "4,0,1,0,0,0") (ifseqformula "3"))
+ (rule "polySimp_sepPosMonomial" (formula "7") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "69") (ifseqformula "63"))
+ (rule "add_zero_left" (formula "69") (term "0,0"))
+ (rule "mul_literals" (formula "69") (term "0,0"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "false_right" (formula "69"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "42"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "38"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "61"))
+ (rule "leq_literals" (formula "53") (term "0"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "43"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_contradInEq0" (formula "56") (ifseqformula "2"))
+ (rule "andLeft" (formula "56"))
+ (rule "inEqSimp_homoInEq1" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "1,1,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0"))
+ (rule "add_zero_right" (formula "56") (term "0"))
+ (rule "leq_literals" (formula "56"))
+ (rule "closeFalse" (formula "56"))
+ )
+ (branch "Assume b0_0 != _target_bucket_0"
+ (builtin "Use Dependency Contract" (formula "97") (term "0") (ifInst "" (formula "98") (term "2,1")) (ifInst "" (formula "52")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0") (userinteraction))
+ (rule "impLeft" (formula "69") (userinteraction))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "95")) (ifInst "" (formula "12")) (ifInst "" (formula "25")) (userinteraction))
+ (rule "andRight" (formula "69"))
+ (branch
+ (rule "andRight" (formula "69"))
+ (branch
+ (rule "andRight" (formula "69"))
+ (branch
+ (rule "andRight" (formula "69"))
+ (branch
+ (rule "wellFormedAnon" (formula "69"))
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "69"))
+ )
+ (branch
+ (rule "wellFormedAnonEQ" (formula "69") (ifseqformula "52"))
+ (rule "wellFormedAnon" (formula "69") (term "0"))
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "replace_known_left" (formula "69") (term "1") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "15")) (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "69"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "69"))
+ (rule "replace_int_MAX" (formula "69") (term "1,0"))
+ (rule "replace_int_MIN" (formula "69") (term "0,1"))
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "63") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0"))
+ (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "35"))
+ (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "65") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "8") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "47"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "64"))
+ (rule "add_zero_left" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "71") (term "1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "71") (term "0,1"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "inEqSimp_leqRight" (formula "71"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "65"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "44"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "45"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "42"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "37"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0"))
+ (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_and_subsumption3" (formula "48") (term "0,0,0"))
+ (rule "leq_literals" (formula "48") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "61") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "48") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "61") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "61") (term "0,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "0,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "61") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0"))
+ (rule "mul_literals" (formula "61") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "48") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "11") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "35") (term "0,2,0"))
+ (rule "eqSymm" (formula "32"))
+ (rule "eqSymm" (formula "35"))
+ (rule "translateJavaMulInt" (formula "32") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_elimSub" (formula "35") (term "0,2,0"))
+ (rule "mul_literals" (formula "35") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "32") (term "1") (ifseqformula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "50") (term "0,0"))
+ (rule "mul_literals" (formula "50") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "add_literals" (formula "50") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0"))
+ (rule "polySimp_elimOne" (formula "50") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "50"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ (branch
+ (rule "andRight" (formula "69"))
+ (branch
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "polySimp_homoEq" (formula "63") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "69"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "inEqSimp_ltRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "36"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65"))
+ (rule "add_zero_left" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "44"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "63") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0,0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "applyEq" (formula "3") (term "1,0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "3") (term "1,0,0") (ifseqformula "36"))
+ (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65"))
+ (rule "add_zero_left" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "65"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "47"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "43"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "disjointDefinition" (formula "69") (userinteraction))
+ (rule "distributeIntersection_2" (formula "69") (term "0") (userinteraction))
+ (rule "distributeIntersection_2" (formula "69") (term "0,0") (userinteraction))
+ (rule "unionEqualsEmpty" (formula "69") (userinteraction))
+ (rule "unionEqualsEmpty" (formula "69") (term "0") (userinteraction))
+ (rule "andRight" (formula "69"))
+ (branch
+ (rule "andRight" (formula "69"))
+ (branch
+ (rule "notLeft" (formula "1"))
+ (rule "translateJavaAddInt" (formula "69") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "translateJavaMulInt" (formula "69") (term "0,0,1,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "63") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0"))
+ (rule "inEqSimp_ltRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0"))
+ (rule "disjointWithSingleton1" (formula "71"))
+ (rule "notRight" (formula "71"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "3") (term "1,0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "3") (term "1,0,0") (ifseqformula "36"))
+ (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65"))
+ (rule "add_zero_left" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "65"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "47"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "42"))
+ (rule "leq_literals" (formula "41") (term "0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "true_left" (formula "41"))
+ (rule "elementOfUnion" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "83")))
+ (rule "elementOfSingleton" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_homoEq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "elimGcdEq" (formula "1") (inst "elimGcdRightDiv=_target_bucket_0") (inst "elimGcdLeftDiv=b0_0") (inst "elimGcd=Z(2(#))"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67")))
+ (rule "mul_literals" (formula "1") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "0,1,0"))
+ (rule "qeq_literals" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch
+ (rule "notLeft" (formula "1"))
+ (rule "translateJavaAddInt" (formula "69") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "translateJavaMulInt" (formula "69") (term "0,0,1,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "63") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0"))
+ (rule "inEqSimp_ltRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0"))
+ (rule "disjointWithSingleton1" (formula "71"))
+ (rule "notRight" (formula "71"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "elementOfArrayRangeConcrete" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "close" (formula "78") (ifseqformula "1"))
+ )
+ )
+ (branch "Case 2"
+ (rule "notLeft" (formula "1"))
+ (rule "translateJavaAddInt" (formula "69") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "translateJavaMulInt" (formula "69") (term "0,0,1,1,0"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "polySimp_homoEq" (formula "63") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "98"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,1,0"))
+ (rule "disjointWithSingleton1" (formula "71"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "notRight" (formula "71"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0"))
+ (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "36"))
+ (rule "applyEq" (formula "66") (term "1,0,0,0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "54") (term "0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "36"))
+ (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65"))
+ (rule "mul_literals" (formula "72") (term "1,0,0"))
+ (rule "add_zero_left" (formula "72") (term "0,0"))
+ (rule "leq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "false_right" (formula "72"))
+ (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "44"))
+ (rule "leq_literals" (formula "43") (term "0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "true_left" (formula "43"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "45"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "62"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "40"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "42"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "43"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "41"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "38"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_and_subsumption3" (formula "49") (term "0,0,0"))
+ (rule "leq_literals" (formula "49") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "inEqSimp_and_subsumption3" (formula "13") (term "0,0,0"))
+ (rule "leq_literals" (formula "13") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "commuteUnion_2" (formula "51") (term "1,0"))
+ (rule "commuteUnion_2" (formula "51") (term "0,1,0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_imp2or" (formula "62") (term "0"))
+ (rule "nnf_imp2or" (formula "49") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "62") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "62") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "49") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "49") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0"))
+ (rule "mul_literals" (formula "49") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,1"))
+ (rule "eqSymm" (formula "33"))
+ (rule "eqSymm" (formula "36"))
+ (rule "translateJavaMulInt" (formula "33") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,2,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,2,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "33") (term "1") (ifseqformula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "33"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "53") (term "0,0"))
+ (rule "mul_literals" (formula "53") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "0"))
+ (rule "add_literals" (formula "53") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "polySimp_elimOne" (formula "53") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "53"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "33"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0"))
+ (rule "add_literals" (formula "68") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "68"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "61") (ifseqformula "68"))
+ (rule "leq_literals" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "true_left" (formula "61"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "16")) (ifInst "" (formula "101")) (ifInst "" (formula "16")) (ifInst "" (formula "24")))
+ (rule "wellFormedAnon" (formula "63") (term "1,0"))
+ (rule "replace_known_left" (formula "63") (term "1,1,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "20")))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0"))
+ (rule "replace_known_left" (formula "63") (term "0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,0"))
+ (rule "replace_known_left" (formula "63") (term "0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "66") (term "0"))
+ (rule "translateJavaSubInt" (formula "66") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "66") (term "1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "31") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "translateJavaAddInt" (formula "37") (term "1"))
+ (rule "translateJavaCastInt" (formula "38") (term "0"))
+ (rule "translateJavaMulInt" (formula "32") (term "0"))
+ (rule "translateJavaMulInt" (formula "31") (term "1"))
+ (rule "translateJavaCastInt" (formula "35") (term "0"))
+ (rule "translateJavaCastInt" (formula "34") (term "1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_addComm0" (formula "37") (term "1"))
+ (rule "castedGetAny" (formula "38") (term "0"))
+ (rule "castedGetAny" (formula "35") (term "0"))
+ (rule "castedGetAny" (formula "34") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "63"))
+ (rule "inEqSimp_commuteGeq" (formula "34"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "62"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "31") (ifseqformula "39"))
+ (rule "mul_literals" (formula "31") (term "1,1,0"))
+ (rule "greater_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_exactShadow2" (formula "13") (ifseqformula "31"))
+ (rule "greater_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "inEqSimp_exactShadow2" (formula "6") (ifseqformula "32"))
+ (rule "greater_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "63"))
+ (rule "times_zero_1" (formula "34") (term "0,0"))
+ (rule "add_zero_left" (formula "34") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "inEqSimp_exactShadow2" (formula "79") (ifseqformula "33"))
+ (rule "greater_literals" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0"))
+ (rule "mul_literals" (formula "79") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1"))
+ (rule "mul_literals" (formula "79") (term "0,1"))
+ (rule "inEqSimp_exactShadow2" (formula "40") (ifseqformula "33"))
+ (rule "mul_literals" (formula "40") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "40"))
+ (rule "mul_literals" (formula "40") (term "1"))
+ (rule "inEqSimp_exactShadow2" (formula "62") (ifseqformula "33"))
+ (rule "greater_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "mul_literals" (formula "62") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "translateJavaAddInt" (formula "72") (term "3,0,0,1"))
+ (rule "translateJavaAddInt" (formula "72") (term "3,0,2"))
+ (rule "translateJavaAddInt" (formula "72") (term "4,0,2"))
+ (rule "translateJavaSubInt" (formula "72") (term "4,0,0,1"))
+ (rule "translateJavaSubInt" (formula "72") (term "0,0,0"))
+ (rule "translateJavaAddInt" (formula "72") (term "0,4,0,0,1"))
+ (rule "polySimp_elimSub" (formula "72") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "72") (term "4,0,0,1"))
+ (rule "mul_literals" (formula "72") (term "1,4,0,0,1"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "4,0,0,1"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,4,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "translateJavaAddInt" (formula "70") (term "3,0,1"))
+ (rule "translateJavaAddInt" (formula "70") (term "4,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0"))
+ (rule "mul_literals" (formula "70") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "70") (term "1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "65") (term "0"))
+ (rule "replace_known_right" (formula "65") (term "0,1,0,0,0,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "31")) (ifInst "" (formula "21")) (ifInst "" (formula "24")) (ifInst "" (formula "115")) (ifInst "" (formula "31")))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "76") (term "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,0,0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "115")) (ifInst "" (formula "86")) (ifInst "" (formula "25")))
+ (rule "wellFormedAnonEQ" (formula "76") (term "1,0") (ifseqformula "69"))
+ (rule "wellFormedAnon" (formula "76") (term "0,1,0"))
+ (rule "replace_known_left" (formula "76") (term "1,1,0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "21")) (ifInst "" (formula "20")))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "77") (term "1"))
+ (rule "translateJavaSubInt" (formula "77") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "77") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,1"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "86") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "34")) (ifInst "" (formula "37")))
+ (rule "expand_inInt" (formula "86") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "86") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "86") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "88"))
+ (rule "translateJavaCastInt" (formula "92") (term "0"))
+ (rule "translateJavaAddInt" (formula "91") (term "1"))
+ (rule "translateJavaMulInt" (formula "86") (term "1"))
+ (rule "translateJavaMulInt" (formula "87") (term "0"))
+ (rule "translateJavaCastInt" (formula "90") (term "0"))
+ (rule "translateJavaCastInt" (formula "89") (term "1"))
+ (rule "polySimp_mulComm0" (formula "86") (term "1"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0"))
+ (rule "polySimp_addComm0" (formula "90") (term "1"))
+ (rule "castedGetAny" (formula "90") (term "0"))
+ (rule "castedGetAny" (formula "89") (term "0"))
+ (rule "castedGetAny" (formula "88") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "90") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87"))
+ (rule "inEqSimp_commuteLeq" (formula "86"))
+ (rule "inEqSimp_commuteLeq" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "63"))
+ (rule "inEqSimp_commuteGeq" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "63"))
+ (rule "inEqSimp_homoInEq0" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "87"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "86") (ifseqformula "40"))
+ (rule "greater_literals" (formula "86") (term "0,0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "mul_literals" (formula "86") (term "1,0"))
+ (rule "leq_literals" (formula "86") (term "0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "true_left" (formula "86"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "87"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "43")))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "translateJavaSubInt" (formula "91") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "91") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "89") (term "1,1"))
+ (rule "eqSymm" (formula "91"))
+ (rule "eqSymm" (formula "89"))
+ (rule "polySimp_elimSub" (formula "91") (term "0,2,1"))
+ (rule "mul_literals" (formula "91") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "91") (term "0,2,0"))
+ (rule "mul_literals" (formula "91") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "91") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "91") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "47"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "42"))
+ (rule "eqSymm" (formula "88"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "47"))
+ (rule "pullOutSelect" (formula "88") (term "1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "88") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "simplifySelectOfAnonEQ" (formula "89") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "elementOfUnion" (formula "88") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "88") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "88") (term "0,0,1,0,0,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "elementOfUnion" (formula "89") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "89") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "89") (term "0,0,1,0,0,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "elementOfUnion" (formula "88") (term "0,0,0"))
+ (rule "elementOfSingleton" (formula "88") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "112")))
+ (rule "elementOfUnion" (formula "89") (term "0,0,0"))
+ (rule "elementOfSingleton" (formula "89") (term "1,0,0,0"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "112")))
+ (rule "elementOfUnion" (formula "88") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "110")) (ifInst "" (formula "112")))
+ (rule "elementOfUnion" (formula "89") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "110")) (ifInst "" (formula "112")))
+ (rule "pullOutSelect" (formula "88") (term "2,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "88"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "elementOfUnion" (formula "88") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "88") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "88") (term "0,0,1,0,0,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "elementOfUnion" (formula "88") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "113")))
+ (rule "elementOfUnion" (formula "88") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "108")))
+ (rule "elementOfUnion" (formula "88") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "111")) (ifInst "" (formula "104")))
+ (rule "pullOutSelect" (formula "90") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "90"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "applyEq" (formula "90") (term "2,0") (ifseqformula "45"))
+ (rule "elementOfUnion" (formula "90") (term "0,0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "90") (term "1,0,0,0"))
+ (rule "replace_known_right" (formula "90") (term "0,0,1,0,0,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "elementOfUnion" (formula "90") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "114")))
+ (rule "elementOfUnion" (formula "90") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "109")))
+ (rule "elementOfUnion" (formula "90") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "112")) (ifInst "" (formula "105")))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "16") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "16") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "notLeft" (formula "18"))
+ (rule "replace_known_right" (formula "88") (term "0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "replace_known_right" (formula "90") (term "0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "replace_known_right" (formula "87") (term "0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "replace_known_right" (formula "89") (term "0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_left" (formula "88") (term "0,0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "applyEqReverse" (formula "90") (term "1") (ifseqformula "88"))
+ (rule "hideAuxiliaryEq" (formula "88"))
+ (rule "replace_known_left" (formula "89") (term "0,0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "applyEqReverse" (formula "87") (term "1") (ifseqformula "89"))
+ (rule "hideAuxiliaryEq" (formula "89"))
+ (rule "replace_known_left" (formula "87") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEqReverse" (formula "88") (term "1") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "8")))
+ (rule "true_left" (formula "88"))
+ (rule "hideAuxiliaryEq" (formula "87"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "88"))
+ (rule "andLeft" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "notLeft" (formula "88"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "65") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "expand_inInt" (formula "65") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "65") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "65") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "65") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "29"))
+ (rule "nnf_notAnd" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "64") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "64") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "64") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "64") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "77") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "expand_inInt" (formula "77") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "75") (term "0,0,1"))
+ (rule "translateJavaAddInt" (formula "75") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,0,1"))
+ (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "75") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "75") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "75") (term "1"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "3") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "3") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "115")) (ifInst "" (formula "73")) (ifInst "" (formula "25")))
+ (rule "wellFormedAnon" (formula "3") (term "1,0"))
+ (rule "replace_known_left" (formula "3") (term "0,1,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "20")))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "3") (term "0"))
+ (rule "translateJavaSubInt" (formula "3") (term "0"))
+ (rule "translateJavaAddInt" (formula "3") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "76") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "76") (term "1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "76") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "76") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "76") (term "1,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "76") (term "1"))
+ (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "115")) (ifInst "" (formula "72")) (ifInst "" (formula "24")))
+ (rule "wellFormedAnon" (formula "76") (term "1,0"))
+ (rule "replace_known_left" (formula "76") (term "0,1,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "19")))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "76") (term "0"))
+ (rule "translateJavaAddInt" (formula "76") (term "1,0,0"))
+ (rule "translateJavaSubInt" (formula "76") (term "0"))
+ (rule "polySimp_elimSub" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "2,1"))
+ (rule "translateJavaSubInt" (formula "2") (term "2,1"))
+ (rule "translateJavaAddInt" (formula "2") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,0,2,1"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "2,0"))
+ (rule "translateJavaSubInt" (formula "2") (term "2,0"))
+ (rule "translateJavaAddInt" (formula "2") (term "1,0,2,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "2,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,0,2,0"))
+ (rule "nnf_imp2or" (formula "35") (term "0"))
+ (rule "Contract_axiom_for_countElement_in_BucketPointers" (formula "18") (term "1,1,1,0"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "117")) (ifInst "" (formula "113")) (ifInst "" (formula "21")) (ifInst "" (formula "25")) (ifInst "" (formula "115")) (ifInst "" (formula "48")))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "18") (term "0,0,0,0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,0"))
+ (rule "replace_known_left" (formula "18") (term "1,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0"))
+ (rule "replace_known_left" (formula "18") (term "0,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_BucketPointers" (formula "19") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_BucketPointers" (formula "83") (term "1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "83") (term "1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "83") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "83") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "0,0,0,1,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "65") (term "0,1,0,1,0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "translateJavaSubInt" (formula "65") (term "0,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "4,0,2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "65") (term "4,0,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "3,0,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "3,0,2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "4,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "65") (term "1,4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,0,1,0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "17") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "17") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "17") (term "1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "17") (term "1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,1,1,0"))
+ (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "11") (term "0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "0,0,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "11") (term "1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "11") (term "0,1,0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaAddInt" (formula "11") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "3,0,2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "4,0,2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "11") (term "3,0,0,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "0,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "4,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "11") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "11") (term "4,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,0,1,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "first_is_current_swap_0 = TRUE TRUE"
+ (rule "eqSymm" (formula "2"))
+ (rule "close" (formula "104") (ifseqformula "2"))
+ )
+ (branch "first_is_current_swap_0 = TRUE FALSE"
+ (rule "eqSymm" (formula "1"))
+ (rule "close" (formula "100") (ifseqformula "1"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "58") (term "0,1,0"))
+ (rule "eqSymm" (formula "68"))
+ (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "add_zero_right" (formula "58") (term "1"))
+ (rule "polySimp_homoEq" (formula "6") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "63") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "98"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "99"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "47") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "61"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0"))
+ (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "70"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "instEx" (formula "54") (term "2,1") (ifseqformula "91") (userinteraction))
+ (rule "replace_known_left" (formula "63") (term "0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "54")))
+ (rule "polySimp_homoEq" (formula "53") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "58") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "53") (term "0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "53") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "inEqSimp_ltRight" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "93") (term "0,1,0,0,1,0,0") (ifseqformula "33"))
+ (rule "polySimp_sepNegMonomial" (formula "55") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "60") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "6") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "93") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "1,1,1,0,0"))
+ (rule "inEqSimp_contradEq7" (formula "65") (ifseqformula "59"))
+ (rule "add_zero_left" (formula "65") (term "0,0"))
+ (rule "mul_literals" (formula "65") (term "0,0"))
+ (rule "leq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "false_right" (formula "65"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "59"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "42"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_contradInEq0" (formula "8") (ifseqformula "1"))
+ (rule "andLeft" (formula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "1,1,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0"))
+ (rule "add_zero_right" (formula "8") (term "0"))
+ (rule "leq_literals" (formula "8"))
+ (rule "closeFalse" (formula "8"))
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (swap_block)"
+ (builtin "One Step Simplification" (formula "77"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "andLeft" (formula "49"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "52"))
+ (rule "notLeft" (formula "50"))
+ (rule "close" (formula "54") (ifseqformula "53"))
+ )
+ (branch "Pre (swap_block)"
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "9")) (ifInst "" (formula "10")) (ifInst "" (formula "74")) (ifInst "" (formula "73")) (ifInst "" (formula "72")) (ifInst "" (formula "70")) (ifInst "" (formula "74")) (ifInst "" (formula "16")) (ifInst "" (formula "73")) (ifInst "" (formula "21")) (ifInst "" (formula "72")) (ifInst "" (formula "22")) (ifInst "" (formula "70")) (ifInst "" (formula "25")))
+ (rule "andRight" (formula "75"))
+ (branch
+ (rule "andRight" (formula "75"))
+ (branch
+ (rule "notRight" (formula "75"))
+ (rule "polySimp_homoEq" (formula "5") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0"))
+ (rule "ifEqualsNull" (formula "1"))
+ (rule "replace_known_right" (formula "1") (term "1,1") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "72")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch
+ (rule "notRight" (formula "75"))
+ (rule "polySimp_homoEq" (formula "5") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0"))
+ (rule "ifEqualsNull" (formula "1"))
+ (rule "replace_known_right" (formula "1") (term "1,1") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "70")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "75"))
+ (branch "Case 1"
+ (rule "andRight" (formula "75"))
+ (branch
+ (rule "andRight" (formula "75"))
+ (branch
+ (rule "andRight" (formula "75"))
+ (branch
+ (rule "andRight" (formula "75"))
+ (branch
+ (rule "wellFormedAnon" (formula "75"))
+ (rule "replace_known_left" (formula "75") (term "1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "75"))
+ )
+ (branch
+ (rule "expand_inInt" (formula "75"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "4") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "75") (term "1") (ifseqformula "5"))
+ (rule "leq_literals" (formula "75") (term "0,1"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_leqRight" (formula "75"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "42"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "35"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "37"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "38"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "33"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "33"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_and_subsumption3" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9"))
+ (rule "notLeft" (formula "9"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "10")) (ifInst "" (formula "71")) (ifInst "" (formula "10")) (ifInst "" (formula "17")))
+ (rule "wellFormedAnon" (formula "7") (term "1,0"))
+ (rule "replace_known_left" (formula "7") (term "0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "12")))
+ (rule "ifEqualsNull" (formula "7") (term "0,0"))
+ (rule "replace_known_right" (formula "7") (term "1,0,0,0") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "67")))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "26"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "translateJavaSubInt" (formula "31") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "31") (term "0,2,1"))
+ (rule "eqSymm" (formula "28"))
+ (rule "eqSymm" (formula "31"))
+ (rule "translateJavaMulInt" (formula "28") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "31") (term "0,2,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "31"))
+ (rule "polySimp_elimSub" (formula "31") (term "0,2,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "33"))
+ (rule "applyEq" (formula "28") (term "1") (ifseqformula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "46") (term "0,0"))
+ (rule "mul_literals" (formula "46") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "add_literals" (formula "46") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "46"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "75"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0"))
+ (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "polySimp_homoEq" (formula "4") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_contradInEq0" (formula "35") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "closeFalse" (formula "35"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "75"))
+ (rule "replace_int_MIN" (formula "75") (term "0,1"))
+ (rule "replace_int_MAX" (formula "75") (term "1,0"))
+ (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "polySimp_homoEq" (formula "4") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "5") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "75"))
+ (rule "orRight" (formula "76"))
+ (rule "polySimp_homoEq" (formula "11") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0"))
+ (rule "ifEqualsNull" (formula "75"))
+ (rule "orRight" (formula "75"))
+ (rule "replace_known_right" (formula "75") (term "1") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "false_right" (formula "75"))
+ (rule "replace_known_right" (formula "75") (term "1") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "false_right" (formula "75"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "35"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "41"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37"))
+ (rule "leq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "37"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "38"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "33"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "33"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_and_subsumption3" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "4") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "4") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "7") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "expand_inInt" (formula "7") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "7") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "7") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "7") (term "0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "42") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "expand_inInt" (formula "42") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,1,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "22"))
+ (rule "notLeft" (formula "22"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "26") (term "1,1"))
+ (rule "eqSymm" (formula "29"))
+ (rule "eqSymm" (formula "26"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,2,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "29"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,2,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,2,0"))
+ (rule "eqSymm" (formula "29"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,2,0"))
+ (rule "eqSymm" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "26") (term "1") (ifseqformula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "45") (term "0,0"))
+ (rule "mul_literals" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "add_literals" (formula "45") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "45"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "21") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaCastInt" (formula "28") (term "0"))
+ (rule "translateJavaAddInt" (formula "27") (term "1"))
+ (rule "translateJavaMulInt" (formula "21") (term "1"))
+ (rule "translateJavaMulInt" (formula "22") (term "0"))
+ (rule "translateJavaCastInt" (formula "25") (term "0"))
+ (rule "translateJavaCastInt" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "27") (term "1"))
+ (rule "castedGetAny" (formula "28") (term "0"))
+ (rule "castedGetAny" (formula "25") (term "0"))
+ (rule "castedGetAny" (formula "24") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "53"))
+ (rule "inEqSimp_commuteGeq" (formula "24"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "52"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "29"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "21"))
+ (rule "greater_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "52"))
+ (rule "mul_literals" (formula "23") (term "0,0"))
+ (rule "add_zero_left" (formula "23") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1"))
+ (rule "inEqSimp_exactShadow2" (formula "29") (ifseqformula "22"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_exactShadow2" (formula "51") (ifseqformula "22"))
+ (rule "greater_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "mul_literals" (formula "51") (term "0,1"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "nnf_imp2or" (formula "55") (term "0"))
+ (rule "nnf_imp2or" (formula "28") (term "0"))
+ (rule "Contract_axiom_for_countElement_in_BucketPointers" (formula "11") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "87")) (ifInst "" (formula "83")) (ifInst "" (formula "85")) (ifInst "" (formula "41")) (ifInst "" (formula "18")))
+ (rule "wellFormedAnon" (formula "11") (term "1,0"))
+ (rule "replace_known_left" (formula "11") (term "1,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "14")))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "11") (term "0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0"))
+ (rule "replace_known_left" (formula "11") (term "0,0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0"))
+ (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_BucketPointers" (formula "12") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "4") (term "0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "translateJavaAddInt" (formula "4") (term "3,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "4,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "57") (term "0,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "57") (term "0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "1,0,0,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "57") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "1,1,0,1,1,1,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "56") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "56") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "56") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "56") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "56") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "1,0,1,0,0"))
+ (rule "nnf_imp2or" (formula "4") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "56") (term "0,1,0"))
+ (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "4") (term "1,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_elementsToReadCountElement_in_de_wiesler_BucketPointers" (formula "12") (term "0,1,0,1,1,0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "1,1,0"))
+ (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "57") (term "0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "translateJavaAddInt" (formula "57") (term "3,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "4,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "57") (term "0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "57") (term "0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "57") (term "0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "57") (term "1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "4") (term "0,1,0,1,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "translateJavaAddInt" (formula "4") (term "3,0,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "3,0,2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "4,0,2,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "4,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "4,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,0,1,0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (term "0,1"))
+ (rule "replace_known_right" (formula "11") (term "0,0,1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "35") (term "0"))
+ (rule "replace_known_left" (formula "35") (term "1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "60")) (ifInst "" (formula "36")))
+ (rule "Definition_axiom_for_writtenElementsCountElement_in_de_wiesler_BucketPointers" (formula "12") (term "0,1,0") (inst "b=b"))
+ (rule "translateJavaCastInt" (formula "12") (term "0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "38") (inst "i=i") (inst "i_0=i_0"))
+ (rule "andLeft" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "39") (term "1,0,0"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "eqSymm" (formula "46") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "40") (term "1"))
+ (rule "translateJavaSubInt" (formula "46") (term "0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "3,0"))
+ (rule "mul_literals" (formula "44") (term "1,3,0"))
+ (rule "polySimp_elimSub" (formula "46") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "34"))
+ (rule "inEqSimp_commuteGeq" (formula "43"))
+ (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "68") (term "0") (ifseqformula "34"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40"))
+ (rule "eqSymm" (formula "37"))
+ (rule "applyEq" (formula "36") (term "3,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "40"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "34"))
+ (rule "applyEq" (formula "35") (term "3,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "33") (term "2,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "45") (term "0,1,0,0,1,1,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "40"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "40"))
+ (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40"))
+ (rule "eqSymm" (formula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "40") (term "1"))
+ (rule "mod_axiom" (formula "40") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "44") (term "1,3,0"))
+ (rule "mod_axiom" (formula "44") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "41") (term "0"))
+ (rule "mod_axiom" (formula "41") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "36") (term "3,0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "0,1,0"))
+ (rule "mod_axiom" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "42") (term "1"))
+ (rule "mod_axiom" (formula "42") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "35") (term "3,0"))
+ (rule "mod_axiom" (formula "35") (term "1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "2,0"))
+ (rule "mod_axiom" (formula "33") (term "1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "43") (term "0"))
+ (rule "mod_axiom" (formula "43") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "1,0,2,1"))
+ (rule "mod_axiom" (formula "37") (term "1,0,1,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0,2,1"))
+ (rule "javaShiftLeftIntDef" (formula "37") (term "1,0,2,0"))
+ (rule "mod_axiom" (formula "37") (term "1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0,2,0"))
+ (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,1,0"))
+ (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "46") (term "1,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "46") (term "1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftDef" (formula "40") (term "0,1"))
+ (rule "eqSymm" (formula "40"))
+ (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "44") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,3,0"))
+ (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "41") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "36") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,3,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "36") (term "3,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,1,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "42") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "42"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "40"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "shiftLeftDef" (formula "35") (term "0,3,0"))
+ (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,3,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,3,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,3,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,3,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,3,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,3,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,3,0"))
+ (rule "applyEq" (formula "35") (term "3,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "33") (term "0,2,0"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,2,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,2,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,2,0"))
+ (rule "applyEq" (formula "33") (term "2,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "43") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0"))
+ (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "43") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "37") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "37"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,1,0"))
+ (rule "applyEq" (formula "45") (term "1,1,1,1,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "46") (term "0,1,1,1,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,1,1,1,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,1,1,1,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,1,1,1,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "46") (term "0,0,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "46") (term "1,1,1,0,0,0") (ifseqformula "40"))
+ (rule "shiftLeftDef" (formula "37") (term "0,1,0,2,1"))
+ (rule "eqSymm" (formula "37"))
+ (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,0,2,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,0,2,0"))
+ (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,0,2,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,1,0,2,0"))
+ (rule "add_zero_right" (formula "37") (term "0,0,0,0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,0,2,0"))
+ (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40"))
+ (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "43"))
+ (rule "mul_literals" (formula "41") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "41"))
+ (rule "mul_literals" (formula "41") (term "1"))
+ (rule "expand_moduloInteger" (formula "40") (term "0"))
+ (rule "replace_int_MIN" (formula "40") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "40") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "40") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "40"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "10") (term "0,1,0,1,0"))
+ (rule "translateJavaMulInt" (formula "10") (term "0,2,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,2,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,0,1,0"))
+ (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "4") (term "0,1,0,0,1,0") (inst "block=block"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "expand_inInt" (formula "4") (term "1,0,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "4") (term "1,0,1,0,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "4") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "translateJavaDivInt" (formula "4") (term "1,1,0,0,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "0,1,4,0,1,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "3,0,1,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "4") (term "1,4,0,1,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "4") (term "1,3,0,1,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "4,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,4,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "1,1,4,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,4,0,1,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,4,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "4,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,4,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,4,0,1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,0,0,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "67") (term "1,4,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "67") (term "0,2,1,4,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,2,1,4,0,1,0,0,1,0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "1,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,0,1,1,0"))
+ (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "67") (term "0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "1,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "1,1,1,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "10") (term "0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,2,0,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "10") (term "0,0,2,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,2,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,0,0,0,1,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (term "1") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "25")) (ifInst "" (formula "28")))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,1"))
+ (rule "translateJavaCastInt" (formula "11") (term "0,1,1,0,0,0,1"))
+ (rule "translateJavaCastInt" (formula "11") (term "0,1,0,1"))
+ (rule "translateJavaCastInt" (formula "11") (term "1,1,0,1,0,0,0,1"))
+ (rule "translateJavaMulInt" (formula "11") (term "1,0,0,0,0,0,1"))
+ (rule "translateJavaAddInt" (formula "11") (term "1,1,0,0,1"))
+ (rule "translateJavaMulInt" (formula "11") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0,0,0,1"))
+ (rule "replace_known_left" (formula "11") (term "1,0,0,0,0,1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0,1"))
+ (rule "replace_known_left" (formula "11") (term "1,0,0,1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "castedGetAny" (formula "11") (term "0,1,1,0,0,1"))
+ (rule "castedGetAny" (formula "11") (term "1,1,0,1,0,0,1"))
+ (rule "castedGetAny" (formula "11") (term "0,1,0,1"))
+ (rule "replace_known_left" (formula "11") (term "1,0,1") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,1,0,1"))
+ (rule "replace_known_left" (formula "11") (term "0,0,1,0,1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,1,0,1"))
+ (rule "applyEq" (formula "11") (term "0,0,1,0,1") (ifseqformula "64"))
+ (rule "inEqSimp_commuteGeq" (formula "11") (term "0,1,0,1"))
+ (rule "replace_known_left" (formula "11") (term "0,1,0,1") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEq" (formula "11") (term "0,1,0,1") (ifseqformula "64"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0,1"))
+ (rule "replace_known_left" (formula "11") (term "1,0,1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_subsumption6" (formula "11") (term "0,1") (ifseqformula "31"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0,1"))
+ (rule "greater_literals" (formula "11") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "leq_literals" (formula "11") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "9") (term "0,1,0"))
+ (rule "Contract_axiom_for_countElement_in_BucketPointers" (formula "12") (term "1,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "99")) (ifInst "" (formula "95")) (ifInst "" (formula "15")) (ifInst "" (formula "19")) (ifInst "" (formula "97")) (ifInst "" (formula "52")))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0,0,0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "Definition_axiom_for_elementsToReadOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "13") (term "2,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,2,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "3,2,0,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,1,0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "68") (term "0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "68") (term "0,2,0,0,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "68") (term "0,0,2,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,2,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0"))
+ (rule "translateJavaCastInt" (formula "29") (term "0,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "29") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "29") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "29") (term "1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,0"))
+ (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0,0") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0"))
+ (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "68") (term "1,0,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "68") (term "0,2,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,2,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "68") (term "0,1,0,1,0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "translateJavaSubInt" (formula "68") (term "0,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "4,0,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "68") (term "3,0,2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "68") (term "3,0,0,1,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "68") (term "4,0,2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "68") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "4,0,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "68") (term "1,4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "4,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,4,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "0,0,0,1,0,1,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaMod" (formula "26") (term "0"))
+ (rule "jmod_axiom" (formula "26") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "newSym_eq" (formula "26") (inst "l=l_0") (inst "newSymDef=mul(int::final(bucket_pointers,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))"))
+ (rule "times_zero_1" (formula "26") (term "1,1"))
+ (rule "add_zero_right" (formula "26") (term "1"))
+ (rule "applyEq" (formula "27") (term "0,0") (ifseqformula "26"))
+ (rule "eqSymm" (formula "27"))
+ (rule "applyEq" (formula "67") (term "0") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "applyEq" (formula "26") (term "0,0") (ifseqformula "27"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "27"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,1"))
+ (rule "elimGcdGeq_antec" (formula "25") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "leq_literals" (formula "25") (term "0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "59"))
+ (rule "polySimp_rightDist" (formula "67") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "67") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "68") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0"))
+ (rule "polySimp_addComm1" (formula "68") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "68") (term "0"))
+ (rule "add_literals" (formula "68") (term "1,1,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "68") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "68"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "68") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "68") (term "0,0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "68") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "68") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "68") (term "0,0"))
+ (rule "add_literals" (formula "68") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "68") (term "1,0,0"))
+ (rule "add_zero_right" (formula "68") (term "0,0"))
+ (rule "qeq_literals" (formula "68") (term "0"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "67"))
+ (rule "times_zero_1" (formula "54") (term "0,0"))
+ (rule "add_zero_left" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "54") (inst "elimGcdRightDiv=Z(7(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "54") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "54") (term "0,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "54") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "54") (term "0,0"))
+ (rule "add_literals" (formula "54") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "54") (term "1,0,0"))
+ (rule "add_zero_right" (formula "54") (term "0,0"))
+ (rule "qeq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "inEqSimp_subsumption0" (formula "69") (ifseqformula "54"))
+ (rule "leq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "13") (term "2,0,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaSubInt" (formula "13") (term "3,0,1,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,2,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "2,0,1,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "3,2,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "0,0,0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,3,0,1,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "13") (term "1,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "0,0,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "3,0,1,2,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,3,0,1,2,0,1,0"))
+ (rule "polySimp_homoEq" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,2,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0,2,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "3,1,1,2,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,3,1,1,2,0,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,2,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,2,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,2,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,2,0,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,2,0,1,0,0,0,0,1,0"))
+ (rule "polySimp_sepPosMonomial" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,2,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,2,1,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0,0,2,1,0,0,1,1,0"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "10") (term "1,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "10") (term "0,2,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,2,1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "49") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "49") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "49") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "49") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "49") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "48") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "48") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "48") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,0,1,0"))
+ (rule "commute_or_2" (formula "31") (term "0,0"))
+ (rule "commute_or" (formula "9") (term "1,0,0"))
+ (rule "commute_or" (formula "70") (term "1,0,0"))
+ (rule "commute_or" (formula "10") (term "0,0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "48") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "48") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "48") (term "1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "48") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,0,0,1,1,1,0"))
+ (rule "commute_and" (formula "49") (term "1,0,0"))
+ (rule "commute_and" (formula "48") (term "1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "47") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "38") (term "0"))
+ (rule "replace_known_left" (formula "38") (term "1,1") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "75")) (ifInst "" (formula "15")) (ifInst "" (formula "39")))
+ (rule "true_left" (formula "38"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "4") (term "0,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "37") (term "0"))
+ (rule "replace_known_left" (formula "37") (term "1,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "75")) (ifInst "" (formula "38")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "expand_inInt" (formula "38") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "38") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0"))
+ (rule "ifthenelse_split" (formula "105") (term "1,0"))
+ (branch "first_is_current_swap_0 = TRUE TRUE"
+ (rule "replace_known_left" (formula "105") (term "0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "105"))
+ )
+ (branch "first_is_current_swap_0 = TRUE FALSE"
+ (rule "replace_known_right" (formula "9") (term "0,1,2,0,1,0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "104") (term "0,1,0") (ifseqformula "105"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "104"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "ifthenelse_split" (formula "75") (term "0,0") (userinteraction))
+ (branch "first_is_current_swap_0 = TRUE TRUE"
+ (rule "orRight" (formula "76"))
+ (rule "orRight" (formula "76"))
+ (rule "replace_known_left" (formula "12") (term "0,1,0,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "replace_known_left" (formula "8") (term "0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "replace_known_left" (formula "77") (term "0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "replace_known_left" (formula "76") (term "0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "25")))
+ (rule "closeTrue" (formula "76"))
+ )
+ (branch "first_is_current_swap_0 = TRUE FALSE"
+ (rule "orRight" (formula "76"))
+ (rule "orRight" (formula "76"))
+ (rule "replace_known_right" (formula "76") (term "0,1,0") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "23")))
+ (rule "closeTrue" (formula "76"))
+ )
+ )
+ )
+ )
+ )
+ (branch "if true false"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__swap_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__swap_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..f95bf9a
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__swap_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,11704 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Jun 03 15:11:36 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Jun 03 15:11:36 CEST 2022
+contract=de.wiesler.Permute[de.wiesler.Permute\\:\\:swap_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0
+name=de.wiesler.Permute[de.wiesler.Permute\\:\\:swap_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "194387")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "expand_inInt" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0,0"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "6"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "8"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "14"))
+(rule "andLeft" (formula "10"))
+(rule "notLeft" (formula "9"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "15"))
+(rule "andLeft" (formula "17"))
+(rule "notLeft" (formula "10"))
+(rule "andLeft" (formula "10"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "16"))
+(rule "andLeft" (formula "20"))
+(rule "andLeft" (formula "19"))
+(rule "notLeft" (formula "11"))
+(rule "andLeft" (formula "11"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "23"))
+(rule "andLeft" (formula "20"))
+(rule "notLeft" (formula "12"))
+(rule "andLeft" (formula "12"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "26"))
+(rule "andLeft" (formula "28"))
+(rule "notLeft" (formula "14"))
+(rule "notLeft" (formula "14"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "29"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "32"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "andLeft" (formula "31"))
+(rule "translateJavaSubInt" (formula "26") (term "0"))
+(rule "translateJavaSubInt" (formula "29") (term "1"))
+(rule "translateJavaCastInt" (formula "29") (term "0"))
+(rule "translateJavaSubInt" (formula "30") (term "1"))
+(rule "translateJavaAddInt" (formula "53") (term "0,0,0,1,0"))
+(rule "replace_known_right" (formula "13") (term "0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "13"))
+(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "11"))
+(rule "replace_known_right" (formula "12") (term "0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "12"))
+(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "10"))
+(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "9"))
+(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "4"))
+(rule "polySimp_elimSub" (formula "26") (term "0"))
+(rule "polySimp_elimSub" (formula "29") (term "1"))
+(rule "polySimp_elimSub" (formula "30") (term "1"))
+(rule "polySimp_addComm0" (formula "26") (term "0"))
+(rule "polySimp_addComm0" (formula "29") (term "1"))
+(rule "polySimp_addComm0" (formula "30") (term "1"))
+(rule "disjointDefinition" (formula "51"))
+ (builtin "One Step Simplification" (formula "51"))
+(rule "notLeft" (formula "51"))
+(rule "eqSymm" (formula "53"))
+(rule "disjointDefinition" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+(rule "notLeft" (formula "50"))
+(rule "eqSymm" (formula "52"))
+(rule "disjointDefinition" (formula "49"))
+ (builtin "One Step Simplification" (formula "49"))
+(rule "notLeft" (formula "49"))
+(rule "eqSymm" (formula "51"))
+(rule "disjointDefinition" (formula "48"))
+ (builtin "One Step Simplification" (formula "48"))
+(rule "notLeft" (formula "48"))
+(rule "eqSymm" (formula "50"))
+(rule "disjointDefinition" (formula "47"))
+ (builtin "One Step Simplification" (formula "47"))
+(rule "notLeft" (formula "47"))
+(rule "eqSymm" (formula "49"))
+(rule "disjointDefinition" (formula "46"))
+ (builtin "One Step Simplification" (formula "46"))
+(rule "notLeft" (formula "46"))
+(rule "eqSymm" (formula "48"))
+(rule "disjointDefinition" (formula "45"))
+ (builtin "One Step Simplification" (formula "45"))
+(rule "notLeft" (formula "45"))
+(rule "eqSymm" (formula "47"))
+(rule "disjointDefinition" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+(rule "notLeft" (formula "44"))
+(rule "eqSymm" (formula "46"))
+(rule "disjointDefinition" (formula "43"))
+ (builtin "One Step Simplification" (formula "43"))
+(rule "notLeft" (formula "43"))
+(rule "eqSymm" (formula "45"))
+(rule "disjointDefinition" (formula "42"))
+ (builtin "One Step Simplification" (formula "42"))
+(rule "notLeft" (formula "42"))
+(rule "eqSymm" (formula "44"))
+(rule "disjointDefinition" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+(rule "notLeft" (formula "41"))
+(rule "eqSymm" (formula "43"))
+(rule "disjointDefinition" (formula "40"))
+ (builtin "One Step Simplification" (formula "40"))
+(rule "notLeft" (formula "40"))
+(rule "eqSymm" (formula "42"))
+(rule "disjointDefinition" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+(rule "notLeft" (formula "39"))
+(rule "eqSymm" (formula "41"))
+(rule "disjointDefinition" (formula "38"))
+ (builtin "One Step Simplification" (formula "38"))
+(rule "notLeft" (formula "38"))
+(rule "eqSymm" (formula "40"))
+(rule "disjointDefinition" (formula "37"))
+ (builtin "One Step Simplification" (formula "37"))
+(rule "notLeft" (formula "37"))
+(rule "eqSymm" (formula "39"))
+(rule "disjointDefinition" (formula "36"))
+ (builtin "One Step Simplification" (formula "36"))
+(rule "notLeft" (formula "36"))
+(rule "eqSymm" (formula "38"))
+(rule "disjointDefinition" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+(rule "notLeft" (formula "35"))
+(rule "eqSymm" (formula "37"))
+(rule "disjointDefinition" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+(rule "notLeft" (formula "34"))
+(rule "eqSymm" (formula "36"))
+(rule "disjointDefinition" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+(rule "notLeft" (formula "33"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "disjointDefinition" (formula "31"))
+ (builtin "One Step Simplification" (formula "31"))
+(rule "notLeft" (formula "31"))
+(rule "castedGetAny" (formula "29") (term "0"))
+(rule "inEqSimp_commuteLeq" (formula "25"))
+(rule "inEqSimp_commuteLeq" (formula "24"))
+(rule "inEqSimp_commuteLeq" (formula "23"))
+(rule "inEqSimp_commuteLeq" (formula "8"))
+(rule "inEqSimp_commuteLeq" (formula "27"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "3"))
+(rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0"))
+(rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0"))
+(rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+(rule "applyEq" (formula "28") (term "1") (ifseqformula "19"))
+(rule "applyEq" (formula "29") (term "1,0") (ifseqformula "19"))
+(rule "applyEq" (formula "32") (term "1,1,0,0,0") (ifseqformula "19"))
+(rule "commute_and" (formula "32") (term "0,1,0"))
+(rule "commute_and_2" (formula "32") (term "1,0"))
+(rule "commute_and" (formula "32") (term "1,0,0"))
+(rule "commute_and" (formula "32") (term "0,0,0"))
+(rule "shift_paren_and" (formula "32") (term "0,0"))
+(rule "commute_and_2" (formula "32") (term "0,0,0"))
+(rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_swap_block,savedHeapBefore_swap_block,_beginBefore_swap_block,_bucket_pointersBefore_swap_block,_classifierBefore_swap_block,_current_swapBefore_swap_block,_endBefore_swap_block,_other_swapBefore_swap_block,_overflowBefore_swap_block,_target_bucketBefore_swap_block,_valuesBefore_swap_block,writeBefore_swap_block"))
+ (builtin "One Step Simplification" (formula "60"))
+ (builtin "Block Contract (Internal)" (formula "60") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+(branch "Validity"
+ (builtin "One Step Simplification" (formula "61"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "14")) (ifInst "" (formula "1")))
+ (rule "true_left" (formula "33"))
+ (rule "eqSymm" (formula "60") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "60") (term "1"))
+ (rule "variableDeclaration" (formula "60") (term "1") (newnames "exc_25_1"))
+ (rule "assignment" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "emptyStatement" (formula "60") (term "1"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "emptyStatement" (formula "60") (term "1"))
+ (rule "tryEmpty" (formula "60") (term "1"))
+ (rule "blockEmptyLabel" (formula "60") (term "1"))
+ (rule "blockEmpty" (formula "60") (term "1"))
+ (rule "methodCallEmpty" (formula "60") (term "1"))
+ (rule "emptyModality" (formula "60") (term "1"))
+ (rule "andRight" (formula "60"))
+ (branch
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "closeTrue" (formula "60"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "closeTrue" (formula "60"))
+ )
+)
+(branch "Precondition"
+ (rule "andRight" (formula "60"))
+ (branch
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "60"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "60"))
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "61"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "translateJavaSubInt" (formula "37") (term "0,1"))
+ (rule "replace_known_left" (formula "36") (term "0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "19"))
+ (rule "elim_double_block_2" (formula "65") (term "1"))
+ (rule "ifUnfold" (formula "65") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "65") (term "1") (newnames "x"))
+ (rule "inequality_comparison_simple" (formula "65") (term "1"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "replace_known_left" (formula "65") (term "0,0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "ifSplit" (formula "65"))
+ (branch "if x true"
+ (builtin "One Step Simplification" (formula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x false"
+ (builtin "One Step Simplification" (formula "66"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "65") (term "1"))
+ (rule "loopScopeInvDia" (formula "65") (term "1") (newnames "o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1"))
+ (branch "Invariant Initially Valid"
+ (rule "closeTrue" (formula "65"))
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "expand_inInt" (formula "66") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "66") (term "1,0,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,0,0,1,0,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,0,0,1,0,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,0,0,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,0,0,0,0,0,0,0"))
+ (rule "impRight" (formula "66"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "translateJavaAddInt" (formula "74") (term "0,1,1,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "74") (term "0,0,1,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "6") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "7") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "5") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "4") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "3") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "1") (term "0,1,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "2") (term "0,1,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "74") (term "0,0,1,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "74") (term "0,1,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "6") (term "0,0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "8") (term "0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "7") (term "0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "5") (term "0,0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "4") (term "0,0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "3") (term "0,0,1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "1") (term "0,0,1,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "2") (term "0,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0"))
+ (rule "variableDeclaration" (formula "74") (term "1") (newnames "x_1"))
+ (rule "applyEq" (formula "1") (term "1,1,0,0,0") (ifseqformula "28"))
+ (rule "commute_and" (formula "2") (term "0,0"))
+ (rule "commute_and" (formula "1") (term "1,0,0"))
+ (rule "commute_and" (formula "1") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "1") (term "0,0"))
+ (rule "commute_and_2" (formula "1") (term "0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "29") (term "0"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "arrayLengthNotNegative" (formula "30") (term "0"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "31"))
+ (rule "qeq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "arrayLengthNotNegative" (formula "31") (term "0"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "seqGetAlphaCast" (formula "40") (term "0"))
+ (rule "castedGetAny" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "arrayLengthIsAShort" (formula "31") (term "0"))
+ (rule "expand_inShort" (formula "31"))
+ (rule "replace_short_MIN" (formula "31") (term "0,1"))
+ (rule "replace_short_MAX" (formula "31") (term "1,0"))
+ (rule "andLeft" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "33"))
+ (rule "qeq_literals" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "leq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "arrayLengthNotNegative" (formula "36") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "29") (term "0"))
+ (rule "expand_inShort" (formula "29"))
+ (rule "replace_short_MIN" (formula "29") (term "0,1"))
+ (rule "replace_short_MAX" (formula "29") (term "1,0"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "31"))
+ (rule "qeq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "30"))
+ (rule "leq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "arrayLengthIsAShort" (formula "30") (term "0"))
+ (rule "expand_inShort" (formula "30"))
+ (rule "replace_short_MIN" (formula "30") (term "0,1"))
+ (rule "replace_short_MAX" (formula "30") (term "1,0"))
+ (rule "andLeft" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "31"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "32"))
+ (rule "qeq_literals" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "31"))
+ (rule "leq_literals" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "ifElseSplit" (formula "77"))
+ (branch "if true true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "variableDeclarationGhostAssign" (formula "77") (term "1"))
+ (rule "variableDeclarationGhost" (formula "77") (term "1") (newnames "heapAtLoopBodyBegin"))
+ (rule "assignment" (formula "77") (term "1"))
+ (builtin "One Step Simplification" (formula "77"))
+ (builtin "Block Contract (Internal)" (formula "77") (newnames "result_0,exc_0,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "23")))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "eqSymm" (formula "78") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "78") (term "1"))
+ (rule "variableDeclaration" (formula "78") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "emptyStatement" (formula "78") (term "1"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "emptyStatement" (formula "78") (term "1"))
+ (rule "tryEmpty" (formula "78") (term "1"))
+ (rule "blockEmptyLabel" (formula "78") (term "1"))
+ (rule "blockEmpty" (formula "78") (term "1"))
+ (rule "methodCallEmpty" (formula "78") (term "1"))
+ (rule "emptyModality" (formula "78") (term "1"))
+ (rule "andRight" (formula "78"))
+ (branch
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "closeTrue" (formula "78"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "closeTrue" (formula "78"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "77"))
+ (branch
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "23")))
+ (rule "closeTrue" (formula "77"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "wellFormedAnon" (formula "77"))
+ (rule "replace_known_left" (formula "77") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "9")))
+ (rule "closeTrue" (formula "77"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "expand_inInt" (formula "50") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "50") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "50") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "translateJavaAddInt" (formula "54") (term "0"))
+ (rule "replace_known_left" (formula "53") (term "0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "true_left" (formula "53"))
+ (rule "polySimp_addComm0" (formula "53") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "elim_double_block_2" (formula "81") (term "1"))
+ (rule "ifUnfold" (formula "81") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "81") (term "1") (newnames "x_2"))
+ (rule "inequality_comparison_simple" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "replace_known_left" (formula "81") (term "0,0,1,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "10") (ifseqformula "19"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "59") (term "0") (ifseqformula "11") (ifseqformula "19"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "61") (term "0,0") (ifseqformula "12") (ifseqformula "20"))
+ (rule "ifSplit" (formula "84"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "85"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "85"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "84") (term "1"))
+ (rule "variableDeclarationAssign" (formula "84") (term "1"))
+ (rule "variableDeclaration" (formula "84") (term "1") (newnames "increment"))
+ (builtin "Use Operation Contract" (formula "84") (newnames "heapBefore_increment_write,result_1,exc_1,heapAfter_increment_write,anon_heap_increment_write") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::increment_write(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (increment_write)"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "59") (term "1,0,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "61"))
+ (rule "notLeft" (formula "64"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "65"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "67"))
+ (rule "translateJavaAddInt" (formula "58") (term "0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "61") (term "0"))
+ (rule "translateJavaAddInt" (formula "62") (term "1"))
+ (rule "translateJavaAddInt" (formula "63") (term "0"))
+ (rule "eqSymm" (formula "64"))
+ (rule "eqSymm" (formula "66"))
+ (rule "eqSymm" (formula "67"))
+ (rule "translateJavaMulInt" (formula "58") (term "0,0,1,1,0"))
+ (rule "replace_known_right" (formula "60") (term "0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "62") (term "1"))
+ (rule "polySimp_addComm0" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,1,1,0"))
+ (rule "assignment" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "variableDeclarationAssign" (formula "98") (term "1"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "occupied"))
+ (rule "assignment_read_attribute_final" (formula "98"))
+ (branch "Normal Execution (increment != null)"
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "variableDeclarationAssign" (formula "98") (term "1"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "write"))
+ (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "66"))
+ (rule "eqSymm" (formula "61"))
+ (rule "applyEq" (formula "98") (term "0,1,0,0,0,0,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "62"))
+ (rule "compound_addition_2" (formula "98") (term "1") (inst "#v0=x_2") (inst "#v1=x_3"))
+ (rule "variableDeclarationAssign" (formula "98") (term "1"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "x_4"))
+ (rule "assignment" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "variableDeclarationAssign" (formula "98") (term "1"))
+ (rule "variableDeclaration" (formula "98") (term "1") (newnames "x_3"))
+ (rule "assignment_read_attribute_final" (formula "98"))
+ (branch "Normal Execution (increment != null)"
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "assignmentAdditionInt" (formula "98") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "66") (term "0") (userinteraction))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "96")) (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "66") (term "1,0"))
+ (rule "expand_inInt" (formula "99"))
+ (rule "replace_int_MIN" (formula "99") (term "0,1"))
+ (rule "replace_int_MAX" (formula "99") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "66") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "66") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "66") (term "1,1,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "13")))
+ (rule "polySimp_homoEq" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "66") (term "1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "66") (term "0"))
+ (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "67"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "andLeft" (formula "66"))
+ (rule "inEqSimp_commuteLeq" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "67"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "104") (term "1"))
+ (rule "mul_literals" (formula "104") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "104") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "104") (term "0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "applyEq" (formula "67") (term "0") (ifseqformula "72"))
+ (rule "applyEq" (formula "70") (term "0,0") (ifseqformula "72"))
+ (rule "applyEq" (formula "68") (term "0") (ifseqformula "72"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "51"))
+ (rule "inEqSimp_commuteGeq" (formula "69"))
+ (rule "polySimp_sepNegMonomial" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "63"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "0,0,0"))
+ (rule "add_zero_left" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "41"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "104") (term "1"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,1"))
+ (rule "mul_literals" (formula "104") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "104") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "104") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "41"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "34"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "38"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "34"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35"))
+ (rule "polySimp_mulComm0" (formula "37") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "37") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "37"))
+ (rule "polySimp_mulLiterals" (formula "37") (term "0"))
+ (rule "polySimp_elimOne" (formula "37") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "37"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "33"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "67"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "64"))
+ (rule "times_zero_1" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0"))
+ (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "nnf_imp2or" (formula "4") (term "0"))
+ (rule "nnf_imp2or" (formula "44") (term "0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "4") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "44") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "44") (term "1,0,0,1,0,0,0"))
+ (rule "add_zero_right" (formula "44") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "48") (term "1"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "translateJavaSubInt" (formula "48") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "48") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "1,1,1"))
+ (rule "mul_literals" (formula "48") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "48") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "0,0"))
+ (rule "times_zero_2" (formula "48") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "48") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "48") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,0,0"))
+ (rule "replace_known_left" (formula "48") (term "0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,0"))
+ (rule "replace_known_left" (formula "48") (term "0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "49"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "50"))
+ (rule "times_zero_1" (formula "66") (term "0,0"))
+ (rule "add_zero_left" (formula "66") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1"))
+ (rule "polySimp_rightDist" (formula "66") (term "1"))
+ (rule "mul_literals" (formula "66") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "33"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "66") (term "0,0"))
+ (rule "add_literals" (formula "66") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "66") (term "1,0,0"))
+ (rule "add_zero_right" (formula "66") (term "0,0"))
+ (rule "qeq_literals" (formula "66") (term "0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "62") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "62") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "62") (term "1,0,1,1"))
+ (rule "polySimp_elimSub" (formula "62") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "62") (term "1"))
+ (rule "applyEq" (formula "62") (term "0,1,1") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1,1"))
+ (rule "mul_literals" (formula "62") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "62") (term "1"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,1"))
+ (rule "add_literals" (formula "62") (term "0,0,1"))
+ (rule "add_zero_left" (formula "62") (term "0,1"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "43") (term "0"))
+ (rule "replace_known_left" (formula "43") (term "0,1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "24")) (ifInst "" (formula "104")) (ifInst "" (formula "13")) (ifInst "" (formula "17")) (ifInst "" (formula "106")) (ifInst "" (formula "26")))
+ (rule "true_left" (formula "43"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "60") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "60") (term "1,0,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "78")) (ifInst "" (formula "105")) (ifInst "" (formula "78")) (ifInst "" (formula "77")) (ifInst "" (formula "18")))
+ (rule "wellFormedAnonEQ" (formula "60") (term "1,0") (ifseqformula "57"))
+ (rule "wellFormedAnon" (formula "60") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "60") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "60") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "60") (term "1,1,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "13")) (ifInst "" (formula "12")))
+ (rule "polySimp_addComm0" (formula "60") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "60") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0"))
+ (rule "replace_known_left" (formula "60") (term "0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "60") (term "0,0,0,0,1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "applyEq" (formula "60") (term "0,0,1,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "60") (term "0,0,0,0,1") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq1" (formula "60") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,0,0,0,1"))
+ (rule "applyEq" (formula "60") (term "0,1,0,0,1") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq0" (formula "60") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0,0,1"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,1,0,0,1"))
+ (rule "applyEq" (formula "60") (term "0,1,0,1") (ifseqformula "50"))
+ (rule "inEqSimp_commuteGeq" (formula "60") (term "1,0,1"))
+ (rule "replace_known_left" (formula "60") (term "1,0,1") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0"))
+ (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "inEqSimp_subsumption0" (formula "73") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq0" (formula "73") (term "0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0"))
+ (rule "mul_literals" (formula "73") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "1,0,0"))
+ (rule "add_zero_right" (formula "73") (term "0,0"))
+ (rule "qeq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "72"))
+ (rule "inEqSimp_homoInEq0" (formula "60") (term "0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0"))
+ (rule "qeq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "60"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "mul_literals" (formula "71") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "71"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0"))
+ (rule "qeq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "72"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "69") (ifseqformula "70"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,0"))
+ (rule "mul_literals" (formula "69") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0"))
+ (rule "qeq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "69"))
+ (rule "times_zero_1" (formula "68") (term "0,0"))
+ (rule "add_zero_left" (formula "68") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "mul_literals" (formula "68") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "68"))
+ (rule "leq_literals" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "true_left" (formula "67"))
+ (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "49"))
+ (rule "mul_literals" (formula "67") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0"))
+ (rule "add_literals" (formula "67") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1"))
+ (rule "mul_literals" (formula "67") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "67"))
+ (rule "inEqSimp_homoInEq0" (formula "32") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0"))
+ (rule "qeq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0"))
+ (rule "add_literals" (formula "66") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "66"))
+ (rule "leq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "notLeft" (formula "11"))
+ (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "79"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "75") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "10")) (ifInst "" (formula "107")) (ifInst "" (formula "10")) (ifInst "" (formula "73")) (ifInst "" (formula "17")))
+ (rule "wellFormedAnon" (formula "75") (term "1,0"))
+ (rule "replace_known_left" (formula "75") (term "1,1,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "12")))
+ (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0"))
+ (rule "replace_known_left" (formula "75") (term "0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0,0"))
+ (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "andLeft" (formula "75"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "75") (term "0,0"))
+ (rule "add_zero_left" (formula "75") (term "0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "8") (term "1"))
+ (rule "translateJavaSubInt" (formula "8") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "8") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "63") (term "0,0"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "10")) (ifInst "" (formula "110")) (ifInst "" (formula "10")) (ifInst "" (formula "77")) (ifInst "" (formula "78")) (ifInst "" (formula "74")) (ifInst "" (formula "17")))
+ (rule "true_left" (formula "63"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "59") (term "0"))
+ (rule "translateJavaAddInt" (formula "59") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "59") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "59") (term "0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "59") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "84")) (ifInst "" (formula "3")))
+ (rule "polySimp_homoEq" (formula "60"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "elementOfSingleton" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "applyEqReverse" (formula "60") (term "0,1,0,0") (ifseqformula "59"))
+ (rule "hideAuxiliaryEq" (formula "59"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "59"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "63") (term "0,0"))
+ (rule "translateJavaSubInt" (formula "63") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,0"))
+ (rule "applyEq" (formula "63") (term "1,0,0,0,0") (ifseqformula "74"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0,0,0"))
+ (rule "applyEq" (formula "63") (term "0,1,1,0,0") (ifseqformula "74"))
+ (rule "polySimp_addComm0" (formula "63") (term "1,0,0"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,0,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "63") (term "1,1,0,0") (ifseqformula "62"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0,0,0,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "47") (term "1"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "translateJavaUnaryMinusInt" (formula "47") (term "1,1"))
+ (rule "neg_literal" (formula "47") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "47") (term "0,0,1"))
+ (rule "translateJavaSubInt" (formula "47") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "47") (term "0,1"))
+ (rule "mul_literals" (formula "47") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "47") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "47") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "47") (term "0,0,1"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,2,1"))
+ (rule "translateJavaSubInt" (formula "29") (term "0,2,0"))
+ (rule "eqSymm" (formula "26"))
+ (rule "eqSymm" (formula "29"))
+ (rule "translateJavaMulInt" (formula "26") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,2,1"))
+ (rule "mul_literals" (formula "29") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "29") (term "0,2,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "24"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "31"))
+ (rule "applyEq" (formula "26") (term "1") (ifseqformula "31"))
+ (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "25"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,0"))
+ (rule "mul_literals" (formula "42") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0"))
+ (rule "add_literals" (formula "42") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "42"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Contract_axiom_for_elementsToReadOfBucketBlockClassified_in_BucketPointers" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "11")) (ifInst "" (formula "117")) (ifInst "" (formula "118")) (ifInst "" (formula "116")) (ifInst "" (formula "11")) (ifInst "" (formula "80")) (ifInst "" (formula "17")))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "84") (term "0,0,0"))
+ (rule "translateJavaSubInt" (formula "84") (term "1,0,0,0"))
+ (rule "polySimp_elimSub" (formula "84") (term "1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,0,0,0"))
+ (rule "applyEq" (formula "84") (term "0,1,1,0,0,0") (ifseqformula "80"))
+ (rule "polySimp_addComm0" (formula "84") (term "1,0,0,0"))
+ (rule "applyEq" (formula "84") (term "1,0,0,0,0,0") (ifseqformula "80"))
+ (rule "polySimp_addComm1" (formula "84") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "84") (term "1,1,0,0,0") (ifseqformula "68"))
+ (rule "applyEq" (formula "84") (term "0,1,0,0,0,0,0") (ifseqformula "68"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "84") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,0,0,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "79") (term "0"))
+ (rule "translateJavaMulInt" (formula "79") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "79") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "79") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "79"))
+ (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "89")) (ifInst "" (formula "3")))
+ (rule "eqSymm" (formula "80"))
+ (rule "applyEqReverse" (formula "79") (term "1") (ifseqformula "80"))
+ (rule "hideAuxiliaryEq" (formula "80"))
+ (rule "elementOfSingleton" (formula "79") (term "0,0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "84") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "translateJavaCastInt" (formula "91") (term "0"))
+ (rule "translateJavaAddInt" (formula "90") (term "1"))
+ (rule "translateJavaMulInt" (formula "84") (term "1"))
+ (rule "translateJavaMulInt" (formula "85") (term "0"))
+ (rule "translateJavaCastInt" (formula "88") (term "0"))
+ (rule "translateJavaCastInt" (formula "87") (term "1"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1"))
+ (rule "polySimp_mulComm0" (formula "85") (term "0"))
+ (rule "polySimp_addComm0" (formula "90") (term "1"))
+ (rule "castedGetAny" (formula "91") (term "0"))
+ (rule "castedGetAny" (formula "88") (term "0"))
+ (rule "castedGetAny" (formula "87") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86"))
+ (rule "inEqSimp_commuteLeq" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "87"))
+ (rule "applyEq" (formula "88") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_homoInEq0" (formula "88"))
+ (rule "polySimp_mulComm0" (formula "88") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "88") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "88") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "88") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "88") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "88") (term "0"))
+ (rule "applyEq" (formula "87") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_commuteGeq" (formula "87"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "92") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "92") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "92") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "87"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "84") (ifseqformula "22"))
+ (rule "mul_literals" (formula "84") (term "1,1,0"))
+ (rule "greater_literals" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "leq_literals" (formula "84") (term "0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "true_left" (formula "84"))
+ (rule "inEqSimp_exactShadow2" (formula "22") (ifseqformula "84"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "44"))
+ (rule "mul_literals" (formula "86") (term "0,0"))
+ (rule "add_zero_left" (formula "86") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "1"))
+ (rule "polySimp_elimOne" (formula "86") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "86") (ifseqformula "71"))
+ (rule "inEqSimp_homoInEq0" (formula "86") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0"))
+ (rule "add_literals" (formula "86") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "86") (term "1,0,0"))
+ (rule "add_zero_right" (formula "86") (term "0,0"))
+ (rule "qeq_literals" (formula "86") (term "0"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "true_left" (formula "86"))
+ (rule "inEqSimp_exactShadow2" (formula "42") (ifseqformula "85"))
+ (rule "greater_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1"))
+ (rule "mul_literals" (formula "42") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "69") (term "1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,0,0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "94")) (ifInst "" (formula "123")) (ifInst "" (formula "94")) (ifInst "" (formula "16")))
+ (rule "wellFormedAnonEQ" (formula "69") (term "1,0") (ifseqformula "61"))
+ (rule "wellFormedAnon" (formula "69") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "69") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "69") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "69") (term "1,0,1,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "12")) (ifInst "" (formula "60")))
+ (rule "polySimp_addComm0" (formula "69") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0"))
+ (rule "replace_known_left" (formula "69") (term "0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "69") (term "0,0,0,0,1") (ifseqformula "75"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1"))
+ (rule "applyEq" (formula "69") (term "0,0,1,1,1") (ifseqformula "54"))
+ (rule "inEqSimp_commuteGeq" (formula "69") (term "0,1,1,1"))
+ (rule "applyEq" (formula "69") (term "0,1,0,1") (ifseqformula "54"))
+ (rule "inEqSimp_commuteGeq" (formula "69") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,0"))
+ (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "70"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1"))
+ (rule "polySimp_elimOne" (formula "69") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "84"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0"))
+ (rule "qeq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "73"))
+ (rule "mul_literals" (formula "94") (term "0,0"))
+ (rule "add_zero_left" (formula "94") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "83") (term "0,0"))
+ (rule "mul_literals" (formula "83") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "83"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "83"))
+ (rule "times_zero_1" (formula "81") (term "0,0"))
+ (rule "add_zero_left" (formula "81") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "mul_literals" (formula "81") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "96") (ifseqformula "81"))
+ (rule "leq_literals" (formula "96") (term "0"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "Contract_axiom_for_disjointBucketsLemma_in_BucketPointers" (formula "55") (term "0"))
+ (rule "replace_known_left" (formula "55") (term "1,0,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "16")) (ifInst "" (formula "132")) (ifInst "" (formula "56")) (ifInst "" (formula "21")))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0"))
+ (rule "replace_known_left" (formula "55") (term "0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0,0"))
+ (rule "replace_known_left" (formula "55") (term "0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "Definition_axiom_for_disjointBucketsLemma_in_de_wiesler_BucketPointers" (formula "55") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "expand_inInt" (formula "55") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_writtenElementsOfBucketClassified_in_BucketPointers" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "11")) (ifInst "" (formula "133")) (ifInst "" (formula "134")) (ifInst "" (formula "129")) (ifInst "" (formula "132")) (ifInst "" (formula "11")) (ifInst "" (formula "90")) (ifInst "" (formula "34")) (ifInst "" (formula "17")))
+ (rule "true_left" (formula "7"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "translateJavaAddInt" (formula "7") (term "3,0,0,1"))
+ (rule "translateJavaSubInt" (formula "7") (term "0,0,0"))
+ (rule "translateJavaAddInt" (formula "7") (term "3,0,2"))
+ (rule "translateJavaSubInt" (formula "7") (term "4,0,0,1"))
+ (rule "translateJavaAddInt" (formula "7") (term "4,0,2"))
+ (rule "translateJavaAddInt" (formula "7") (term "0,4,0,0,1"))
+ (rule "polySimp_elimSub" (formula "7") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "4,0,0,1"))
+ (rule "mul_literals" (formula "7") (term "1,4,0,0,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "4,0,0,1"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,4,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0"))
+ (rule "applyEq" (formula "7") (term "0,1,0") (ifseqformula "68"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,1,0"))
+ (rule "add_literals" (formula "7") (term "0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0"))
+ (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "67") (term "0"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "10")) (ifInst "" (formula "132")) (ifInst "" (formula "10")) (ifInst "" (formula "90")) (ifInst "" (formula "16")))
+ (rule "true_left" (formula "67"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "10")) (ifInst "" (formula "132")) (ifInst "" (formula "10")) (ifInst "" (formula "90")) (ifInst "" (formula "16")))
+ (rule "wellFormedAnon" (formula "76") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "76") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "76") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "76") (term "0,1,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "11")))
+ (rule "polySimp_addComm0" (formula "76") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "76") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "76") (term "0,0,0,0,1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,1"))
+ (rule "applyEq" (formula "76") (term "0,0,0,0,1") (ifseqformula "77"))
+ (rule "replace_known_left" (formula "76") (term "0,0,0,1") (ifseqformula "69"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0,0,1,1,1") (ifseqformula "54"))
+ (rule "inEqSimp_commuteGeq" (formula "76") (term "0,1,1,1"))
+ (rule "replace_known_left" (formula "76") (term "0,1,1,1") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0,0,1,1,1") (ifseqformula "77"))
+ (rule "replace_known_left" (formula "76") (term "1,1,1") (ifseqformula "74"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0,0,1,1") (ifseqformula "77"))
+ (rule "applyEq" (formula "76") (term "0,1,1,1") (ifseqformula "77"))
+ (rule "replace_known_left" (formula "76") (term "1,1") (ifseqformula "72"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0,1,1") (ifseqformula "54"))
+ (rule "inEqSimp_commuteGeq" (formula "76") (term "1,1"))
+ (rule "replace_known_left" (formula "76") (term "1,1") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0,1") (ifseqformula "77"))
+ (rule "replace_known_left" (formula "76") (term "1") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "76") (term "0"))
+ (rule "translateJavaMulInt" (formula "76") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "76") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "76"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "106")) (ifInst "" (formula "3")))
+ (rule "eqSymm" (formula "77"))
+ (rule "applyEqReverse" (formula "76") (term "1") (ifseqformula "77"))
+ (rule "hideAuxiliaryEq" (formula "77"))
+ (rule "elementOfSingleton" (formula "76") (term "0,0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "polySimp_homoEq" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0"))
+ (rule "equal_literals" (formula "76") (term "0,0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "eqSymm" (formula "76"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "76"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "76"))
+ (rule "applyEq" (formula "72") (term "0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "72") (term "0,1") (ifseqformula "76"))
+ (rule "applyEq" (formula "77") (term "1,1,0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "74") (term "0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "94") (term "1,1,0,0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "94") (term "0,0,0,0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "77") (term "0,0,0,0") (ifseqformula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "70"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1"))
+ (rule "polySimp_elimOne" (formula "69") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "86"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0"))
+ (rule "qeq_literals" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "67") (term "0"))
+ (rule "translateJavaSubInt" (formula "67") (term "0"))
+ (rule "translateJavaAddInt" (formula "67") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0"))
+ (rule "polySimp_homoEq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "67") (term "0,0,0"))
+ (rule "add_literals" (formula "67") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "67") (term "0,0,0"))
+ (rule "add_zero_left" (formula "67") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "1"))
+ (rule "polySimp_elimOne" (formula "67") (term "1"))
+ (rule "applyEq" (formula "7") (term "0,0,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "7") (term "1,4,0,0,1") (ifseqformula "67"))
+ (rule "applyEq" (formula "7") (term "1,4,0,2") (ifseqformula "67"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "102"))
+ (rule "notLeft" (formula "102"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "21") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "97")) (ifInst "" (formula "100")))
+ (rule "expand_inInt" (formula "21") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "23"))
+ (rule "translateJavaCastInt" (formula "27") (term "0"))
+ (rule "translateJavaAddInt" (formula "26") (term "1"))
+ (rule "translateJavaCastInt" (formula "25") (term "0"))
+ (rule "translateJavaMulInt" (formula "22") (term "0"))
+ (rule "translateJavaMulInt" (formula "21") (term "1"))
+ (rule "translateJavaCastInt" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_addComm0" (formula "25") (term "1"))
+ (rule "castedGetAny" (formula "25") (term "0"))
+ (rule "castedGetAny" (formula "24") (term "0"))
+ (rule "castedGetAny" (formula "23") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_homoInEq0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "47"))
+ (rule "inEqSimp_commuteGeq" (formula "22"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "24"))
+ (rule "mul_literals" (formula "21") (term "1,1,0"))
+ (rule "greater_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10"))
+ (rule "notLeft" (formula "10"))
+ (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "76") (term "0,2"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,0,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "130")) (ifInst "" (formula "74")) (ifInst "" (formula "15")))
+ (rule "wellFormedAnonEQ" (formula "76") (term "1,0") (ifseqformula "60"))
+ (rule "wellFormedAnon" (formula "76") (term "0,1,0"))
+ (rule "replace_known_left" (formula "76") (term "1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "11")) (ifInst "" (formula "10")))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "77") (term "0,2"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1,2"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1,2"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,2"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,2"))
+ (rule "applyEq" (formula "77") (term "0,0,1,2") (ifseqformula "75"))
+ (rule "applyEq" (formula "77") (term "0,1,0,0,0,0,2") (ifseqformula "75"))
+ (rule "polySimp_sepNegMonomial" (formula "77") (term "1,2"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,2"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,2"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,2"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,2"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,2"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,2"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0,2"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,2"))
+ (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "translateJavaAddInt" (formula "6") (term "3,0,1"))
+ (rule "translateJavaAddInt" (formula "6") (term "4,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "66"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "applyEq" (formula "6") (term "1,3,0,1") (ifseqformula "66"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "45") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "expand_inInt" (formula "45") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "89") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "97")) (ifInst "" (formula "100")))
+ (rule "expand_inInt" (formula "89") (term "1,0,0,1"))
+ (rule "replace_int_MAX" (formula "89") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "89") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "translateJavaCastInt" (formula "95") (term "0"))
+ (rule "translateJavaAddInt" (formula "94") (term "1"))
+ (rule "translateJavaMulInt" (formula "90") (term "0"))
+ (rule "translateJavaMulInt" (formula "89") (term "1"))
+ (rule "translateJavaCastInt" (formula "93") (term "0"))
+ (rule "translateJavaCastInt" (formula "92") (term "1"))
+ (rule "polySimp_mulComm0" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1"))
+ (rule "polySimp_addComm0" (formula "93") (term "1"))
+ (rule "castedGetAny" (formula "93") (term "0"))
+ (rule "castedGetAny" (formula "92") (term "0"))
+ (rule "castedGetAny" (formula "91") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "90"))
+ (rule "inEqSimp_commuteLeq" (formula "89"))
+ (rule "inEqSimp_commuteLeq" (formula "90"))
+ (rule "applyEq" (formula "90") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_commuteGeq" (formula "90"))
+ (rule "applyEq" (formula "90") (term "0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq0" (formula "90"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "90") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "90") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "91") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "91") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "91") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "91") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "91") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "90"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0"))
+ (rule "polySimp_elimOne" (formula "90") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "89") (ifseqformula "22"))
+ (rule "greater_literals" (formula "89") (term "0,0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "mul_literals" (formula "89") (term "1,0"))
+ (rule "leq_literals" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "true_left" (formula "89"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "131")))
+ (rule "translateJavaAddInt" (formula "82") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "82") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "82") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "82") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "82") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "82") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "82") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "82") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,1"))
+ (rule "replace_known_left" (formula "82") (term "0,0,0,1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0"))
+ (rule "replace_known_left" (formula "82") (term "0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "82") (term "0,1,0,1") (ifseqformula "53"))
+ (rule "applyEq" (formula "82") (term "0,0,0,1") (ifseqformula "53"))
+ (rule "inEqSimp_commuteGeq" (formula "82") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "82") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "82") (term "0,0,1,1,1") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "82") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "82") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_subsumption0" (formula "82") (term "0,0,1") (ifseqformula "85"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,1"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "82") (term "0,0,0,0,1"))
+ (rule "qeq_literals" (formula "82") (term "0,0,0,1"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_subsumption1" (formula "82") (term "1,0,1,1,1,1") (ifseqformula "42"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "82") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "82") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_subsumption1" (formula "82") (term "0,0") (ifseqformula "42"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,0,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "82") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "82") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_subsumption1" (formula "82") (term "0,1,1,1") (ifseqformula "86"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "82") (term "0,0,0,1,1,1"))
+ (rule "qeq_literals" (formula "82") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "83") (term "0"))
+ (rule "translateJavaCastInt" (formula "83") (term "0,0"))
+ (rule "castedGetAny" (formula "83") (term "0,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "87") (term "1"))
+ (rule "translateJavaCastInt" (formula "87") (term "0,1"))
+ (rule "castedGetAny" (formula "87") (term "0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "87"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "87"))
+ (rule "times_zero_1" (formula "83") (term "0,0"))
+ (rule "add_zero_left" (formula "83") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "63"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "add_zero_left" (formula "83") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "mul_literals" (formula "83") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "70"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "mul_literals" (formula "83") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "90"))
+ (rule "mul_literals" (formula "83") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "mul_literals" (formula "83") (term "1"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "91") (term "0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "translateJavaMod" (formula "91") (term "0"))
+ (rule "jmod_axiom" (formula "91") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "91"))
+ (rule "polySimp_mulLiterals" (formula "91") (term "0"))
+ (rule "newSym_eq" (formula "91") (inst "newSymDef=mul(int::final(result_1,
+ de.wiesler.Increment::$position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "91") (term "1,1"))
+ (rule "add_zero_right" (formula "91") (term "1"))
+ (rule "applyEq" (formula "92") (term "0,0") (ifseqformula "91"))
+ (rule "eqSymm" (formula "92"))
+ (rule "applyEq" (formula "89") (term "1") (ifseqformula "92"))
+ (rule "applyEq" (formula "137") (term "0,1") (ifseqformula "92"))
+ (rule "inEqSimp_homoInEq1" (formula "137") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,1"))
+ (rule "applyEq" (formula "7") (term "0,0,0") (ifseqformula "92"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0"))
+ (rule "applyEq" (formula "7") (term "1,4,0,0,1") (ifseqformula "92"))
+ (rule "polySimp_addComm1" (formula "7") (term "4,0,0,1"))
+ (rule "applyEq" (formula "84") (term "0") (ifseqformula "92"))
+ (rule "applyEq" (formula "64") (term "1,0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "98") (term "1,1,0,0,0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "91") (term "0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "6") (term "1,3,0,1") (ifseqformula "92"))
+ (rule "polySimp_addComm0" (formula "6") (term "3,0,1"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "applyEq" (formula "6") (term "1,1,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "137") (term "0,0") (ifseqformula "92"))
+ (rule "inEqSimp_homoInEq0" (formula "137") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0"))
+ (rule "applyEq" (formula "77") (term "1,1,0,0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "7") (term "1,4,0,2") (ifseqformula "92"))
+ (rule "polySimp_addComm0" (formula "7") (term "4,0,2"))
+ (rule "applyEq" (formula "77") (term "0,0,1,0,0") (ifseqformula "92"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,0"))
+ (rule "applyEq" (formula "65") (term "1,1") (ifseqformula "92"))
+ (rule "applyEq" (formula "66") (term "1") (ifseqformula "92"))
+ (rule "applyEq" (formula "98") (term "0,0,1,0,0,0") (ifseqformula "92"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0,0,0"))
+ (rule "applyEq" (formula "94") (term "1") (ifseqformula "92"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "137") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "137") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "137") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "137") (term "0,0"))
+ (rule "elimGcdGeq_antec" (formula "84") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "84") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "84") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "84") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "84") (term "0,0"))
+ (rule "add_literals" (formula "84") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "84") (term "1,0,0"))
+ (rule "add_zero_right" (formula "84") (term "0,0"))
+ (rule "leq_literals" (formula "84") (term "0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "90"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1"))
+ (rule "mul_literals" (formula "63") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1"))
+ (rule "polySimp_rightDist" (formula "64") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1"))
+ (rule "mul_literals" (formula "64") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "91"))
+ (rule "mul_literals" (formula "87") (term "0,0"))
+ (rule "add_zero_left" (formula "87") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "87") (ifseqformula "86"))
+ (rule "greater_literals" (formula "87") (term "0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "mul_literals" (formula "87") (term "1,0"))
+ (rule "leq_literals" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "true_left" (formula "87"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "52"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,1"))
+ (rule "mul_literals" (formula "63") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (term "0,0") (ifseqformula "63"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "63") (term "0"))
+ (rule "add_literals" (formula "63") (term "1,1,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "63") (term "0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "add_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "63") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(6(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "63") (term "0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "neg_literal" (formula "63") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "63") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0"))
+ (rule "add_literals" (formula "63") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "63") (term "1,0,0"))
+ (rule "add_zero_right" (formula "63") (term "0,0"))
+ (rule "qeq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "36"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,0"))
+ (rule "add_literals" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "142") (term "0") (ifseqformula "64"))
+ (rule "inEqSimp_homoInEq0" (formula "142") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "142") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "142") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "142") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "142") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "142") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "142") (term "0,0,0,0"))
+ (rule "add_literals" (formula "142") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "142") (term "0,0,0"))
+ (rule "add_literals" (formula "142") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "142") (term "1,0,0,0"))
+ (rule "add_literals" (formula "142") (term "0,0,0"))
+ (rule "qeq_literals" (formula "142") (term "0,0"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "inEqSimp_geqRight" (formula "142"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "65") (term "0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,0,0"))
+ (rule "add_literals" (formula "65") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "65") (term "0,0"))
+ (rule "add_literals" (formula "65") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "1,0,0"))
+ (rule "add_zero_right" (formula "65") (term "0,0"))
+ (rule "qeq_literals" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "true_left" (formula "65"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "34") (term "0,0"))
+ (rule "add_zero_left" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "34") (ifseqformula "90"))
+ (rule "mul_literals" (formula "34") (term "1,1,0"))
+ (rule "greater_literals" (formula "34") (term "0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "closeFalse" (formula "34"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "98"))
+ (builtin "Block Contract (Internal)" (formula "98") (newnames "result_2,exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "26")))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "eqSymm" (formula "99") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "99") (term "0,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "99") (term "1"))
+ (rule "variableDeclaration" (formula "99") (term "1") (newnames "exc_2_1"))
+ (rule "assignment" (formula "99") (term "1"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "emptyStatement" (formula "99") (term "1"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "emptyStatement" (formula "99") (term "1"))
+ (rule "tryEmpty" (formula "99") (term "1"))
+ (rule "blockEmptyLabel" (formula "99") (term "1"))
+ (rule "blockEmpty" (formula "99") (term "1"))
+ (rule "methodCallEmpty" (formula "99") (term "1"))
+ (rule "emptyModality" (formula "99") (term "1"))
+ (rule "andRight" (formula "99"))
+ (branch
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "closeTrue" (formula "99"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "closeTrue" (formula "99"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "98"))
+ (branch
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "98"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "wellFormedAnonEQ" (formula "98") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "98") (term "0"))
+ (rule "replace_known_left" (formula "98") (term "1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "13")) (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "98"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "expand_inInt" (formula "70") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "70") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "70") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "70"))
+ (rule "andLeft" (formula "72"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "75"))
+ (rule "translateJavaAddInt" (formula "106") (term "0,1,0"))
+ (rule "eqSymm" (formula "77"))
+ (rule "translateJavaAddInt" (formula "76") (term "0"))
+ (rule "translateJavaAddInt" (formula "75") (term "1"))
+ (rule "replace_known_left" (formula "73") (term "0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "inEqSimp_commuteLeq" (formula "72"))
+ (rule "elim_double_block_2" (formula "104") (term "1"))
+ (rule "ifUnfold" (formula "104") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "104") (term "1") (newnames "x_5"))
+ (rule "inequality_comparison_simple" (formula "104") (term "1"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "replace_known_left" (formula "104") (term "0,0,1,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "104"))
+ (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "104") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "76") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "1,0,0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "103")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "28")))
+ (rule "true_left" (formula "76"))
+ (builtin "Use Dependency Contract" (formula "10") (ifInst "" (formula "104") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "76") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "102")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "27")) (ifInst "" (formula "27")))
+ (rule "true_left" (formula "76"))
+ (rule "ifSplit" (formula "104"))
+ (branch "if x_5 true"
+ (builtin "One Step Simplification" (formula "105"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_5 false"
+ (builtin "One Step Simplification" (formula "105"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "104") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "104") (newnames "result_3,exc_3,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "105"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "26")))
+ (rule "eqSymm" (formula "105") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "105") (term "1"))
+ (rule "variableDeclaration" (formula "105") (term "1") (newnames "exc_3_1"))
+ (rule "assignment" (formula "105") (term "1"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "emptyStatement" (formula "105") (term "1"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "emptyStatement" (formula "105") (term "1"))
+ (rule "tryEmpty" (formula "105") (term "1"))
+ (rule "blockEmptyLabel" (formula "105") (term "1"))
+ (rule "blockEmpty" (formula "105") (term "1"))
+ (rule "methodCallEmpty" (formula "105") (term "1"))
+ (rule "emptyModality" (formula "105") (term "1"))
+ (rule "andRight" (formula "105"))
+ (branch
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "closeTrue" (formula "105"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "closeTrue" (formula "105"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "104"))
+ (branch
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "104"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "wellFormedAnonEQ" (formula "104") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "104") (term "0"))
+ (rule "replace_known_left" (formula "104") (term "1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "13")) (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "104"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "76"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "expand_inInt" (formula "76") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "76") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "76") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "78"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "77"))
+ (rule "translateJavaAddInt" (formula "80") (term "7,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "7,0"))
+ (rule "replace_known_left" (formula "79") (term "0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "true_left" (formula "79"))
+ (rule "polySimp_addComm1" (formula "79") (term "7,0"))
+ (rule "polySimp_addComm1" (formula "80") (term "7,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,7,0"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,7,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78"))
+ (rule "elim_double_block_2" (formula "109") (term "1"))
+ (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_6"))
+ (rule "inequality_comparison_simple" (formula "109") (term "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "109"))
+ (builtin "Use Dependency Contract" (formula "8") (term "0") (ifInst "" (formula "8") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "81") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_right" (formula "81") (term "0,0,0,0,0,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "27")))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "81") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "81") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0"))
+ (rule "replace_known_left" (formula "81") (term "0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0"))
+ (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (rule "elementOfSingleton" (formula "81") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfSingleton" (formula "81") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (builtin "Use Dependency Contract" (formula "7") (term "0") (ifInst "" (formula "47") (term "0,1,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenElementsOfBucketClassified(de.wiesler.Classifier,[I,int,int,[I,int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "107")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "108")) (ifInst "" (formula "21")) (ifInst "" (formula "109")) (ifInst "" (formula "16")) (ifInst "" (formula "104")) (ifInst "" (formula "25")) (ifInst "" (formula "43")) (ifInst "" (formula "28")) (ifInst "" (formula "27")) (ifInst "" (formula "108")) (ifInst "" (formula "109")) (ifInst "" (formula "104")) (ifInst "" (formula "34")))
+ (rule "wellFormedAnon" (formula "81") (term "0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "1,0,0,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "81") (term "2,0,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0,0,1,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,2,0,0,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,1,1,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "81") (term "0,0,0,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "12")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14")))
+ (rule "polySimp_elimSub" (formula "81") (term "2,0,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "81") (term "1,2,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "2,0,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,2,0,0,0,0,1,1,0"))
+ (rule "disjointDefinition" (formula "81") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "81") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0,0"))
+ (rule "replace_known_left" (formula "81") (term "1,0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "81") (term "0,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0"))
+ (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0"))
+ (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "applyEq" (formula "81") (term "0,1") (ifseqformula "7"))
+ (rule "eqSymm" (formula "81") (term "1"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "eqSymm" (formula "81") (term "1,0,0"))
+ (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "eqSymm" (formula "81") (term "1,0,0"))
+ (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (rule "elementOfSingleton" (formula "81") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (builtin "Use Dependency Contract" (formula "6") (term "0") (ifInst "" (formula "47") (term "0,0,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "81") (term "1,1,0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "81") (term "1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "2,1,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "1,1,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "81") (term "2,0,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "1,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "81") (term "0,2,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,2,0,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "81") (term "0,1,0,0,0,0,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "107")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "108")) (ifInst "" (formula "21")) (ifInst "" (formula "109")) (ifInst "" (formula "16")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "28")) (ifInst "" (formula "27")) (ifInst "" (formula "108")) (ifInst "" (formula "109")))
+ (rule "polySimp_elimSub" (formula "81") (term "2,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "81") (term "1,2,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "2,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,2,0,0,0,1,1,0"))
+ (rule "disjointDefinition" (formula "81") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "81") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0,0"))
+ (rule "replace_known_left" (formula "81") (term "1,0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0"))
+ (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0"))
+ (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0"))
+ (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "applyEq" (formula "81") (term "0,1") (ifseqformula "6"))
+ (rule "eqSymm" (formula "81") (term "1"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "eqSymm" (formula "81") (term "1,0,0"))
+ (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "eqSymm" (formula "81") (term "1,0,0"))
+ (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfUnion" (formula "81") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "elementOfArrayRangeConcrete" (formula "81") (term "0,0,0"))
+ (rule "replace_known_right" (formula "81") (term "0,0,0,0,0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "ifSplit" (formula "110"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "110") (term "1"))
+ (builtin "Use Dependency Contract" (formula "65") (term "0,2") (ifInst "" (formula "67") (term "0,0,0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "82") (term "1"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "82") (term "1,1,0,0,0,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14")))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "82") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "82") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0"))
+ (rule "replace_known_left" (formula "82") (term "0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0"))
+ (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "elementOfUnion" (formula "82") (term "0,0"))
+ (rule "elementOfSingleton" (formula "82") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (builtin "Use Dependency Contract" (formula "65") (term "0,1") (ifInst "" (formula "8") (term "1")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "43")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "82") (term "0,0,0,0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,1,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "82") (term "1,0,0,0,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "57")) (ifInst "" (formula "14")))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "82") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "82") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0"))
+ (rule "replace_known_left" (formula "82") (term "1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0"))
+ (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "elementOfUnion" (formula "82") (term "0,0"))
+ (rule "elementOfSingleton" (formula "82") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (builtin "Use Dependency Contract" (formula "64") (term "1") (ifInst "" (formula "64") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,1,1,1,0"))
+ (rule "eqSymm" (formula "82") (term "1"))
+ (rule "replace_known_left" (formula "82") (term "0,0,1,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14")) (ifInst "" (formula "64")))
+ (rule "true_left" (formula "82"))
+ (builtin "Use Dependency Contract" (formula "62") (term "0") (ifInst "" (formula "9") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "82") (term "1,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "82") (term "1,1,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14")) (ifInst "" (formula "43")))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "82") (term "1,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (builtin "Use Dependency Contract" (formula "62") (term "1,1") (ifInst "" (formula "62") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "82") (term "1"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "82") (term "1,1,0,0,0,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14")))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "82") (term "1,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (builtin "Use Dependency Contract" (formula "63") (term "1") (ifInst "" (formula "63") (term "1,0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "82") (term "1"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "82") (term "0,0,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14")))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "82") (term "1,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (builtin "Use Dependency Contract" (formula "61") (term "0") (ifInst "" (formula "66") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "eqSymm" (formula "82") (term "1"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "82") (term "0,0,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14")))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "82") (term "1,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (builtin "Use Dependency Contract" (formula "9") (term "1,0") (ifInst "" (formula "9") (term "1")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "43")) (ifInst "" (formula "27")))
+ (rule "wellFormedAnonEQ" (formula "82") (term "0,0,0,0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "82") (term "0,0,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14")))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "82") (term "1,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "ifElseSplit" (formula "110"))
+ (branch "if occupied true"
+ (builtin "Block Contract (Internal)" (formula "111") (newnames "result_4,exc_4,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "112") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "112") (term "1"))
+ (rule "variableDeclaration" (formula "112") (term "1") (newnames "exc_4_1"))
+ (rule "assignment" (formula "112") (term "1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "emptyStatement" (formula "112") (term "1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "emptyStatement" (formula "112") (term "1"))
+ (rule "applyEq" (formula "68") (term "1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "tryEmpty" (formula "112") (term "1"))
+ (rule "blockEmptyLabel" (formula "112") (term "1"))
+ (rule "blockEmpty" (formula "112") (term "1"))
+ (rule "methodCallEmpty" (formula "112") (term "1"))
+ (rule "emptyModality" (formula "112") (term "1"))
+ (rule "andRight" (formula "112"))
+ (branch
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "closeTrue" (formula "112"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "closeTrue" (formula "112"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "111"))
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "111"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "wellFormedAnonEQ" (formula "111") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "111") (term "0"))
+ (rule "replace_known_left" (formula "111") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "111"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "expand_inInt" (formula "83") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "83") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "83") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "84"))
+ (rule "translateJavaSubInt" (formula "87") (term "0"))
+ (rule "replace_known_left" (formula "86") (term "0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "true_left" (formula "86"))
+ (rule "polySimp_elimSub" (formula "86") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "85"))
+ (rule "applyEq" (formula "68") (term "1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "applyEq" (formula "86") (term "0,1,0") (ifseqformula "67"))
+ (rule "polySimp_addComm0" (formula "86") (term "0"))
+ (rule "applyEq" (formula "86") (term "1,0") (ifseqformula "65"))
+ (rule "elim_double_block_2" (formula "115") (term "1"))
+ (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "115") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "87") (term "0,1,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "114")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "29")) (ifInst "" (formula "12")) (ifInst "" (formula "29")))
+ (rule "true_left" (formula "87"))
+ (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "115") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "87") (term "1,1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "113")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "28")) (ifInst "" (formula "11")))
+ (rule "true_left" (formula "87"))
+ (rule "ifUnfold" (formula "115") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "replace_known_left" (formula "115") (term "0,0,1,0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "115"))
+ (builtin "Use Dependency Contract" (formula "7") (term "0") (ifInst "" (formula "82") (term "0,1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "87") (term "1,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "87") (term "1,0,0,0,0"))
+ (rule "expand_inInt" (formula "87") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "1,0,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,2,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "87") (term "1,1,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "87") (term "0,2,1,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "87") (term "2,0,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "2,1,0,0,1,1,0"))
+ (rule "replace_known_right" (formula "87") (term "0,1,0,0,0,0,0,0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "113")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "22")) (ifInst "" (formula "115")) (ifInst "" (formula "17")) (ifInst "" (formula "18")) (ifInst "" (formula "20")) (ifInst "" (formula "15")) (ifInst "" (formula "44")) (ifInst "" (formula "29")) (ifInst "" (formula "28")) (ifInst "" (formula "114")) (ifInst "" (formula "115")))
+ (rule "polySimp_elimSub" (formula "87") (term "2,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "87") (term "1,2,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,2,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "2,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,2,0,0,0,1,1,0"))
+ (rule "disjointDefinition" (formula "87") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "87") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,0,0"))
+ (rule "replace_known_left" (formula "87") (term "1,0,0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,0"))
+ (rule "replace_known_left" (formula "87") (term "1,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0"))
+ (rule "replace_known_left" (formula "87") (term "1,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0"))
+ (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "0,1") (ifseqformula "7"))
+ (rule "eqSymm" (formula "87") (term "1"))
+ (rule "elementOfUnion" (formula "87") (term "0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "eqSymm" (formula "87") (term "1,0,0"))
+ (rule "replace_known_right" (formula "87") (term "1,0,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "elementOfUnion" (formula "87") (term "0,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "eqSymm" (formula "87") (term "1,0,0"))
+ (rule "replace_known_right" (formula "87") (term "1,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "elementOfUnion" (formula "87") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "87") (term "0,0,0"))
+ (rule "replace_known_right" (formula "87") (term "0,0,0,0,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "elementOfArrayRangeConcrete" (formula "87") (term "0,0"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "82")))
+ (rule "true_left" (formula "87"))
+ (rule "ifSplit" (formula "115"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "115") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "115") (newnames "result_5,exc_5,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "eqSymm" (formula "116") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "116") (term "1"))
+ (rule "variableDeclaration" (formula "116") (term "1") (newnames "exc_5_1"))
+ (rule "assignment" (formula "116") (term "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "emptyStatement" (formula "116") (term "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "emptyStatement" (formula "116") (term "1"))
+ (rule "tryEmpty" (formula "116") (term "1"))
+ (rule "blockEmptyLabel" (formula "116") (term "1"))
+ (rule "blockEmpty" (formula "116") (term "1"))
+ (rule "methodCallEmpty" (formula "116") (term "1"))
+ (rule "emptyModality" (formula "116") (term "1"))
+ (rule "andRight" (formula "116"))
+ (branch
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "closeTrue" (formula "116"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "closeTrue" (formula "116"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "115"))
+ (branch
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "115"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "wellFormedAnonEQ" (formula "115") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "115") (term "0"))
+ (rule "replace_known_left" (formula "115") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "115"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "87"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "expand_inInt" (formula "87") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "87") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "87") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "87"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "88"))
+ (rule "translateJavaAddInt" (formula "92") (term "0,4,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "5,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "4,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,5,0"))
+ (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "true_left" (formula "90"))
+ (rule "polySimp_addComm1" (formula "91") (term "4,0"))
+ (rule "polySimp_addComm1" (formula "90") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "91") (term "0,4,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,5,0"))
+ (rule "inEqSimp_commuteLeq" (formula "89"))
+ (rule "applyEq" (formula "92") (term "2,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "91") (term "1,4,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "90") (term "1,5,0") (ifseqformula "67"))
+ (rule "elim_double_block_2" (formula "121") (term "1"))
+ (rule "ifUnfold" (formula "121") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "121") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "121") (term "1"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "replace_known_left" (formula "121") (term "0,0,1,0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "ifSplit" (formula "121"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "122"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "122"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "121") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "121") (newnames "result_6,exc_6,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "eqSymm" (formula "122") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "122") (term "1"))
+ (rule "variableDeclaration" (formula "122") (term "1") (newnames "exc_6_1"))
+ (rule "assignment" (formula "122") (term "1"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "emptyStatement" (formula "122") (term "1"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "emptyStatement" (formula "122") (term "1"))
+ (rule "tryEmpty" (formula "122") (term "1"))
+ (rule "blockEmptyLabel" (formula "122") (term "1"))
+ (rule "blockEmpty" (formula "122") (term "1"))
+ (rule "methodCallEmpty" (formula "122") (term "1"))
+ (rule "emptyModality" (formula "122") (term "1"))
+ (rule "andRight" (formula "122"))
+ (branch
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "closeTrue" (formula "122"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "closeTrue" (formula "122"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "121"))
+ (branch
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "121"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "wellFormedAnonEQ" (formula "121") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "121") (term "0"))
+ (rule "replace_known_left" (formula "121") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "121"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "93"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "93") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "expand_inInt" (formula "93") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "93") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "93") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "94"))
+ (rule "translateJavaSubInt" (formula "98") (term "0,0"))
+ (rule "translateJavaAddInt" (formula "97") (term "0"))
+ (rule "replace_known_left" (formula "96") (term "0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "true_left" (formula "96"))
+ (rule "polySimp_elimSub" (formula "97") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "96") (term "0"))
+ (rule "polySimp_addComm0" (formula "96") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "95"))
+ (rule "applyEq" (formula "97") (term "0,1,0,0") (ifseqformula "67"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "elim_double_block_2" (formula "126") (term "1"))
+ (rule "ifUnfold" (formula "126") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "126") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "126") (term "1"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "replace_known_left" (formula "126") (term "0,0,1,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "ifSplit" (formula "126"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "126") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "126") (newnames "result_7,exc_7,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "eqSymm" (formula "127") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "127") (term "1"))
+ (rule "variableDeclaration" (formula "127") (term "1") (newnames "exc_7_1"))
+ (rule "assignment" (formula "127") (term "1"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "emptyStatement" (formula "127") (term "1"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "emptyStatement" (formula "127") (term "1"))
+ (rule "tryEmpty" (formula "127") (term "1"))
+ (rule "blockEmptyLabel" (formula "127") (term "1"))
+ (rule "blockEmpty" (formula "127") (term "1"))
+ (rule "methodCallEmpty" (formula "127") (term "1"))
+ (rule "emptyModality" (formula "127") (term "1"))
+ (rule "andRight" (formula "127"))
+ (branch
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "closeTrue" (formula "127"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "closeTrue" (formula "127"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "126"))
+ (branch
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "126"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "wellFormedAnonEQ" (formula "126") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "126") (term "0"))
+ (rule "replace_known_left" (formula "126") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "126"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "98"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "expand_inInt" (formula "98") (term "0,1,0"))
+ (rule "expand_inInt" (formula "98") (term "1"))
+ (rule "replace_int_MIN" (formula "98") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "98") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "98") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "98") (term "1,0,1"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "100"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "99"))
+ (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "inEqSimp_commuteLeq" (formula "102"))
+ (rule "inEqSimp_commuteLeq" (formula "100"))
+ (rule "pullOutSelect" (formula "101") (term "0") (inst "selectSK=arr_0"))
+ (rule "applyEq" (formula "103") (term "0") (ifseqformula "101"))
+ (rule "simplifySelectOfAnonEQ" (formula "101") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "131")) (ifInst "" (formula "17")))
+ (rule "elementOfSingleton" (formula "101") (term "0,0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "eqSymm" (formula "101") (term "0,0,0"))
+ (rule "replace_known_right" (formula "101") (term "0,0,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "simplifySelectOfAnon" (formula "101"))
+ (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "131")) (ifInst "" (formula "17")))
+ (rule "elementOfSingleton" (formula "101") (term "0,0"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "eqSymm" (formula "101") (term "0,0,0"))
+ (rule "replace_known_right" (formula "101") (term "0,0,0") (ifseqformula "108"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "applyEqReverse" (formula "103") (term "0") (ifseqformula "101"))
+ (rule "applyEqReverse" (formula "102") (term "0") (ifseqformula "101"))
+ (rule "hideAuxiliaryEq" (formula "101"))
+ (rule "elim_double_block_2" (formula "131") (term "1"))
+ (rule "ifUnfold" (formula "131") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "131") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "replace_known_left" (formula "131") (term "0,0,1,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "ifSplit" (formula "131"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "132"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "132"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "131") (term "1"))
+ (rule "variableDeclarationAssign" (formula "131") (term "1"))
+ (rule "variableDeclaration" (formula "131") (term "1") (newnames "new_target"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "131") (term "1"))
+ (rule "variableDeclarationAssign" (formula "131") (term "1"))
+ (rule "variableDeclaration" (formula "131") (term "1") (newnames "var"))
+ (rule "assignment" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "variableDeclarationAssign" (formula "131") (term "1"))
+ (rule "variableDeclaration" (formula "131") (term "1") (newnames "var_1"))
+ (rule "assignment_array2" (formula "131"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "replaceKnownSelect_taclet2121212012121000120112_0" (formula "131") (term "0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2121212012121000120112_2" (formula "131") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "131") (newnames "heapBefore_classify,result_8,exc_8") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify)"
+ (builtin "One Step Simplification" (formula "103"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "expand_inInt" (formula "103") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "103") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "103") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "105"))
+ (rule "andLeft" (formula "108"))
+ (rule "eqSymm" (formula "108"))
+ (rule "inEqSimp_commuteLeq" (formula "104"))
+ (rule "inEqSimp_commuteLeq" (formula "105"))
+ (rule "assignment" (formula "140") (term "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "blockEmpty" (formula "140") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "140") (newnames "result_9,exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "141") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "141") (term "1"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "exc_9_1"))
+ (rule "assignment" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (rule "applyEq" (formula "106") (term "1") (ifseqformula "32"))
+ (rule "tryEmpty" (formula "141") (term "1"))
+ (rule "blockEmptyLabel" (formula "141") (term "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "methodCallEmpty" (formula "141") (term "1"))
+ (rule "emptyModality" (formula "141") (term "1"))
+ (rule "andRight" (formula "141"))
+ (branch
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "140"))
+ (branch
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "140"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "wellFormedAnonEQ" (formula "140") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "140") (term "0"))
+ (rule "replace_known_left" (formula "140") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "140"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "expand_inInt" (formula "112") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "112") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "112") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "112"))
+ (rule "andLeft" (formula "112"))
+ (rule "andLeft" (formula "113"))
+ (rule "andLeft" (formula "113"))
+ (rule "translateJavaAddInt" (formula "116") (term "4,0"))
+ (rule "replace_known_left" (formula "115") (term "0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "true_left" (formula "115"))
+ (rule "inEqSimp_commuteLeq" (formula "114"))
+ (rule "applyEq" (formula "106") (term "1") (ifseqformula "32"))
+ (rule "elim_double_block_2" (formula "144") (term "1"))
+ (rule "arrayLengthNotNegative" (formula "34") (term "0"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthIsAShort" (formula "38") (term "0"))
+ (rule "expand_inShort" (formula "38"))
+ (rule "replace_short_MIN" (formula "38") (term "0,1"))
+ (rule "replace_short_MAX" (formula "38") (term "1,0"))
+ (rule "andLeft" (formula "38"))
+ (rule "inEqSimp_commuteLeq" (formula "38"))
+ (rule "arrayLengthNotNegative" (formula "33") (term "0"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "arrayLengthIsAShort" (formula "33") (term "0"))
+ (rule "expand_inShort" (formula "33"))
+ (rule "replace_short_MAX" (formula "33") (term "1,0"))
+ (rule "replace_short_MIN" (formula "33") (term "0,1"))
+ (rule "andLeft" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "35"))
+ (rule "leq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "arrayLengthNotNegative" (formula "40") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "35") (term "0"))
+ (rule "expand_inShort" (formula "35"))
+ (rule "replace_short_MIN" (formula "35") (term "0,1"))
+ (rule "replace_short_MAX" (formula "35") (term "1,0"))
+ (rule "andLeft" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "36"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "37"))
+ (rule "qeq_literals" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "leq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "arrayLengthIsAShort" (formula "34") (term "0"))
+ (rule "expand_inShort" (formula "34"))
+ (rule "replace_short_MAX" (formula "34") (term "1,0"))
+ (rule "replace_short_MIN" (formula "34") (term "0,1"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "36"))
+ (rule "leq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "35"))
+ (rule "qeq_literals" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "arrayLengthNotNegative" (formula "35") (term "0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "36"))
+ (rule "qeq_literals" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "seqGetAlphaCast" (formula "45") (term "0"))
+ (rule "castedGetAny" (formula "45") (term "0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "true_left" (formula "45"))
+ (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_11"))
+ (rule "inequality_comparison_simple" (formula "144") (term "1"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "112"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "ifSplit" (formula "144"))
+ (branch "if x_11 true"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_11 false"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "144") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "144") (newnames "result_10,exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "eqSymm" (formula "145") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "145") (term "1"))
+ (rule "variableDeclaration" (formula "145") (term "1") (newnames "exc_10_1"))
+ (rule "assignment" (formula "145") (term "1"))
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "emptyStatement" (formula "145") (term "1"))
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "emptyStatement" (formula "145") (term "1"))
+ (rule "tryEmpty" (formula "145") (term "1"))
+ (rule "blockEmptyLabel" (formula "145") (term "1"))
+ (rule "blockEmpty" (formula "145") (term "1"))
+ (rule "methodCallEmpty" (formula "145") (term "1"))
+ (rule "emptyModality" (formula "145") (term "1"))
+ (rule "andRight" (formula "145"))
+ (branch
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "closeTrue" (formula "145"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "closeTrue" (formula "145"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "144"))
+ (branch
+ (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "144"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "wellFormedAnonEQ" (formula "144") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "144") (term "0"))
+ (rule "replace_known_left" (formula "144") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "144"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "116"))
+ (rule "expand_inInt" (formula "116") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "116") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "116") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "116"))
+ (rule "andLeft" (formula "117"))
+ (rule "andLeft" (formula "117"))
+ (rule "translateJavaAddInt" (formula "120") (term "5,0"))
+ (rule "translateJavaAddInt" (formula "120") (term "4,0"))
+ (rule "replace_known_left" (formula "119") (term "0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "true_left" (formula "119"))
+ (rule "polySimp_addComm1" (formula "119") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "119") (term "0,4,0"))
+ (rule "inEqSimp_commuteLeq" (formula "118"))
+ (rule "elim_double_block_2" (formula "148") (term "1"))
+ (rule "ifUnfold" (formula "148") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "148") (term "1"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "replace_known_left" (formula "148") (term "0,0,1,0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "148"))
+ (builtin "Use Dependency Contract" (formula "66") (term "0") (ifInst "" (formula "68") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "146")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "120") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "120") (term "1,0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "120") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "120") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "120") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "120") (term "1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "120") (term "0,0,1,1,1,1,0"))
+ (rule "eqSymm" (formula "120") (term "1"))
+ (rule "translateJavaMulInt" (formula "120") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "120") (term "0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "120") (term "0,0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "15")))
+ (rule "polySimp_mulComm0" (formula "120") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "120") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "120") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "120") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "120") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "120") (term "1,0,0"))
+ (rule "replace_known_left" (formula "120") (term "1,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "inEqSimp_commuteLeq" (formula "120") (term "0,0"))
+ (rule "replace_known_left" (formula "120") (term "0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "elementOfUnion" (formula "120") (term "0,0"))
+ (rule "elementOfSingleton" (formula "120") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "elementOfSingleton" (formula "120") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "true_left" (formula "120"))
+ (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "148") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "120") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "120") (term "1,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "147")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "29")))
+ (rule "true_left" (formula "120"))
+ (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "148") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "120") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "120") (term "1,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "146")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "11")) (ifInst "" (formula "28")))
+ (rule "true_left" (formula "120"))
+ (rule "ifSplit" (formula "148"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "149"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "148") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "148") (newnames "result_11,exc_11,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "eqSymm" (formula "149") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "149") (term "1"))
+ (rule "variableDeclaration" (formula "149") (term "1") (newnames "exc_11_1"))
+ (rule "assignment" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "emptyStatement" (formula "149") (term "1"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "emptyStatement" (formula "149") (term "1"))
+ (rule "tryEmpty" (formula "149") (term "1"))
+ (rule "blockEmptyLabel" (formula "149") (term "1"))
+ (rule "blockEmpty" (formula "149") (term "1"))
+ (rule "methodCallEmpty" (formula "149") (term "1"))
+ (rule "emptyModality" (formula "149") (term "1"))
+ (rule "andRight" (formula "149"))
+ (branch
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "closeTrue" (formula "149"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "closeTrue" (formula "149"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "148"))
+ (branch
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "148"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "wellFormedAnonEQ" (formula "148") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "148") (term "0"))
+ (rule "replace_known_left" (formula "148") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "148"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "120") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "expand_inInt" (formula "120") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "120") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "120") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "120"))
+ (rule "andLeft" (formula "120"))
+ (rule "andLeft" (formula "121"))
+ (rule "andLeft" (formula "121"))
+ (rule "translateJavaAddInt" (formula "124") (term "4,0"))
+ (rule "replace_known_left" (formula "123") (term "0") (ifseqformula "120"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "true_left" (formula "123"))
+ (rule "polySimp_addComm1" (formula "123") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "123") (term "0,4,0"))
+ (rule "inEqSimp_commuteLeq" (formula "122"))
+ (rule "elim_double_block_2" (formula "152") (term "1"))
+ (rule "ifUnfold" (formula "152") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "152") (term "1") (newnames "x_13"))
+ (rule "inequality_comparison_simple" (formula "152") (term "1"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "replace_known_left" (formula "152") (term "0,0,1,0") (ifseqformula "120"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "ifSplit" (formula "152"))
+ (branch "if x_13 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_13 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "152") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "152") (newnames "result_12,exc_12,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "eqSymm" (formula "153") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "153") (term "1"))
+ (rule "variableDeclaration" (formula "153") (term "1") (newnames "exc_12_1"))
+ (rule "assignment" (formula "153") (term "1"))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "emptyStatement" (formula "153") (term "1"))
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "emptyStatement" (formula "153") (term "1"))
+ (rule "tryEmpty" (formula "153") (term "1"))
+ (rule "blockEmptyLabel" (formula "153") (term "1"))
+ (rule "blockEmpty" (formula "153") (term "1"))
+ (rule "methodCallEmpty" (formula "153") (term "1"))
+ (rule "emptyModality" (formula "153") (term "1"))
+ (rule "andRight" (formula "153"))
+ (branch
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "closeTrue" (formula "153"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "153"))
+ (rule "closeTrue" (formula "153"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "152"))
+ (branch
+ (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "152"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "wellFormedAnonEQ" (formula "152") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "152") (term "0"))
+ (rule "replace_known_left" (formula "152") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "152"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "153"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "124") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "124"))
+ (rule "expand_inInt" (formula "124") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "124") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "124") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "124"))
+ (rule "andLeft" (formula "124"))
+ (rule "andLeft" (formula "125"))
+ (rule "andLeft" (formula "125"))
+ (rule "translateJavaAddInt" (formula "128") (term "4,0"))
+ (rule "replace_known_left" (formula "127") (term "0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "true_left" (formula "127"))
+ (rule "polySimp_addComm1" (formula "127") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "127") (term "0,4,0"))
+ (rule "inEqSimp_commuteLeq" (formula "126"))
+ (rule "elim_double_block_2" (formula "155") (term "1"))
+ (rule "ifUnfold" (formula "155") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "155") (term "1") (newnames "x_14"))
+ (rule "inequality_comparison_simple" (formula "155") (term "1"))
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "replace_known_left" (formula "155") (term "0,0,1,0") (ifseqformula "124"))
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "ifSplit" (formula "155"))
+ (branch "if x_14 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_14 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "155") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "155") (newnames "result_13,exc_13,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "eqSymm" (formula "156") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "156") (term "1"))
+ (rule "variableDeclaration" (formula "156") (term "1") (newnames "exc_13_1"))
+ (rule "assignment" (formula "156") (term "1"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "emptyStatement" (formula "156") (term "1"))
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "emptyStatement" (formula "156") (term "1"))
+ (rule "tryEmpty" (formula "156") (term "1"))
+ (rule "blockEmptyLabel" (formula "156") (term "1"))
+ (rule "blockEmpty" (formula "156") (term "1"))
+ (rule "methodCallEmpty" (formula "156") (term "1"))
+ (rule "emptyModality" (formula "156") (term "1"))
+ (rule "andRight" (formula "156"))
+ (branch
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "closeTrue" (formula "156"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "156"))
+ (rule "closeTrue" (formula "156"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "155"))
+ (branch
+ (builtin "One Step Simplification" (formula "155") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "155"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "wellFormedAnonEQ" (formula "155") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "155") (term "0"))
+ (rule "replace_known_left" (formula "155") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "155") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "155"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "156"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "expand_inInt" (formula "127") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "127") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "127") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "127"))
+ (rule "andLeft" (formula "128"))
+ (rule "andLeft" (formula "128"))
+ (rule "translateJavaAddInt" (formula "131") (term "4,0"))
+ (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "true_left" (formula "130"))
+ (rule "polySimp_addComm1" (formula "130") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "130") (term "0,4,0"))
+ (rule "inEqSimp_commuteLeq" (formula "129"))
+ (rule "elim_double_block_2" (formula "159") (term "1"))
+ (rule "ifUnfold" (formula "159") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "159") (term "1") (newnames "x_15"))
+ (rule "inequality_comparison_simple" (formula "159") (term "1"))
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "replace_known_left" (formula "159") (term "0,0,1,0") (ifseqformula "127"))
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "ifSplit" (formula "159"))
+ (branch "if x_15 true"
+ (builtin "One Step Simplification" (formula "160"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_15 false"
+ (builtin "One Step Simplification" (formula "160"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "159") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "159") (newnames "result_14,exc_14,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "160"))
+ (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "160") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "160") (term "1"))
+ (rule "variableDeclaration" (formula "160") (term "1") (newnames "exc_14_1"))
+ (rule "assignment" (formula "160") (term "1"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "emptyStatement" (formula "160") (term "1"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "emptyStatement" (formula "160") (term "1"))
+ (rule "tryEmpty" (formula "160") (term "1"))
+ (rule "blockEmptyLabel" (formula "160") (term "1"))
+ (rule "blockEmpty" (formula "160") (term "1"))
+ (rule "methodCallEmpty" (formula "160") (term "1"))
+ (rule "emptyModality" (formula "160") (term "1"))
+ (rule "andRight" (formula "160"))
+ (branch
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "closeTrue" (formula "160"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "closeTrue" (formula "160"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "159"))
+ (branch
+ (builtin "One Step Simplification" (formula "159") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "159"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "159"))
+ (rule "wellFormedAnonEQ" (formula "159") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "159") (term "0"))
+ (rule "replace_known_left" (formula "159") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "159") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "159"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "160"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "expand_inInt" (formula "131") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "131") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "131") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "131"))
+ (rule "andLeft" (formula "132"))
+ (rule "andLeft" (formula "132"))
+ (rule "replace_known_left" (formula "134") (term "0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "true_left" (formula "134"))
+ (rule "inEqSimp_commuteLeq" (formula "133"))
+ (rule "elim_double_block_2" (formula "163") (term "1"))
+ (rule "ifUnfold" (formula "163") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "163") (term "1") (newnames "x_16"))
+ (rule "inequality_comparison_simple" (formula "163") (term "1"))
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "replace_known_left" (formula "163") (term "0,0,1,0") (ifseqformula "131"))
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "ifSplit" (formula "163"))
+ (branch "if x_16 true"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_16 false"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "163") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "163") (newnames "result_15,exc_15,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "eqSymm" (formula "164") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "164") (term "1"))
+ (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_15_1"))
+ (rule "assignment" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "emptyStatement" (formula "164") (term "1"))
+ (rule "tryEmpty" (formula "164") (term "1"))
+ (rule "blockEmptyLabel" (formula "164") (term "1"))
+ (rule "blockEmpty" (formula "164") (term "1"))
+ (rule "methodCallEmpty" (formula "164") (term "1"))
+ (rule "emptyModality" (formula "164") (term "1"))
+ (rule "andRight" (formula "164"))
+ (branch
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "closeTrue" (formula "164"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "163"))
+ (branch
+ (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "163"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "163"))
+ (rule "wellFormedAnonEQ" (formula "163") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "163") (term "0"))
+ (rule "replace_known_left" (formula "163") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "163"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "135") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "expand_inInt" (formula "135") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "135") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "135") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "135"))
+ (rule "andLeft" (formula "135"))
+ (rule "andLeft" (formula "136"))
+ (rule "andLeft" (formula "136"))
+ (rule "replace_known_left" (formula "138") (term "0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "true_left" (formula "138"))
+ (rule "inEqSimp_commuteLeq" (formula "137"))
+ (rule "elim_double_block_2" (formula "167") (term "1"))
+ (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_17"))
+ (rule "inequality_comparison_simple" (formula "167") (term "1"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "replace_known_left" (formula "167") (term "0,0,1,0") (ifseqformula "135"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "ifSplit" (formula "167"))
+ (branch "if x_17 true"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_17 false"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "167") (term "1"))
+ (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_18"))
+ (rule "inequality_comparison_simple" (formula "167") (term "1"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "eqSymm" (formula "167") (term "0,0,1,0"))
+ (rule "ifSplit" (formula "167"))
+ (branch "if x_18 true"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "variableDeclarationGhostAssign" (formula "168") (term "1"))
+ (rule "variableDeclarationGhost" (formula "168") (term "1") (newnames "heapBeforeWrite"))
+ (rule "assignment" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "Use Operation Contract" (formula "168") (newnames "heapBefore_copy_nonoverlapping,exc_16,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "140"))
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "Block Contract (Internal)" (formula "170") (newnames "result_16,exc_17,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "expand_inInt" (formula "140") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "140") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "140") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "140") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "140") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "140") (term "1,0,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "140"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "eqSymm" (formula "174") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "140") (term "0,2,1,0"))
+ (rule "add_zero_left" (formula "140") (term "0,2,1,0"))
+ (rule "eqSymm" (formula "141") (term "1,0"))
+ (rule "eqSymm" (formula "142") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "140") (term "2,1,0"))
+ (rule "sub_literals" (formula "140") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "141") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "141") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "141") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "142") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "142") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "142") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "142") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "142") (term "0,3,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "141") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "141") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "142") (term "1,0,0"))
+ (rule "variableDeclarationAssign" (formula "174") (term "1"))
+ (rule "variableDeclaration" (formula "174") (term "1") (newnames "exc_17_1"))
+ (rule "assignment" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "emptyStatement" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "emptyStatement" (formula "174") (term "1"))
+ (rule "commute_and" (formula "142") (term "0,0"))
+ (rule "commute_and" (formula "141") (term "0,0,0"))
+ (rule "commute_and" (formula "141") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "141") (term "0,0"))
+ (rule "commute_and_2" (formula "141") (term "0,0,0"))
+ (rule "tryEmpty" (formula "174") (term "1"))
+ (rule "blockEmptyLabel" (formula "174") (term "1"))
+ (rule "blockEmpty" (formula "174") (term "1"))
+ (rule "methodCallEmpty" (formula "174") (term "1"))
+ (rule "emptyModality" (formula "174") (term "1"))
+ (rule "andRight" (formula "174"))
+ (branch
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "closeTrue" (formula "174"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "closeTrue" (formula "174"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "170"))
+ (branch
+ (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "170"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "expand_inInt" (formula "140") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "140") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "140") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "140") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "140") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "140") (term "0,1,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "140"))
+ (rule "wellFormedAnonEQ" (formula "171") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "171") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "171") (term "0,0"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "translateJavaSubInt" (formula "140") (term "2,1,0"))
+ (rule "eqSymm" (formula "141") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "142") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "142") (term "3,0,1,0"))
+ (rule "add_zero_left" (formula "142") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "140") (term "0,2,1,0"))
+ (rule "add_zero_left" (formula "140") (term "0,2,1,0"))
+ (rule "sub_literals" (formula "140") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "141") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "141") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "141") (term "0,2,0,1,0"))
+ (rule "eqSymm" (formula "142") (term "1,0"))
+ (rule "replace_known_left" (formula "173") (term "1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "139")))
+ (rule "closeTrue" (formula "173"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "141"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "expand_inInt" (formula "140") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "140") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "141") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "140") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "140") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "140") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "140") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "141") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "141") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (term "1,1,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (term "0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "143"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "143"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "145"))
+ (rule "andLeft" (formula "145"))
+ (rule "translateJavaSubInt" (formula "140") (term "2,1,0"))
+ (rule "eqSymm" (formula "142") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "141") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "141") (term "0,2,0,1,0"))
+ (rule "add_zero_left" (formula "141") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "140") (term "0,2,1,0"))
+ (rule "add_zero_left" (formula "140") (term "0,2,1,0"))
+ (rule "sub_literals" (formula "140") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "142") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "142") (term "3,1,1,0"))
+ (rule "add_literals" (formula "142") (term "3,1,1,0"))
+ (rule "eqSymm" (formula "141") (term "1,0"))
+ (rule "replace_known_left" (formula "147") (term "0") (ifseqformula "144"))
+ (builtin "One Step Simplification" (formula "147"))
+ (rule "true_left" (formula "147"))
+ (rule "polySimp_addComm1" (formula "142") (term "3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "142") (term "0,3,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "142") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "141") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "141") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "146"))
+ (rule "commute_and" (formula "142") (term "0,0"))
+ (rule "commute_and" (formula "141") (term "1,0,0"))
+ (rule "commute_and" (formula "141") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "177") (term "1"))
+ (rule "shift_paren_and" (formula "141") (term "0,0"))
+ (rule "commute_and_2" (formula "141") (term "0,0,0"))
+ (builtin "Use Dependency Contract" (formula "66") (term "0") (ifInst "" (formula "134") (term "1")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "175")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "44")) (ifInst "" (formula "28")))
+ (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0"))
+ (rule "expand_inInt" (formula "148") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "148") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "148") (term "1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "148") (term "0,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "148") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "148") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "148") (term "1,0,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "14")) (ifInst "" (formula "58")) (ifInst "" (formula "15")))
+ (rule "polySimp_mulComm0" (formula "148") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "148") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "148") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "148") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "148") (term "0,0,0"))
+ (rule "replace_known_left" (formula "148") (term "0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "inEqSimp_commuteLeq" (formula "148") (term "0,0"))
+ (rule "replace_known_left" (formula "148") (term "0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "elementOfUnion" (formula "148") (term "0,0"))
+ (rule "elementOfSingleton" (formula "148") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "elementOfSingleton" (formula "148") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "true_left" (formula "148"))
+ (rule "ifUnfold" (formula "177") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "177") (term "1") (newnames "x_19"))
+ (rule "inequality_comparison_simple" (formula "177") (term "1"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "replace_known_left" (formula "177") (term "0,0,1,0") (ifseqformula "144"))
+ (builtin "One Step Simplification" (formula "177"))
+ (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "177") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "148") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "148") (term "1,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "176")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "29")))
+ (rule "true_left" (formula "148"))
+ (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "177") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "148") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "148") (term "1,0,0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "175")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "28")))
+ (rule "true_left" (formula "148"))
+ (rule "ifSplit" (formula "177"))
+ (branch "if x_19 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_19 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "178"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "177") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "177") (newnames "result_17,exc_18,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "178"))
+ (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "178") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "178") (term "1"))
+ (rule "variableDeclaration" (formula "178") (term "1") (newnames "exc_18_1"))
+ (rule "assignment" (formula "178") (term "1"))
+ (builtin "One Step Simplification" (formula "178"))
+ (rule "emptyStatement" (formula "178") (term "1"))
+ (builtin "One Step Simplification" (formula "178"))
+ (rule "emptyStatement" (formula "178") (term "1"))
+ (rule "tryEmpty" (formula "178") (term "1"))
+ (rule "blockEmptyLabel" (formula "178") (term "1"))
+ (rule "blockEmpty" (formula "178") (term "1"))
+ (rule "methodCallEmpty" (formula "178") (term "1"))
+ (rule "emptyModality" (formula "178") (term "1"))
+ (rule "andRight" (formula "178"))
+ (branch
+ (builtin "One Step Simplification" (formula "178"))
+ (rule "closeTrue" (formula "178"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "178"))
+ (rule "closeTrue" (formula "178"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "177"))
+ (branch
+ (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "177"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "wellFormedAnonEQ" (formula "177") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "177") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "177") (term "0,0"))
+ (rule "replace_known_left" (formula "177") (term "1") (ifseqformula "139"))
+ (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "177"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "178"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "1,1,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "expand_inInt" (formula "148") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "148") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "148") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "148"))
+ (rule "andLeft" (formula "148"))
+ (rule "andLeft" (formula "149"))
+ (rule "andLeft" (formula "149"))
+ (rule "replace_known_left" (formula "151") (term "0") (ifseqformula "148"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "true_left" (formula "151"))
+ (rule "inEqSimp_commuteLeq" (formula "150"))
+ (rule "elim_double_block_2" (formula "181") (term "1"))
+ (rule "ifUnfold" (formula "181") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "181") (term "1") (newnames "x_20"))
+ (rule "inequality_comparison_simple" (formula "181") (term "1"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "replace_known_left" (formula "181") (term "0,0,1,0") (ifseqformula "148"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "ifSplit" (formula "181"))
+ (branch "if x_20 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_20 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "182"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "181") (term "1"))
+ (builtin "Use Operation Contract" (formula "181") (newnames "heapBefore_copy_nonoverlapping_0,exc_19,heapAfter_copy_nonoverlapping_0,anon_heap_copy_nonoverlapping_0") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "153"))
+ (builtin "One Step Simplification" (formula "183"))
+ (builtin "Block Contract (Internal)" (formula "183") (newnames "result_18,exc_20,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "154") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "184"))
+ (rule "expand_inInt" (formula "153") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "153") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "153") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "153") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "153") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "153") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "153"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "154"))
+ (rule "eqSymm" (formula "187") (term "0,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "153") (term "0,2,1,0"))
+ (rule "translateJavaAddInt" (formula "155") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "154") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "155") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "155") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "154") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "154") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "153") (term "2,1,0"))
+ (rule "polySimp_elimSub" (formula "153") (term "2,1,0"))
+ (rule "mul_literals" (formula "153") (term "1,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "153") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "155") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "153") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "155") (term "0,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "153") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "154") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "155") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "154") (term "0,0,0,0"))
+ (rule "variableDeclarationAssign" (formula "187") (term "1"))
+ (rule "variableDeclaration" (formula "187") (term "1") (newnames "exc_20_1"))
+ (rule "assignment" (formula "187") (term "1"))
+ (builtin "One Step Simplification" (formula "187"))
+ (rule "emptyStatement" (formula "187") (term "1"))
+ (builtin "One Step Simplification" (formula "187"))
+ (rule "emptyStatement" (formula "187") (term "1"))
+ (rule "commute_and" (formula "155") (term "0,0"))
+ (rule "commute_and" (formula "154") (term "1,0,0"))
+ (rule "commute_and" (formula "154") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "154") (term "0,0"))
+ (rule "commute_and_2" (formula "154") (term "0,0,0"))
+ (rule "tryEmpty" (formula "187") (term "1"))
+ (rule "blockEmptyLabel" (formula "187") (term "1"))
+ (rule "blockEmpty" (formula "187") (term "1"))
+ (rule "methodCallEmpty" (formula "187") (term "1"))
+ (rule "emptyModality" (formula "187") (term "1"))
+ (rule "andRight" (formula "187"))
+ (branch
+ (builtin "One Step Simplification" (formula "187"))
+ (rule "closeTrue" (formula "187"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "187"))
+ (rule "closeTrue" (formula "187"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "183"))
+ (branch
+ (builtin "One Step Simplification" (formula "183") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "183"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "183"))
+ (rule "expand_inInt" (formula "153") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "153") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "153") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "153") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "153") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "153") (term "0,1,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "153"))
+ (rule "wellFormedAnonEQ" (formula "184") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "184") (term "0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "184") (term "0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "184") (term "0,0,0"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "154"))
+ (rule "translateJavaSubInt" (formula "153") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "155") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "155") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "154") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "155") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "154") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "154") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "153") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "186") (term "1") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "186") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")))
+ (rule "closeTrue" (formula "186"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "184"))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "expand_inInt" (formula "153") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "153") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "154") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "153") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "153") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "153") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "153") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "154") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "154") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "155") (term "1,1,1,0") (ifseqformula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "155") (term "0,1,1,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "155") (term "0,0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "155"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "156"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "157"))
+ (rule "andLeft" (formula "156"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "159"))
+ (rule "andLeft" (formula "158"))
+ (rule "andLeft" (formula "160"))
+ (rule "andLeft" (formula "158"))
+ (rule "translateJavaSubInt" (formula "153") (term "2,1,0"))
+ (rule "eqSymm" (formula "164"))
+ (rule "translateJavaAddInt" (formula "154") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "154") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "155") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "155") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "154") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "155") (term "3,0,1,0"))
+ (rule "eqSymm" (formula "163"))
+ (rule "translateJavaAddInt" (formula "153") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "160") (term "0") (ifseqformula "157"))
+ (builtin "One Step Simplification" (formula "160"))
+ (rule "true_left" (formula "160"))
+ (rule "polySimp_elimSub" (formula "153") (term "2,1,0"))
+ (rule "mul_literals" (formula "153") (term "1,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "153") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "155") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "153") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "155") (term "0,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "153") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "154") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "155") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "154") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "159"))
+ (rule "applyEq" (formula "92") (term "1,0") (ifseqformula "162"))
+ (rule "applyEq" (formula "86") (term "1,0") (ifseqformula "162"))
+ (rule "applyEq" (formula "97") (term "1,0,0") (ifseqformula "162"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "163"))
+ (rule "applyEq" (formula "119") (term "1,5,0") (ifseqformula "162"))
+ (rule "applyEq" (formula "115") (term "1,4,0") (ifseqformula "162"))
+ (rule "applyEq" (formula "65") (term "1") (ifseqformula "162"))
+ (rule "applyEq" (formula "163") (term "1") (ifseqformula "62"))
+ (rule "commute_and" (formula "155") (term "0,0"))
+ (rule "commute_and" (formula "154") (term "0,0,0"))
+ (rule "commute_and" (formula "154") (term "1,0,0"))
+ (rule "elim_double_block_2" (formula "193") (term "1"))
+ (rule "shift_paren_and" (formula "154") (term "0,0"))
+ (rule "commute_and_2" (formula "154") (term "0,0,0"))
+ (rule "ifUnfold" (formula "193") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "193") (term "1") (newnames "x_21"))
+ (rule "inequality_comparison_simple" (formula "193") (term "1"))
+ (builtin "One Step Simplification" (formula "193"))
+ (rule "replace_known_left" (formula "193") (term "0,0,1,0") (ifseqformula "157"))
+ (builtin "One Step Simplification" (formula "193"))
+ (builtin "Use Dependency Contract" (formula "138") (term "0") (ifInst "" (formula "7") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "164") (ifInst "" (formula "191")) (ifInst "" (formula "192")) (ifInst "" (formula "193")) (ifInst "" (formula "44")) (ifInst "" (formula "12")) (ifInst "" (formula "11")) (ifInst "" (formula "192")) (ifInst "" (formula "193")) (ifInst "" (formula "23")) (ifInst "" (formula "22")) (ifInst "" (formula "17")))
+ (rule "wellFormedAnon" (formula "164") (term "0,0,0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "164") (term "1,0,0,0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "164") (term "0,1,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "164") (term "1,0,0,0,0"))
+ (rule "expand_inInt" (formula "164") (term "1,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "164") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "164") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "164") (term "1,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "164") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "164") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "164") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "164") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "164") (term "1"))
+ (rule "translateJavaAddInt" (formula "164") (term "1,0,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "164") (term "2,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "164") (term "1,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "164") (term "2,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "164") (term "0,2,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "164") (term "0,2,1,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "164") (term "0,0,0,0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "164") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "18")) (ifInst "" (formula "20")) (ifInst "" (formula "15")))
+ (rule "polySimp_elimSub" (formula "164") (term "2,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "164") (term "1,2,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "164") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "164") (term "0,2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "164") (term "2,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "164") (term "2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "164") (term "0,2,0,0,0,1,1,0"))
+ (rule "disjointDefinition" (formula "164") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "164") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "164") (term "1,0,0"))
+ (rule "replace_known_left" (formula "164") (term "1,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "inEqSimp_commuteLeq" (formula "164") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "164") (term "0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "inEqSimp_commuteLeq" (formula "164") (term "0,0,0"))
+ (rule "replace_known_left" (formula "164") (term "0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "inEqSimp_commuteLeq" (formula "164") (term "0,0"))
+ (rule "replace_known_left" (formula "164") (term "0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "applyEq" (formula "164") (term "1,2,0,0,0,2,0,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "164") (term "1,1,0,0,0,2,0,0") (ifseqformula "67"))
+ (rule "applyEq" (formula "164") (term "1,1") (ifseqformula "138"))
+ (rule "replace_known_left" (formula "164") (term "1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "true_left" (formula "164"))
+ (rule "ifSplit" (formula "193"))
+ (branch "if x_21 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_21 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "194"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "193") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "193") (newnames "result_19,exc_21,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "164") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "194"))
+ (rule "eqSymm" (formula "194") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "194") (term "1"))
+ (rule "variableDeclaration" (formula "194") (term "1") (newnames "exc_21_1"))
+ (rule "assignment" (formula "194") (term "1"))
+ (builtin "One Step Simplification" (formula "194"))
+ (rule "emptyStatement" (formula "194") (term "1"))
+ (builtin "One Step Simplification" (formula "194"))
+ (rule "emptyStatement" (formula "194") (term "1"))
+ (rule "tryEmpty" (formula "194") (term "1"))
+ (rule "blockEmptyLabel" (formula "194") (term "1"))
+ (rule "blockEmpty" (formula "194") (term "1"))
+ (rule "methodCallEmpty" (formula "194") (term "1"))
+ (rule "emptyModality" (formula "194") (term "1"))
+ (rule "andRight" (formula "194"))
+ (branch
+ (builtin "One Step Simplification" (formula "194"))
+ (rule "closeTrue" (formula "194"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "194"))
+ (rule "closeTrue" (formula "194"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "193"))
+ (branch
+ (builtin "One Step Simplification" (formula "193") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "193"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "193"))
+ (rule "wellFormedAnonEQ" (formula "193") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "193") (term "0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "193") (term "0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "193") (term "0,0,0"))
+ (rule "replace_known_left" (formula "193") (term "0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "193") (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "152")))
+ (rule "closeTrue" (formula "193"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "164"))
+ (builtin "One Step Simplification" (formula "194"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "164") (term "1,1,1,0") (ifseqformula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "164") (term "0,1,1,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "164") (term "0,0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "164"))
+ (rule "expand_inInt" (formula "164") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "164") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "164") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "164"))
+ (rule "andLeft" (formula "164"))
+ (rule "andLeft" (formula "165"))
+ (rule "andLeft" (formula "165"))
+ (rule "replace_known_left" (formula "167") (term "0") (ifseqformula "164"))
+ (builtin "One Step Simplification" (formula "167"))
+ (rule "true_left" (formula "167"))
+ (rule "inEqSimp_commuteLeq" (formula "166"))
+ (rule "elim_double_block_2" (formula "197") (term "1"))
+ (rule "ifUnfold" (formula "197") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "197") (term "1") (newnames "x_22"))
+ (rule "inequality_comparison_simple" (formula "197") (term "1"))
+ (builtin "One Step Simplification" (formula "197"))
+ (rule "replace_known_left" (formula "197") (term "0,0,1,0") (ifseqformula "164"))
+ (builtin "One Step Simplification" (formula "197"))
+ (rule "ifSplit" (formula "197"))
+ (branch "if x_22 true"
+ (builtin "One Step Simplification" (formula "198"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_22 false"
+ (builtin "One Step Simplification" (formula "198"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "197") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "197") (newnames "result_20,exc_22,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "198"))
+ (rule "eqSymm" (formula "198") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "198") (term "1"))
+ (rule "variableDeclaration" (formula "198") (term "1") (newnames "exc_22_1"))
+ (rule "assignment" (formula "198") (term "1"))
+ (builtin "One Step Simplification" (formula "198"))
+ (rule "emptyStatement" (formula "198") (term "1"))
+ (builtin "One Step Simplification" (formula "198"))
+ (rule "emptyStatement" (formula "198") (term "1"))
+ (rule "tryEmpty" (formula "198") (term "1"))
+ (rule "blockEmptyLabel" (formula "198") (term "1"))
+ (rule "blockEmpty" (formula "198") (term "1"))
+ (rule "methodCallEmpty" (formula "198") (term "1"))
+ (rule "emptyModality" (formula "198") (term "1"))
+ (rule "andRight" (formula "198"))
+ (branch
+ (builtin "One Step Simplification" (formula "198"))
+ (rule "closeTrue" (formula "198"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "198"))
+ (rule "closeTrue" (formula "198"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "197"))
+ (branch
+ (builtin "One Step Simplification" (formula "197") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "197"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "197"))
+ (rule "wellFormedAnonEQ" (formula "197") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "197") (term "0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "197") (term "0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "197") (term "0,0,0"))
+ (rule "replace_known_left" (formula "197") (term "1,0") (ifseqformula "139"))
+ (builtin "One Step Simplification" (formula "197") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "152")))
+ (rule "closeTrue" (formula "197"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "168"))
+ (builtin "One Step Simplification" (formula "198"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (term "1,1,1,0") (ifseqformula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (term "0,1,1,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (term "0,0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "expand_inInt" (formula "168") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "168") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "168") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "168"))
+ (rule "andLeft" (formula "168"))
+ (rule "andLeft" (formula "170"))
+ (rule "andLeft" (formula "169"))
+ (rule "andLeft" (formula "169"))
+ (rule "translateJavaAddInt" (formula "172") (term "5,0"))
+ (rule "translateJavaAddInt" (formula "172") (term "3,0"))
+ (rule "replace_known_left" (formula "171") (term "0") (ifseqformula "168"))
+ (builtin "One Step Simplification" (formula "171"))
+ (rule "true_left" (formula "171"))
+ (rule "polySimp_addComm1" (formula "171") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "171") (term "0,5,0"))
+ (rule "inEqSimp_commuteLeq" (formula "170"))
+ (rule "elim_double_block_2" (formula "202") (term "1"))
+ (rule "ifUnfold" (formula "202") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "202") (term "1") (newnames "x_23"))
+ (rule "inequality_comparison_simple" (formula "202") (term "1"))
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "replace_known_left" (formula "202") (term "0,0,1,0") (ifseqformula "168"))
+ (builtin "One Step Simplification" (formula "202"))
+ (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "202") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "173") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "173") (term "1,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "201")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "29")))
+ (rule "true_left" (formula "173"))
+ (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "202") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "173") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "173") (term "0,1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "200")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "28")) (ifInst "" (formula "28")))
+ (rule "true_left" (formula "173"))
+ (rule "ifSplit" (formula "202"))
+ (branch "if x_23 true"
+ (builtin "One Step Simplification" (formula "203"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_23 false"
+ (builtin "One Step Simplification" (formula "203"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "202") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "202") (newnames "result_22,exc_23,heap_Before_BLOCK_19,savedHeap_Before_BLOCK_19,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "203"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "203") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "203") (term "1"))
+ (rule "variableDeclaration" (formula "203") (term "1") (newnames "exc_23_1"))
+ (rule "assignment" (formula "203") (term "1"))
+ (builtin "One Step Simplification" (formula "203"))
+ (rule "emptyStatement" (formula "203") (term "1"))
+ (builtin "One Step Simplification" (formula "203"))
+ (rule "emptyStatement" (formula "203") (term "1"))
+ (rule "tryEmpty" (formula "203") (term "1"))
+ (rule "blockEmptyLabel" (formula "203") (term "1"))
+ (rule "blockEmpty" (formula "203") (term "1"))
+ (rule "methodCallEmpty" (formula "203") (term "1"))
+ (rule "emptyModality" (formula "203") (term "1"))
+ (rule "andRight" (formula "203"))
+ (branch
+ (builtin "One Step Simplification" (formula "203"))
+ (rule "closeTrue" (formula "203"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "203"))
+ (rule "closeTrue" (formula "203"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "202"))
+ (branch
+ (builtin "One Step Simplification" (formula "202") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "202"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "202"))
+ (rule "wellFormedAnonEQ" (formula "202") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "202") (term "0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "202") (term "0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "202") (term "0,0,0"))
+ (rule "replace_known_left" (formula "202") (term "1") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "202") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")))
+ (rule "closeTrue" (formula "202"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "203"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "1,1,1,0") (ifseqformula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,1,1,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "expand_inInt" (formula "173") (term "0,1,0"))
+ (rule "expand_inInt" (formula "173") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "173") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "173") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "173") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "173") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "173"))
+ (rule "andLeft" (formula "173"))
+ (rule "andLeft" (formula "174"))
+ (rule "andLeft" (formula "174"))
+ (rule "eqSymm" (formula "177") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "177") (term "0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "177") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "176") (term "0") (ifseqformula "173"))
+ (builtin "One Step Simplification" (formula "176"))
+ (rule "true_left" (formula "176"))
+ (rule "inEqSimp_commuteLeq" (formula "176") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "176") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "175"))
+ (rule "applyEq" (formula "176") (term "1,1,0,0,0") (ifseqformula "32"))
+ (rule "commute_and" (formula "176") (term "1,0,0"))
+ (rule "commute_and" (formula "176") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "206") (term "1"))
+ (rule "shift_paren_and" (formula "176") (term "0,0"))
+ (rule "commute_and_2" (formula "176") (term "0,0,0"))
+ (rule "ifUnfold" (formula "206") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "206") (term "1") (newnames "x_24"))
+ (rule "inequality_comparison_simple" (formula "206") (term "1"))
+ (builtin "One Step Simplification" (formula "206"))
+ (rule "replace_known_left" (formula "206") (term "0,0,1,0") (ifseqformula "173"))
+ (builtin "One Step Simplification" (formula "206"))
+ (builtin "Use Dependency Contract" (formula "162") (term "0") (ifInst "" (formula "65") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "204")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "177") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "177") (term "1,0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "177") (term "0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "177") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "177") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "177") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "177") (term "1"))
+ (rule "translateJavaMulInt" (formula "177") (term "0,1,1,1,0"))
+ (rule "replace_known_left" (formula "177") (term "0,0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "15")))
+ (rule "polySimp_mulComm0" (formula "177") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "177") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "177") (term "1,0"))
+ (rule "elementOfSingleton" (formula "177") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "inEqSimp_commuteLeq" (formula "177") (term "0,0,0"))
+ (rule "replace_known_left" (formula "177") (term "0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "inEqSimp_commuteLeq" (formula "177") (term "0,0"))
+ (rule "replace_known_left" (formula "177") (term "0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "applyEq" (formula "177") (term "0,1") (ifseqformula "65"))
+ (rule "eqSymm" (formula "177") (term "1"))
+ (rule "replace_known_left" (formula "177") (term "1") (ifseqformula "162"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "true_left" (formula "177"))
+ (builtin "Use Dependency Contract" (formula "162") (term "1") (ifInst "" (formula "162") (term "0")) (ifInst "" (formula "153")) (ifInst "" (formula "140")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "177") (term "0,1,0,0,0,0") (ifseqformula "59"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "1,0,0,0,0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "204")) (ifInst "" (formula "58")) (ifInst "" (formula "44")) (ifInst "" (formula "70")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "177") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "177") (term "1,0,0,0,0") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "177") (term "0,1,0,0,0,0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "177") (term "0,0,1,0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "177") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "177") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "177") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "177") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "177") (term "0,1,1,1,0"))
+ (rule "eqSymm" (formula "177") (term "1"))
+ (rule "replace_known_left" (formula "177") (term "0,0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "152")) (ifInst "" (formula "15")) (ifInst "" (formula "162")))
+ (rule "true_left" (formula "177"))
+ (rule "ifSplit" (formula "206"))
+ (branch "if x_24 true"
+ (builtin "One Step Simplification" (formula "207"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_24 false"
+ (builtin "One Step Simplification" (formula "207"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "206") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "206") (newnames "result_23,exc_24,heap_Before_BLOCK_20,savedHeap_Before_BLOCK_20,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "207"))
+ (rule "eqSymm" (formula "207") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "207") (term "1"))
+ (rule "variableDeclaration" (formula "207") (term "1") (newnames "exc_24_1"))
+ (rule "assignment" (formula "207") (term "1"))
+ (builtin "One Step Simplification" (formula "207"))
+ (rule "emptyStatement" (formula "207") (term "1"))
+ (builtin "One Step Simplification" (formula "207"))
+ (rule "emptyStatement" (formula "207") (term "1"))
+ (rule "tryEmpty" (formula "207") (term "1"))
+ (rule "blockEmptyLabel" (formula "207") (term "1"))
+ (rule "blockEmpty" (formula "207") (term "1"))
+ (rule "methodCallEmpty" (formula "207") (term "1"))
+ (rule "emptyModality" (formula "207") (term "1"))
+ (rule "andRight" (formula "207"))
+ (branch
+ (builtin "One Step Simplification" (formula "207"))
+ (rule "closeTrue" (formula "207"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "207"))
+ (rule "closeTrue" (formula "207"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "206"))
+ (branch
+ (builtin "One Step Simplification" (formula "206") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "206"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "206"))
+ (rule "wellFormedAnonEQ" (formula "206") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "206") (term "0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "206") (term "0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "206") (term "0,0,0"))
+ (rule "replace_known_left" (formula "206") (term "1") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "206") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")))
+ (rule "closeTrue" (formula "206"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "177"))
+ (builtin "One Step Simplification" (formula "207"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "1,1,1,0") (ifseqformula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "0,1,1,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "0,0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "expand_inInt" (formula "177") (term "0,0,1"))
+ (rule "expand_inInt" (formula "177") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "177") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "177") (term "0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "177") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "177") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "177"))
+ (rule "andLeft" (formula "177"))
+ (rule "andLeft" (formula "178"))
+ (rule "andLeft" (formula "178"))
+ (rule "eqSymm" (formula "181") (term "0,1,0"))
+ (rule "eqSymm" (formula "181") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "181") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "181") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "180") (term "0") (ifseqformula "177"))
+ (builtin "One Step Simplification" (formula "180"))
+ (rule "true_left" (formula "180"))
+ (rule "polySimp_addComm0" (formula "180") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "180") (term "0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "180") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "179"))
+ (rule "commute_and" (formula "180") (term "0,0"))
+ (rule "elim_double_block_2" (formula "210") (term "1"))
+ (builtin "Use Dependency Contract" (formula "92") (term "1,0") (ifInst "" (formula "65") (term "0")) (ifInst "" (formula "153")) (ifInst "" (formula "140")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "208")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "181") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "1,0,0,0,0") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "0,1,0,0,0,0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "0,0,1,0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "181") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "181") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "181") (term "0,1,1,1,0"))
+ (rule "eqSymm" (formula "181") (term "1"))
+ (rule "replace_known_left" (formula "181") (term "0,0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "152")) (ifInst "" (formula "15")) (ifInst "" (formula "65")))
+ (rule "true_left" (formula "181"))
+ (builtin "Use Dependency Contract" (formula "62") (term "0") (ifInst "" (formula "163") (term "0")) (ifInst "" (formula "153")) (ifInst "" (formula "140")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "0,1,0,0,0,0") (ifseqformula "59"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (term "1,0,0,0,0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "208")) (ifInst "" (formula "58")) (ifInst "" (formula "44")) (ifInst "" (formula "70")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "181") (term "0,0,0,0,0"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "1,0,0,0,0") (ifseqformula "153"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "0,1,0,0,0,0") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "0,0,1,0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "181") (term "0,0,0,1,0,0,0,0"))
+ (rule "expand_inInt" (formula "181") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0"))
+ (rule "eqSymm" (formula "181") (term "1"))
+ (rule "translateJavaAddInt" (formula "181") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "181") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "181") (term "1,1,0,0,0,0") (ifseqformula "152"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "15")))
+ (rule "polySimp_mulComm0" (formula "181") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "181") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "181") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "181") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "181") (term "1,0,0"))
+ (rule "replace_known_left" (formula "181") (term "1,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0"))
+ (rule "replace_known_left" (formula "181") (term "0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "applyEq" (formula "181") (term "0,1") (ifseqformula "163"))
+ (rule "eqSymm" (formula "181") (term "1"))
+ (rule "replace_known_left" (formula "181") (term "1") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "true_left" (formula "181"))
+ (rule "ifUnfold" (formula "210") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "210") (term "1") (newnames "x_25"))
+ (rule "inequality_comparison_simple" (formula "210") (term "1"))
+ (builtin "One Step Simplification" (formula "210"))
+ (rule "replace_known_left" (formula "210") (term "0,0,1,0") (ifseqformula "177"))
+ (builtin "One Step Simplification" (formula "210"))
+ (builtin "Use Dependency Contract" (formula "138") (term "0") (ifInst "" (formula "82") (term "0,1")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "208")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "209")) (ifInst "" (formula "22")) (ifInst "" (formula "210")) (ifInst "" (formula "17")) (ifInst "" (formula "44")) (ifInst "" (formula "29")) (ifInst "" (formula "28")) (ifInst "" (formula "209")) (ifInst "" (formula "210")))
+ (rule "wellFormedAnonEQ" (formula "181") (term "0,0,0,0,0,0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "181") (term "0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "181") (term "1,0,0,0"))
+ (rule "expand_inInt" (formula "181") (term "1,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "181") (term "1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "181") (term "1,0,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "181") (term "2,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "181") (term "1,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "181") (term "2,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "181") (term "0,2,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "181") (term "0,2,1,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "181") (term "0,0,0,0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "18")) (ifInst "" (formula "20")) (ifInst "" (formula "15")))
+ (rule "polySimp_elimSub" (formula "181") (term "2,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "181") (term "1,2,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "181") (term "0,2,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "181") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "181") (term "2,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "181") (term "2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "181") (term "0,2,0,0,0,1,1,0"))
+ (rule "disjointDefinition" (formula "181") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "181") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "181") (term "1,0,0,0"))
+ (rule "replace_known_left" (formula "181") (term "1,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "181") (term "0,0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0,0"))
+ (rule "replace_known_left" (formula "181") (term "0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0"))
+ (rule "replace_known_left" (formula "181") (term "0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "applyEq" (formula "181") (term "0,1") (ifseqformula "138"))
+ (rule "eqSymm" (formula "181") (term "1"))
+ (rule "elementOfUnion" (formula "181") (term "0,0"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "eqSymm" (formula "181") (term "1,0,0"))
+ (rule "replace_known_right" (formula "181") (term "1,0,0") (ifseqformula "203"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "elementOfUnion" (formula "181") (term "0,0"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "eqSymm" (formula "181") (term "1,0,0"))
+ (rule "replace_known_right" (formula "181") (term "1,0,0") (ifseqformula "202"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "elementOfUnion" (formula "181") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "181") (term "0,0,0"))
+ (rule "replace_known_right" (formula "181") (term "0,0,0,0,0") (ifseqformula "187"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "elementOfArrayRangeConcrete" (formula "181") (term "0,0"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "82")))
+ (rule "true_left" (formula "181"))
+ (rule "ifSplit" (formula "210"))
+ (branch "if x_25 true"
+ (builtin "One Step Simplification" (formula "211"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_25 false"
+ (builtin "One Step Simplification" (formula "211"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "210") (term "1"))
+ (rule "blockReturn" (formula "210") (term "1"))
+ (rule "blockReturn" (formula "210") (term "1"))
+ (builtin "One Step Simplification" (formula "210"))
+ (rule "lsReturnNonVoid" (formula "210") (term "1"))
+ (rule "assignment" (formula "210") (term "1"))
+ (builtin "One Step Simplification" (formula "210"))
+ (rule "methodCallReturn" (formula "210") (term "1"))
+ (rule "assignment" (formula "210") (term "1"))
+ (builtin "One Step Simplification" (formula "210"))
+ (rule "methodCallEmpty" (formula "210") (term "1"))
+ (rule "tryEmpty" (formula "210") (term "1"))
+ (rule "emptyModality" (formula "210") (term "1"))
+ (rule "andRight" (formula "210"))
+ (branch
+ (rule "impRight" (formula "210"))
+ (rule "andRight" (formula "211"))
+ (branch
+ (rule "andRight" (formula "211"))
+ (branch
+ (builtin "One Step Simplification" (formula "211") (ifInst "" (formula "162")))
+ (rule "closeTrue" (formula "211"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "211") (ifInst "" (formula "161")))
+ (rule "closeTrue" (formula "211"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "211"))
+ (rule "closeTrue" (formula "211"))
+ )
+ )
+ (branch
+ (rule "impRight" (formula "210"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "153"))
+ (builtin "One Step Simplification" (formula "183"))
+ (rule "andLeft" (formula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "154") (term "1,0") (ifseqformula "153"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "154") (term "0,1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "154") (term "0,0,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "154"))
+ (rule "andLeft" (formula "154"))
+ (rule "andLeft" (formula "154"))
+ (rule "notLeft" (formula "154"))
+ (rule "close" (formula "156") (ifseqformula "155"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "177")) (ifInst "" (formula "180")) (ifInst "" (formula "177")) (ifInst "" (formula "180")))
+ (rule "andRight" (formula "181"))
+ (branch "Case 1"
+ (rule "andRight" (formula "181"))
+ (branch
+ (rule "andRight" (formula "181"))
+ (branch
+ (rule "andRight" (formula "181"))
+ (branch
+ (rule "andRight" (formula "181"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "181") (ifseqformula "140"))
+ (rule "wellFormedAnonEQ" (formula "181") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "181") (term "0,0"))
+ (rule "replace_known_left" (formula "181") (term "1") (ifseqformula "139"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "181"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "24")))
+ (rule "closeTrue" (formula "181"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "181"))
+ (rule "replace_int_MIN" (formula "181") (term "0,1"))
+ (rule "replace_int_MAX" (formula "181") (term "1,0"))
+ (rule "leq_literals" (formula "181") (term "1"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "leq_literals" (formula "181"))
+ (rule "closeTrue" (formula "181"))
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (term "0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "181"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "181") (userinteraction))
+ (rule "andRight" (formula "181"))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "181") (term "1"))
+ (rule "polySimp_homoEq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "181"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "142") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "142") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "142") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0,1,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "83") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,1,0"))
+ (rule "mul_literals" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "83") (term "0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "141") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "141") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "103") (ifseqformula "104"))
+ (rule "leq_literals" (formula "103") (term "0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "94"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "92"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "38") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "closeFalse" (formula "38"))
+ )
+ (branch
+ (rule "replace_int_MIN" (formula "181") (term "0"))
+ (rule "polySimp_homoEq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "181"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "142") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "142") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "142") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "83") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,1,0"))
+ (rule "mul_literals" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "141") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "141") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "104") (ifseqformula "105"))
+ (rule "leq_literals" (formula "104") (term "0"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "true_left" (formula "104"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "93"))
+ (rule "inEqSimp_homoInEq0" (formula "74") (term "0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "qeq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "40"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "73") (term "0,0"))
+ (rule "add_zero_left" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "73"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "72") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "closeFalse" (formula "72"))
+ )
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "181"))
+ (rule "replace_int_MIN" (formula "181") (term "0,1"))
+ (rule "replace_int_MAX" (formula "181") (term "1,0"))
+ (rule "leq_literals" (formula "181") (term "1"))
+ (builtin "One Step Simplification" (formula "181"))
+ (rule "leq_literals" (formula "181"))
+ (rule "closeTrue" (formula "181"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "140"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "andLeft" (formula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "141") (term "1,0") (ifseqformula "140"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "141") (term "0,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "notLeft" (formula "141"))
+ (rule "close" (formula "143") (ifseqformula "142"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "167")) (ifInst "" (formula "163")) (ifInst "" (formula "167")) (ifInst "" (formula "163")))
+ (rule "andRight" (formula "168"))
+ (branch "Case 1"
+ (rule "andRight" (formula "168"))
+ (branch "Case 1"
+ (rule "andRight" (formula "168"))
+ (branch "Case 1"
+ (rule "andRight" (formula "168"))
+ (branch
+ (rule "andRight" (formula "168"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "168") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "168") (term "0"))
+ (rule "replace_known_left" (formula "168") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "168"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "17")))
+ (rule "closeTrue" (formula "168"))
+ )
+ )
+ (branch "Case 2"
+ (rule "expand_inInt" (formula "168") (userinteraction))
+ (rule "andRight" (formula "168") (userinteraction))
+ (branch "Case 1"
+ (rule "replace_int_MAX" (formula "168") (term "1"))
+ (rule "polySimp_homoEq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "168"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "83") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,1,0"))
+ (rule "mul_literals" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "41"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_subsumption1" (formula "103") (ifseqformula "104"))
+ (rule "leq_literals" (formula "103") (term "0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "94"))
+ (rule "inEqSimp_homoInEq0" (formula "75") (term "0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "75") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "1,0,0"))
+ (rule "add_zero_right" (formula "75") (term "0,0"))
+ (rule "qeq_literals" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "true_left" (formula "75"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "42"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "64") (term "0,0"))
+ (rule "mul_literals" (formula "64") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "130") (ifseqformula "64"))
+ (rule "inEqSimp_homoInEq0" (formula "130") (term "0"))
+ (rule "polySimp_mulComm0" (formula "130") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "130") (term "1,0,0"))
+ (rule "mul_literals" (formula "130") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "130") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "130") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "130") (term "0,0"))
+ (rule "add_literals" (formula "130") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "130") (term "1,0,0"))
+ (rule "add_zero_right" (formula "130") (term "0,0"))
+ (rule "qeq_literals" (formula "130") (term "0"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "true_left" (formula "130"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "93"))
+ (rule "times_zero_1" (formula "74") (term "0,0"))
+ (rule "add_zero_left" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "93"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "37") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "closeFalse" (formula "37"))
+ )
+ (branch "Case 2"
+ (rule "replace_int_MIN" (formula "168") (term "0"))
+ (rule "polySimp_homoEq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "168"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "107"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "83") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,1,0"))
+ (rule "mul_literals" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "106"))
+ (rule "polySimp_mulLiterals" (formula "106") (term "0"))
+ (rule "polySimp_elimOne" (formula "106") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "104") (ifseqformula "105"))
+ (rule "leq_literals" (formula "104") (term "0"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "true_left" (formula "104"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "95"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0"))
+ (rule "qeq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "10"))
+ (rule "mul_literals" (formula "66") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66"))
+ (rule "mul_literals" (formula "66") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "40"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "35"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "93"))
+ (rule "mul_literals" (formula "74") (term "0,0"))
+ (rule "add_zero_left" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1"))
+ (rule "polySimp_rightDist" (formula "74") (term "1"))
+ (rule "mul_literals" (formula "74") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "131") (ifseqformula "63"))
+ (rule "inEqSimp_homoInEq0" (formula "131") (term "0"))
+ (rule "polySimp_mulComm0" (formula "131") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "131") (term "1,0,0"))
+ (rule "mul_literals" (formula "131") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "131") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "131") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "131") (term "0,0"))
+ (rule "add_literals" (formula "131") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "131") (term "1,0,0"))
+ (rule "add_zero_right" (formula "131") (term "0,0"))
+ (rule "qeq_literals" (formula "131") (term "0"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "true_left" (formula "131"))
+ (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "75") (term "0,0"))
+ (rule "add_zero_left" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "34") (ifseqformula "75"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "closeFalse" (formula "34"))
+ )
+ )
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "25")))
+ (rule "closeTrue" (formula "168"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "168"))
+ (rule "replace_int_MIN" (formula "168") (term "0,1"))
+ (rule "replace_int_MAX" (formula "168") (term "1,0"))
+ (rule "leq_literals" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "leq_literals" (formula "168"))
+ (rule "closeTrue" (formula "168"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "168"))
+ (rule "replace_int_MIN" (formula "168") (term "0,1"))
+ (rule "replace_int_MAX" (formula "168") (term "1,0"))
+ (rule "leq_literals" (formula "168") (term "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "leq_literals" (formula "168"))
+ (rule "closeTrue" (formula "168"))
+ )
+ )
+ )
+ (branch "if x_18 false"
+ (builtin "Block Contract (Internal)" (formula "168") (newnames "result_16,exc_16,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "28")))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "eqSymm" (formula "169") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "169") (term "1"))
+ (rule "variableDeclaration" (formula "169") (term "1") (newnames "exc_16_1"))
+ (rule "assignment" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "emptyStatement" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "emptyStatement" (formula "169") (term "1"))
+ (rule "applyEq" (formula "82") (term "5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "83") (term "6,0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "9") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "67") (term "0,1,0,1,1,0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "9") (term "7,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "64") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "7") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "135") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "69") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "92") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "45") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "82") (term "0,1,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "6") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "86") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "115") (term "2,1,4,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "64") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "82") (term "0,1,1,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "90") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "65") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "89") (term "7,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "58") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "67") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "66") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "56") (term "0,1,0,1,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "57") (term "0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "60") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "8") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "63") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "12") (term "0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "62") (term "0,1,0,1,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "13") (term "0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "65") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "45") (term "5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "95") (term "2,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "8") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "80") (term "0,0,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "80") (term "0,1,0,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "90") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "117") (term "2,1,5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "132") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "78") (term "5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "79") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "128") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "55") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "60") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "88") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "54") (term "1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "63") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "135") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "45") (term "1,0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "62") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "60") (term "2,1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "61") (term "2,1") (ifseqformula "1"))
+ (rule "tryEmpty" (formula "165") (term "1"))
+ (rule "blockEmptyLabel" (formula "165") (term "1"))
+ (rule "blockEmpty" (formula "165") (term "1"))
+ (rule "methodCallEmpty" (formula "165") (term "1"))
+ (rule "emptyModality" (formula "165") (term "1"))
+ (rule "andRight" (formula "165"))
+ (branch
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "closeTrue" (formula "165"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "closeTrue" (formula "165"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "168"))
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "28")))
+ (rule "closeTrue" (formula "168"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "168"))
+ (rule "wellFormedAnonEQ" (formula "168") (ifseqformula "60"))
+ (rule "wellFormedAnon" (formula "168") (term "0"))
+ (rule "replace_known_left" (formula "168") (term "1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "15")) (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "168"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "140"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "140") (term "1,1,1,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "140"))
+ (rule "expand_inInt" (formula "140") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "140") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "140") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "140"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "140"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "translateJavaAddInt" (formula "144") (term "3,0"))
+ (rule "translateJavaAddInt" (formula "144") (term "5,0"))
+ (rule "replace_known_left" (formula "143") (term "0") (ifseqformula "140"))
+ (builtin "One Step Simplification" (formula "143"))
+ (rule "true_left" (formula "143"))
+ (rule "polySimp_addComm1" (formula "143") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "143") (term "0,5,0"))
+ (rule "inEqSimp_commuteLeq" (formula "142"))
+ (rule "applyEq" (formula "143") (term "1,1,3,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "143") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "8") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "82") (term "5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "83") (term "0,1,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "116") (term "2,1,4,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "8") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "135") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "173") (term "0,1,0,1,1,0,1,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "58") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "91") (term "7,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "7") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "87") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "139") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "83") (term "0,1,0,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "60") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "13") (term "0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "82") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "144") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "54") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "68") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "65") (term "0,1,0,1,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "12") (term "0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "92") (term "6,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "64") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "66") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "65") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "66") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "6") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "9") (term "7,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "69") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "93") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "69") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "67") (term "0,1,0,1,1,0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "172") (term "2,1,0,1,0,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "91") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "119") (term "2,1,5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "97") (term "2,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "82") (term "0,0,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "44") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "58") (term "0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "55") (term "0,1,0,1,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "2,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "61") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "64") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "64") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "80") (term "0,1,1,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "55") (term "1,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "88") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "132") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "80") (term "6,0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "45") (term "5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "127") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "77") (term "5,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "64") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "9") (term "0,1,0,1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "61") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "62") (term "2,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "45") (term "1,0,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "60") (term "2,1,1") (ifseqformula "1"))
+ (rule "elim_double_block_2" (formula "169") (term "1"))
+ (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_19"))
+ (rule "inequality_comparison_simple" (formula "169") (term "1"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "136"))
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "ifSplit" (formula "169"))
+ (branch "if x_19 true"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_19 false"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "169") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "169") (newnames "result_17,exc_17,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "26")))
+ (rule "eqSymm" (formula "170") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "170") (term "1"))
+ (rule "variableDeclaration" (formula "170") (term "1") (newnames "exc_17_1"))
+ (rule "assignment" (formula "170") (term "1"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "emptyStatement" (formula "170") (term "1"))
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "emptyStatement" (formula "170") (term "1"))
+ (rule "tryEmpty" (formula "170") (term "1"))
+ (rule "blockEmptyLabel" (formula "170") (term "1"))
+ (rule "blockEmpty" (formula "170") (term "1"))
+ (rule "methodCallEmpty" (formula "170") (term "1"))
+ (rule "emptyModality" (formula "170") (term "1"))
+ (rule "andRight" (formula "170"))
+ (branch
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "closeTrue" (formula "170"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "170"))
+ (rule "closeTrue" (formula "170"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "169"))
+ (branch
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "169"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "169"))
+ (rule "wellFormedAnonEQ" (formula "169") (ifseqformula "56"))
+ (rule "wellFormedAnon" (formula "169") (term "0"))
+ (rule "replace_known_left" (formula "169") (term "1") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "15")) (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "169"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "170"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "141") (term "1,1,1,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "expand_inInt" (formula "141") (term "0,1,0"))
+ (rule "expand_inInt" (formula "141") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "141") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "141") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "141") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "141") (term "0,1,1,0,0,1"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "141"))
+ (rule "andLeft" (formula "142"))
+ (rule "andLeft" (formula "142"))
+ (rule "eqSymm" (formula "145") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "145") (term "0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "145") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "144") (term "0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "144"))
+ (rule "true_left" (formula "144"))
+ (rule "inEqSimp_commuteLeq" (formula "144") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "144") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "143"))
+ (rule "applyEq" (formula "144") (term "1,1,0,0,0") (ifseqformula "31"))
+ (rule "commute_and" (formula "144") (term "1,0"))
+ (rule "commute_and" (formula "144") (term "1,0,0"))
+ (rule "commute_and" (formula "144") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "173") (term "1"))
+ (rule "shift_paren_and" (formula "144") (term "0,0"))
+ (rule "commute_and_2" (formula "144") (term "0,0,0"))
+ (rule "ifUnfold" (formula "173") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "173") (term "1") (newnames "x_20"))
+ (rule "inequality_comparison_simple" (formula "173") (term "1"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "replace_known_left" (formula "173") (term "0,0,1,0") (ifseqformula "141"))
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "ifSplit" (formula "173"))
+ (branch "if x_20 true"
+ (builtin "One Step Simplification" (formula "174"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_20 false"
+ (builtin "One Step Simplification" (formula "174"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "173") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "173") (newnames "result_18,exc_18,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "26")))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "eqSymm" (formula "174") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "174") (term "1"))
+ (rule "variableDeclaration" (formula "174") (term "1") (newnames "exc_18_1"))
+ (rule "assignment" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "emptyStatement" (formula "174") (term "1"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "emptyStatement" (formula "174") (term "1"))
+ (rule "tryEmpty" (formula "174") (term "1"))
+ (rule "blockEmptyLabel" (formula "174") (term "1"))
+ (rule "blockEmpty" (formula "174") (term "1"))
+ (rule "methodCallEmpty" (formula "174") (term "1"))
+ (rule "emptyModality" (formula "174") (term "1"))
+ (rule "andRight" (formula "174"))
+ (branch
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "closeTrue" (formula "174"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "closeTrue" (formula "174"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "173"))
+ (branch
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "173"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "173"))
+ (rule "wellFormedAnonEQ" (formula "173") (ifseqformula "56"))
+ (rule "wellFormedAnon" (formula "173") (term "0"))
+ (rule "replace_known_left" (formula "173") (term "1") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "15")) (ifInst "" (formula "14")))
+ (rule "closeTrue" (formula "173"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "145"))
+ (builtin "One Step Simplification" (formula "174"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "145") (term "1,1,1,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "expand_inInt" (formula "145") (term "0,1,0"))
+ (rule "expand_inInt" (formula "145") (term "0,0,1"))
+ (rule "replace_int_MIN" (formula "145") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "145") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "145") (term "0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "145") (term "1,0,0,0,1"))
+ (rule "andLeft" (formula "145"))
+ (rule "andLeft" (formula "145"))
+ (rule "andLeft" (formula "146"))
+ (rule "andLeft" (formula "146"))
+ (rule "translateJavaAddInt" (formula "149") (term "3,1,0,0,1,0"))
+ (rule "eqSymm" (formula "149") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "149") (term "0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "149") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "149") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "149") (term "3,1,0,1,1,0"))
+ (rule "replace_known_left" (formula "148") (term "0") (ifseqformula "145"))
+ (builtin "One Step Simplification" (formula "148"))
+ (rule "true_left" (formula "148"))
+ (rule "polySimp_addComm0" (formula "148") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "148") (term "0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "148") (term "3,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "148") (term "3,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "148") (term "0,3,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "148") (term "0,3,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "148") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "147"))
+ (rule "commute_and" (formula "148") (term "0,0"))
+ (rule "elim_double_block_2" (formula "177") (term "1"))
+ (rule "elim_double_block_9" (formula "177") (term "1"))
+ (rule "ifUnfold" (formula "177") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "177") (term "1") (newnames "x_21"))
+ (rule "inequality_comparison_simple" (formula "177") (term "1"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "replace_known_left" (formula "177") (term "0,0,1,0") (ifseqformula "145"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "ifSplit" (formula "177"))
+ (branch "if x_21 true"
+ (builtin "One Step Simplification" (formula "178"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_21 false"
+ (builtin "One Step Simplification" (formula "178"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "177") (term "1"))
+ (rule "blockEmpty" (formula "177") (term "1"))
+ (rule "lsContinue" (formula "177") (term "1"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "polySimp_homoEq" (formula "61"))
+ (rule "polySimp_homoEq" (formula "148") (term "1,1,0"))
+ (rule "polySimp_homoEq" (formula "144") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "144") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0"))
+ (rule "mul_literals" (formula "61") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "148") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "148") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0"))
+ (rule "precOfInt" (formula "177"))
+ (rule "polySimp_addAssoc" (formula "148") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "148") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "144") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "144") (term "0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "144") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "103"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "177") (term "1"))
+ (rule "polySimp_rightDist" (formula "177") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "177") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "177") (term "0,0,1"))
+ (rule "add_literals" (formula "177") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "177") (term "0,1"))
+ (rule "add_literals" (formula "177") (term "1,1,0,1"))
+ (rule "times_zero_1" (formula "177") (term "1,0,1"))
+ (rule "add_zero_right" (formula "177") (term "0,1"))
+ (rule "leq_literals" (formula "177") (term "1"))
+ (builtin "One Step Simplification" (formula "177"))
+ (rule "inEqSimp_leqRight" (formula "177"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "46") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "73"))
+ (rule "polySimp_addComm1" (formula "73") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0"))
+ (rule "add_literals" (formula "73") (term "1,0,0"))
+ (rule "times_zero_1" (formula "73") (term "0,0"))
+ (rule "add_zero_left" (formula "73") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "80") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "80") (term "0,1,0,0"))
+ (rule "add_literals" (formula "80") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "80") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "80") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "94"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "0,1,0"))
+ (rule "mul_literals" (formula "94") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "84"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "84") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "84") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "84") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "80") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0,0"))
+ (rule "add_literals" (formula "80") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0,0"))
+ (rule "add_literals" (formula "80") (term "0,0,0"))
+ (rule "qeq_literals" (formula "80") (term "0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "true_left" (formula "80"))
+ (rule "polySimp_sepNegMonomial" (formula "62"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0"))
+ (rule "applyEq" (formula "55") (term "0,1,0") (ifseqformula "62"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0"))
+ (rule "polySimp_addComm1" (formula "55") (term "0,0"))
+ (rule "add_literals" (formula "55") (term "0,0,0"))
+ (rule "add_zero_left" (formula "55") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "148") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "148") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "148") (term "0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "144") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "144") (term "0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "144") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "144") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "144") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "144") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "144") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "144") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "144") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "83"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "93"))
+ (rule "inEqSimp_homoInEq0" (formula "74") (term "0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "qeq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "99") (ifseqformula "100"))
+ (rule "leq_literals" (formula "99") (term "0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "40"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "90"))
+ (rule "mul_literals" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1"))
+ (rule "mul_literals" (formula "71") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "71"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "qeq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "true_left" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "11"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "61") (term "0,0"))
+ (rule "mul_literals" (formula "61") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "61"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "129") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq0" (formula "129") (term "0"))
+ (rule "polySimp_mulComm0" (formula "129") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "129") (term "1,0,0"))
+ (rule "mul_literals" (formula "129") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "129") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "129") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "129") (term "0,0"))
+ (rule "add_literals" (formula "129") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "129") (term "1,0,0"))
+ (rule "add_literals" (formula "129") (term "0,0"))
+ (rule "qeq_literals" (formula "129") (term "0"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "true_left" (formula "129"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "37"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "mul_literals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "add_literals" (formula "72") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "72"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_and_subsumption3" (formula "141") (term "0,0,0"))
+ (rule "leq_literals" (formula "141") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0"))
+ (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_and_subsumption3" (formula "42") (term "0,0,0"))
+ (rule "leq_literals" (formula "42") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "145") (term "0"))
+ (rule "Contract_axiom_for_disjointBucketsLemma_in_BucketPointers" (formula "47") (term "0"))
+ (rule "replace_known_left" (formula "47") (term "1,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "25")) (ifInst "" (formula "16")) (ifInst "" (formula "172")) (ifInst "" (formula "25")) (ifInst "" (formula "48")) (ifInst "" (formula "27")))
+ (rule "true_left" (formula "47"))
+ (rule "Definition_axiom_for_writtenElementsCountElementSplitBucket_in_de_wiesler_BucketPointers" (formula "137") (term "0") (inst "element=element") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "expand_inInt" (formula "137") (term "0,0"))
+ (rule "replace_int_MAX" (formula "137") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "137") (term "0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "137") (term "0,2,2,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "137") (term "3,1,2,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "137") (term "0,0,0,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "137") (term "2,1,2,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "137") (term "3,2,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "137") (term "2,2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "137") (term "0,3,1,2,0,0,1,1,0"))
+ (rule "eqSymm" (formula "137") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "137") (term "0,1,0"))
+ (rule "translateJavaCastInt" (formula "137") (term "0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "137") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "137") (term "2,2,1,0,1,0"))
+ (rule "mul_literals" (formula "137") (term "1,2,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "137") (term "3,1,2,0,0,1,0"))
+ (rule "mul_literals" (formula "137") (term "1,3,1,2,0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "137") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "137") (term "1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "3,1,2,1,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "137") (term "0,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "2,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "137") (term "0,3,1,2,1,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "137") (term "0,2,2,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "137") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "137") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "137") (term "0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "137") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "137") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "137") (term "1,0,0,0,0,0,1,0"))
+ (rule "applyEq" (formula "137") (term "1,3,1,2,0,1,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "137") (term "3,1,2,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,3,1,2,0,1,0,1,0"))
+ (rule "add_literals" (formula "137") (term "0,0,3,1,2,0,1,0,1,0"))
+ (rule "add_zero_left" (formula "137") (term "0,3,1,2,0,1,0,1,0"))
+ (rule "applyEq" (formula "137") (term "1,2,2,0,0,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "137") (term "2,2,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,2,2,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "137") (term "0,0,2,2,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "137") (term "0,2,2,0,0,0,0,1,0"))
+ (rule "applyEq" (formula "137") (term "1,3,2,0,0,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_addAssoc" (formula "137") (term "3,2,0,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "137") (term "0,3,2,0,0,0,0,1,0"))
+ (rule "applyEq" (formula "137") (term "0,1,0,0,0,0,0,0,0,1,0") (ifseqformula "56"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "137") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "137") (term "0,1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "137") (term "0,0,0,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "137") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "137") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "137") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "0,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "137") (term "0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "137") (term "0,0,0,0,1,1,0") (ifseqformula "92"))
+ (rule "inEqSimp_homoInEq1" (formula "137") (term "0,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "137") (term "1,0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "137") (term "0,1,0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "137") (term "1,0,1,0,0,0,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "137") (term "0,0,1,0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "137") (term "1,0,1,0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "137") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "137") (term "1,1,0,0,0,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "137") (term "1,0,0,0,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "137") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "137") (term "0,0,0,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "137") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "137") (term "1,1,0,0,0,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "137") (term "1,0,0,0,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "137") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "leq_literals" (formula "137") (term "0,0,0,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "Contract_axiom_for_disjointBucketsAreaLemma_in_BucketPointers" (formula "77") (term "0"))
+ (rule "translateJavaAddInt" (formula "77") (term "0,0,0,0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "1,1,0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "1,1,1,1,0,1,0,0,0,0"))
+ (rule "replace_known_left" (formula "77") (term "0,1,1,1,0,0,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "47")) (ifInst "" (formula "174")) (ifInst "" (formula "16")) (ifInst "" (formula "20")) (ifInst "" (formula "172")) (ifInst "" (formula "25")) (ifInst "" (formula "78")) (ifInst "" (formula "27")))
+ (rule "true_left" (formula "77"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "11") (term "1"))
+ (rule "translateJavaSubInt" (formula "11") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "104"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "translateJavaSubInt" (formula "109") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "109") (term "0,2,1"))
+ (rule "eqSymm" (formula "106"))
+ (rule "eqSymm" (formula "109"))
+ (rule "translateJavaMulInt" (formula "106") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "109") (term "0,2,1"))
+ (rule "mul_literals" (formula "109") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "109") (term "0,2,0"))
+ (rule "mul_literals" (formula "109") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "106") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "104"))
+ (rule "applyEq" (formula "105") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "104") (term "0") (ifseqformula "29"))
+ (rule "applyEq" (formula "106") (term "1") (ifseqformula "29"))
+ (rule "pullOutSelect" (formula "109") (term "1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "109") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "simplifySelectOfAnonEQ" (formula "110") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "elementOfSingleton" (formula "109") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "172")))
+ (rule "elementOfSingleton" (formula "110") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "172")))
+ (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "105"))
+ (rule "polySimp_rightDist" (formula "101") (term "0,0"))
+ (rule "mul_literals" (formula "101") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "101") (term "0"))
+ (rule "add_literals" (formula "101") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "101"))
+ (rule "polySimp_mulLiterals" (formula "101") (term "0"))
+ (rule "polySimp_elimOne" (formula "101") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "101"))
+ (rule "leq_literals" (formula "99") (term "0"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "pullOutSelect" (formula "109") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "109"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "elementOfSingleton" (formula "109") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "173")))
+ (rule "pullOutSelect" (formula "111") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "111"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "elementOfSingleton" (formula "111") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "174")))
+ (rule "Contract_axiom_for_elementsToReadCountElementSplitBucket_in_BucketPointers" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "13")) (ifInst "" (formula "183")) (ifInst "" (formula "181")) (ifInst "" (formula "13")) (ifInst "" (formula "88")) (ifInst "" (formula "20")))
+ (rule "wellFormedAnon" (formula "87") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "0,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "1,1,1,0,0"))
+ (rule "replace_known_left" (formula "87") (term "1,1,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "16")))
+ (rule "inEqSimp_ltToLeq" (formula "87") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0"))
+ (rule "replace_known_left" (formula "87") (term "0,0,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_homoInEq0" (formula "87") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "87") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "87") (term "0,0,0,0,1,0"))
+ (rule "applyEq" (formula "87") (term "0,1,0,0,1,0") (ifseqformula "62"))
+ (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,1,0"))
+ (rule "add_literals" (formula "87") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "87") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "87") (term "0,0,1,0"))
+ (rule "qeq_literals" (formula "87") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "applyEq" (formula "87") (term "1,0,1,0") (ifseqformula "59"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,0,0"))
+ (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "87") (term "0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "1,1,0"))
+ (rule "mul_literals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "1,1,0"))
+ (rule "replace_known_left" (formula "87") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "Definition_axiom_for_disjointBucketsAreaLemma_in_de_wiesler_BucketPointers" (formula "77") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "expand_inInt" (formula "77") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "2,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "2,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "2,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "77") (term "2,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "0,2,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "77") (term "0,2,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "77") (term "1,2,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "2,1,1,1,0"))
+ (rule "mul_literals" (formula "77") (term "1,2,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "2,0,0,1,0"))
+ (rule "mul_literals" (formula "77") (term "1,2,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "77") (term "2,0,1,1,0"))
+ (rule "mul_literals" (formula "77") (term "1,2,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "2,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "2,1,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "2,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "2,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,2,1,0,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,2,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,2,1,1,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,2,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,2,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,2,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,0,0,0,0"))
+ (rule "disjointDefinition" (formula "77") (term "0,1,0"))
+ (rule "disjointDefinition" (formula "77") (term "1,1,0"))
+ (rule "disjointArrayRanges" (formula "77") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "disjointArrayRanges" (formula "77") (term "1,1,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,1,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,0,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,0,0,0,0,0,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "0,0,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "77") (term "0,0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,1,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,1,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,1,0,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "0,1,0,0,1,1,0"))
+ (rule "qeq_literals" (formula "77") (term "1,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,1,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,0,1,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "1,0,0,0,0,0,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "0,0,0,0,0,1,0,1,1,0"))
+ (rule "add_zero_left" (formula "77") (term "0,0,0,0,1,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,1,1,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,1,1,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,1,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,1,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,0,1,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,0,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,0,1,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,0,1,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,1,1,0,1,1,0"))
+ (rule "add_literals" (formula "77") (term "1,0,0,0,0,1,1,0,1,1,0"))
+ (rule "times_zero_1" (formula "77") (term "0,0,0,0,1,1,0,1,1,0"))
+ (rule "add_zero_left" (formula "77") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,0,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,1,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "77") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "77") (term "0,1,0,0,0,1,0"))
+ (rule "qeq_literals" (formula "77") (term "1,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,0,0,0,0,1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "0,0,0,0,1,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "77") (term "0,0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,1,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0,1,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,1,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,1,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,1,0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,1,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,0,0,1,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,1,1,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,1,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "56") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1,0,0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "67")) (ifInst "" (formula "182")) (ifInst "" (formula "67")) (ifInst "" (formula "66")) (ifInst "" (formula "20")))
+ (rule "wellFormedAnonEQ" (formula "56") (term "1,0") (ifseqformula "53"))
+ (rule "wellFormedAnon" (formula "56") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "56") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "56") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "56") (term "1,1,0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "polySimp_addComm0" (formula "56") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0"))
+ (rule "replace_known_left" (formula "56") (term "0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,1,0,0,1"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0,0,1"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,0,1") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "56") (term "0,1,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0,0,0,1"))
+ (rule "applyEq" (formula "56") (term "0,1,0,1") (ifseqformula "46"))
+ (rule "inEqSimp_commuteGeq" (formula "56") (term "1,0,1"))
+ (rule "applyEq" (formula "56") (term "0,0,1,1") (ifseqformula "57"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0"))
+ (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "58"))
+ (rule "times_zero_1" (formula "78") (term "0,0"))
+ (rule "add_zero_left" (formula "78") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "mul_literals" (formula "78") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "polySimp_rightDist" (formula "57") (term "0,0"))
+ (rule "mul_literals" (formula "57") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0"))
+ (rule "add_zero_left" (formula "57") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "1"))
+ (rule "polySimp_elimOne" (formula "57") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "100"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "58"))
+ (rule "times_zero_1" (formula "56") (term "0,0"))
+ (rule "add_zero_left" (formula "56") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "56"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1"))
+ (rule "polySimp_elimOne" (formula "56") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "80"))
+ (rule "inEqSimp_homoInEq0" (formula "56") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0"))
+ (rule "add_zero_right" (formula "56") (term "0,0"))
+ (rule "qeq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "61"))
+ (rule "mul_literals" (formula "80") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80"))
+ (rule "mul_literals" (formula "80") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "57"))
+ (rule "times_zero_1" (formula "56") (term "0,0"))
+ (rule "add_zero_left" (formula "56") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "82"))
+ (rule "leq_literals" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "104") (term "0"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "translateJavaMod" (formula "104") (term "0"))
+ (rule "jmod_axiom" (formula "104") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "104"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "0"))
+ (rule "newSym_eq" (formula "104") (inst "l=l_0") (inst "newSymDef=add(mul(int::final(result_1,
+ de.wiesler.Increment::$position),
+ Z(0(#))),
+ mul(de.wiesler.BucketPointers::lastReadOf(heapAfter_increment_write,
+ bucket_pointers,
+ result_8),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "104") (term "1,1,1"))
+ (rule "times_zero_1" (formula "104") (term "0,1,1"))
+ (rule "add_zero_left" (formula "104") (term "1,1"))
+ (rule "add_zero_right" (formula "104") (term "1"))
+ (rule "applyEq" (formula "105") (term "0,0") (ifseqformula "104"))
+ (rule "polySimp_homoEq" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "105") (term "0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "105"))
+ (rule "polySimp_mulComm0" (formula "105") (term "1"))
+ (rule "polySimp_rightDist" (formula "105") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "105") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0,1"))
+ (rule "applyEq" (formula "135") (term "1,5,0") (ifseqformula "105"))
+ (rule "polySimp_addAssoc" (formula "135") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "135") (term "0,5,0"))
+ (rule "applyEq" (formula "104") (term "1,0,0") (ifseqformula "105"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "104") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "104") (term "0,0"))
+ (rule "add_literals" (formula "104") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "104") (term "1,0,0"))
+ (rule "add_zero_right" (formula "104") (term "0,0"))
+ (rule "applyEq" (formula "99") (term "1,0") (ifseqformula "105"))
+ (rule "applyEq" (formula "92") (term "0") (ifseqformula "105"))
+ (rule "inEqSimp_homoInEq1" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "92") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "92") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "92") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "92") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "92") (term "0"))
+ (rule "polySimp_addComm1" (formula "92") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "92") (term "0"))
+ (rule "add_literals" (formula "92") (term "1,1,0"))
+ (rule "times_zero_1" (formula "92") (term "1,0"))
+ (rule "add_zero_right" (formula "92") (term "0"))
+ (rule "applyEq" (formula "131") (term "1,4,0") (ifseqformula "105"))
+ (rule "polySimp_addAssoc" (formula "131") (term "4,0"))
+ (rule "polySimp_addComm0" (formula "131") (term "0,4,0"))
+ (rule "applyEq" (formula "67") (term "1") (ifseqformula "105"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "92"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "0"))
+ (rule "elimGcdGeq_antec" (formula "92") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "mul_literals" (formula "92") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "92") (term "0,0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "mul_literals" (formula "92") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "92") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "92") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "92") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "92") (term "0,0"))
+ (rule "add_literals" (formula "92") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "92") (term "1,0,0"))
+ (rule "add_zero_right" (formula "92") (term "0,0"))
+ (rule "leq_literals" (formula "92") (term "0"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "64") (term "0"))
+ (rule "translateJavaMulInt" (formula "64") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "64") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "64") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "64") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "polySimp_homoEq" (formula "65"))
+ (rule "polySimp_addComm1" (formula "65") (term "0"))
+ (rule "elementOfSingleton" (formula "64") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "applyEqReverse" (formula "65") (term "0,1,0,0") (ifseqformula "64"))
+ (rule "hideAuxiliaryEq" (formula "64"))
+ (rule "polySimp_addComm1" (formula "64") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "Definition_axiom_for_elementsToReadCountElementSplitBucket_in_de_wiesler_BucketPointers" (formula "98") (term "0") (inst "element=element") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "expand_inInt" (formula "98") (term "0,0"))
+ (rule "replace_int_MAX" (formula "98") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "98") (term "0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "98") (term "3,1,2,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "98") (term "2,1,1,1,0"))
+ (rule "translateJavaCastInt" (formula "98") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "98") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "98") (term "0,1,0"))
+ (rule "polySimp_homoEq" (formula "98") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "98") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "98") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "98") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "98") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "98") (term "0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "98") (term "1,0,0"))
+ (rule "applyEq" (formula "98") (term "1,2,0,0,0,0,1,0") (ifseqformula "70"))
+ (rule "polySimp_sepNegMonomial" (formula "98") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "98") (term "0,1,0"))
+ (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "65") (term "1,1"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0,0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "75")) (ifInst "" (formula "193")) (ifInst "" (formula "75")) (ifInst "" (formula "74")) (ifInst "" (formula "20")))
+ (rule "true_left" (formula "65"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "73") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "expand_inInt" (formula "73") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "73") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "73") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "74"))
+ (rule "andLeft" (formula "73"))
+ (rule "andLeft" (formula "75"))
+ (rule "andLeft" (formula "75"))
+ (rule "translateJavaAddInt" (formula "79") (term "1"))
+ (rule "translateJavaCastInt" (formula "80") (term "0"))
+ (rule "translateJavaMulInt" (formula "74") (term "0"))
+ (rule "translateJavaMulInt" (formula "73") (term "1"))
+ (rule "translateJavaCastInt" (formula "77") (term "0"))
+ (rule "translateJavaCastInt" (formula "76") (term "1"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1"))
+ (rule "polySimp_addComm0" (formula "79") (term "1"))
+ (rule "castedGetAny" (formula "80") (term "0"))
+ (rule "castedGetAny" (formula "77") (term "0"))
+ (rule "castedGetAny" (formula "76") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "82") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "73"))
+ (rule "inEqSimp_commuteLeq" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_commuteGeq" (formula "76"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "39"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "76") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "76"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "73") (ifseqformula "123"))
+ (rule "mul_literals" (formula "73") (term "1,1,0"))
+ (rule "greater_literals" (formula "73") (term "0,0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "leq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "true_left" (formula "73"))
+ (rule "inEqSimp_exactShadow2" (formula "119") (ifseqformula "73"))
+ (rule "greater_literals" (formula "119") (term "0"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "polySimp_rightDist" (formula "119") (term "1,0,0"))
+ (rule "mul_literals" (formula "119") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "119") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "1,0,0"))
+ (rule "mul_literals" (formula "119") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "119"))
+ (rule "polySimp_mulComm0" (formula "119") (term "1"))
+ (rule "polySimp_rightDist" (formula "119") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "1,1"))
+ (rule "mul_literals" (formula "119") (term "0,1"))
+ (rule "inEqSimp_exactShadow2" (formula "123") (ifseqformula "73"))
+ (rule "mul_literals" (formula "123") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "123") (term "0"))
+ (builtin "One Step Simplification" (formula "123"))
+ (rule "mul_literals" (formula "123") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "123"))
+ (rule "mul_literals" (formula "123") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "40"))
+ (rule "times_zero_1" (formula "74") (term "0,0"))
+ (rule "add_zero_left" (formula "74") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "74"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1"))
+ (rule "polySimp_elimOne" (formula "74") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "87"))
+ (rule "inEqSimp_homoInEq0" (formula "74") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "qeq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "Contract_axiom_for_isClassOfSliceSplit_in_Classifier" (formula "165") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "165") (term "1,0,0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "134")) (ifInst "" (formula "203")) (ifInst "" (formula "202")) (ifInst "" (formula "134")) (ifInst "" (formula "166")) (ifInst "" (formula "19")))
+ (rule "wellFormedAnonEQ" (formula "165") (term "1,0") (ifseqformula "53"))
+ (rule "wellFormedAnon" (formula "165") (term "0,1,0"))
+ (rule "replace_known_left" (formula "165") (term "1,0,1,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "16")) (ifInst "" (formula "52")))
+ (rule "inEqSimp_homoInEq0" (formula "165") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "165") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "165") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "165") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "165") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "165") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "165") (term "0,1,0"))
+ (rule "add_literals" (formula "165") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "165") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "165") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "165") (term "0,1,0"))
+ (rule "add_literals" (formula "165") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "165") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "165") (term "0,1,0"))
+ (rule "qeq_literals" (formula "165") (term "1,0"))
+ (builtin "One Step Simplification" (formula "165"))
+ (rule "inEqSimp_homoInEq0" (formula "165") (term "0"))
+ (rule "polySimp_mulComm0" (formula "165") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "165") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "165") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "165") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "165") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "165") (term "0,0,0,0"))
+ (rule "add_literals" (formula "165") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "165") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "165") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "165") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "165") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "165") (term "1,0"))
+ (rule "Definition_axiom_for_disjointBucketsLemma_in_de_wiesler_BucketPointers" (formula "47") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "expand_inInt" (formula "47") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "47") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "47") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isClassifiedAs_in_Classifier" (formula "121") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "121") (term "1,0,0") (ifseqformula "53"))
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "135")) (ifInst "" (formula "203")) (ifInst "" (formula "135")) (ifInst "" (formula "19")))
+ (rule "wellFormedAnonEQ" (formula "121") (term "0") (ifseqformula "53"))
+ (rule "wellFormedAnon" (formula "121") (term "0,0"))
+ (rule "replace_known_left" (formula "121") (term "1,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "16")) (ifInst "" (formula "52")))
+ (rule "replace_known_left" (formula "166") (term "1") (ifseqformula "121"))
+ (builtin "One Step Simplification" (formula "166"))
+ (rule "true_left" (formula "166"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "25")) (ifInst "" (formula "202")))
+ (rule "translateJavaAddInt" (formula "46") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "46") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "46") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "46") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "46") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "46") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "46") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "46") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,1,1,1"))
+ (rule "add_zero_right" (formula "46") (term "0,0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "46") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "46") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,0,0,1"))
+ (rule "qeq_literals" (formula "46") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "46") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "46") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "46") (term "0,1,0,1,1,1"))
+ (rule "qeq_literals" (formula "46") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "46") (term "0,1,0"))
+ (rule "add_literals" (formula "46") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "46") (term "0,1,0"))
+ (rule "qeq_literals" (formula "46") (term "1,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "applyEq" (formula "46") (term "1,1,1,1,1") (ifseqformula "47"))
+ (rule "applyEq" (formula "46") (term "0,0,0,1") (ifseqformula "47"))
+ (rule "applyEq" (formula "46") (term "0,1,0,1") (ifseqformula "47"))
+ (rule "applyEq" (formula "46") (term "0,0,0,1,1") (ifseqformula "47"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,0,1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "46") (term "0,1,1,1") (ifseqformula "126"))
+ (rule "leq_literals" (formula "46") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "inEqSimp_subsumption1" (formula "46") (term "0") (ifseqformula "126"))
+ (rule "leq_literals" (formula "46") (term "0,0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "andLeft" (formula "46"))
+ (rule "andLeft" (formula "47"))
+ (rule "andLeft" (formula "46"))
+ (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "91"))
+ (rule "leq_literals" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "49") (term "0"))
+ (rule "translateJavaCastInt" (formula "49") (term "0,0"))
+ (rule "castedGetAny" (formula "49") (term "0,0"))
+ (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "true_left" (formula "49"))
+ (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "13")) (ifInst "" (formula "204")) (ifInst "" (formula "13")) (ifInst "" (formula "106")) (ifInst "" (formula "20")))
+ (rule "wellFormedAnon" (formula "69") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "69") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "69") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "69") (term "0,1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "15")))
+ (rule "polySimp_addComm0" (formula "69") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,0,1"))
+ (rule "replace_known_left" (formula "69") (term "0,0,0,0,1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0"))
+ (rule "replace_known_left" (formula "69") (term "0,0") (ifseqformula "120"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,1,1,1"))
+ (rule "applyEq" (formula "69") (term "0,0,1,1,1,1") (ifseqformula "70"))
+ (rule "applyEq" (formula "69") (term "0,1,0,0,1") (ifseqformula "70"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0,1,0,0,1"))
+ (rule "applyEq" (formula "69") (term "0,0,0,1,1") (ifseqformula "70"))
+ (rule "inEqSimp_homoInEq0" (formula "69") (term "0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,1,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,0,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,0,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0,0,0,1,1"))
+ (rule "applyEq" (formula "69") (term "0,0,0,0,1") (ifseqformula "70"))
+ (rule "inEqSimp_homoInEq1" (formula "69") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,0,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,0,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0,0,0,0,1"))
+ (rule "applyEq" (formula "69") (term "0,1,0,1,1") (ifseqformula "70"))
+ (rule "polySimp_homoEq" (formula "69") (term "1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0,1,0,1,1"))
+ (rule "polySimp_sepNegMonomial" (formula "69") (term "1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,1,0,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,0"))
+ (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "123"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "69"))
+ (rule "andLeft" (formula "73"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "70"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "69") (term "0,0,0"))
+ (rule "add_literals" (formula "69") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "69") (term "0,0,0"))
+ (rule "add_zero_left" (formula "69") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1"))
+ (rule "polySimp_elimOne" (formula "69") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "63"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_addComm1" (formula "69") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "69"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1"))
+ (rule "polySimp_rightDist" (formula "69") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "69") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "69") (term "0,1"))
+ (rule "mul_literals" (formula "69") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "118"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "72"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,0"))
+ (rule "mul_literals" (formula "62") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "62"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1"))
+ (rule "polySimp_rightDist" (formula "62") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "62") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "62") (term "0,1"))
+ (rule "mul_literals" (formula "62") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "73"))
+ (rule "mul_literals" (formula "100") (term "0,0"))
+ (rule "add_zero_left" (formula "100") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "100"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "65"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "70"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "0"))
+ (rule "polySimp_elimOne" (formula "70") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "72"))
+ (rule "times_zero_1" (formula "58") (term "0,0"))
+ (rule "add_zero_left" (formula "58") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,1"))
+ (rule "mul_literals" (formula "58") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "66"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "63") (term "0"))
+ (rule "polySimp_rightDist" (formula "63") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "63"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "0"))
+ (rule "polySimp_elimOne" (formula "63") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "67"))
+ (rule "polySimp_mulAssoc" (formula "103") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "103"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "72"))
+ (rule "times_zero_1" (formula "59") (term "0,0"))
+ (rule "add_zero_left" (formula "59") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1"))
+ (rule "polySimp_rightDist" (formula "59") (term "1"))
+ (rule "mul_literals" (formula "59") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "64"))
+ (rule "mul_literals" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1"))
+ (rule "polySimp_rightDist" (formula "60") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1"))
+ (rule "mul_literals" (formula "60") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "105"))
+ (rule "inEqSimp_homoInEq0" (formula "60") (term "0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "60") (term "0,0"))
+ (rule "add_literals" (formula "60") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "60") (term "1,0,0"))
+ (rule "add_zero_right" (formula "60") (term "0,0"))
+ (rule "qeq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "36"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_rightDist" (formula "58") (term "0,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "46"))
+ (rule "polySimp_mulAssoc" (formula "105") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "105") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "105"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "105") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "105") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "105") (term "0,0"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "mul_literals" (formula "105") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "105") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "105") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "105") (term "0,0"))
+ (rule "add_literals" (formula "105") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "105") (term "1,0,0"))
+ (rule "add_zero_right" (formula "105") (term "0,0"))
+ (rule "qeq_literals" (formula "105") (term "0"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "1,1,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0"))
+ (rule "add_zero_right" (formula "59") (term "0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0"))
+ (rule "add_literals" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59"))
+ (rule "mul_literals" (formula "59") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "59") (ifseqformula "118"))
+ (rule "mul_literals" (formula "59") (term "1,1,0"))
+ (rule "greater_literals" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "leq_literals" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "true_left" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "46"))
+ (rule "polySimp_rightDist" (formula "60") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0"))
+ (rule "mul_literals" (formula "60") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "60") (term "0"))
+ (rule "add_literals" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "60") (ifseqformula "118"))
+ (rule "greater_literals" (formula "60") (term "0,0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "mul_literals" (formula "60") (term "1,0"))
+ (rule "leq_literals" (formula "60") (term "0"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "true_left" (formula "60"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "58"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "add_zero_left" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "33") (ifseqformula "118"))
+ (rule "greater_literals" (formula "33") (term "0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1,0"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "154"))
+ (rule "andLeft" (formula "154"))
+ (rule "notLeft" (formula "154"))
+ (rule "notLeft" (formula "154"))
+ (rule "replace_known_right" (formula "150") (term "0,0,0,0") (ifseqformula "194"))
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "replace_known_right" (formula "152") (term "0,0,0,0") (ifseqformula "194"))
+ (builtin "One Step Simplification" (formula "152"))
+ (rule "replace_known_right" (formula "151") (term "0,0,0,0") (ifseqformula "194"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "replace_known_right" (formula "149") (term "0,0,0,0") (ifseqformula "194"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "195"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "194"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_left" (formula "149") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "applyEqReverse" (formula "150") (term "2,0") (ifseqformula "149"))
+ (rule "hideAuxiliaryEq" (formula "149"))
+ (rule "replace_known_left" (formula "150") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "150"))
+ (rule "applyEqReverse" (formula "151") (term "2,0") (ifseqformula "150"))
+ (rule "hideAuxiliaryEq" (formula "150"))
+ (rule "replace_known_left" (formula "149") (term "0,0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "applyEqReverse" (formula "150") (term "1") (ifseqformula "149"))
+ (rule "hideAuxiliaryEq" (formula "149"))
+ (rule "replace_known_left" (formula "149") (term "0,0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "149"))
+ (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "91")) (ifInst "" (formula "94")))
+ (rule "expand_inInt" (formula "27") (term "1,0,0,1"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "translateJavaCastInt" (formula "33") (term "0"))
+ (rule "translateJavaAddInt" (formula "32") (term "1"))
+ (rule "translateJavaMulInt" (formula "27") (term "1"))
+ (rule "translateJavaMulInt" (formula "28") (term "0"))
+ (rule "translateJavaCastInt" (formula "31") (term "0"))
+ (rule "translateJavaCastInt" (formula "30") (term "1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "31") (term "1"))
+ (rule "castedGetAny" (formula "31") (term "0"))
+ (rule "castedGetAny" (formula "30") (term "0"))
+ (rule "castedGetAny" (formula "29") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "42"))
+ (rule "inEqSimp_commuteGeq" (formula "28"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "41"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "145"))
+ (rule "greater_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "41") (term "0"))
+ (rule "replace_known_right" (formula "41") (term "0,1,0,0,0,0") (ifseqformula "218"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "26")) (ifInst "" (formula "16")) (ifInst "" (formula "19")) (ifInst "" (formula "220")) (ifInst "" (formula "26")) (ifInst "" (formula "28")))
+ (rule "true_left" (formula "41"))
+ (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "72") (term "0"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "13")) (ifInst "" (formula "219")) (ifInst "" (formula "13")) (ifInst "" (formula "123")) (ifInst "" (formula "20")))
+ (rule "true_left" (formula "72"))
+ (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "72") (term "0"))
+ (rule "translateJavaSubInt" (formula "72") (term "0"))
+ (rule "translateJavaAddInt" (formula "72") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "72") (term "0"))
+ (rule "polySimp_homoEq" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0"))
+ (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "86"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "72"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "1"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,1"))
+ (rule "mul_literals" (formula "72") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,0,1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "72"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "72"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "68"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (classify)"
+ (builtin "One Step Simplification" (formula "103"))
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "103"))
+ (rule "notLeft" (formula "103"))
+ (rule "close" (formula "106") (ifseqformula "105"))
+ )
+ (branch "Pre (classify)"
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "andRight" (formula "131"))
+ (branch "Case 1"
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "131") (userinteraction))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "29") (userinteraction))
+ (rule "close" (formula "131") (ifseqformula "29"))
+ )
+ (branch
+ (rule "andRight" (formula "131"))
+ (branch
+ (rule "andRight" (formula "131"))
+ (branch
+ (rule "wellFormedAnonEQ" (formula "131") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "131") (term "0"))
+ (rule "replace_known_left" (formula "131") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "14")) (ifInst "" (formula "13")))
+ (rule "closeTrue" (formula "131"))
+ )
+ (branch
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "22")))
+ (rule "closeTrue" (formula "131"))
+ )
+ )
+ (branch
+ (rule "expand_inInt" (formula "131"))
+ (rule "replace_int_MAX" (formula "131") (term "1,0"))
+ (rule "replace_int_MIN" (formula "131") (term "0,1"))
+ (rule "replace_known_left" (formula "131") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "polySimp_homoEq" (formula "64"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "64") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "131"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,1,0"))
+ (rule "mul_literals" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_contradInEq0" (formula "100") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "100") (term "0"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "closeFalse" (formula "100"))
+ )
+ )
+ )
+ (branch "Null reference (var = null)"
+ (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "129")))
+ (rule "closeTrue" (formula "131"))
+ )
+ )
+ (branch "Null Reference (_values = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "131")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Index Out of Bounds (_values != null, but write Out of Bounds!)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "131")) (userinteraction))
+ (rule "orLeft" (formula "1") (userinteraction))
+ (branch "values.length <= begin + result_1.position"
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "false_right" (formula "132"))
+ (rule "polySimp_homoEq" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,1,0"))
+ (rule "mul_literals" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "96"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "77") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_zero_right" (formula "77") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0"))
+ (rule "add_zero_right" (formula "77") (term "0,0"))
+ (rule "qeq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "43"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "40"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "35"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "92"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "40") (ifseqformula "1"))
+ (rule "andLeft" (formula "40"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addComm0" (formula "40") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "40") (term "0"))
+ (rule "add_literals" (formula "40") (term "1,1,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0"))
+ (rule "add_literals" (formula "40") (term "0"))
+ (rule "leq_literals" (formula "40"))
+ (rule "closeFalse" (formula "40"))
+ )
+ (branch "begin + result_1.position < 0"
+ (builtin "One Step Simplification" (formula "132"))
+ (rule "false_right" (formula "132"))
+ (rule "polySimp_homoEq" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,0"))
+ (rule "mul_literals" (formula "65") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "67"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "87"))
+ (rule "polySimp_mulComm0" (formula "87") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "87") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "87") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "87") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "83") (term "0,1,0,0"))
+ (rule "add_literals" (formula "83") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "83") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "83") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_addComm1" (formula "76") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "97"))
+ (rule "polySimp_mulComm0" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "97") (term "0,1,0"))
+ (rule "mul_literals" (formula "97") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "97") (term "0"))
+ (rule "polySimp_addComm0" (formula "97") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0,0"))
+ (rule "add_literals" (formula "83") (term "0,0,0"))
+ (rule "qeq_literals" (formula "83") (term "0,0"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "86"))
+ (rule "polySimp_mulLiterals" (formula "86") (term "0"))
+ (rule "polySimp_elimOne" (formula "86") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "96"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "41"))
+ (rule "leq_literals" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "true_left" (formula "40"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "43"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "93"))
+ (rule "inEqSimp_homoInEq0" (formula "74") (term "0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "74") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "1,0,0"))
+ (rule "add_zero_right" (formula "74") (term "0,0"))
+ (rule "qeq_literals" (formula "74") (term "0"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "true_left" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "73") (term "0,0"))
+ (rule "add_zero_left" (formula "73") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "73"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "73") (ifseqformula "34"))
+ (rule "qeq_literals" (formula "73") (term "0"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "closeFalse" (formula "73"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "if occupied false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "notLeft" (formula "1"))
+ (rule "variableDeclarationGhostAssign" (formula "111") (term "1"))
+ (rule "variableDeclarationGhost" (formula "111") (term "1") (newnames "heapBeforeWrite"))
+ (rule "assignment" (formula "111") (term "1"))
+ (builtin "One Step Simplification" (formula "111"))
+ (builtin "Block Contract (Internal)" (formula "111") (newnames "anonOut_heap,result_4,exc_4,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "26")) (ifInst "" (formula "111")) (ifInst "" (formula "106")) (ifInst "" (formula "108")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,0,0,1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "23")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,0,0,1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "25")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,0,1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "16")))
+ (rule "expand_inInt" (formula "82") (term "1,1"))
+ (rule "expand_inInt" (formula "82") (term "0,1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,0,1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,0,1"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "83"))
+ (rule "inEqSimp_commuteLeq" (formula "85"))
+ (rule "variableDeclarationAssign" (formula "114") (term "1"))
+ (rule "variableDeclaration" (formula "114") (term "1") (newnames "exc_4_1"))
+ (rule "assignment" (formula "114") (term "1"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "apply_eq_boolean" (formula "67") (term "1") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "ifElseUnfold" (formula "114") (term "1") (inst "#boolv=x"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_7"))
+ (rule "compound_less_than_comparison_2" (formula "114") (term "1") (inst "#v0=x_8") (inst "#v1=x_9"))
+ (rule "variableDeclarationAssign" (formula "114") (term "1"))
+ (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_8"))
+ (rule "assignment" (formula "114") (term "1"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "variableDeclarationAssign" (formula "114") (term "1"))
+ (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_9"))
+ (rule "assignmentAdditionInt" (formula "114") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "expand_inInt" (formula "114"))
+ (rule "replace_int_MAX" (formula "114") (term "1,0"))
+ (rule "replace_int_MIN" (formula "114") (term "0,1"))
+ (rule "polySimp_homoEq" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,1,1"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "84"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "81") (term "0,0,0,0"))
+ (rule "add_literals" (formula "81") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "81") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "81") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "83"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "0,0"))
+ (rule "add_zero_left" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "84"))
+ (rule "mul_literals" (formula "84") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "84") (term "0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "114") (term "0"))
+ (rule "polySimp_mulComm0" (formula "114") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "114") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "114") (term "0,0,0"))
+ (rule "add_literals" (formula "114") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "114") (term "1"))
+ (rule "mul_literals" (formula "114") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,0,1"))
+ (rule "add_literals" (formula "114") (term "0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "81") (term "0,0,0"))
+ (rule "add_literals" (formula "81") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "81") (term "0,0,0"))
+ (rule "qeq_literals" (formula "81") (term "0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "polySimp_sepNegMonomial" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "applyEq" (formula "57") (term "0,1,0") (ifseqformula "64"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0"))
+ (rule "add_zero_left" (formula "57") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "82"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0"))
+ (rule "polySimp_elimOne" (formula "82") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "83"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1"))
+ (rule "polySimp_rightDist" (formula "83") (term "1"))
+ (rule "mul_literals" (formula "83") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "113") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "113") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "113") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "113") (term "1"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,1"))
+ (rule "mul_literals" (formula "113") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "42"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "35"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "110") (term "1") (ifseqformula "80"))
+ (rule "inEqSimp_homoInEq0" (formula "110") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "110") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "110") (term "1,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,1"))
+ (rule "add_literals" (formula "110") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "110") (term "0,0,1"))
+ (rule "add_literals" (formula "110") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "110") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "110") (term "0,0,1"))
+ (rule "qeq_literals" (formula "110") (term "0,1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "inEqSimp_leqRight" (formula "110"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "81") (term "1,0,0"))
+ (rule "mul_literals" (formula "81") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "81") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,0,0"))
+ (rule "add_literals" (formula "81") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "81") (term "0,0"))
+ (rule "add_literals" (formula "81") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0,0"))
+ (rule "add_zero_right" (formula "81") (term "0,0"))
+ (rule "qeq_literals" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "73"))
+ (rule "times_zero_1" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1"))
+ (rule "polySimp_elimOne" (formula "72") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "73"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "1"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "80"))
+ (rule "times_zero_1" (formula "72") (term "0,0"))
+ (rule "add_zero_left" (formula "72") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "39") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "39"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "39"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "translateJavaAddInt" (formula "114") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "114") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "114") (term "0,0,1,0"))
+ (rule "less_than_comparison_simple" (formula "114") (term "1"))
+ (builtin "One Step Simplification" (formula "114"))
+ (builtin "Use Dependency Contract" (formula "6") (term "0") (ifInst "" (formula "80") (term "0,1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "84") (term "1,1,0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,0,0"))
+ (rule "expand_inInt" (formula "84") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "84") (term "0,2,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "1,0,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "84") (term "2,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "84") (term "1,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "2,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "0,2,0,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "84") (term "1,1,0,0,0,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "112")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "113")) (ifInst "" (formula "21")) (ifInst "" (formula "114")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "28")) (ifInst "" (formula "27")) (ifInst "" (formula "113")) (ifInst "" (formula "114")))
+ (rule "polySimp_elimSub" (formula "84") (term "2,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "84") (term "1,2,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "0,2,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "84") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "84") (term "2,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,2,0,0,0,1,1,0"))
+ (rule "disjointDefinition" (formula "84") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "84") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0,0"))
+ (rule "replace_known_left" (formula "84") (term "0,0,0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0"))
+ (rule "replace_known_left" (formula "84") (term "1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0"))
+ (rule "replace_known_left" (formula "84") (term "1,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0"))
+ (rule "replace_known_left" (formula "84") (term "0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "applyEq" (formula "84") (term "0,1") (ifseqformula "6"))
+ (rule "eqSymm" (formula "84") (term "1"))
+ (rule "elementOfUnion" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "eqSymm" (formula "84") (term "1,0,0"))
+ (rule "replace_known_right" (formula "84") (term "1,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfUnion" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "eqSymm" (formula "84") (term "1,0,0"))
+ (rule "replace_known_right" (formula "84") (term "1,0,0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfUnion" (formula "84") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0,0"))
+ (rule "replace_known_right" (formula "84") (term "0,0,0,0,0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "80")))
+ (rule "true_left" (formula "84"))
+ (rule "ifElseSplit" (formula "114"))
+ (branch "if x_7 true"
+ (builtin "Block Contract (Internal)" (formula "115") (newnames "result_5,exc_5,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "27")) (ifInst "" (formula "82")))
+ (rule "true_left" (formula "85"))
+ (rule "eqSymm" (formula "115") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "115") (term "1"))
+ (rule "variableDeclaration" (formula "115") (term "1") (newnames "exc_5_1"))
+ (rule "assignment" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "emptyStatement" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "emptyStatement" (formula "115") (term "1"))
+ (rule "tryEmpty" (formula "115") (term "1"))
+ (rule "blockEmptyLabel" (formula "115") (term "1"))
+ (rule "blockEmpty" (formula "115") (term "1"))
+ (rule "methodCallEmpty" (formula "115") (term "1"))
+ (rule "emptyModality" (formula "115") (term "1"))
+ (rule "andRight" (formula "115"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "closeTrue" (formula "115"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "closeTrue" (formula "115"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "115"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "115"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "82")))
+ (rule "closeTrue" (formula "115"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "116"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "expand_inInt" (formula "85") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "translateJavaAddInt" (formula "89") (term "0"))
+ (rule "translateJavaAddInt" (formula "89") (term "1"))
+ (rule "translateJavaSubInt" (formula "89") (term "0,1,1"))
+ (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "polySimp_elimSub" (formula "88") (term "0,1,1"))
+ (rule "polySimp_addComm1" (formula "88") (term "0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,1,1"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87"))
+ (rule "elim_double_block_2" (formula "119") (term "1"))
+ (rule "ifUnfold" (formula "119") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "119") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "119") (term "1"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "replace_known_left" (formula "119") (term "0,0,1,0") (ifseqformula "85"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "ifSplit" (formula "119"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "120"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "119") (term "1"))
+ (builtin "Use Operation Contract" (formula "119") (newnames "heapBefore_copy_nonoverlapping,exc_6,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "121"))
+ (builtin "Block Contract (Internal)" (formula "121") (newnames "result_6,exc_7,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "90"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "expand_inInt" (formula "90") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "90") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "eqSymm" (formula "125") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "90") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "91") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1,0"))
+ (rule "add_zero_left" (formula "91") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "92") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "3,0,1,0"))
+ (rule "add_zero_left" (formula "92") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "0,2,1,0"))
+ (rule "add_zero_left" (formula "90") (term "0,2,1,0"))
+ (rule "sub_literals" (formula "90") (term "2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0"))
+ (rule "variableDeclarationAssign" (formula "125") (term "1"))
+ (rule "variableDeclaration" (formula "125") (term "1") (newnames "exc_7_1"))
+ (rule "assignment" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "emptyStatement" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "emptyStatement" (formula "125") (term "1"))
+ (rule "commute_and" (formula "92") (term "0,0"))
+ (rule "commute_and" (formula "91") (term "1,0,0"))
+ (rule "commute_and" (formula "91") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "91") (term "0,0"))
+ (rule "commute_and_2" (formula "91") (term "0,0,0"))
+ (rule "tryEmpty" (formula "125") (term "1"))
+ (rule "blockEmptyLabel" (formula "125") (term "1"))
+ (rule "blockEmpty" (formula "125") (term "1"))
+ (rule "methodCallEmpty" (formula "125") (term "1"))
+ (rule "emptyModality" (formula "125") (term "1"))
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "90"))
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "121"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "90"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "expand_inInt" (formula "90") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "90") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "90"))
+ (rule "wellFormedAnonEQ" (formula "122") (ifseqformula "90"))
+ (rule "wellFormedAnonEQ" (formula "122") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "122") (term "0,0"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "translateJavaSubInt" (formula "90") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "3,0,1,0"))
+ (rule "add_zero_left" (formula "92") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "91") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1,0"))
+ (rule "add_zero_left" (formula "91") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "92") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "0,2,1,0"))
+ (rule "add_zero_left" (formula "90") (term "0,2,1,0"))
+ (rule "sub_literals" (formula "90") (term "2,1,0"))
+ (rule "replace_known_left" (formula "124") (term "0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "89")))
+ (rule "closeTrue" (formula "124"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "90"))
+ (builtin "One Step Simplification" (formula "122"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "expand_inInt" (formula "90") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "90") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "91") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "1,1,1,0") (ifseqformula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "translateJavaSubInt" (formula "90") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1,0"))
+ (rule "add_zero_left" (formula "91") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "91") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "3,0,1,0"))
+ (rule "add_zero_left" (formula "92") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "92") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "0,2,1,0"))
+ (rule "add_literals" (formula "90") (term "0,2,1,0"))
+ (rule "sub_literals" (formula "90") (term "2,1,0"))
+ (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "96"))
+ (rule "commute_and" (formula "92") (term "0,0"))
+ (rule "commute_and" (formula "91") (term "0,0,0"))
+ (rule "commute_and" (formula "91") (term "1,0,0"))
+ (rule "elim_double_block_2" (formula "129") (term "1"))
+ (rule "shift_paren_and" (formula "91") (term "0,0"))
+ (rule "commute_and_2" (formula "91") (term "0,0,0"))
+ (rule "ifUnfold" (formula "129") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "129") (term "1") (newnames "x_11"))
+ (rule "inequality_comparison_simple" (formula "129") (term "1"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "replace_known_left" (formula "129") (term "0,0,1,0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "ifSplit" (formula "129"))
+ (branch "if x_11 true"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_11 false"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "129") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "129") (newnames "result_7,exc_8,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "eqSymm" (formula "130") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "130") (term "1"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_8_1"))
+ (rule "assignment" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (rule "tryEmpty" (formula "130") (term "1"))
+ (rule "blockEmptyLabel" (formula "130") (term "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (rule "methodCallEmpty" (formula "130") (term "1"))
+ (rule "emptyModality" (formula "130") (term "1"))
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "129"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "129"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "wellFormedAnonEQ" (formula "129") (ifseqformula "90"))
+ (rule "wellFormedAnonEQ" (formula "129") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "129") (term "0,0"))
+ (rule "replace_known_left" (formula "129") (term "1") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "129"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "1,1,1,0") (ifseqformula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "expand_inInt" (formula "99") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "99") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "99") (term "0,1,0,1,0"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "100"))
+ (rule "andLeft" (formula "100"))
+ (rule "eqSymm" (formula "103"))
+ (rule "replace_known_left" (formula "102") (term "0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "inEqSimp_commuteLeq" (formula "101"))
+ (rule "applyEq" (formula "102") (term "0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "102"))
+ (rule "elim_double_block_2" (formula "133") (term "1"))
+ (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "133") (term "1"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "133"))
+ (builtin "Use Dependency Contract" (formula "66") (term "0") (ifInst "" (formula "103") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "131")) (ifInst "" (formula "82")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "103") (term "0,0,0,0"))
+ (rule "expand_inInt" (formula "103") (term "1,0,0,0"))
+ (rule "replace_int_MAX" (formula "103") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "103") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "103") (term "0,1,0,1,1,0"))
+ (rule "eqSymm" (formula "103") (term "1"))
+ (rule "translateJavaMulInt" (formula "103") (term "0,0,1,1,1,1,0"))
+ (rule "translateJavaAddInt" (formula "103") (term "0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "103") (term "0,0,0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "13")) (ifInst "" (formula "15")))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "103") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "103") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "103") (term "0,0,0"))
+ (rule "replace_known_left" (formula "103") (term "0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "inEqSimp_commuteLeq" (formula "103") (term "0,0"))
+ (rule "replace_known_left" (formula "103") (term "0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "applyEq" (formula "103") (term "1,1") (ifseqformula "66"))
+ (rule "elementOfUnion" (formula "103") (term "0,0"))
+ (rule "elementOfSingleton" (formula "103") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "elementOfSingleton" (formula "103") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "ifSplit" (formula "133"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "133") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "133") (newnames "result_8,exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "134") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "134") (term "1"))
+ (rule "variableDeclaration" (formula "134") (term "1") (newnames "exc_9_1"))
+ (rule "assignment" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "emptyStatement" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "emptyStatement" (formula "134") (term "1"))
+ (rule "tryEmpty" (formula "134") (term "1"))
+ (rule "blockEmptyLabel" (formula "134") (term "1"))
+ (rule "blockEmpty" (formula "134") (term "1"))
+ (rule "methodCallEmpty" (formula "134") (term "1"))
+ (rule "emptyModality" (formula "134") (term "1"))
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "closeTrue" (formula "134"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "closeTrue" (formula "134"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "133"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "133"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "wellFormedAnonEQ" (formula "133") (ifseqformula "90"))
+ (rule "wellFormedAnonEQ" (formula "133") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "133") (term "0,0"))
+ (rule "replace_known_left" (formula "133") (term "1") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "133"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "103"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "1,1,1,0") (ifseqformula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "expand_inInt" (formula "103") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "103") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "103") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "104"))
+ (rule "andLeft" (formula "104"))
+ (rule "replace_known_left" (formula "106") (term "0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "true_left" (formula "106"))
+ (rule "inEqSimp_commuteLeq" (formula "105"))
+ (rule "elim_double_block_2" (formula "137") (term "1"))
+ (rule "ifUnfold" (formula "137") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "137") (term "1") (newnames "x_13"))
+ (rule "inequality_comparison_simple" (formula "137") (term "1"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "replace_known_left" (formula "137") (term "0,0,1,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "ifSplit" (formula "137"))
+ (branch "if x_13 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_13 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "137") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "137") (newnames "result_9,exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "107") (ifInst "" (formula "27")))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "eqSymm" (formula "138") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "138") (term "1"))
+ (rule "variableDeclaration" (formula "138") (term "1") (newnames "exc_10_1"))
+ (rule "assignment" (formula "138") (term "1"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "emptyStatement" (formula "138") (term "1"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "emptyStatement" (formula "138") (term "1"))
+ (rule "tryEmpty" (formula "138") (term "1"))
+ (rule "blockEmptyLabel" (formula "138") (term "1"))
+ (rule "blockEmpty" (formula "138") (term "1"))
+ (rule "methodCallEmpty" (formula "138") (term "1"))
+ (rule "emptyModality" (formula "138") (term "1"))
+ (rule "andRight" (formula "138"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "closeTrue" (formula "138"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "closeTrue" (formula "138"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "137"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "137"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "wellFormedAnonEQ" (formula "137") (ifseqformula "90"))
+ (rule "wellFormedAnonEQ" (formula "137") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "137") (term "0,0"))
+ (rule "replace_known_left" (formula "137") (term "1") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "137"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "107"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "107") (term "1,1,1,0") (ifseqformula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "107") (term "0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "expand_inInt" (formula "107") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "107") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "107") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "107"))
+ (rule "andLeft" (formula "107"))
+ (rule "andLeft" (formula "108"))
+ (rule "andLeft" (formula "108"))
+ (rule "replace_known_left" (formula "110") (term "0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "true_left" (formula "110"))
+ (rule "inEqSimp_commuteLeq" (formula "109"))
+ (rule "elim_double_block_2" (formula "141") (term "1"))
+ (rule "elim_double_block_9" (formula "141") (term "1"))
+ (rule "ifUnfold" (formula "141") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_14"))
+ (rule "inequality_comparison_simple" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "replace_known_left" (formula "141") (term "0,0,1,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "ifSplit" (formula "141"))
+ (branch "if x_14 true"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_14 false"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "141") (newnames "result_10,exc_11,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "27")))
+ (rule "eqSymm" (formula "142") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "142") (term "1"))
+ (rule "variableDeclaration" (formula "142") (term "1") (newnames "exc_11_1"))
+ (rule "assignment" (formula "142") (term "1"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "emptyStatement" (formula "142") (term "1"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "emptyStatement" (formula "142") (term "1"))
+ (rule "tryEmpty" (formula "142") (term "1"))
+ (rule "blockEmptyLabel" (formula "142") (term "1"))
+ (rule "blockEmpty" (formula "142") (term "1"))
+ (rule "methodCallEmpty" (formula "142") (term "1"))
+ (rule "emptyModality" (formula "142") (term "1"))
+ (rule "andRight" (formula "142"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "closeTrue" (formula "142"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "closeTrue" (formula "142"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "27")))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "wellFormedAnonEQ" (formula "141") (ifseqformula "90"))
+ (rule "wellFormedAnonEQ" (formula "141") (term "0") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "141") (term "0,0"))
+ (rule "replace_known_left" (formula "141") (term "1") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "142"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (term "1,1,1,0") (ifseqformula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (term "0,1,1,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "expand_inInt" (formula "111") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "111") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "111") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "111"))
+ (rule "andLeft" (formula "111"))
+ (rule "andLeft" (formula "112"))
+ (rule "andLeft" (formula "112"))
+ (rule "replace_known_left" (formula "114") (term "0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "true_left" (formula "114"))
+ (rule "inEqSimp_commuteLeq" (formula "113"))
+ (rule "elim_double_block_2" (formula "145") (term "1"))
+ (rule "ifUnfold" (formula "145") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "145") (term "1") (newnames "x_15"))
+ (rule "inequality_comparison_simple" (formula "145") (term "1"))
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "replace_known_left" (formula "145") (term "0,0,1,0") (ifseqformula "111"))
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "ifSplit" (formula "145"))
+ (branch "if x_15 true"
+ (builtin "One Step Simplification" (formula "146"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_15 false"
+ (builtin "One Step Simplification" (formula "146"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "145") (term "1"))
+ (rule "emptyStatement" (formula "145") (term "1"))
+ (rule "tryEmpty" (formula "145") (term "1"))
+ (rule "blockEmptyLabel" (formula "145") (term "1"))
+ (rule "blockEmpty" (formula "145") (term "1"))
+ (rule "methodCallEmpty" (formula "145") (term "1"))
+ (rule "emptyModality" (formula "145") (term "1"))
+ (rule "andRight" (formula "145"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "145"))
+ (rule "closeTrue" (formula "145"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "145"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "97")))
+ (rule "closeTrue" (formula "145"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "98")))
+ (rule "closeTrue" (formula "145"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "121"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "1,0") (ifseqformula "90"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "notLeft" (formula "91"))
+ (rule "close" (formula "93") (ifseqformula "92"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "115")) (ifInst "" (formula "113")) (ifInst "" (formula "82")) (ifInst "" (formula "115")) (ifInst "" (formula "113")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "1,0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "26")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "24")))
+ (rule "expand_inInt" (formula "119") (term "1"))
+ (rule "expand_inInt" (formula "119") (term "0"))
+ (rule "replace_int_MAX" (formula "119") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "119") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "119") (term "1,0,0"))
+ (rule "replace_int_MIN" (formula "119") (term "0,1,0"))
+ (rule "leq_literals" (formula "119") (term "0,1"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "leq_literals" (formula "119") (term "1,0"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "leq_literals" (formula "119") (term "0"))
+ (builtin "One Step Simplification" (formula "119"))
+ (rule "leq_literals" (formula "119"))
+ (rule "closeTrue" (formula "119"))
+ )
+ )
+ )
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "115") (term "1"))
+ (builtin "Use Operation Contract" (formula "115") (newnames "heapBefore_copy_nonoverlapping,exc_5,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "85"))
+ (builtin "One Step Simplification" (formula "117"))
+ (builtin "Block Contract (Internal)" (formula "117") (newnames "result_5,exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "26")))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "expand_inInt" (formula "85") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "85") (term "1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "eqSymm" (formula "121") (term "0,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "85") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "86") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "87") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,1,0"))
+ (rule "polySimp_elimSub" (formula "85") (term "2,1,0"))
+ (rule "mul_literals" (formula "85") (term "1,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "85") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "85") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "1,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "121") (term "1"))
+ (rule "variableDeclaration" (formula "121") (term "1") (newnames "exc_6_1"))
+ (rule "assignment" (formula "121") (term "1"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "emptyStatement" (formula "121") (term "1"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "emptyStatement" (formula "121") (term "1"))
+ (rule "commute_and" (formula "87") (term "0,0"))
+ (rule "commute_and" (formula "86") (term "0,0,0"))
+ (rule "commute_and" (formula "86") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "86") (term "0,0"))
+ (rule "commute_and_2" (formula "86") (term "0,0,0"))
+ (rule "tryEmpty" (formula "121") (term "1"))
+ (rule "blockEmptyLabel" (formula "121") (term "1"))
+ (rule "blockEmpty" (formula "121") (term "1"))
+ (rule "methodCallEmpty" (formula "121") (term "1"))
+ (rule "emptyModality" (formula "121") (term "1"))
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "closeTrue" (formula "121"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "closeTrue" (formula "121"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "117"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "117"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "117"))
+ (rule "expand_inInt" (formula "85") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "85") (term "0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,0,0,1,1,0,1"))
+ (rule "andLeft" (formula "85"))
+ (rule "wellFormedAnonEQ" (formula "118") (ifseqformula "85"))
+ (rule "wellFormedAnonEQ" (formula "118") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "118") (term "0,0"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "translateJavaSubInt" (formula "85") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,1,1,0"))
+ (rule "add_zero_left" (formula "87") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "86") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "120") (term "0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "84")))
+ (rule "closeTrue" (formula "120"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "118"))
+ (rule "expand_inInt" (formula "85") (term "0,0,1,1,0,1"))
+ (rule "expand_inInt" (formula "85") (term "1,0,0,0,1,0,1"))
+ (rule "expand_inInt" (formula "86") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,0,0,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,0,0,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0,0,1,0,1"))
+ (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0,0,1,0,1"))
+ (rule "replace_int_MIN" (formula "86") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "86") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,1,1,0") (ifseqformula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "87"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "89"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "90"))
+ (rule "andLeft" (formula "90"))
+ (rule "translateJavaSubInt" (formula "85") (term "2,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,1,1,0"))
+ (rule "add_literals" (formula "87") (term "3,1,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "87") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0"))
+ (rule "add_zero_left" (formula "86") (term "0,2,1,1,0"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,2,1,0"))
+ (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "true_left" (formula "92"))
+ (rule "polySimp_elimSub" (formula "85") (term "2,1,0"))
+ (rule "mul_literals" (formula "85") (term "1,2,1,0"))
+ (rule "polySimp_addLiterals" (formula "85") (term "2,1,0"))
+ (rule "polySimp_addComm1" (formula "87") (term "3,0,1,0"))
+ (rule "polySimp_addComm1" (formula "85") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "87") (term "0,3,0,1,0"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,2,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "86") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "91"))
+ (rule "commute_and" (formula "87") (term "0,0"))
+ (rule "commute_and" (formula "86") (term "0,0,0"))
+ (rule "commute_and" (formula "86") (term "1,0,0"))
+ (rule "elim_double_block_2" (formula "125") (term "1"))
+ (rule "shift_paren_and" (formula "86") (term "0,0"))
+ (rule "commute_and_2" (formula "86") (term "0,0,0"))
+ (rule "ifUnfold" (formula "125") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "125") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "125") (term "1"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "replace_known_left" (formula "125") (term "0,0,1,0") (ifseqformula "89"))
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "ifSplit" (formula "125"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "126"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "126"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "125") (term "1"))
+ (rule "emptyStatement" (formula "125") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "125") (newnames "result_6,exc_7,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "26")))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "eqSymm" (formula "126") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "126") (term "1"))
+ (rule "variableDeclaration" (formula "126") (term "1") (newnames "exc_7_1"))
+ (rule "assignment" (formula "126") (term "1"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "emptyStatement" (formula "126") (term "1"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "emptyStatement" (formula "126") (term "1"))
+ (rule "tryEmpty" (formula "126") (term "1"))
+ (rule "blockEmptyLabel" (formula "126") (term "1"))
+ (rule "blockEmpty" (formula "126") (term "1"))
+ (rule "methodCallEmpty" (formula "126") (term "1"))
+ (rule "emptyModality" (formula "126") (term "1"))
+ (rule "andRight" (formula "126"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "closeTrue" (formula "126"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "closeTrue" (formula "126"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "125"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "125"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "125"))
+ (rule "wellFormedAnonEQ" (formula "125") (ifseqformula "85"))
+ (rule "wellFormedAnonEQ" (formula "125") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "125") (term "0,0"))
+ (rule "replace_known_left" (formula "125") (term "1") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")))
+ (rule "closeTrue" (formula "125"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "94"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,1,1,0") (ifseqformula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "expand_inInt" (formula "94") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "94") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "94") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "94"))
+ (rule "andLeft" (formula "95"))
+ (rule "andLeft" (formula "95"))
+ (rule "eqSymm" (formula "98"))
+ (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "97"))
+ (rule "true_left" (formula "97"))
+ (rule "inEqSimp_commuteLeq" (formula "96"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "97"))
+ (rule "applyEq" (formula "97") (term "1") (ifseqformula "61"))
+ (rule "elim_double_block_2" (formula "129") (term "1"))
+ (rule "ifUnfold" (formula "129") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "129") (term "1") (newnames "x_11"))
+ (rule "inequality_comparison_simple" (formula "129") (term "1"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "replace_known_left" (formula "129") (term "0,0,1,0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "ifSplit" (formula "129"))
+ (branch "if x_11 true"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_11 false"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "129") (term "1"))
+ (rule "emptyStatement" (formula "129") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "129") (newnames "result_7,exc_8,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "130"))
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "26")))
+ (rule "eqSymm" (formula "130") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "130") (term "1"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_8_1"))
+ (rule "assignment" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "emptyStatement" (formula "130") (term "1"))
+ (rule "tryEmpty" (formula "130") (term "1"))
+ (rule "blockEmptyLabel" (formula "130") (term "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (rule "methodCallEmpty" (formula "130") (term "1"))
+ (rule "emptyModality" (formula "130") (term "1"))
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "129"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "129"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "129"))
+ (rule "wellFormedAnonEQ" (formula "129") (ifseqformula "85"))
+ (rule "wellFormedAnonEQ" (formula "129") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "129") (term "0,0"))
+ (rule "replace_known_left" (formula "129") (term "1,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "84")))
+ (rule "closeTrue" (formula "129"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "98"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1,1,1,0") (ifseqformula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "expand_inInt" (formula "98") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "98") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "98") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "98"))
+ (rule "andLeft" (formula "99"))
+ (rule "andLeft" (formula "99"))
+ (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "101"))
+ (rule "true_left" (formula "101"))
+ (rule "inEqSimp_commuteLeq" (formula "100"))
+ (rule "elim_double_block_2" (formula "133") (term "1"))
+ (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_12"))
+ (rule "inequality_comparison_simple" (formula "133") (term "1"))
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "133"))
+ (builtin "Use Dependency Contract" (formula "65") (term "0") (ifInst "" (formula "103") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "131")) (ifInst "" (formula "81")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "102") (term "0,0,0,0"))
+ (rule "expand_inInt" (formula "102") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "102") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "102") (term "1,0,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "102") (term "0,1,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "102") (term "0,1,0,1,1,0"))
+ (rule "eqSymm" (formula "102") (term "1"))
+ (rule "translateJavaMulInt" (formula "102") (term "0,0,1,1,1,1,0"))
+ (rule "replace_known_left" (formula "102") (term "0,0,0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "12")) (ifInst "" (formula "14")))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "102") (term "0,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "102") (term "0,1,1,1,1,0"))
+ (rule "disjointDefinition" (formula "102") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "102") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0"))
+ (rule "replace_known_left" (formula "102") (term "0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0"))
+ (rule "replace_known_left" (formula "102") (term "0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "applyEq" (formula "102") (term "1,1") (ifseqformula "65"))
+ (rule "elementOfUnion" (formula "102") (term "0,0"))
+ (rule "elementOfSingleton" (formula "102") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "true_left" (formula "102"))
+ (rule "ifSplit" (formula "133"))
+ (branch "if x_12 true"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_12 false"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "133") (term "1"))
+ (rule "emptyStatement" (formula "133") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "133") (newnames "result_8,exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "134"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "26")))
+ (rule "eqSymm" (formula "134") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "134") (term "1"))
+ (rule "variableDeclaration" (formula "134") (term "1") (newnames "exc_9_1"))
+ (rule "assignment" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "emptyStatement" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "emptyStatement" (formula "134") (term "1"))
+ (rule "tryEmpty" (formula "134") (term "1"))
+ (rule "blockEmptyLabel" (formula "134") (term "1"))
+ (rule "blockEmpty" (formula "134") (term "1"))
+ (rule "methodCallEmpty" (formula "134") (term "1"))
+ (rule "emptyModality" (formula "134") (term "1"))
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "closeTrue" (formula "134"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "closeTrue" (formula "134"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "133"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "133"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "133"))
+ (rule "wellFormedAnonEQ" (formula "133") (ifseqformula "85"))
+ (rule "wellFormedAnonEQ" (formula "133") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "133") (term "0,0"))
+ (rule "replace_known_left" (formula "133") (term "1,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "84")))
+ (rule "closeTrue" (formula "133"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "102"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "102") (term "1,1,1,0") (ifseqformula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "102") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "expand_inInt" (formula "102") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "102") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "102") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "102"))
+ (rule "andLeft" (formula "102"))
+ (rule "andLeft" (formula "103"))
+ (rule "andLeft" (formula "103"))
+ (rule "translateJavaAddInt" (formula "106") (term "5,0"))
+ (rule "translateJavaAddInt" (formula "106") (term "3,0"))
+ (rule "replace_known_left" (formula "105") (term "0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "105"))
+ (rule "true_left" (formula "105"))
+ (rule "polySimp_addComm1" (formula "105") (term "5,0"))
+ (rule "polySimp_addComm0" (formula "105") (term "0,5,0"))
+ (rule "inEqSimp_commuteLeq" (formula "104"))
+ (rule "elim_double_block_2" (formula "137") (term "1"))
+ (rule "ifUnfold" (formula "137") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "137") (term "1") (newnames "x_13"))
+ (rule "inequality_comparison_simple" (formula "137") (term "1"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "replace_known_left" (formula "137") (term "0,0,1,0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "ifSplit" (formula "137"))
+ (branch "if x_13 true"
+ (builtin "One Step Simplification" (formula "138"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_13 false"
+ (builtin "One Step Simplification" (formula "138"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "137") (term "1"))
+ (rule "emptyStatement" (formula "137") (term "1"))
+ (rule "blockEmpty" (formula "137") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "137") (newnames "result_9,exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "138"))
+ (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "26")))
+ (rule "eqSymm" (formula "138") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "138") (term "1"))
+ (rule "variableDeclaration" (formula "138") (term "1") (newnames "exc_10_1"))
+ (rule "assignment" (formula "138") (term "1"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "emptyStatement" (formula "138") (term "1"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "emptyStatement" (formula "138") (term "1"))
+ (rule "tryEmpty" (formula "138") (term "1"))
+ (rule "blockEmptyLabel" (formula "138") (term "1"))
+ (rule "blockEmpty" (formula "138") (term "1"))
+ (rule "methodCallEmpty" (formula "138") (term "1"))
+ (rule "emptyModality" (formula "138") (term "1"))
+ (rule "andRight" (formula "138"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "closeTrue" (formula "138"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "closeTrue" (formula "138"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "137"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "137"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "137"))
+ (rule "wellFormedAnonEQ" (formula "137") (ifseqformula "85"))
+ (rule "wellFormedAnonEQ" (formula "137") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "137") (term "0,0"))
+ (rule "replace_known_left" (formula "137") (term "1,0") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "84")))
+ (rule "closeTrue" (formula "137"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "106"))
+ (builtin "One Step Simplification" (formula "138"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,1,1,0") (ifseqformula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "106"))
+ (rule "expand_inInt" (formula "106") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "106") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "106") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "106"))
+ (rule "andLeft" (formula "107"))
+ (rule "andLeft" (formula "107"))
+ (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "true_left" (formula "109"))
+ (rule "inEqSimp_commuteLeq" (formula "108"))
+ (rule "elim_double_block_2" (formula "141") (term "1"))
+ (rule "ifUnfold" (formula "141") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_14"))
+ (rule "inequality_comparison_simple" (formula "141") (term "1"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "replace_known_left" (formula "141") (term "0,0,1,0") (ifseqformula "106"))
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "ifSplit" (formula "141"))
+ (branch "if x_14 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_14 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "emptyStatement" (formula "141") (term "1"))
+ (rule "tryEmpty" (formula "141") (term "1"))
+ (rule "blockEmptyLabel" (formula "141") (term "1"))
+ (rule "blockEmpty" (formula "141") (term "1"))
+ (rule "methodCallEmpty" (formula "141") (term "1"))
+ (rule "emptyModality" (formula "141") (term "1"))
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141"))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "141"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "92")))
+ (rule "closeTrue" (formula "141"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "93")))
+ (rule "closeTrue" (formula "141"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "117"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "andLeft" (formula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0") (ifseqformula "85"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "andLeft" (formula "86"))
+ (rule "notLeft" (formula "86"))
+ (rule "close" (formula "88") (ifseqformula "87"))
+ )
+ (branch "Pre (copy_nonoverlapping)"
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "111")) (ifInst "" (formula "114")) (ifInst "" (formula "81")) (ifInst "" (formula "111")) (ifInst "" (formula "114")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "1,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "16")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "23")))
+ (rule "expand_inInt" (formula "115") (term "1,0"))
+ (rule "expand_inInt" (formula "115") (term "0,0"))
+ (rule "expand_inInt" (formula "115") (term "1"))
+ (rule "replace_int_MIN" (formula "115") (term "0,1,1,0"))
+ (rule "replace_int_MAX" (formula "115") (term "1,0,1,0"))
+ (rule "replace_int_MAX" (formula "115") (term "1,0,0,0"))
+ (rule "replace_int_MIN" (formula "115") (term "0,1,0,0"))
+ (rule "replace_int_MAX" (formula "115") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "115") (term "0,1,1"))
+ (rule "leq_literals" (formula "115") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "82")) (ifInst "" (formula "83")))
+ (rule "leq_literals" (formula "115") (term "0"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "leq_literals" (formula "115") (term "1"))
+ (builtin "One Step Simplification" (formula "115"))
+ (rule "leq_literals" (formula "115"))
+ (rule "closeTrue" (formula "115"))
+ )
+ )
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "111"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "wellFormedAnonEQ" (formula "111") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "111") (term "0"))
+ (rule "replace_known_left" (formula "111") (term "1") (ifseqformula "57"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "13")) (ifInst "" (formula "12")))
+ (rule "closeTrue" (formula "111"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (rule "andRight" (formula "111"))
+ (branch "Case 1"
+ (rule "orRight" (formula "111"))
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "110")))
+ (rule "false_right" (formula "111"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "16")))
+ (rule "closeTrue" (formula "111"))
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "111"))
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "105")))
+ (rule "false_right" (formula "111"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "25")))
+ (rule "closeTrue" (formula "111"))
+ )
+ )
+ (branch "Case 2"
+ (rule "orRight" (formula "111"))
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "107")))
+ (rule "false_right" (formula "111"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "23")))
+ (rule "closeTrue" (formula "111"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "expand_inInt" (formula "111"))
+ (rule "replace_int_MIN" (formula "111") (term "0,1"))
+ (rule "replace_int_MAX" (formula "111") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "74"))
+ (rule "polySimp_addComm1" (formula "74") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "74") (term "0,0"))
+ (rule "add_literals" (formula "74") (term "1,0,0"))
+ (rule "times_zero_1" (formula "74") (term "0,0"))
+ (rule "add_zero_left" (formula "74") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "75") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "75") (term "0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "81") (term "0,1,0,0"))
+ (rule "add_literals" (formula "81") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "81") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "81") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "56"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "111") (term "1"))
+ (rule "mul_literals" (formula "111") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "111") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "111") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "111") (term "0"))
+ (rule "polySimp_mulComm0" (formula "111") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "111") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "111") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "111") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "81") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "81") (term "0,0,0"))
+ (rule "add_literals" (formula "81") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "81") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "81") (term "0,0,0"))
+ (rule "qeq_literals" (formula "81") (term "0,0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "true_left" (formula "81"))
+ (rule "apply_eq_boolean" (formula "67") (term "1") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "80"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_geqRight" (formula "80"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0"))
+ (rule "applyEq" (formula "57") (term "0,1,0") (ifseqformula "64"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm1" (formula "57") (term "0,0"))
+ (rule "add_literals" (formula "57") (term "0,0,0"))
+ (rule "add_zero_left" (formula "57") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "75"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "110") (term "1"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,1"))
+ (rule "mul_literals" (formula "110") (term "0,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "110") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39"))
+ (rule "leq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "true_left" (formula "38"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "41"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "38"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "38"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "72"))
+ (rule "times_zero_1" (formula "71") (term "0,0"))
+ (rule "add_zero_left" (formula "71") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1"))
+ (rule "polySimp_elimOne" (formula "71") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "39"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "34"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "34"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0"))
+ (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_and_subsumption3" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0,0,0,0"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "64") (term "0"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "11")) (ifInst "" (formula "105")) (ifInst "" (formula "11")) (ifInst "" (formula "19")))
+ (rule "wellFormedAnon" (formula "64") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "64") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "64") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "64") (term "0,1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "13")))
+ (rule "polySimp_addComm0" (formula "64") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "64") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "64") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0"))
+ (rule "replace_known_left" (formula "64") (term "0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,1"))
+ (rule "applyEq" (formula "64") (term "0,1,0,1") (ifseqformula "49"))
+ (rule "inEqSimp_commuteGeq" (formula "64") (term "1,0,1"))
+ (rule "applyEq" (formula "64") (term "0,1,0,0,0,1") (ifseqformula "65"))
+ (rule "applyEq" (formula "64") (term "0,1,0,0,1") (ifseqformula "65"))
+ (rule "applyEq" (formula "64") (term "0,0,0,1,1") (ifseqformula "65"))
+ (rule "replace_known_left" (formula "64") (term "0,1,1") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "0,0"))
+ (rule "replace_known_left" (formula "64") (term "0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "66"))
+ (rule "mul_literals" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "1"))
+ (rule "polySimp_elimOne" (formula "65") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "79"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "69"))
+ (rule "mul_literals" (formula "78") (term "0,0"))
+ (rule "add_zero_left" (formula "78") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "69"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "67"))
+ (rule "mul_literals" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "64"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1"))
+ (rule "polySimp_elimOne" (formula "64") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65"))
+ (rule "times_zero_1" (formula "64") (term "0,0"))
+ (rule "add_zero_left" (formula "64") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "notLeft" (formula "12"))
+ (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "88"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "Definition_axiom_for_disjointBucketsLemma_in_de_wiesler_BucketPointers" (formula "49") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "expand_inInt" (formula "49") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "59") (term "0"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "11")) (ifInst "" (formula "116")) (ifInst "" (formula "11")) (ifInst "" (formula "71")) (ifInst "" (formula "18")))
+ (rule "true_left" (formula "59"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23"))
+ (rule "notLeft" (formula "23"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "translateJavaMod" (formula "76") (term "0"))
+ (rule "jmod_axiom" (formula "76") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "76"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0"))
+ (rule "newSym_eq" (formula "76") (inst "newSymDef=mul(int::final(result_1,
+ de.wiesler.Increment::$position),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "76") (term "1,1"))
+ (rule "add_zero_right" (formula "76") (term "1"))
+ (rule "applyEq" (formula "77") (term "0,0") (ifseqformula "76"))
+ (rule "eqSymm" (formula "77"))
+ (rule "applyEq" (formula "66") (term "0") (ifseqformula "77"))
+ (rule "inEqSimp_commuteGeq" (formula "66"))
+ (rule "applyEq" (formula "86") (term "1,6,0") (ifseqformula "77"))
+ (rule "polySimp_addComm0" (formula "86") (term "6,0"))
+ (rule "applyEq" (formula "81") (term "0") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq0" (formula "81"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "applyEq" (formula "119") (term "0,0") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq0" (formula "119") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "119") (term "0,0"))
+ (rule "applyEq" (formula "80") (term "0") (ifseqformula "77"))
+ (rule "applyEq" (formula "85") (term "1,7,0") (ifseqformula "77"))
+ (rule "polySimp_addComm1" (formula "85") (term "7,0"))
+ (rule "applyEq" (formula "67") (term "0") (ifseqformula "77"))
+ (rule "inEqSimp_commuteLeq" (formula "67"))
+ (rule "applyEq" (formula "119") (term "0,1") (ifseqformula "77"))
+ (rule "inEqSimp_homoInEq1" (formula "119") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "119") (term "0,1"))
+ (rule "applyEq" (formula "85") (term "1,6,0") (ifseqformula "77"))
+ (rule "polySimp_addComm0" (formula "85") (term "6,0"))
+ (rule "applyEq" (formula "86") (term "1,7,0") (ifseqformula "77"))
+ (rule "polySimp_addComm1" (formula "86") (term "7,0"))
+ (rule "applyEq" (formula "76") (term "0,0") (ifseqformula "77"))
+ (rule "applyEq" (formula "70") (term "1") (ifseqformula "77"))
+ (rule "applyEq" (formula "57") (term "1,1") (ifseqformula "77"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "81"))
+ (rule "polySimp_mulComm0" (formula "81") (term "1"))
+ (rule "polySimp_rightDist" (formula "81") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "81") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "119") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "119") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "119") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "119") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "119") (term "0,1"))
+ (rule "elimGcdGeq_antec" (formula "80") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "leq_literals" (formula "80") (term "0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0"))
+ (rule "add_zero_right" (formula "80") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "80") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0"))
+ (rule "add_literals" (formula "80") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0"))
+ (rule "add_literals" (formula "80") (term "0,0"))
+ (rule "leq_literals" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "35"))
+ (rule "polySimp_rightDist" (formula "81") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "81") (term "0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "81"))
+ (rule "polySimp_mulLiterals" (formula "81") (term "0"))
+ (rule "polySimp_elimOne" (formula "81") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "120") (term "0") (ifseqformula "81"))
+ (rule "inEqSimp_homoInEq0" (formula "120") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "120") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "120") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "120") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "120") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "120") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "120") (term "0,0,0,0"))
+ (rule "add_literals" (formula "120") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "120") (term "0,0,0"))
+ (rule "add_literals" (formula "120") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "120") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "120") (term "0,0,0"))
+ (rule "qeq_literals" (formula "120") (term "0,0"))
+ (builtin "One Step Simplification" (formula "120"))
+ (rule "inEqSimp_geqRight" (formula "120"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "82") (term "0,0,0"))
+ (rule "add_literals" (formula "82") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "82") (term "0,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0"))
+ (rule "add_literals" (formula "82") (term "0,0"))
+ (rule "qeq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "38"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "82") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0"))
+ (rule "polySimp_addComm1" (formula "82") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "82") (term "0"))
+ (rule "add_literals" (formula "82") (term "1,1,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0"))
+ (rule "polySimp_addLiterals" (formula "82") (term "0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "82"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "82") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "82") (term "0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "neg_literal" (formula "82") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "82") (term "0,0,0,0"))
+ (rule "add_zero_right" (formula "82") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "82") (term "0,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0"))
+ (rule "add_literals" (formula "82") (term "0,0"))
+ (rule "qeq_literals" (formula "82") (term "0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "67"))
+ (rule "times_zero_1" (formula "63") (term "0,0"))
+ (rule "add_zero_left" (formula "63") (term "0"))
+ (rule "inEqSimp_subsumption6" (formula "63") (ifseqformula "82"))
+ (rule "greater_literals" (formula "63") (term "0,0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "times_zero_1" (formula "63") (term "1,0"))
+ (rule "leq_literals" (formula "63") (term "0"))
+ (builtin "One Step Simplification" (formula "63"))
+ (rule "true_left" (formula "63"))
+ (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "69"))
+ (rule "polySimp_mulAssoc" (formula "68") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "68"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "31") (term "0,0"))
+ (rule "add_zero_left" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "31") (ifseqformula "83"))
+ (rule "times_zero_1" (formula "31") (term "1,1,0"))
+ (rule "greater_literals" (formula "31") (term "0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "qeq_literals" (formula "31") (term "0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "closeFalse" (formula "31"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "expand_inInt" (formula "111"))
+ (rule "replace_int_MIN" (formula "111") (term "0,1"))
+ (rule "replace_int_MAX" (formula "111") (term "1,0"))
+ (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "polySimp_homoEq" (formula "63"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "63") (term "0"))
+ (rule "polySimp_addComm0" (formula "63") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "111"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "66") (term "1"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "75"))
+ (rule "polySimp_addComm1" (formula "75") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "75") (term "0,0"))
+ (rule "add_literals" (formula "75") (term "1,0,0"))
+ (rule "times_zero_1" (formula "75") (term "0,0"))
+ (rule "add_zero_left" (formula "75") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "82") (term "0,1,0,0"))
+ (rule "add_literals" (formula "82") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "82") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "82") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "inEqSimp_homoInEq0" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "82") (term "0,0,0"))
+ (rule "add_literals" (formula "82") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "82") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "82") (term "0,0,0"))
+ (rule "qeq_literals" (formula "82") (term "0,0"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "true_left" (formula "82"))
+ (rule "apply_eq_boolean" (formula "68") (term "1") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "notLeft" (formula "68"))
+ (rule "replace_known_right" (formula "66") (term "0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "inEqSimp_geqRight" (formula "81"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "65"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0"))
+ (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "45"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "43"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "76"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0"))
+ (rule "polySimp_elimOne" (formula "76") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "58"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "2"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "closeFalse" (formula "20"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "112"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "82"))
+ (rule "expand_inInt" (formula "82") (term "0,1,0"))
+ (rule "expand_inInt" (formula "82") (term "0,0,0,1,1"))
+ (rule "expand_inInt" (formula "82") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,0,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,0,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0,1"))
+ (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0,1"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "85"))
+ (rule "andLeft" (formula "83"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "88"))
+ (rule "andLeft" (formula "84"))
+ (rule "andLeft" (formula "82"))
+ (rule "andLeft" (formula "83"))
+ (rule "translateJavaAddInt" (formula "122") (term "2,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "89") (term "0,0,1,2,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "89") (term "1,1,2,0,1,0,0,1,0"))
+ (rule "sub_literals" (formula "89") (term "1,1,2,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "2,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "0,0,1,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "92") (term "1,1,2,0,1,0"))
+ (rule "sub_literals" (formula "92") (term "1,1,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "84") (term "1,1,2,0,1,0"))
+ (rule "sub_literals" (formula "84") (term "1,1,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "0,0,1,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "83") (term "1,1,2,0,1,0"))
+ (rule "sub_literals" (formula "83") (term "1,1,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "83") (term "0,0,1,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "122") (term "0,0,1,2,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "122") (term "1,1,2,0,1,0,1,0"))
+ (rule "sub_literals" (formula "122") (term "1,1,2,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "89") (term "2,0,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "90") (term "1,1,2,0,1,0,0,1,0"))
+ (rule "sub_literals" (formula "90") (term "1,1,2,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "90") (term "0,0,1,2,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,0,1,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "91") (term "1,1,2,0,1,0"))
+ (rule "sub_literals" (formula "91") (term "1,1,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "84") (term "2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "83") (term "2,0,1,0"))
+ (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "88"))
+ (rule "true_left" (formula "88"))
+ (rule "polySimp_addComm0" (formula "89") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "121") (term "0,0,1,2,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "88") (term "0,0,1,2,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "89") (term "0,0,1,2,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "90") (term "0,0,1,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "91") (term "0,0,1,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "84") (term "0,0,1,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0,0,1,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "121") (term "0,0,0,1,2,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "88") (term "0,0,0,1,2,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "89") (term "0,0,0,1,2,0,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "90") (term "0,0,0,1,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "91") (term "0,0,0,1,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "84") (term "0,0,0,1,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,0,0,1,2,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "89") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "87"))
+ (rule "applyEq" (formula "88") (term "1,1,0,0,0") (ifseqformula "31"))
+ (rule "apply_eq_boolean" (formula "67") (term "1") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "notLeft" (formula "67"))
+ (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "commuteUnion" (formula "121") (term "1,0,1,0"))
+ (rule "commuteUnion" (formula "87") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "88") (term "1,0,0,1,0"))
+ (rule "commuteUnion" (formula "89") (term "1,0"))
+ (rule "commuteUnion" (formula "90") (term "1,0"))
+ (rule "commuteUnion" (formula "83") (term "1,0"))
+ (rule "commuteUnion" (formula "82") (term "1,0"))
+ (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "121") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "91") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "91") (term "1,0,0,0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "120")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "28")))
+ (rule "true_left" (formula "91"))
+ (rule "commute_and" (formula "88") (term "0,0"))
+ (builtin "Use Dependency Contract" (formula "10") (ifInst "" (formula "121") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "91") (term "1,1,0,0,0"))
+ (rule "replace_known_left" (formula "91") (term "1,1") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "119")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "27")) (ifInst "" (formula "10")))
+ (rule "true_left" (formula "91"))
+ (rule "commute_and" (formula "87") (term "1,0,0"))
+ (rule "commute_and" (formula "87") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "87") (term "0,0"))
+ (rule "commute_and_2" (formula "87") (term "0,0,0"))
+ (rule "ifUnfold" (formula "121") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "121") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "121") (term "1"))
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "replace_known_left" (formula "121") (term "0,0,1,0") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "121"))
+ (builtin "Use Dependency Contract" (formula "6") (term "0") (ifInst "" (formula "80") (term "0,1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0"))
+ (rule "wellFormedAnon" (formula "91") (term "1,1,0,0,0,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0"))
+ (rule "expand_inInt" (formula "91") (term "1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "2,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "0,2,0,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "91") (term "1,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "91") (term "1,1,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "91") (term "0,2,1,0,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "91") (term "2,0,0,0,1,1,0"))
+ (rule "replace_known_left" (formula "91") (term "0,1,1,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "119")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "120")) (ifInst "" (formula "21")) (ifInst "" (formula "121")) (ifInst "" (formula "16")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "27")) (ifInst "" (formula "120")) (ifInst "" (formula "121")))
+ (rule "polySimp_elimSub" (formula "91") (term "2,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "91") (term "1,2,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "91") (term "0,2,1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "91") (term "1,1,0,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "91") (term "2,0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "91") (term "2,1,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "91") (term "0,2,0,0,0,1,1,0"))
+ (rule "disjointDefinition" (formula "91") (term "1,0"))
+ (rule "disjointWithSingleton2" (formula "91") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "1,0,0,0,0"))
+ (rule "replace_known_left" (formula "91") (term "1,0,0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "1,0,0"))
+ (rule "replace_known_left" (formula "91") (term "1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0,0"))
+ (rule "replace_known_left" (formula "91") (term "0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0"))
+ (rule "replace_known_left" (formula "91") (term "0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "applyEq" (formula "91") (term "0,1") (ifseqformula "6"))
+ (rule "eqSymm" (formula "91") (term "1"))
+ (rule "elementOfUnion" (formula "91") (term "0,0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "eqSymm" (formula "91") (term "1,0,0"))
+ (rule "replace_known_right" (formula "91") (term "1,0,0") (ifseqformula "114"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfUnion" (formula "91") (term "0,0"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "eqSymm" (formula "91") (term "1,0,0"))
+ (rule "replace_known_right" (formula "91") (term "1,0,0") (ifseqformula "113"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfUnion" (formula "91") (term "0,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0,0"))
+ (rule "replace_known_right" (formula "91") (term "0,0,0,0,0") (ifseqformula "98"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0"))
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "80")))
+ (rule "true_left" (formula "91"))
+ (rule "ifSplit" (formula "121"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "122"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "122"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "121") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "121") (newnames "result_5,exc_5,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "26")))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "eqSymm" (formula "122") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "122") (term "1"))
+ (rule "variableDeclaration" (formula "122") (term "1") (newnames "exc_5_1"))
+ (rule "assignment" (formula "122") (term "1"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "emptyStatement" (formula "122") (term "1"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "emptyStatement" (formula "122") (term "1"))
+ (rule "tryEmpty" (formula "122") (term "1"))
+ (rule "blockEmptyLabel" (formula "122") (term "1"))
+ (rule "blockEmpty" (formula "122") (term "1"))
+ (rule "methodCallEmpty" (formula "122") (term "1"))
+ (rule "emptyModality" (formula "122") (term "1"))
+ (rule "andRight" (formula "122"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "closeTrue" (formula "122"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "closeTrue" (formula "122"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "121"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "121"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "121"))
+ (rule "wellFormedAnon" (formula "121"))
+ (rule "wellFormedAnonEQ" (formula "121") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "121") (term "0,0"))
+ (rule "replace_known_left" (formula "121") (term "1") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")))
+ (rule "closeTrue" (formula "121"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "91"))
+ (builtin "One Step Simplification" (formula "122"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "expand_inInt" (formula "91") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "91") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "91") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "91"))
+ (rule "andLeft" (formula "93"))
+ (rule "andLeft" (formula "92"))
+ (rule "andLeft" (formula "92"))
+ (rule "replace_known_left" (formula "94") (term "0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "inEqSimp_commuteLeq" (formula "93"))
+ (rule "applyEq" (formula "95") (term "1") (ifseqformula "61"))
+ (rule "elim_double_block_2" (formula "126") (term "1"))
+ (rule "ifUnfold" (formula "126") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "126") (term "1") (newnames "x_8"))
+ (rule "inequality_comparison_simple" (formula "126") (term "1"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "replace_known_left" (formula "126") (term "0,0,1,0") (ifseqformula "91"))
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "ifSplit" (formula "126"))
+ (branch "if x_8 true"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_8 false"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "126") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "126") (newnames "result_6,exc_6,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "26")))
+ (rule "eqSymm" (formula "127") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "127") (term "1"))
+ (rule "variableDeclaration" (formula "127") (term "1") (newnames "exc_6_1"))
+ (rule "assignment" (formula "127") (term "1"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "emptyStatement" (formula "127") (term "1"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "emptyStatement" (formula "127") (term "1"))
+ (rule "tryEmpty" (formula "127") (term "1"))
+ (rule "blockEmptyLabel" (formula "127") (term "1"))
+ (rule "blockEmpty" (formula "127") (term "1"))
+ (rule "methodCallEmpty" (formula "127") (term "1"))
+ (rule "emptyModality" (formula "127") (term "1"))
+ (rule "andRight" (formula "127"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "closeTrue" (formula "127"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "closeTrue" (formula "127"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "126"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "126"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "126"))
+ (rule "wellFormedAnon" (formula "126"))
+ (rule "wellFormedAnonEQ" (formula "126") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "126") (term "0,0"))
+ (rule "replace_known_left" (formula "126") (term "1") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")))
+ (rule "closeTrue" (formula "126"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "127"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "96"))
+ (rule "expand_inInt" (formula "96") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "96") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "96") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "96") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "96"))
+ (rule "andLeft" (formula "97"))
+ (rule "andLeft" (formula "97"))
+ (rule "eqSymm" (formula "100") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "100") (term "0,1,1,0"))
+ (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "true_left" (formula "99"))
+ (rule "inEqSimp_commuteLeq" (formula "99") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "99") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "98"))
+ (rule "applyEq" (formula "99") (term "1,1,0,0,0") (ifseqformula "31"))
+ (rule "commute_and" (formula "99") (term "1,0,0"))
+ (rule "commute_and" (formula "99") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "130") (term "1"))
+ (rule "shift_paren_and" (formula "99") (term "0,0"))
+ (rule "commute_and_2" (formula "99") (term "0,0,0"))
+ (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_9"))
+ (rule "inequality_comparison_simple" (formula "130") (term "1"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "96"))
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "ifSplit" (formula "130"))
+ (branch "if x_9 true"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_9 false"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "130") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "130") (newnames "result_7,exc_7,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "131"))
+ (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "26")))
+ (rule "eqSymm" (formula "131") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "131") (term "1"))
+ (rule "variableDeclaration" (formula "131") (term "1") (newnames "exc_7_1"))
+ (rule "assignment" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "emptyStatement" (formula "131") (term "1"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "emptyStatement" (formula "131") (term "1"))
+ (rule "tryEmpty" (formula "131") (term "1"))
+ (rule "blockEmptyLabel" (formula "131") (term "1"))
+ (rule "blockEmpty" (formula "131") (term "1"))
+ (rule "methodCallEmpty" (formula "131") (term "1"))
+ (rule "emptyModality" (formula "131") (term "1"))
+ (rule "andRight" (formula "131"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "closeTrue" (formula "131"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "closeTrue" (formula "131"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "130"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "26")))
+ (rule "closeTrue" (formula "130"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "130"))
+ (rule "wellFormedAnon" (formula "130"))
+ (rule "wellFormedAnonEQ" (formula "130") (term "0") (ifseqformula "58"))
+ (rule "wellFormedAnon" (formula "130") (term "0,0"))
+ (rule "replace_known_left" (formula "130") (term "1") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")))
+ (rule "closeTrue" (formula "130"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "100"))
+ (builtin "One Step Simplification" (formula "131"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,1,1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "expand_inInt" (formula "100") (term "0,0,1"))
+ (rule "expand_inInt" (formula "100") (term "0,1,0"))
+ (rule "replace_int_MAX" (formula "100") (term "1,0,0,0,1"))
+ (rule "replace_int_MIN" (formula "100") (term "0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "100") (term "0,1,0,1,0"))
+ (rule "replace_int_MAX" (formula "100") (term "1,0,0,1,0"))
+ (rule "andLeft" (formula "100"))
+ (rule "andLeft" (formula "100"))
+ (rule "andLeft" (formula "101"))
+ (rule "andLeft" (formula "101"))
+ (rule "replace_known_left" (formula "103") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "true_left" (formula "103"))
+ (rule "inEqSimp_commuteLeq" (formula "103") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "102"))
+ (rule "commute_and" (formula "103") (term "0,0"))
+ (rule "elim_double_block_2" (formula "134") (term "1"))
+ (rule "ifUnfold" (formula "134") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "134") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "replace_known_left" (formula "134") (term "0,0,1,0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "ifSplit" (formula "134"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "135"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "135"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "134") (term "1"))
+ (rule "blockReturn" (formula "134") (term "1"))
+ (rule "lsReturnNonVoid" (formula "134") (term "1"))
+ (rule "assignment" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "methodCallReturn" (formula "134") (term "1"))
+ (rule "assignment" (formula "134") (term "1"))
+ (builtin "One Step Simplification" (formula "134"))
+ (rule "methodCallEmpty" (formula "134") (term "1"))
+ (rule "tryEmpty" (formula "134") (term "1"))
+ (rule "emptyModality" (formula "134") (term "1"))
+ (rule "andRight" (formula "134"))
+ (branch "Case 1"
+ (rule "impRight" (formula "134"))
+ (rule "andRight" (formula "135"))
+ (branch "Case 1"
+ (rule "andRight" (formula "135"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "84")))
+ (rule "closeTrue" (formula "135"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "83")))
+ (rule "closeTrue" (formula "135"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "135"))
+ (rule "closeTrue" (formula "135"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "134"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Null Reference (increment = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "71")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Null Reference (increment = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "71")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (increment_write)"
+ (builtin "One Step Simplification" (formula "86"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "59") (term "1,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "61"))
+ (rule "notLeft" (formula "59"))
+ (rule "close" (formula "62") (ifseqformula "61"))
+ )
+ (branch "Pre (increment_write)"
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "10")) (ifInst "" (formula "22")))
+ (rule "wellFormedAnon" (formula "84") (term "0"))
+ (rule "expand_inInt" (formula "84") (term "1"))
+ (rule "replace_int_MAX" (formula "84") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "84") (term "0,1,1"))
+ (rule "replace_known_left" (formula "84") (term "1,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "13")) (ifInst "" (formula "14")))
+ (rule "inEqSimp_leqRight" (formula "84"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "57") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "57") (term "1,0"))
+ (rule "mul_literals" (formula "57") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "42"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "0"))
+ (rule "polySimp_elimOne" (formula "42") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_contradInEq0" (formula "15") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "closeFalse" (formula "15"))
+ )
+ (branch "Null reference (_bucket_pointers = null)"
+ (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "81")))
+ (rule "closeTrue" (formula "84"))
+ )
+ )
+ )
+ )
+ (branch "if true false"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..2d2757e
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,1053 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:14:15 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:14:15 CEST 2022
+contract=de.wiesler.Storage[de.wiesler.Storage\\:\\:Storage()].JML normal_behavior operation contract.0
+name=de.wiesler.Storage[de.wiesler.Storage\\:\\:Storage()].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "1014")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "assignment" (formula "3"))
+(rule "variableDeclarationAssign" (formula "3") (term "1"))
+(rule "variableDeclaration" (formula "3") (term "1") (newnames "self_155"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "3") (term "1") (inst "#v0=s"))
+(rule "variableDeclaration" (formula "3") (term "1") (newnames "s"))
+(rule "methodBodyExpand" (formula "3") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "3"))
+(rule "variableDeclaration" (formula "3") (term "1") (newnames "__NEW__"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "3") (term "1") (inst "#v0=s_1"))
+(rule "variableDeclaration" (formula "3") (term "1") (newnames "s_1"))
+(rule "allocateInstance" (formula "3"))
+ (builtin "One Step Simplification" (formula "4"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "blockEmpty" (formula "6") (term "1"))
+(rule "assignment" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodCallWithinClass" (formula "6") (term "1"))
+(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodCallSuper" (formula "6") (term "1"))
+(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodCallEmpty" (formula "6") (term "1"))
+(rule "blockEmpty" (formula "6") (term "1"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "assignment_write_attribute_this" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodCallEmpty" (formula "6") (term "1"))
+(rule "blockEmpty" (formula "6") (term "1"))
+(rule "methodCallReturnIgnoreResult" (formula "6") (term "1"))
+(rule "methodCallReturn" (formula "6") (term "1"))
+(rule "assignment" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodCallEmpty" (formula "6") (term "1"))
+(rule "blockEmpty" (formula "6") (term "1"))
+(rule "assignment" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "blockEmpty" (formula "6") (term "1"))
+(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodCallSuper" (formula "6") (term "1"))
+(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodCallEmpty" (formula "6") (term "1"))
+(rule "blockEmpty" (formula "6") (term "1"))
+(rule "eval_order_access4_this" (formula "6") (term "1") (inst "#v1=x_arr"))
+(rule "variableDeclarationAssign" (formula "6") (term "1"))
+(rule "variableDeclaration" (formula "6") (term "1") (newnames "x_arr"))
+ (builtin "Use Operation Contract" (formula "6") (newnames "heapBefore_createArray,result_131,exc_155,heapAfter_createArray,anon_heap_createArray") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0"))
+(branch "Post (createArray)"
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "expand_inInt" (formula "5") (term "1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "5") (term "1,0,1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "5") (term "0,1,1,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "5"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "6") (term "1,0,1,0") (ifseqformula "5"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "notLeft" (formula "7"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "7"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "notLeft" (formula "8"))
+ (rule "replace_known_right" (formula "6") (term "0,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "11")))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "dismissNonSelectedField" (formula "10") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0"))
+ (rule "assignment" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "assignment_write_attribute_this" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "eval_order_access4_this" (formula "14") (term "1") (inst "#v1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "14") (term "1"))
+ (rule "variableDeclaration" (formula "14") (term "1") (newnames "x_arr_1"))
+ (rule "pullOutSelect" (formula "10") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "14")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "14")))
+ (rule "applyEqReverse" (formula "11") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "8") (term "0,0,0"))
+ (rule "commute_and" (formula "8") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "8") (term "0,0"))
+ (rule "commute_and_2" (formula "8") (term "0,0,0"))
+ (builtin "Use Operation Contract" (formula "14") (newnames "heapBefore_createArray_0,result_132,exc_156,heapAfter_createArray_0,anon_heap_createArray_0") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (createArray)"
+ (builtin "One Step Simplification" (formula "11"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "11"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "12") (term "1,0,1,0") (ifseqformula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "13"))
+ (rule "notLeft" (formula "15"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "notLeft" (formula "16"))
+ (rule "notLeft" (formula "15"))
+ (rule "replace_known_right" (formula "13") (term "0,1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17")))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "16") (ifseqformula "5"))
+ (rule "orRight" (formula "16"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "assignment" (formula "23") (term "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "assignment_write_attribute_this" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "eval_order_access4_this" (formula "23") (term "1") (inst "#v1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "23") (term "1"))
+ (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_arr_2"))
+ (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19")))
+ (rule "applyEqReverse" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "15") (term "0,0,0"))
+ (rule "commute_and" (formula "15") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "15") (term "0,0"))
+ (rule "commute_and_2" (formula "15") (term "0,0,0"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "23") (term "1"))
+ (rule "variableDeclarationAssign" (formula "23") (term "1"))
+ (rule "variableDeclaration" (formula "23") (term "1") (newnames "var"))
+ (rule "assignmentMultiplicationInt" (formula "23") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "0"))
+ (rule "expand_inInt" (formula "23"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "leq_literals" (formula "23"))
+ (rule "closeTrue" (formula "23"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "translateJavaMulInt" (formula "23") (term "0,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (builtin "Use Operation Contract" (formula "23") (newnames "heapBefore_createArray_1,result_133,exc_157,heapAfter_createArray_1,anon_heap_createArray_1") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (createArray)"
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "expand_inInt" (formula "17") (term "1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "17"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "18") (term "1,0,1,0") (ifseqformula "17"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "21"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "notLeft" (formula "21"))
+ (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "22")))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (ifseqformula "11"))
+ (rule "orRight" (formula "22"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (ifseqformula "5"))
+ (rule "orRight" (formula "22"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0"))
+ (rule "assignment" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "blockEmpty" (formula "33") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "eval_order_access4" (formula "33") (term "1") (inst "#v1=x_arr") (inst "#v0=s"))
+ (rule "variableDeclarationAssign" (formula "33") (term "1"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "s_2"))
+ (rule "assignment" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "variableDeclarationAssign" (formula "33") (term "1"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "x_arr_3"))
+ (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (rule "applyEqReverse" (formula "23") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "21") (term "0,0,0"))
+ (rule "commute_and" (formula "21") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "21") (term "0,0"))
+ (rule "commute_and_2" (formula "21") (term "0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "7") (term "0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "arrayLengthIsAShort" (formula "7") (term "0"))
+ (rule "expand_inShort" (formula "7"))
+ (rule "replace_short_MIN" (formula "7") (term "0,1"))
+ (rule "replace_short_MAX" (formula "7") (term "1,0"))
+ (rule "andLeft" (formula "7"))
+ (rule "inEqSimp_commuteLeq" (formula "8"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "8"))
+ (rule "leq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "methodCallWithAssignmentUnfoldArguments" (formula "33") (term "1"))
+ (rule "variableDeclarationAssign" (formula "33") (term "1"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "var_1"))
+ (rule "assignmentMultiplicationInt" (formula "33") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0"))
+ (rule "mul_literals" (formula "33") (term "1,1"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "leq_literals" (formula "33"))
+ (rule "closeTrue" (formula "33"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "translateJavaMulInt" (formula "33") (term "0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "16"))
+ (rule "leq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (builtin "Use Operation Contract" (formula "33") (newnames "heapBefore_createArray_2,result_134,exc_158,heapAfter_createArray_2,anon_heap_createArray_2") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (createArray)"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "23"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "24") (term "1,0,1,0") (ifseqformula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "24"))
+ (rule "notLeft" (formula "25"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "26"))
+ (rule "replace_known_right" (formula "24") (term "0,1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "29")))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (ifseqformula "17"))
+ (rule "orRight" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (ifseqformula "11"))
+ (rule "orRight" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (ifseqformula "5"))
+ (rule "orRight" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0"))
+ (rule "assignment" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "blockEmpty" (formula "44") (term "1"))
+ (rule "assignment_write_attribute" (formula "44"))
+ (branch "Normal Execution (s_2 != null)"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "eval_order_access4" (formula "44") (term "1") (inst "#v1=x_arr") (inst "#v0=s"))
+ (rule "variableDeclarationAssign" (formula "44") (term "1"))
+ (rule "variableDeclaration" (formula "44") (term "1") (newnames "s_3"))
+ (rule "assignment" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "variableDeclarationAssign" (formula "44") (term "1"))
+ (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_arr_4"))
+ (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=java_lang_Object_created__3"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44")))
+ (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "26") (term "0,0,0"))
+ (rule "commute_and" (formula "26") (term "1,0,0"))
+ (rule "shift_paren_and" (formula "26") (term "0,0"))
+ (rule "commute_and_2" (formula "26") (term "0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "20") (term "0"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "20") (term "0"))
+ (rule "expand_inShort" (formula "20"))
+ (rule "replace_short_MAX" (formula "20") (term "1,0"))
+ (rule "replace_short_MIN" (formula "20") (term "0,1"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "22"))
+ (rule "leq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (builtin "Use Operation Contract" (formula "44") (newnames "heapBefore_createArray_3,result_135,exc_159,heapAfter_createArray_3,anon_heap_createArray_3") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (createArray)"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (term "1,0,1,0") (ifseqformula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "31"))
+ (rule "notLeft" (formula "33"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "notLeft" (formula "33"))
+ (rule "replace_known_right" (formula "31") (term "0,1") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "35")))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "23"))
+ (rule "orRight" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "17"))
+ (rule "orRight" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "11"))
+ (rule "orRight" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "5"))
+ (rule "orRight" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0"))
+ (rule "assignment" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "assignment_write_attribute" (formula "56"))
+ (branch "Normal Execution (s_3 != null)"
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "eval_order_access4_this" (formula "56") (term "1") (inst "#v1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "56") (term "1"))
+ (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_arr_5"))
+ (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=java_lang_Object_created__4"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "56"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40")))
+ (rule "applyEqReverse" (formula "35") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "33") (term "1,0,0"))
+ (rule "commute_and" (formula "33") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "33") (term "0,0"))
+ (rule "commute_and_2" (formula "33") (term "0,0,0"))
+ (builtin "Use Operation Contract" (formula "56") (newnames "heapBefore_createArray_4,result_136,exc_160,heapAfter_createArray_4,anon_heap_createArray_4") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (createArray)"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,1,1,1,0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "1,0,1,0") (ifseqformula "35"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "37"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "notLeft" (formula "38"))
+ (rule "replace_known_right" (formula "36") (term "0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "40")))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "29"))
+ (rule "orRight" (formula "40"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "23"))
+ (rule "orRight" (formula "40"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "17"))
+ (rule "orRight" (formula "40"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "11"))
+ (rule "orRight" (formula "40"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "5"))
+ (rule "orRight" (formula "40"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "dismissNonSelectedField" (formula "40") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0"))
+ (rule "assignment" (formula "69") (term "1"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "assignment_write_attribute_this" (formula "69"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "eval_order_access4_this" (formula "69") (term "1") (inst "#v1=x_arr"))
+ (rule "variableDeclarationAssign" (formula "69") (term "1"))
+ (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_arr_6"))
+ (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=java_lang_Object_created__5"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69")))
+ (rule "applyEqReverse" (formula "41") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "38") (term "1,0,0"))
+ (rule "commute_and" (formula "38") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "38") (term "0,0"))
+ (rule "commute_and_2" (formula "38") (term "0,0,0"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "26"))
+ (rule "qeq_literals" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "arrayLengthIsAShort" (formula "25") (term "0"))
+ (rule "expand_inShort" (formula "25"))
+ (rule "replace_short_MAX" (formula "25") (term "1,0"))
+ (rule "replace_short_MIN" (formula "25") (term "0,1"))
+ (rule "andLeft" (formula "25"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "27"))
+ (rule "qeq_literals" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "26"))
+ (rule "leq_literals" (formula "25"))
+ (rule "closeFalse" (formula "25"))
+ )
+ (branch "Exceptional Post (createArray)"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "1,0") (ifseqformula "35"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "38"))
+ (rule "notLeft" (formula "36"))
+ (rule "close" (formula "39") (ifseqformula "38"))
+ )
+ (branch "Pre (createArray)"
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "expand_inInt" (formula "56") (term "1"))
+ (rule "replace_int_MIN" (formula "56") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "56") (term "1,0,1"))
+ (rule "leq_literals" (formula "56") (term "1,1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "leq_literals" (formula "56") (term "1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "39")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "29"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "29"))
+ (rule "replace_known_left" (formula "56") (term "1,1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "28")))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "44")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "23"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "23"))
+ (rule "replace_known_left" (formula "56") (term "1,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "24")))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "48")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "17"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "17"))
+ (rule "replace_known_left" (formula "56") (term "1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "19")))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "51")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "11"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "11"))
+ (rule "replace_known_left" (formula "56") (term "1,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "13")))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "5"))
+ (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "5"))
+ (rule "replace_known_left" (formula "56") (term "1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "4")))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreObject" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStoreLocSet" (formula "56"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "wellFormedStorePrimitive" (formula "56"))
+ (rule "wellFormedCreate" (formula "56"))
+ (rule "close" (formula "56") (ifseqformula "2"))
+ )
+ )
+ (branch "Null Reference (s_3 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (createArray)"
+ (builtin "One Step Simplification" (formula "46"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (term "1,0") (ifseqformula "29"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "30"))
+ (rule "andLeft" (formula "32"))
+ (rule "notLeft" (formula "30"))
+ (rule "close" (formula "33") (ifseqformula "32"))
+ )
+ (branch "Pre (createArray)"
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "expand_inInt" (formula "44") (term "1"))
+ (rule "replace_int_MAX" (formula "44") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "44") (term "0,1,1"))
+ (rule "leq_literals" (formula "44") (term "0,1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "leq_literals" (formula "44") (term "1"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "32")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "23"))
+ (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "23"))
+ (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "24")))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "36")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "17"))
+ (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "17"))
+ (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "19")))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "39")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "11"))
+ (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "11"))
+ (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "13")))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "41")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "5"))
+ (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "5"))
+ (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "6")))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreObject" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStoreLocSet" (formula "44"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "wellFormedStorePrimitive" (formula "44"))
+ (rule "wellFormedCreate" (formula "44"))
+ (rule "close" (formula "44") (ifseqformula "2"))
+ )
+ )
+ (branch "Null Reference (s_2 = null)"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Exceptional Post (createArray)"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "24") (term "1,0") (ifseqformula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "24"))
+ (rule "close" (formula "27") (ifseqformula "26"))
+ )
+ (branch "Pre (createArray)"
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "expand_inInt" (formula "33") (term "1"))
+ (rule "replace_int_MAX" (formula "33") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "33") (term "0,1,1"))
+ (rule "leq_literals" (formula "33") (term "0,1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "leq_literals" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "25")))
+ (rule "wellFormedAnonEQ" (formula "33") (term "0") (ifseqformula "17"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1") (ifseqformula "17"))
+ (rule "replace_known_left" (formula "33") (term "1,1") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "16")))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "28")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1") (ifseqformula "11"))
+ (rule "wellFormedAnonEQ" (formula "33") (term "0") (ifseqformula "11"))
+ (rule "replace_known_left" (formula "33") (term "1,1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "10")))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "30")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1") (ifseqformula "5"))
+ (rule "wellFormedAnonEQ" (formula "33") (term "0") (ifseqformula "5"))
+ (rule "replace_known_left" (formula "33") (term "1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "4")))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreObject" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStoreLocSet" (formula "33"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "wellFormedStorePrimitive" (formula "33"))
+ (rule "wellFormedCreate" (formula "33"))
+ (rule "close" (formula "33") (ifseqformula "2"))
+ )
+ )
+ )
+ (branch "Exceptional Post (createArray)"
+ (builtin "One Step Simplification" (formula "17"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "andLeft" (formula "17"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "18") (term "1,0") (ifseqformula "17"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "notLeft" (formula "18"))
+ (rule "close" (formula "21") (ifseqformula "20"))
+ )
+ (branch "Pre (createArray)"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1"))
+ (rule "leq_literals" (formula "23") (term "0,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "leq_literals" (formula "23") (term "1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "18")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "1") (ifseqformula "11"))
+ (rule "wellFormedAnonEQ" (formula "23") (term "0") (ifseqformula "11"))
+ (rule "replace_known_left" (formula "23") (term "1,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "13")))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "20")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "1") (ifseqformula "5"))
+ (rule "wellFormedAnonEQ" (formula "23") (term "0") (ifseqformula "5"))
+ (rule "replace_known_left" (formula "23") (term "1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "4")))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreObject" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStoreLocSet" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "wellFormedStorePrimitive" (formula "23"))
+ (rule "wellFormedCreate" (formula "23"))
+ (rule "close" (formula "23") (ifseqformula "2"))
+ )
+ )
+ )
+ (branch "Exceptional Post (createArray)"
+ (builtin "One Step Simplification" (formula "11"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "andLeft" (formula "11"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "12") (term "1,0") (ifseqformula "11"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "12"))
+ (rule "close" (formula "15") (ifseqformula "14"))
+ )
+ (branch "Pre (createArray)"
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1"))
+ (rule "leq_literals" (formula "14") (term "1,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "leq_literals" (formula "14") (term "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "11")))
+ (rule "wellFormedAnonEQ" (formula "14") (term "0") (ifseqformula "5"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "14") (term "1") (ifseqformula "5"))
+ (rule "replace_known_left" (formula "14") (term "1,1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "4")))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStoreLocSet" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "wellFormedStorePrimitive" (formula "14"))
+ (rule "wellFormedCreate" (formula "14"))
+ (rule "close" (formula "14") (ifseqformula "2"))
+ )
+)
+(branch "Exceptional Post (createArray)"
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "andLeft" (formula "5"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "6") (term "1,0") (ifseqformula "5"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "6"))
+ (rule "andLeft" (formula "8"))
+ (rule "notLeft" (formula "6"))
+ (rule "close" (formula "9") (ifseqformula "8"))
+)
+(branch "Pre (createArray)"
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "expand_inInt" (formula "6") (term "1"))
+ (rule "replace_int_MAX" (formula "6") (term "1,0,1"))
+ (rule "replace_int_MIN" (formula "6") (term "0,1,1"))
+ (rule "leq_literals" (formula "6") (term "0,1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "leq_literals" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreObject" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStoreLocSet" (formula "6"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "wellFormedStorePrimitive" (formula "6"))
+ (rule "wellFormedCreate" (formula "6"))
+ (rule "close" (formula "6") (ifseqformula "2"))
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..8bdee9d
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,367 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Thu Jun 02 20:14:26 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Thu Jun 02 20:14:26 CEST 2022
+contract=de.wiesler.Storage[de.wiesler.Storage\\:\\:createArray(int)].JML normal_behavior operation contract.0
+name=de.wiesler.Storage[de.wiesler.Storage\\:\\:createArray(int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "184")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "inEqSimp_commuteLeq" (formula "3"))
+(rule "assignment" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_createArray,savedHeapBefore_createArray"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "returnUnfold" (formula "6") (term "1") (inst "#v0=x_arr"))
+(rule "variableDeclarationAssign" (formula "6") (term "1"))
+(rule "variableDeclaration" (formula "6") (term "1") (newnames "x_arr"))
+(rule "arrayCreation" (formula "6") (term "1") (inst "#v0=x_arr_1"))
+(rule "variableDeclaration" (formula "6") (term "1") (newnames "x_arr_1"))
+(rule "variableDeclarationAssign" (formula "6") (term "1"))
+(rule "variableDeclaration" (formula "6") (term "1") (newnames "dim0"))
+(rule "assignment" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "ifUnfold" (formula "6") (term "1") (inst "#boolv=x"))
+(rule "variableDeclaration" (formula "6") (term "1") (newnames "x"))
+(rule "less_than_comparison_simple" (formula "6") (term "1"))
+ (builtin "One Step Simplification" (formula "6"))
+(rule "ifSplit" (formula "6"))
+(branch "if x true"
+ (builtin "One Step Simplification" (formula "7"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "blockThrow" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "throwUnfold" (formula "7") (term "1") (inst "#v0=n"))
+ (rule "variableDeclarationAssign" (formula "7") (term "1"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "n"))
+ (rule "instanceCreationAssignment" (formula "7") (term "1") (inst "#v0=n_1"))
+ (rule "variableDeclarationAssign" (formula "7") (term "1"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "n_1"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=n_2"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "n_2"))
+ (rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "__NEW__"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=n_3"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "n_3"))
+ (rule "allocateInstance" (formula "7"))
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3")))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockEmpty" (formula "10") (term "1"))
+ (rule "assignment" (formula "10") (term "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "assignment_write_attribute_this" (formula "10"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallWithinClass" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__1,savedHeapBefore__1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__2,savedHeapBefore__2"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "blockEmpty" (formula "10") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "10"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "assignment_write_attribute_this" (formula "10"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "blockEmpty" (formula "10") (term "1"))
+ (rule "methodCallReturnIgnoreResult" (formula "10") (term "1"))
+ (rule "methodCallReturn" (formula "10") (term "1"))
+ (rule "assignment" (formula "10") (term "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "blockEmpty" (formula "10") (term "1"))
+ (rule "assignment" (formula "10") (term "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__1,savedHeapBefore__1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__2,savedHeapBefore__2"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallSuper" (formula "10") (term "1"))
+ (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__3,savedHeapBefore__3"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "blockEmpty" (formula "10") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "10"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "assignment_write_attribute_this" (formula "10"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "methodCallEmpty" (formula "10") (term "1"))
+ (rule "blockEmpty" (formula "10") (term "1"))
+ (rule "assignment_write_attribute" (formula "10"))
+ (branch "Normal Execution (n_1 != null)"
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "assignment" (formula "10") (term "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "methodCallParamThrow" (formula "10") (term "1"))
+ (rule "tryCatchThrow" (formula "10") (term "1"))
+ (rule "ifElseUnfold" (formula "10") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "10") (term "1") (newnames "x_1"))
+ (rule "equality_comparison_simple" (formula "10") (term "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "replace_known_right" (formula "10") (term "0,0,1,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "ifElseSplit" (formula "10"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "11"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "11"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "elim_double_block" (formula "10") (term "1"))
+ (rule "ifElseSplit" (formula "10"))
+ (branch "if n instanceof java.lang.Throwable true"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10")))
+ (rule "true_left" (formula "1"))
+ (rule "variableDeclaration" (formula "10") (term "1") (newnames "e"))
+ (rule "delete_unnecessary_cast" (formula "10") (term "1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "assignment" (formula "10") (term "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "emptyModality" (formula "10") (term "1"))
+ (rule "andRight" (formula "10"))
+ (branch
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "notRight" (formula "10"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "3"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "9")))
+ (rule "false_right" (formula "10"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ )
+ (branch "if n instanceof java.lang.Throwable false"
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Null Reference (n_1 = null)"
+ (rule "false_right" (formula "11"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10")))
+ (rule "closeFalse" (formula "1"))
+ )
+)
+(branch "if x false"
+ (builtin "One Step Simplification" (formula "7"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=x_arr_2"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "x_arr_2"))
+ (rule "variableDeclarationAssign" (formula "7") (term "1"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "length_1"))
+ (rule "assignment" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "newObject"))
+ (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=x_arr_3"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "x_arr_3"))
+ (rule "variableDeclarationAssign" (formula "7") (term "1"))
+ (rule "variableDeclaration" (formula "7") (term "1") (newnames "length_2"))
+ (rule "assignment" (formula "7") (term "1"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "allocateInstanceWithLength" (formula "7"))
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "blockEmpty" (formula "11") (term "1"))
+ (rule "assignment" (formula "11") (term "1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "arrayLengthIsAShort" (formula "1") (term "0"))
+ (rule "expand_inShort" (formula "1"))
+ (rule "replace_short_MAX" (formula "1") (term "1,0"))
+ (rule "replace_short_MIN" (formula "1") (term "0,1"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "3"))
+ (rule "arrayLengthNotNegative" (formula "3") (term "0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "4"))
+ (rule "methodCall" (formula "13"))
+ (branch "Normal Execution (newObject != null )"
+ (rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "assignment_write_attribute_this" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallWithinClass" (formula "13") (term "1"))
+ (rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "arrayInitialisation" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "polySimp_elimSub" (formula "13") (term "2,1,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,2,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "2,1,0,1,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,1,0") (ifseqformula "3"))
+ (rule "methodCallEmpty" (formula "13") (term "1"))
+ (rule "blockEmpty" (formula "13") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallReturnIgnoreResult" (formula "13") (term "1"))
+ (rule "blockEmpty" (formula "13") (term "1"))
+ (rule "methodCallReturn" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallEmpty" (formula "13") (term "1"))
+ (rule "blockEmpty" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "blockEmpty" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallReturn" (formula "13") (term "1"))
+ (rule "assignment" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallEmpty" (formula "13") (term "1"))
+ (rule "tryEmpty" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "emptyModality" (formula "13") (term "1"))
+ (rule "andRight" (formula "13"))
+ (branch
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "13"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "closeTrue" (formula "13"))
+ )
+ )
+ (branch "Null Reference (newObject = null)"
+ (rule "false_right" (formula "14"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")))
+ (rule "closeFalse" (formula "1"))
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..cd0e23d
--- /dev/null
+++ b/src/main/key-overflow/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,10116 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Mon Apr 17 13:16:54 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:onHeap
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\proofObligation "#Proof Obligation Settings
+#Mon Apr 17 13:16:54 CEST 2023
+contract=de.wiesler.Tree[de.wiesler.Tree\\:\\:Tree([I,[I,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Tree[de.wiesler.Tree\\:\\:Tree([I,[I,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "63042")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
+(rule "expand_inInt" (formula "1") (term "1,1,0,0,0"))
+(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0"))
+(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "4"))
+(rule "notLeft" (formula "4"))
+(rule "andLeft" (formula "5"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "7"))
+(rule "andLeft" (formula "9"))
+(rule "andLeft" (formula "2"))
+(rule "andLeft" (formula "4"))
+(rule "andLeft" (formula "12"))
+(rule "translateJavaSubInt" (formula "11") (term "3,0"))
+(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "3"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "11") (term "3,0"))
+(rule "mul_literals" (formula "11") (term "1,3,0"))
+(rule "polySimp_addComm0" (formula "11") (term "3,0"))
+(rule "disjointDefinition" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+(rule "notLeft" (formula "13"))
+(rule "eqSymm" (formula "13"))
+(rule "inEqSimp_commuteLeq" (formula "7"))
+(rule "inEqSimp_commuteLeq" (formula "10"))
+(rule "inEqSimp_commuteLeq" (formula "9"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "assignment" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+(rule "variableDeclarationAssign" (formula "16") (term "1"))
+(rule "variableDeclaration" (formula "16") (term "1") (newnames "self_207"))
+(rule "arrayLengthNotNegative" (formula "10") (term "0"))
+(rule "arrayLengthIsAShort" (formula "11") (term "0"))
+(rule "expand_inShort" (formula "11"))
+(rule "replace_short_MAX" (formula "11") (term "1,0"))
+(rule "replace_short_MIN" (formula "11") (term "0,1"))
+(rule "andLeft" (formula "11"))
+(rule "inEqSimp_commuteLeq" (formula "12"))
+(rule "arrayLengthIsAShort" (formula "15") (term "0"))
+(rule "expand_inShort" (formula "15"))
+(rule "replace_short_MIN" (formula "15") (term "0,1"))
+(rule "replace_short_MAX" (formula "15") (term "1,0"))
+(rule "andLeft" (formula "15"))
+(rule "inEqSimp_commuteLeq" (formula "16"))
+(rule "arrayLengthNotNegative" (formula "17") (term "0"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=t"))
+(rule "variableDeclaration" (formula "22") (term "1") (newnames "t"))
+(rule "methodBodyExpand" (formula "22") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "22"))
+(rule "variableDeclaration" (formula "22") (term "1") (newnames "__NEW__"))
+(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=t_1"))
+(rule "variableDeclaration" (formula "22") (term "1") (newnames "t_1"))
+(rule "allocateInstance" (formula "22"))
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2")))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "notLeft" (formula "1"))
+(rule "blockEmpty" (formula "25") (term "1"))
+(rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "assignment_write_attribute_this" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodCallWithinClass" (formula "25") (term "1"))
+(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodCallSuper" (formula "25") (term "1"))
+(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodCallEmpty" (formula "25") (term "1"))
+(rule "blockEmpty" (formula "25") (term "1"))
+(rule "assignment_write_attribute_this" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "assignment_write_attribute_this" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "assignment_write_attribute_this" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "assignment_write_attribute_this" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodCallEmpty" (formula "25") (term "1"))
+(rule "blockEmpty" (formula "25") (term "1"))
+(rule "methodCallReturnIgnoreResult" (formula "25") (term "1"))
+(rule "methodCallReturn" (formula "25") (term "1"))
+(rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodCallEmpty" (formula "25") (term "1"))
+(rule "blockEmpty" (formula "25") (term "1"))
+(rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "blockEmpty" (formula "25") (term "1"))
+(rule "variableDeclarationAssign" (formula "25") (term "1"))
+(rule "variableDeclaration" (formula "25") (term "1") (newnames "var"))
+(rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "variableDeclarationAssign" (formula "25") (term "1"))
+(rule "variableDeclaration" (formula "25") (term "1") (newnames "var_1"))
+(rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "variableDeclarationAssign" (formula "25") (term "1"))
+(rule "variableDeclaration" (formula "25") (term "1") (newnames "var_2"))
+(rule "assignment" (formula "25") (term "1"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodCallSuper" (formula "25") (term "1"))
+(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore__0,savedHeapBefore__0"))
+ (builtin "One Step Simplification" (formula "25"))
+(rule "methodCallEmpty" (formula "25") (term "1"))
+(rule "blockEmpty" (formula "25") (term "1"))
+(rule "eval_order_access4_this" (formula "25") (term "1") (inst "#v1=x"))
+(rule "variableDeclarationAssign" (formula "25") (term "1"))
+(rule "variableDeclaration" (formula "25") (term "1") (newnames "x"))
+(rule "assignmentShiftLeftInt" (formula "25") (term "1"))
+(branch "Overflow check"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "powPositive" (formula "25") (term "1,0") (userinteraction))
+ (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), mod(log_buckets, Z(2(3(#))))),
+ pow(Z(2(#)), Z(8(#))))<>") (userinteraction))
+ (branch "CUT: pow(2, log_buckets % 32) <= pow(2, 8) TRUE"
+ (rule "greater_literals" (formula "2") (term "1,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "pow_literals" (formula "1") (term "1"))
+ (rule "expand_inInt" (formula "27"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1"))
+ (rule "translateJavaShiftLeftInt" (formula "21") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "17") (term "1,3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "12") (term "0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1"))
+ (rule "mod_axiom" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mod_axiom" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mod_axiom" (formula "2") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,1"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "9"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption0" (formula "23") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_geqRight" (formula "23"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (term "1") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "notLeft" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "javaShiftLeftIntDef" (formula "17") (term "1"))
+ (rule "mod_axiom" (formula "17") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "1,3,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "1"))
+ (rule "mod_axiom" (formula "13") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "10") (term "0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0"))
+ (rule "shiftLeftDef" (formula "17") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "17"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "shiftLeftDef" (formula "14") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,3,0"))
+ (rule "replace_known_left" (formula "14") (term "0,0,1,3,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "shiftLeftDef" (formula "13") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "13"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_commuteLeq" (formula "13"))
+ (rule "shiftLeftDef" (formula "10") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "expand_moduloInteger" (formula "18") (term "1"))
+ (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,1"))
+ (rule "replace_int_MIN" (formula "18") (term "0,1"))
+ (rule "replace_int_RANGE" (formula "18") (term "1,1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "expand_moduloInteger" (formula "14") (term "1,3,0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,1,3,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,3,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "3,0"))
+ (rule "add_literals" (formula "14") (term "0,3,0"))
+ (rule "expand_moduloInteger" (formula "13") (term "1"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1"))
+ (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1"))
+ (rule "replace_int_RANGE" (formula "13") (term "1,1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "expand_moduloInteger" (formula "10") (term "0"))
+ (rule "replace_int_RANGE" (formula "10") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "expand_moduloInteger" (formula "17") (term "0"))
+ (rule "replace_int_MIN" (formula "17") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "17") (term "1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "div_axiom" (formula "2") (term "0,1,1,0") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "2") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,1,1,1"))
+ (rule "equal_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "polySimp_addComm1" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,0,1,1") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1"))
+ (rule "applyEq" (formula "5") (term "0,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "5") (term "1,0"))
+ (rule "applyEq" (formula "17") (term "0,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "17") (term "0,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1,0,0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEq" (formula "21") (term "0,1,1,1,1,0,1,1") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "CUT: pow(2, log_buckets % 32) <= pow(2, 8) FALSE"
+ (rule "powMonoConcrete" (formula "21") (userinteraction))
+ (rule "expand_inInt" (formula "27"))
+ (rule "greater_literals" (formula "21") (term "1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "greater_literals" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1"))
+ (rule "translateJavaShiftLeftInt" (formula "11") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "16") (term "1,3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "20") (term "1"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "1,1"))
+ (rule "inEqSimp_commuteGeq" (formula "21") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1"))
+ (rule "mod_axiom" (formula "21") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "mod_axiom" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,1"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "9"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "javaShiftLeftIntDef" (formula "9") (term "0"))
+ (rule "mod_axiom" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "12") (term "1"))
+ (rule "mod_axiom" (formula "12") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "13") (term "1,3,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "16") (term "1"))
+ (rule "mod_axiom" (formula "16") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1"))
+ (rule "shiftLeftDef" (formula "9") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "12") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "12"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "shiftLeftDef" (formula "13") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,3,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1,3,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,3,0"))
+ (rule "shiftLeftDef" (formula "16") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "16"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16"))
+ (rule "times_zero_1" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "expand_moduloInteger" (formula "9") (term "0"))
+ (rule "replace_int_MIN" (formula "9") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "9") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "9") (term "1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "expand_moduloInteger" (formula "12") (term "0"))
+ (rule "replace_int_RANGE" (formula "12") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "expand_moduloInteger" (formula "13") (term "1,3,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,3,0"))
+ (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1,3,0"))
+ (rule "replace_int_RANGE" (formula "13") (term "1,1,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "3,0"))
+ (rule "add_literals" (formula "13") (term "0,3,0"))
+ (rule "expand_moduloInteger" (formula "16") (term "0"))
+ (rule "replace_int_MIN" (formula "16") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "16") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "add_zero_left" (formula "9") (term "0"))
+ (rule "commute_and" (formula "23"))
+ (rule "commute_and" (formula "17"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0,1,0"))
+ (rule "expand_inInt" (formula "13") (term "1,0,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "div_axiom" (formula "1") (term "0,1,1,0,1") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "1") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "equal_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,1,1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "26") (term "0,1,1,0,1") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,0,1"))
+ (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "12") (term "0,1,1,1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "4") (term "0,1,1,0,1") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "4") (term "1,0,1"))
+ (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "26") (term "0,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,0,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "20") (term "0,0,1") (ifseqformula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "1"))
+ (rule "replace_known_left" (formula "20") (term "1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_geqRight" (formula "20"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "applyEq" (formula "13") (term "0,0,0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "5") (term "0,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0"))
+ (rule "replace_known_left" (formula "5") (term "0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,1,0,1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "13") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mod_axiom" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0,1,0,1,1,1,0,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0"))
+ (rule "leq_literals" (formula "17") (term "0,0,1,0,1,1,1,0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "mod_axiom" (formula "17") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "mod_axiom" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "mod_axiom" (formula "20") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "26") (term "0") (ifseqformula "5"))
+ (rule "leq_literals" (formula "26") (term "0,0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_leqRight" (formula "26"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "leq_literals" (formula "17") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "mod_axiom" (formula "17") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "4"))
+ (rule "mul_literals" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "11"))
+ (rule "times_zero_1" (formula "2") (term "1,1,0"))
+ (rule "greater_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+)
+(branch "Usage"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaShiftLeftInt" (formula "14") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "10") (term "0"))
+ (rule "translateJavaShiftLeftInt" (formula "19") (term "1"))
+ (rule "translateJavaShiftLeftInt" (formula "15") (term "1,3,0"))
+ (rule "translateJavaShiftLeftInt" (formula "25") (term "0,1,0"))
+ (rule "assignment_write_attribute_this" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "assignment_write_attribute_this" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "variableDeclarationFinalAssign" (formula "25") (term "1"))
+ (rule "variableDeclarationFinal" (formula "25") (term "1") (newnames "num_buckets"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "1"))
+ (rule "javaShiftLeftIntDef" (formula "10") (term "0"))
+ (rule "javaShiftLeftIntDef" (formula "19") (term "1"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "1,3,0"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "3,0,0,1,0"))
+ (rule "shiftLeftDef" (formula "14") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "14"))
+ (rule "shiftLeftDef" (formula "10") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0"))
+ (rule "shiftLeftDef" (formula "19") (term "0,1"))
+ (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "19"))
+ (rule "shiftLeftDef" (formula "15") (term "0,1,3,0"))
+ (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,3,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,3,0"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,3,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,3,0"))
+ (rule "shiftLeftDef" (formula "25") (term "0,3,0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,3,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,3,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,3,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,3,0,0,1,0"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "expand_moduloInteger" (formula "10") (term "0"))
+ (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "10") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "10") (term "1,1,0"))
+ (rule "expand_moduloInteger" (formula "19") (term "0"))
+ (rule "replace_int_MIN" (formula "19") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "19") (term "1,1,0"))
+ (rule "expand_moduloInteger" (formula "15") (term "1,3,0"))
+ (rule "replace_int_RANGE" (formula "15") (term "1,1,1,3,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,3,0"))
+ (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "3,0"))
+ (rule "add_literals" (formula "15") (term "0,3,0"))
+ (rule "expand_moduloInteger" (formula "25") (term "3,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,3,0,0,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "25") (term "0,0,1,3,0,0,1,0"))
+ (rule "replace_int_RANGE" (formula "25") (term "1,1,3,0,0,1,0"))
+ (rule "assignmentShiftLeftInt" (formula "25") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), mod(log_buckets, Z(2(3(#))))),
+ pow(Z(2(#)), de.wiesler.Constants.LOG_MAX_BUCKETS))<>") (userinteraction))
+ (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) TRUE"
+ (rule "powPositive" (formula "26") (term "1,0") (userinteraction))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "greater_literals" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "expand_inInt" (formula "27"))
+ (rule "pow_literals" (formula "2") (term "1"))
+ (rule "replace_int_MIN" (formula "27") (term "0,1"))
+ (rule "replace_int_MAX" (formula "27") (term "1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "mod_axiom" (formula "12") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "17") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "12") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "17") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1"))
+ (rule "mod_axiom" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "mod_axiom" (formula "17") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "16") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "16") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "24") (term "0") (ifseqformula "2"))
+ (rule "leq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_geqRight" (formula "24"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "10"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (term "1") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "notLeft" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "replace_known_left" (formula "14") (term "0,1,0,1,3,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "replace_known_left" (formula "17") (term "0,1,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "replace_known_left" (formula "13") (term "0,1,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "replace_known_left" (formula "10") (term "0,1,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "13"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "12"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthNotNegative" (formula "11") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "commute_or" (formula "15") (term "1,0,0,1,0"))
+ (rule "shift_paren_or" (formula "15") (term "0,0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0,0"))
+ (rule "div_axiom" (formula "2") (term "0,1,1,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "2") (term "1,1,1,1,1"))
+ (rule "equal_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "qeq_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "polySimp_addComm1" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "applyEq" (formula "17") (term "0,1,1,1,1,0,1,1") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1"))
+ (rule "applyEq" (formula "21") (term "0,1,1,1,1,0,1,1") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1"))
+ (rule "applyEq" (formula "18") (term "0,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEq" (formula "18") (term "0,1,1,1,1,0,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,1,1,1,0,0"))
+ (rule "applyEq" (formula "5") (term "0,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "5") (term "1,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "3"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) FALSE"
+ (rule "powMonoConcrete" (formula "20") (userinteraction))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "expand_inInt" (formula "26"))
+ (rule "greater_literals" (formula "20") (term "1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "replace_int_MAX" (formula "26") (term "1,0"))
+ (rule "replace_int_MIN" (formula "26") (term "0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "26") (term "1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_commuteGeq" (formula "20") (term "1"))
+ (rule "inEqSimp_commuteLeq" (formula "26") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "20") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "mod_axiom" (formula "26") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "20") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,1"))
+ (rule "mod_axiom" (formula "26") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1"))
+ (rule "mul_literals" (formula "20") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "11"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "15"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "add_zero_left" (formula "8") (term "0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0"))
+ (rule "commute_and" (formula "22"))
+ (rule "commute_and" (formula "16"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,1,0"))
+ (rule "shift_paren_or" (formula "12") (term "0,0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "12") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "10") (term "0"))
+ (rule "expand_inShort" (formula "10"))
+ (rule "replace_short_MIN" (formula "10") (term "0,1"))
+ (rule "replace_short_MAX" (formula "10") (term "1,0"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "9"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "arrayLengthNotNegative" (formula "10") (term "0"))
+ (rule "commute_or" (formula "12") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0,1,0"))
+ (rule "arrayLengthIsAShort" (formula "14") (term "0"))
+ (rule "expand_inShort" (formula "14"))
+ (rule "replace_short_MIN" (formula "14") (term "0,1"))
+ (rule "replace_short_MAX" (formula "14") (term "1,0"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteLeq" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "arrayLengthNotNegative" (formula "14") (term "0"))
+ (rule "div_axiom" (formula "15") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "15") (term "0,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "polySimp_addComm1" (formula "17") (term "1"))
+ (rule "add_literals" (formula "17") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "applyEq" (formula "11") (term "0,1,1,1,1,1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "11") (term "0,1,1,2,1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "18") (term "0,1,1,2,1,0,0") (ifseqformula "15"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,0,1") (ifseqformula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "19") (term "1"))
+ (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_geqRight" (formula "19"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "applyEq" (formula "25") (term "0,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,1,1,1,0,0,0,1,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "9") (term "0,0,0,1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "9") (term "0,1,1,1,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "12") (term "0,0,0,1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,0,0,1,0,1,1,1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,1,1,1,0,0"))
+ (rule "applyEq" (formula "25") (term "0,1,1,0,1") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,0,1"))
+ (rule "applyEq" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "9") (term "0,1,1,2,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "9") (term "1,2,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,1,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,1,1,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,1,1,0,1,1,1,0,0") (ifseqformula "16"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,1,1,1,0,0"))
+ (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "16"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,1,1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (term "0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "mod_axiom" (formula "9") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (term "0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "12") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "mod_axiom" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,1,1,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,1,0,1,1,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,1,1,0,0"))
+ (rule "leq_literals" (formula "13") (term "0,0,1,0,1,1,1,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mod_axiom" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0,1,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "18") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "mod_axiom" (formula "18") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,0,1,0,1,1,1,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mod_axiom" (formula "13") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "18"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "7") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1"))
+ (rule "mul_literals" (formula "20") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (ifseqformula "8"))
+ (rule "times_zero_1" (formula "1") (term "1,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaShiftLeftInt" (formula "25") (term "0,1,0"))
+ (rule "variableDeclarationFinalAssign" (formula "25") (term "1"))
+ (rule "variableDeclarationFinal" (formula "25") (term "1") (newnames "num_splitters"))
+ (rule "javaShiftLeftIntDef" (formula "25") (term "0,1,0"))
+ (rule "shiftLeftDef" (formula "25") (term "0,0,1,0"))
+ (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,0,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,0,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,0,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,0,1,0"))
+ (rule "expand_moduloInteger" (formula "25") (term "0,1,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,0,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "replace_int_RANGE" (formula "25") (term "1,1,0,1,0"))
+ (rule "assignmentSubtractionInt" (formula "25") (term "1"))
+ (branch "Overflow check"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "expand_inInt" (formula "25"))
+ (rule "replace_int_MAX" (formula "25") (term "1,0"))
+ (rule "replace_int_MIN" (formula "25") (term "0,1"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,1"))
+ (rule "mul_literals" (formula "25") (term "1,1,1"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "1,1"))
+ (rule "add_literals" (formula "25") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,1,1"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,1"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,1,0,1"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,1,0,1"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (term "1") (ifseqformula "10"))
+ (rule "leq_literals" (formula "25") (term "0,1"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_leqRight" (formula "25"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "10"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "1"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "11"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "25"))
+ (builtin "Block Contract (Internal)" (formula "25") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "7")) (ifInst "" (formula "22")) (ifInst "" (formula "1")))
+ (rule "andLeft" (formula "20"))
+ (rule "eqSymm" (formula "27") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0"))
+ (rule "variableDeclarationAssign" (formula "27") (term "1"))
+ (rule "variableDeclaration" (formula "27") (term "1") (newnames "exc_0_1"))
+ (rule "assignment" (formula "27") (term "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "emptyStatement" (formula "27") (term "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "emptyStatement" (formula "27") (term "1"))
+ (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "24")))
+ (rule "castDel" (formula "21") (term "0"))
+ (rule "applyEqReverse" (formula "22") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "tryEmpty" (formula "26") (term "1"))
+ (rule "blockEmptyLabel" (formula "26") (term "1"))
+ (rule "blockEmpty" (formula "26") (term "1"))
+ (rule "methodCallEmpty" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "emptyModality" (formula "26") (term "1"))
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "closeTrue" (formula "26"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "closeTrue" (formula "26"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "25"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,3,0,0"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,3,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,3,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,1,3,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,1,3,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,1,3,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,1,3,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,1,3,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,1,3,0,0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,1,3,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,1,3,0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,1,3,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1,3,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,3,0,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,1,3,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,1,3,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "wellFormedStoreObject" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "20")))
+ (rule "wellFormedStorePrimitive" (formula "21") (term "0"))
+ (rule "wellFormedStorePrimitive" (formula "21") (term "0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,1"))
+ (rule "wellFormedStoreObject" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "wellFormedStorePrimitive" (formula "21") (term "0"))
+ (rule "wellFormedCreate" (formula "21") (term "0"))
+ (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21")))
+ (rule "applyEqReverse" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "22") (ifseqformula "4"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (rule "andRight" (formula "25"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "21")))
+ (rule "closeTrue" (formula "25"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "22") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeTrue" (formula "22"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "25"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "26"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "19")))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "elim_double_block_2" (formula "27") (term "1"))
+ (rule "ifUnfold" (formula "27") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_1"))
+ (rule "inequality_comparison_simple" (formula "27") (term "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "replace_known_left" (formula "27") (term "0,0,1,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "17") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "13") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (rule "expand_inShort" (formula "11"))
+ (rule "replace_short_MIN" (formula "11") (term "0,1"))
+ (rule "replace_short_MAX" (formula "11") (term "1,0"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "arrayLengthIsAShort" (formula "17") (term "0"))
+ (rule "expand_inShort" (formula "17"))
+ (rule "replace_short_MIN" (formula "17") (term "0,1"))
+ (rule "replace_short_MAX" (formula "17") (term "1,0"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "ifSplit" (formula "27"))
+ (branch "if x_1 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_1 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "27") (term "1"))
+ (rule "assignment_write_attribute_this" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "assignment_write_attribute_this" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "Use Operation Contract" (formula "27") (newnames "heapBefore_build,exc_1,heapAfter_build,anon_heap_build") (contract "de.wiesler.Tree[de.wiesler.Tree::build([I)].JML normal_behavior operation contract.0"))
+ (branch "Post (build)"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "Block Contract (Internal)" (formula "29") (newnames "exc_2,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "30"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "7")) (ifInst "" (formula "26")) (ifInst "" (formula "1")))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (ifseqformula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "eqSymm" (formula "33") (term "0,0,1,0,1"))
+ (rule "translateJavaShiftLeftInt" (formula "33") (term "0,1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0"))
+ (rule "eqSymm" (formula "25") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "variableDeclarationAssign" (formula "33") (term "1"))
+ (rule "variableDeclaration" (formula "33") (term "1") (newnames "exc_2_1"))
+ (rule "assignment" (formula "33") (term "1"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "emptyStatement" (formula "33") (term "1"))
+ (rule "emptyStatement" (formula "33") (term "1"))
+ (rule "javaShiftLeftIntDef" (formula "33") (term "0,1,0,0,1"))
+ (rule "shiftLeftDef" (formula "33") (term "0,0,1,0,0,1"))
+ (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0,1,0,0,1"))
+ (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0,1,0,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0,1,0,0,1"))
+ (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0,1,0,0,1"))
+ (rule "pullOutSelect" (formula "23") (term "0,1,0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "simplifySelectOfStore" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "castDel" (formula "23") (term "0"))
+ (rule "applyEqReverse" (formula "24") (term "0,1,0") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "pullOutSelect" (formula "25") (term "1,1,0,0,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "25") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "30")))
+ (rule "sortsDisjointModuloNull" (formula "25") (term "0,0,0"))
+ (rule "replace_known_right" (formula "25") (term "1,0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "30")))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "25") (term "0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "26") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "26") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "31")))
+ (rule "replaceKnownSelect_taclet0012111_0" (formula "26") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_1" (formula "26") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "26") (term "0,0,0"))
+ (rule "replace_known_right" (formula "26") (term "0,0,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "33")))
+ (rule "ifthenelse_negated" (formula "26") (term "0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "27") (term "1,1,0,2,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32")))
+ (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "34")))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "27") (term "0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "30") (term "0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "applyEq" (formula "27") (term "0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "26") (term "0,0,0") (ifseqformula "30"))
+ (rule "applyEq" (formula "25") (term "0,0,0") (ifseqformula "30"))
+ (rule "simplifySelectOfCreate" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "33")))
+ (rule "castDel" (formula "30") (term "0"))
+ (rule "applyEqReverse" (formula "31") (term "0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "applyEqReverse" (formula "27") (term "0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "simplifySelectOfStore" (formula "27"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "castDel" (formula "27") (term "0"))
+ (rule "applyEqReverse" (formula "26") (term "0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "applyEqReverse" (formula "25") (term "0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "simplifySelectOfStore" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "castDel" (formula "25") (term "0"))
+ (rule "applyEqReverse" (formula "28") (term "1,1,0,2,0,1,0") (ifseqformula "27"))
+ (rule "applyEqReverse" (formula "28") (term "1,1,1,0") (ifseqformula "26"))
+ (rule "hideAuxiliaryEq" (formula "30"))
+ (rule "hideAuxiliaryEq" (formula "27"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "expand_moduloInteger" (formula "33") (term "0,1,0,0,1"))
+ (rule "replace_int_HALFRANGE" (formula "33") (term "0,0,1,0,1,0,0,1"))
+ (rule "replace_int_RANGE" (formula "33") (term "1,1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "33") (term "0,0,1,0,0,1"))
+ (rule "commute_and" (formula "26") (term "1,0,0"))
+ (rule "commute_and" (formula "26") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "26") (term "0,0"))
+ (rule "commute_and_2" (formula "26") (term "0,0,0"))
+ (rule "tryEmpty" (formula "33") (term "1"))
+ (rule "blockEmptyLabel" (formula "33") (term "1"))
+ (rule "blockEmpty" (formula "33") (term "1"))
+ (rule "methodCallEmpty" (formula "33") (term "1"))
+ (rule "emptyModality" (formula "33") (term "1"))
+ (rule "andRight" (formula "33"))
+ (branch "Case 1"
+ (rule "andRight" (formula "33"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "closeTrue" (formula "33"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "ifthenelse_split" (formula "33") (term "1,0,1,0") (userinteraction))
+ (branch "t_1.log_buckets@heapAfter_build % 32 < 0 TRUE"
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "1") (term "0,0"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "34") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "1") (term "0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "34") (term "1,1"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "34") (term "0,0,1,1,1,0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "34") (term "0,0,1,1,1,0,1,0"))
+ (rule "replace_known_left" (formula "26") (term "0,1,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "applyEqReverse" (formula "27") (term "1,0,0,0,0,0") (ifseqformula "26"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "replace_known_left" (formula "15") (term "0,1,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "replace_known_left" (formula "24") (term "0,1,0,1,3,0,0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "replace_known_left" (formula "11") (term "0,1,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "replace_known_left" (formula "22") (term "0,1,0,1,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "replace_known_left" (formula "16") (term "0,1,0,1,3,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "replace_known_left" (formula "20") (term "0,1,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "mod_axiom" (formula "24") (term "0,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "11") (term "0,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "16") (term "0,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "33") (term "0,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "mod_axiom" (formula "26") (term "0,1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,0,1,1"))
+ (rule "mod_axiom" (formula "20") (term "0,1,1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,1,0,1,1"))
+ (rule "mod_axiom" (formula "22") (term "0,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "10"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "22") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "22") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "22") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "22") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,2,0,1,0"))
+ (rule "commute_or" (formula "22") (term "0,0,0"))
+ (rule "commute_or_2" (formula "12") (term "0,0"))
+ (rule "div_axiom" (formula "20") (term "0,1,1,1,1,0,1,3,0,0,0,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "20") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "20") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "equal_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "polySimp_addComm1" (formula "22") (term "1"))
+ (rule "add_literals" (formula "22") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "applyEq" (formula "12") (term "0,1,1,1,1,0,1,1,1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1,0,0"))
+ (rule "applyEq" (formula "12") (term "0,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "11") (term "0,1,1,1,1,0,1,1") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1"))
+ (rule "applyEq" (formula "25") (term "0,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "15") (term "0,1,1,1,1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,1,0,1,1") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1"))
+ (rule "applyEq" (formula "32") (term "0,1,1,1,1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "32") (term "1,1,1,0,0"))
+ (rule "applyEq" (formula "18") (term "0,1,1,1,1,0,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,0"))
+ (rule "applyEq" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0") (ifseqformula "20"))
+ (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "1"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "1,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0"))
+ (rule "add_zero_right" (formula "21") (term "0"))
+ (rule "leq_literals" (formula "21"))
+ (rule "closeFalse" (formula "21"))
+ )
+ (branch "t_1.log_buckets@heapAfter_build % 32 < 0 FALSE"
+ (rule "powPositive" (formula "34") (term "1,0,1,0") (userinteraction))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "35") (term "0,1,1,0,1,0") (userinteraction))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "35") (term "0,1,1,0,1,0") (userinteraction))
+ (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), mod(log_buckets, Z(2(3(#))))),
+ pow(Z(2(#)), de.wiesler.Constants.LOG_MAX_BUCKETS))<>") (userinteraction))
+ (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) TRUE"
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "36") (term "1,1"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "35") (term "0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "36") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "35") (term "0,0"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "2") (term "0,0,0,0"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "2") (term "0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "2") (term "0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "2") (term "0,1,0,1"))
+ (rule "greater_literals" (formula "2") (term "1,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "pow_literals" (formula "1") (term "1"))
+ (rule "replace_known_right" (formula "21") (term "0,1,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "replace_known_right" (formula "12") (term "0,1,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "replace_known_right" (formula "25") (term "0,1,0,1,3,0,0,0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "replace_known_right" (formula "23") (term "0,1,0,1,1") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "replace_known_right" (formula "27") (term "0,1,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "applyEqReverse" (formula "28") (term "1,0,0,0,0,0") (ifseqformula "27"))
+ (rule "hideAuxiliaryEq" (formula "27"))
+ (rule "replace_known_right" (formula "17") (term "0,1,0,1,3,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "replace_known_right" (formula "16") (term "0,1,0,1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_homoEq" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "34"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "2") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0"))
+ (rule "mod_axiom" (formula "13") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "26") (term "1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "18") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "mod_axiom" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "22") (term "1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1"))
+ (rule "mod_axiom" (formula "17") (term "1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1"))
+ (rule "mod_axiom" (formula "24") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "11"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "21"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "11"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "mul_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "24") (term "0,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "nnf_imp2or" (formula "24") (term "0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "24") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0"))
+ (rule "expand_inInt" (formula "15") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0"))
+ (rule "nnf_imp2or" (formula "15") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "24") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "24") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "24") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "24") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,2,0,1,0"))
+ (rule "commute_or" (formula "24") (term "0,0,0"))
+ (rule "commute_or_2" (formula "15") (term "0,0"))
+ (rule "div_axiom" (formula "2") (term "0,1,1,0") (inst "quotient=quotient_0"))
+ (rule "qeq_literals" (formula "2") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,1,1,1"))
+ (rule "equal_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "2"))
+ (rule "polySimp_addComm1" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "applyEq" (formula "18") (term "0,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "17") (term "0,1,1,1,0,1,1") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,0,1,1"))
+ (rule "applyEq" (formula "34") (term "0,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "34") (term "1,1,0,0"))
+ (rule "applyEq" (formula "21") (term "0,1,1,1,0,1,1") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "21") (term "1,1,0,1,1"))
+ (rule "applyEq" (formula "6") (term "0,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "6") (term "1,0"))
+ (rule "applyEq" (formula "27") (term "0,1,1,1,0,1,1,1,0,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "5") (term "0,1,1,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "5") (term "1,0"))
+ (rule "applyEq" (formula "16") (term "0,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0"))
+ (rule "applyEq" (formula "23") (term "0,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0"))
+ (rule "applyEq" (formula "25") (term "0,1,1,1,0,1,3,0,0,0,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,1,0,1,3,0,0,0,0,0"))
+ (rule "applyEq" (formula "18") (term "0,1,1,1,0,1,1,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,0,1,1,1,0,0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "mod_axiom" (formula "17") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "16") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "1"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,1"))
+ (rule "add_zero_left" (formula "16") (term "0,1"))
+ (rule "mod_axiom" (formula "33") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0"))
+ (rule "mod_axiom" (formula "20") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,1"))
+ (rule "add_literals" (formula "20") (term "0,0,1"))
+ (rule "add_zero_left" (formula "20") (term "0,1"))
+ (rule "mod_axiom" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "15") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0"))
+ (rule "mod_axiom" (formula "22") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "mod_axiom" (formula "24") (term "1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,3,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "17") (term "1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "2") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4"))
+ (rule "mul_literals" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "12") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "12"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "11"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "11"))
+ (rule "mul_literals" (formula "3") (term "1,1"))
+ (rule "add_zero_right" (formula "3") (term "1"))
+ (rule "applyEq" (formula "2") (term "0,1") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "2") (term "1"))
+ (rule "applyEq" (formula "5") (term "0,0,1,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "add_zero_left" (formula "5") (term "1,0"))
+ (rule "applyEqRigid" (formula "18") (term "0,0,1,1,0,0,1,1,1,0,0,0,1,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,0,0,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "18") (term "1,1,0,0,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "16") (term "0,0,1,1,1") (ifseqformula "11"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "16") (term "1,1,1"))
+ (rule "applyEq" (formula "27") (term "0,0,1,1,0,0,1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "27") (term "0,1,1,0,0,1,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "1,1,0,0,1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "applyEq" (formula "18") (term "0,0,1,1,0,0,1,1,1,0,0") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "18") (term "0,1,1,0,0,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "18") (term "1,1,0,0,1,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "16") (term "0,0,1,1,0,0,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "1") (term "1") (ifseqformula "11"))
+ (rule "applyEqRigid" (formula "23") (term "0,0,1,1,0,0,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "1,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "applyEqRigid" (formula "25") (term "0,0,1,1,0,0,1,3,0,0,0,0,0") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "25") (term "0,1,1,0,0,1,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "1,1,0,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "3,0,0,0,0,0"))
+ (rule "applyEqRigid" (formula "34") (term "0,0,1,1,0,0,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "1,1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "applyEqRigid" (formula "4") (term "0,0,1,0") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "4") (term "0,1,0"))
+ (rule "add_zero_left" (formula "4") (term "1,0"))
+ (rule "applyEq" (formula "21") (term "0,0,1,1,0,0,1,1") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "21") (term "0,1,1,0,0,1,1"))
+ (rule "add_zero_left" (formula "21") (term "1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1"))
+ (rule "applyEq" (formula "17") (term "0,0,1,1,0,0,1,1") (ifseqformula "11"))
+ (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,1"))
+ (rule "add_zero_left" (formula "17") (term "1,1,0,0,1,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "applyEq" (formula "25") (term "0,0,1,1,3,0,0,0,0,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "1,1,3,0,0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "3,0,0,0,0,0"))
+ (rule "applyEqRigid" (formula "21") (term "0,0,1,1,1") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "21") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "21") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "21") (term "1"))
+ (rule "applyEq" (formula "34") (term "0,0,1,1,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0"))
+ (rule "add_zero_left" (formula "34") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "polySimp_pullOutFactor2" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "0,0"))
+ (rule "add_zero_left" (formula "34") (term "0"))
+ (rule "applyEq" (formula "23") (term "0,0,1,1,0") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "23") (term "0,1,1,0"))
+ (rule "add_zero_left" (formula "23") (term "1,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "applyEqRigid" (formula "18") (term "0,0,1,1,1,1,0,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "18") (term "1,1,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0"))
+ (rule "applyEqRigid" (formula "27") (term "0,0,1,1,1,1,0,0,0") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "27") (term "0,1,1,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "1,1,1,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0,0"))
+ (rule "applyEqRigid" (formula "17") (term "0,0,1,1,1") (ifseqformula "11"))
+ (rule "times_zero_2" (formula "17") (term "0,1,1,1"))
+ (rule "add_zero_left" (formula "17") (term "1,1,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "1"))
+ (rule "applyEqRigid" (formula "18") (term "0,0,1,1,1,1,0,0,0,1,0") (ifseqformula "11"))
+ (rule "mul_literals" (formula "18") (term "0,1,1,1,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "18") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_invertEq" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "mul_literals" (formula "34") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "11"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "elimGcdEq" (formula "32") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(8(4(6(3(8(4(7(4(1(2(#))))))))))),
+ pow(Z(2(#)), log_buckets)),
+ Z(6(9(2(7(6(9(4(9(2(4(#))))))))))))") (inst "elimGcd=Z(6(9(2(7(6(9(4(9(2(4(#)))))))))))"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,1,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,1"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "1,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,1,0"))
+ (rule "times_zero_1" (formula "32") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "mul_literals" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0"))
+ (rule "qeq_literals" (formula "32") (term "1,0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "leq_literals" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "commute_or" (formula "16") (term "1,0,0,1,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "commute_or_2" (formula "25") (term "0,0"))
+ (rule "commute_or" (formula "16") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0,1,0"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "commute_or" (formula "16") (term "0,0,0,1,0"))
+ (rule "div_axiom" (formula "14") (term "0,0") (inst "quotient=quotient_1"))
+ (rule "equal_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "14") (term "0,1"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,1"))
+ (rule "add_literals" (formula "16") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "16") (term "1"))
+ (rule "add_literals" (formula "16") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "applyEq" (formula "18") (term "0,1,1") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "18") (term "1"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,0,0") (ifseqformula "14"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,0,0,0,1,0") (ifseqformula "14"))
+ (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "26") (term "0,1,3,0,0,0,0,0") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "26") (term "3,0,0,0,0,0"))
+ (rule "applyEq" (formula "22") (term "0,1,1") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "22") (term "1"))
+ (rule "applyEq" (formula "24") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "14"))
+ (rule "applyEq" (formula "28") (term "0,1,1,1,0,0") (ifseqformula "14"))
+ (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "22") (term "0,0"))
+ (rule "mul_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_1") (inst "elimGcd=Z(6(9(2(7(6(9(4(9(2(4(#)))))))))))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_strengthen0" (formula "22") (ifseqformula "34"))
+ (rule "add_zero_right" (formula "22") (term "1"))
+ (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "22"))
+ (rule "mul_literals" (formula "34") (term "1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "false_right" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "15"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "23"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) FALSE"
+ (rule "powMonoConcrete" (formula "29") (userinteraction))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "36") (term "1,1"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "35") (term "0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "36") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "35") (term "0,0"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "1") (term "0,1,0,1"))
+ (rule "replaceKnownSelect_taclet0012111_4" (formula "1") (term "0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "1") (term "0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "1") (term "0,0,0,0"))
+ (rule "greater_literals" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "greater_literals" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "replace_known_right" (formula "20") (term "0,1,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "replace_known_right" (formula "15") (term "0,1,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "replace_known_right" (formula "16") (term "0,1,0,1,3,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "replace_known_right" (formula "11") (term "0,1,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "replace_known_right" (formula "24") (term "0,1,0,1,3,0,0,0,0,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "replace_known_right" (formula "22") (term "0,1,0,1,1") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "replace_known_right" (formula "26") (term "0,1,0,1,0") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "applyEqReverse" (formula "27") (term "1,0,0,0,0,0") (ifseqformula "26"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "polySimp_homoEq" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_ltRight" (formula "34"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "replace_known_left" (formula "2") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addComm0" (formula "35") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "mod_axiom" (formula "18") (term "1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "13") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "26") (term "1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0"))
+ (rule "mod_axiom" (formula "3") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0"))
+ (rule "mod_axiom" (formula "35") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0,0,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "mod_axiom" (formula "22") (term "1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1"))
+ (rule "mod_axiom" (formula "17") (term "1,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1"))
+ (rule "mod_axiom" (formula "24") (term "1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "10"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "10"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "23") (term "0,0,0"))
+ (rule "leq_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "nnf_imp2or" (formula "23") (term "0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "23") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "23") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0"))
+ (rule "expand_inInt" (formula "14") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "23") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "23") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "23") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "23") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,2,0,1,0"))
+ (rule "commute_or" (formula "23") (term "0,0,0"))
+ (rule "commute_or_2" (formula "14") (term "0,0"))
+ (rule "div_axiom" (formula "21") (term "0,1,1,1,0,1,3,0,0,0,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "21") (term "0,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_addComm1" (formula "23") (term "1"))
+ (rule "add_literals" (formula "23") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,0,1,1,1,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0,1,1,1,0,0"))
+ (rule "applyEq" (formula "33") (term "0,1,1,1,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "33") (term "1,1,0,0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,0,1,1") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,1,1"))
+ (rule "applyEq" (formula "17") (term "0,1,1,1,0,1,1") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,0,1,1"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "applyEq" (formula "26") (term "0,1,1,1,0,1,1,1,0,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,1,1,0,0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0,1,1,1,0,0,0,1,0"))
+ (rule "applyEq" (formula "12") (term "0,1,1,1,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0"))
+ (rule "applyEq" (formula "2") (term "0,1,1,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,0"))
+ (rule "applyEq" (formula "19") (term "0,1,1,1,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0"))
+ (rule "applyEq" (formula "24") (term "0,1,1,1,0,1,3,0,0,0,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "14") (term "1,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "mod_axiom" (formula "33") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0"))
+ (rule "mod_axiom" (formula "13") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,1"))
+ (rule "add_literals" (formula "13") (term "0,0,1"))
+ (rule "add_zero_left" (formula "13") (term "0,1"))
+ (rule "mod_axiom" (formula "17") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,1"))
+ (rule "add_literals" (formula "17") (term "0,0,1"))
+ (rule "add_zero_left" (formula "17") (term "0,1"))
+ (rule "mod_axiom" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,1,1,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,1,1,0,0,0"))
+ (rule "mod_axiom" (formula "14") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,1,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "mod_axiom" (formula "19") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "0,1,0"))
+ (rule "mul_literals" (formula "19") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "mod_axiom" (formula "24") (term "1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,3,0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,3,0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "22"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "1") (ifseqformula "9"))
+ (rule "mul_literals" (formula "1") (term "1,1,0"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "closeTrue" (formula "33"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "29"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1"))
+ (rule "andLeft" (formula "23"))
+ (rule "wellFormedAnonEQ" (formula "30") (ifseqformula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "eqSymm" (formula "25") (term "1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,2,0,1,0"))
+ (rule "replace_known_left" (formula "31") (term "1") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,1,3,0,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,0,1,3,0,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,1,3,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "31") (term "0,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "mod_axiom" (formula "31") (term "1,2,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,2,1,0,1,3,0,0,0,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "31") (term "1,0,0,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,1,3,0,0,0,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,0,1,3,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "pullOutSelect" (formula "20") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "20") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23")))
+ (rule "eqSymm" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,1,0,0"))
+ (rule "sortsDisjointModuloNull" (formula "20") (term "0,0,0"))
+ (rule "replace_known_right" (formula "20") (term "1,0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "ifthenelse_negated" (formula "20") (term "0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "21") (term "1,1,0,2,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "21") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "24")))
+ (rule "eqSymm" (formula "21") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "21") (term "0,0,0"))
+ (rule "replace_known_right" (formula "21") (term "1,0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "ifthenelse_negated" (formula "21") (term "0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0"))
+ (rule "wellFormedStoreObject" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "26")))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "wellFormedStoreObject" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27")))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedCreate" (formula "28") (term "0,0"))
+ (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0"))
+ (rule "pullOutSelect" (formula "22") (term "1,1,1,0,0,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "22") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "25")))
+ (rule "eqSymm" (formula "22") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,1,0,0"))
+ (rule "sortsDisjointModuloNull" (formula "22") (term "0,0,0"))
+ (rule "replace_known_right" (formula "22") (term "1,0,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "18") (term "0,1,0") (inst "selectSK=de_wiesler_Tree_tree_1"))
+ (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "18"))
+ (rule "simplifySelectOfStore" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "castDel" (formula "18") (term "0"))
+ (rule "applyEqReverse" (formula "21") (term "1,0") (ifseqformula "18"))
+ (rule "applyEqReverse" (formula "19") (term "0,1,0") (ifseqformula "18"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "pullOutSelect" (formula "20") (term "0,0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "applyEq" (formula "22") (term "0,0,0") (ifseqformula "20"))
+ (rule "applyEq" (formula "23") (term "0,0,0") (ifseqformula "20"))
+ (rule "simplifySelectOfCreate" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "26")))
+ (rule "castDel" (formula "20") (term "0"))
+ (rule "applyEqReverse" (formula "21") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "applyEqReverse" (formula "22") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "simplifySelectOfStore" (formula "22"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "castDel" (formula "22") (term "0"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "simplifySelectOfStore" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "castDel" (formula "23") (term "0"))
+ (rule "applyEqReverse" (formula "24") (term "1,1,1,0") (ifseqformula "21"))
+ (rule "applyEqReverse" (formula "24") (term "1,1,0,2,0,1,0") (ifseqformula "22"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "polySimp_homoEq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "1,3,0") (ifseqformula "20"))
+ (rule "polySimp_addAssoc" (formula "11") (term "3,0"))
+ (rule "add_literals" (formula "11") (term "0,3,0"))
+ (rule "applyEq" (formula "14") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0"))
+ (rule "applyEq" (formula "18") (term "1,3,0,0,0,0,0") (ifseqformula "20"))
+ (rule "polySimp_addAssoc" (formula "18") (term "3,0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "3,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1"))
+ (rule "pullOutSelect" (formula "27") (term "0,1") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24")))
+ (rule "applyEqReverse" (formula "28") (term "0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "27") (term "1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")))
+ (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "28") (ifseqformula "4"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (rule "andRight" (formula "29"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "25")))
+ (rule "closeTrue" (formula "29"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1"))
+ (rule "andLeft" (formula "23"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (ifseqformula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "orRight" (formula "31"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0"))
+ (rule "eqSymm" (formula "25") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "pullOutSelect" (formula "20") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "20") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23")))
+ (rule "eqSymm" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,1,0,0"))
+ (rule "sortsDisjointModuloNull" (formula "20") (term "0,0,0"))
+ (rule "replace_known_right" (formula "20") (term "1,0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "20") (term "0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "applyEqReverse" (formula "21") (term "1,1,1,0") (ifseqformula "20"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "pullOutSelect" (formula "20") (term "1,1,0,2,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "20") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23")))
+ (rule "eqSymm" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,1,0,0"))
+ (rule "sortsDisjointModuloNull" (formula "20") (term "0,0,0"))
+ (rule "replace_known_right" (formula "20") (term "1,0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "20") (term "0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "applyEqReverse" (formula "21") (term "1,1,0,2,0,1,0") (ifseqformula "20"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "closeTrue" (formula "27"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "29"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "24"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "23"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (term "1") (ifseqformula "23"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "25"))
+ (rule "translateJavaShiftLeftInt" (formula "27") (term "0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0"))
+ (rule "eqSymm" (formula "25") (term "1,0"))
+ (rule "replace_known_left" (formula "28") (term "0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0"))
+ (rule "javaShiftLeftIntDef" (formula "27") (term "0"))
+ (rule "shiftLeftDef" (formula "27") (term "0,0"))
+ (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,0"))
+ (rule "pullOutSelect" (formula "23") (term "0,1,0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "simplifySelectOfStore" (formula "23"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "castDel" (formula "23") (term "0"))
+ (rule "applyEqReverse" (formula "24") (term "0,1,0") (ifseqformula "23"))
+ (rule "hideAuxiliaryEq" (formula "23"))
+ (rule "pullOutSelect" (formula "27") (term "1,1") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "applyEq" (formula "28") (term "0,1,2,0,0") (ifseqformula "27"))
+ (rule "applyEq" (formula "28") (term "0,0,0,0,0") (ifseqformula "27"))
+ (rule "applyEq" (formula "28") (term "0,0,1,1,1,0,0") (ifseqformula "27"))
+ (rule "applyEq" (formula "25") (term "1,1,0,2,0,1,0") (ifseqformula "27"))
+ (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "30")))
+ (rule "dismissNonSelectedField" (formula "27") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,0,0"))
+ (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0"))
+ (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32")))
+ (rule "ifthenelse_negated" (formula "27") (term "0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "25") (term "1,1,0,0,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "25") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "31")))
+ (rule "sortsDisjointModuloNull" (formula "25") (term "0,0,0"))
+ (rule "replace_known_right" (formula "25") (term "0,0,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "33")))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "25") (term "0"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "26") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "26") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "32")))
+ (rule "replaceKnownSelect_taclet2012111_0" (formula "26") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_1" (formula "26") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "26") (term "0,0,0"))
+ (rule "replace_known_right" (formula "26") (term "0,0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "34")))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "26") (term "0"))
+ (rule "pullOutSelect" (formula "29") (term "1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_1"))
+ (rule "simplifySelectOfStore" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "castDel" (formula "29") (term "0"))
+ (rule "applyEqReverse" (formula "30") (term "1,0") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "pullOutSelect" (formula "29") (term "0,0,0") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "applyEq" (formula "25") (term "0,0,0") (ifseqformula "29"))
+ (rule "applyEq" (formula "26") (term "0,0,0") (ifseqformula "29"))
+ (rule "simplifySelectOfCreate" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "33")))
+ (rule "castDel" (formula "29") (term "0"))
+ (rule "applyEqReverse" (formula "30") (term "0,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "applyEqReverse" (formula "25") (term "0,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "simplifySelectOfStore" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "castDel" (formula "25") (term "0"))
+ (rule "applyEqReverse" (formula "26") (term "0,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "applyEqReverse" (formula "31") (term "0,1,2,0,0") (ifseqformula "30"))
+ (rule "applyEqReverse" (formula "31") (term "0,0,0,0,0") (ifseqformula "30"))
+ (rule "applyEqReverse" (formula "27") (term "1,1,0,2,0,1,0") (ifseqformula "30"))
+ (rule "applyEqReverse" (formula "31") (term "1,1") (ifseqformula "30"))
+ (rule "applyEqReverse" (formula "31") (term "0,0,1,1,1,0,0") (ifseqformula "30"))
+ (rule "applyEqReverse" (formula "27") (term "1,1,1,0") (ifseqformula "26"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "hideAuxiliaryEq" (formula "26"))
+ (rule "expand_moduloInteger" (formula "28") (term "0"))
+ (rule "replace_int_RANGE" (formula "28") (term "1,1,0"))
+ (rule "replace_int_HALFRANGE" (formula "28") (term "0,0,1,0"))
+ (rule "replace_int_MIN" (formula "28") (term "0,0"))
+ (rule "commute_and" (formula "26") (term "1,0,0"))
+ (rule "commute_and" (formula "26") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "34") (term "1"))
+ (rule "shift_paren_and" (formula "26") (term "0,0"))
+ (rule "commute_and_2" (formula "26") (term "0,0,0"))
+ (rule "ifUnfold" (formula "34") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_2"))
+ (rule "inequality_comparison_simple" (formula "34") (term "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "replace_known_left" (formula "34") (term "0,0,1,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "ifSplit" (formula "34"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_2 false"
+ (builtin "One Step Simplification" (formula "35"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "34") (term "1"))
+ (rule "emptyStatement" (formula "34") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "34") (newnames "exc_3,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "7")) (ifInst "" (formula "31")) (ifInst "" (formula "1")))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1") (ifseqformula "23"))
+ (rule "expand_inInt" (formula "35") (term "1,0,0,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0,0,1"))
+ (rule "andLeft" (formula "29"))
+ (rule "eqSymm" (formula "36") (term "0,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "30") (term "0,0"))
+ (rule "replaceKnownSelect_taclet2012111_7" (formula "30") (term "0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_9" (formula "30") (term "0,0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0,1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0,1,0,0,1"))
+ (rule "variableDeclarationAssign" (formula "35") (term "1"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "exc_3_1"))
+ (rule "assignment" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "emptyStatement" (formula "35") (term "1"))
+ (rule "emptyStatement" (formula "35") (term "1"))
+ (rule "tryEmpty" (formula "35") (term "1"))
+ (rule "blockEmptyLabel" (formula "35") (term "1"))
+ (rule "blockEmpty" (formula "35") (term "1"))
+ (rule "methodCallEmpty" (formula "35") (term "1"))
+ (rule "emptyModality" (formula "35") (term "1"))
+ (rule "andRight" (formula "35"))
+ (branch "Case 1"
+ (rule "andRight" (formula "35"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "closeTrue" (formula "35"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "allRight" (formula "35") (inst "sk=i_0") (userinteraction))
+ (rule "Contract_axiom_for_piInRangeLower_in_Tree" (formula "35") (term "0,0,1") (userinteraction))
+ (rule "Contract_axiom_for_piInRangeUpper_in_Tree" (formula "36") (term "0,1,1") (userinteraction))
+ (rule "impLeft" (formula "1") (userinteraction))
+ (branch "Case 1"
+ (rule "impLeft" (formula "1") (userinteraction))
+ (branch "Case 1"
+ (rule "wellFormedAnonEQ" (formula "31") (term "1") (ifseqformula "23"))
+ (rule "wellFormedAnonEQ" (formula "30") (term "1") (ifseqformula "23"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "37") (term "1,1,0,0"))
+ (rule "impRight" (formula "37"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "replace_known_left" (formula "34") (term "1,1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "replace_known_left" (formula "35") (term "1,1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "polySimp_homoEq" (formula "32"))
+ (rule "polySimp_homoEq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,3,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,3,0,0,0,0,1"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0,1,3,0,0,0,0,1"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "32") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0"))
+ (rule "replace_known_left" (formula "34") (term "1,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0"))
+ (rule "replace_known_left" (formula "35") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0"))
+ (rule "replace_known_left" (formula "34") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,1,0"))
+ (rule "replace_known_left" (formula "35") (term "0,1,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_homoInEq0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "32") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "32") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "29") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "29") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "32") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "29") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "34") (term "1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "34") (term "1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "18") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "18") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "18") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "35") (term "1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "applyEq" (formula "23") (term "0,1,0") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "0,0"))
+ (rule "applyEq" (formula "34") (term "1,3,0,0,0,0,1") (ifseqformula "32"))
+ (rule "polySimp_addAssoc" (formula "34") (term "3,0,0,0,0,1"))
+ (rule "add_literals" (formula "34") (term "0,3,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "34") (term "3,0,0,0,0,1"))
+ (rule "applyEq" (formula "27") (term "1,3,0,0,0,0,0") (ifseqformula "32"))
+ (rule "polySimp_addAssoc" (formula "27") (term "3,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "3,0,0,0,0,0"))
+ (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "32"))
+ (rule "polySimp_addAssoc" (formula "19") (term "3,0"))
+ (rule "add_literals" (formula "19") (term "0,3,0"))
+ (rule "applyEq" (formula "35") (term "1,3,0,0,0,0,1") (ifseqformula "32"))
+ (rule "polySimp_addAssoc" (formula "35") (term "3,0,0,0,0,1"))
+ (rule "add_literals" (formula "35") (term "0,3,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "35") (term "3,0,0,0,0,1"))
+ (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "32"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "1,0") (ifseqformula "32"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "add_zero_left" (formula "14") (term "0"))
+ (rule "applyEq" (formula "29") (term "0,1,0") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0"))
+ (rule "applyEq" (formula "18") (term "0,1,0") (ifseqformula "32"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "applyEqReverse" (formula "30") (term "1,1,0,0,0,0,0") (ifseqformula "29"))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "replace_known_left" (formula "33") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "replace_known_left" (formula "34") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "33")))
+ (rule "false_right" (formula "34"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "13"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "10"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "wellFormedStoreObject" (formula "27"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "31")))
+ (rule "wellFormedStorePrimitive" (formula "27") (term "0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1"))
+ (rule "wellFormedStoreObject" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32")))
+ (rule "wellFormedStorePrimitive" (formula "27") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "27") (term "0,0"))
+ (rule "wellFormedCreate" (formula "27") (term "0,0"))
+ (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0"))
+ (rule "pullOutSelect" (formula "27") (term "0,1") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32")))
+ (rule "applyEqReverse" (formula "28") (term "0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "27") (term "1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")))
+ (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "29") (ifseqformula "7"))
+ )
+ (branch "Case 2"
+ (rule "Contract_axiom_for_piLemmaUpperBound_in_Tree" (formula "31") (term "0,1,1,0") (userinteraction))
+ (rule "wellFormedAnonEQ" (formula "32") (term "1") (ifseqformula "25"))
+ (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "25"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "38") (term "1,1,0,0"))
+ (rule "impRight" (formula "38"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "replace_known_left" (formula "5") (term "1,1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "1")))
+ (rule "replace_known_left" (formula "36") (term "1,1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "polySimp_homoEq" (formula "31"))
+ (rule "polySimp_homoEq" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,3,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0,1,3,0,0,0,0,1"))
+ (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "add_literals" (formula "36") (term "0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,1,0"))
+ (rule "replace_known_left" (formula "36") (term "0,1,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0"))
+ (rule "replace_known_left" (formula "36") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "inEqSimp_homoInEq0" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "mod_axiom" (formula "29") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "16") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "16") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "29") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "31") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "31") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "34") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "34") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "29") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "16") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "31") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "34") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "36") (term "1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "20") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "20") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "applyEq" (formula "36") (term "1,3,0,0,0,0,1") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "36") (term "3,0,0,0,0,1"))
+ (rule "add_literals" (formula "36") (term "0,3,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "36") (term "3,0,0,0,0,1"))
+ (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "20") (term "0,1,0") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "add_zero_left" (formula "20") (term "0,0"))
+ (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "31"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0"))
+ (rule "applyEq" (formula "21") (term "1,3,0") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "21") (term "3,0"))
+ (rule "add_literals" (formula "21") (term "0,3,0"))
+ (rule "applyEq" (formula "29") (term "1,3,0,0,0,0,0") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "29") (term "3,0,0,0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "3,0,0,0,0,0"))
+ (rule "applyEq" (formula "5") (term "1,3,0,0,0,0,0") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "5") (term "3,0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "3,0,0,0,0,0"))
+ (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "31"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "add_zero_left" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1"))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "27") (term "1,0") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "20") (term "0,0,0") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "25") (term "0,0,0") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "31") (term "1,1") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "5") (term "3,0,0,0,0,0") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "36") (term "3,0,0,0,0,1") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "29") (term "3,0,0,0,0,0") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "21") (term "1,3,0") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "16") (term "0") (ifseqformula "34"))
+ (rule "applyEqReverse" (formula "32") (term "1,1,0,0,0,0,0") (ifseqformula "34"))
+ (rule "hideAuxiliaryEq" (formula "34"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1"))
+ (rule "polySimp_elimOne" (formula "20") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "14"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "14"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "wellFormedStoreObject" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "33")))
+ (rule "wellFormedStorePrimitive" (formula "4") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "4") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "4") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "4") (term "0,1,0"))
+ (rule "dismissNonSelectedField" (formula "4") (term "0,1,0"))
+ (rule "wellFormedStoreObject" (formula "29") (term "1"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "33")))
+ (rule "wellFormedStorePrimitive" (formula "29") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,1,1"))
+ (rule "wellFormedStoreObject" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")))
+ (rule "wellFormedStorePrimitive" (formula "4") (term "0,0,0"))
+ (rule "wellFormedStorePrimitive" (formula "4") (term "0,0,0"))
+ (rule "wellFormedCreate" (formula "4") (term "0,0,0"))
+ (rule "replace_known_left" (formula "4") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "dismissNonSelectedField" (formula "4") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "4") (term "0,0,0"))
+ (rule "wellFormedStoreObject" (formula "29") (term "0,1"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "34")))
+ (rule "wellFormedStorePrimitive" (formula "29") (term "0,0,1"))
+ (rule "wellFormedStorePrimitive" (formula "29") (term "0,0,1"))
+ (rule "wellFormedCreate" (formula "29") (term "0,0,1"))
+ (rule "replace_known_left" (formula "29") (term "0,0,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,1"))
+ (rule "pullOutSelect" (formula "4") (term "0,1,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "applyEq" (formula "30") (term "0,1,1") (ifseqformula "4"))
+ (rule "simplifySelectOfCreate" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "32")))
+ (rule "castDel" (formula "4") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "4") (term "0,0"))
+ (rule "replace_known_right" (formula "4") (term "0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")))
+ (rule "applyEqReverse" (formula "5") (term "0,1,0") (ifseqformula "4"))
+ (rule "applyEqReverse" (formula "30") (term "0,1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "replace_known_left" (formula "4") (term "1,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "replace_known_left" (formula "29") (term "1,1") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "pullOutSelect" (formula "4") (term "0,0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "applyEq" (formula "31") (term "0,1") (ifseqformula "4"))
+ (rule "simplifySelectOfCreate" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "33")))
+ (rule "castDel" (formula "4") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "4") (term "0,0"))
+ (rule "replace_known_right" (formula "4") (term "0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "36")))
+ (rule "applyEqReverse" (formula "5") (term "0,0") (ifseqformula "4"))
+ (rule "applyEqReverse" (formula "31") (term "0,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "replace_known_left" (formula "30") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "replace_known_left" (formula "4") (term "0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "30")))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ (branch "Case 2"
+ (rule "wellFormedAnonEQ" (formula "2") (term "1,0") (ifseqformula "25"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "37") (term "1,1,0,0"))
+ (rule "impRight" (formula "37"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "replace_known_left" (formula "41") (term "1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "replace_known_left" (formula "6") (term "1,1,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "41")))
+ (rule "notLeft" (formula "6"))
+ (rule "polySimp_homoEq" (formula "30"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "26") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,1,0,1,3,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0,1,3,0,0,0,0,1"))
+ (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "1,0"))
+ (rule "replace_known_left" (formula "35") (term "1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0"))
+ (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "20") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "28") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "20") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "30") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "30") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "33") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "33") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "30") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "33") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "35") (term "1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "26") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "26") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "26") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "24") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0"))
+ (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "30"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "add_zero_left" (formula "15") (term "0"))
+ (rule "applyEq" (formula "24") (term "0,1,0") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0"))
+ (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "30"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "applyEq" (formula "19") (term "0,1,0") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0"))
+ (rule "applyEq" (formula "28") (term "1,3,0,0,0,0,0") (ifseqformula "30"))
+ (rule "polySimp_addAssoc" (formula "28") (term "3,0,0,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "3,0,0,0,0,0"))
+ (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "30"))
+ (rule "polySimp_addAssoc" (formula "20") (term "3,0"))
+ (rule "add_literals" (formula "20") (term "0,3,0"))
+ (rule "applyEq" (formula "35") (term "1,3,0,0,0,0,1") (ifseqformula "30"))
+ (rule "polySimp_addAssoc" (formula "35") (term "3,0,0,0,0,1"))
+ (rule "add_literals" (formula "35") (term "0,3,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "35") (term "3,0,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_sepPosMonomial" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1"))
+ (rule "applyEqReverse" (formula "30") (term "1,1") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "28") (term "3,0,0,0,0,0") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "19") (term "0,0,0") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "31") (term "1,1,0,0,0,0,0") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "24") (term "0,0,0") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "20") (term "1,3,0") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "35") (term "3,0,0,0,0,1") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "26") (term "1,0") (ifseqformula "33"))
+ (rule "applyEqReverse" (formula "15") (term "0") (ifseqformula "33"))
+ (rule "hideAuxiliaryEq" (formula "33"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "14"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "11"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "wellFormedStoreObject" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "32")))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "wellFormedStoreObject" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33")))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedCreate" (formula "28") (term "0,0"))
+ (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0"))
+ (rule "pullOutSelect" (formula "28") (term "0,1") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "applyEqReverse" (formula "29") (term "0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35")))
+ (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "30") (ifseqformula "8"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "closeTrue" (formula "35"))
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "34"))
+ (branch "Case 1"
+ (rule "andRight" (formula "34"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "7")))
+ (rule "closeTrue" (formula "34"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "wellFormedAnonEQ" (formula "34") (ifseqformula "23"))
+ (rule "replace_known_left" (formula "34") (term "1") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "polySimp_homoEq" (formula "25"))
+ (rule "polySimp_homoEq" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,3,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,1,3,0,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0,1,0,1,3,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0"))
+ (rule "mod_axiom" (formula "34") (term "1,2,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,2,1,0,1,3,0,0,0,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "34") (term "1,0,0,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,1,3,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,3,0,0,0,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "applyEq" (formula "19") (term "0,1,0") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "1,3,0,0,0,0,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "23") (term "3,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "3,0,0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "15") (term "3,0"))
+ (rule "add_literals" (formula "15") (term "0,3,0"))
+ (rule "applyEq" (formula "34") (term "1,3,0,0,0,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "34") (term "3,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,3,0,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "3,0,0,0,0"))
+ (rule "applyEq" (formula "10") (term "1,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,0") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1"))
+ (rule "applyEqReverse" (formula "34") (term "3,0,0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "21") (term "1,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "23") (term "3,0,0,0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "14") (term "0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "10") (term "0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "26") (term "1,1,0,0,0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "19") (term "0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "15") (term "1,3,0") (ifseqformula "28"))
+ (rule "hideAuxiliaryEq" (formula "28"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "wellFormedStoreObject" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "26")))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,1"))
+ (rule "wellFormedStoreObject" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27")))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedStorePrimitive" (formula "28") (term "0,0"))
+ (rule "wellFormedCreate" (formula "28") (term "0,0"))
+ (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "28") (term "0,0"))
+ (rule "pullOutSelect" (formula "28") (term "0,1") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")))
+ (rule "applyEqReverse" (formula "29") (term "0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=java_lang_Object_created__2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")))
+ (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "1"))
+ (rule "close" (formula "30") (ifseqformula "4"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "34"))
+ (branch "Case 1"
+ (rule "andRight" (formula "34"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "30")))
+ (rule "closeTrue" (formula "34"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "23"))
+ (rule "orRight" (formula "34"))
+ (rule "polySimp_homoEq" (formula "28"))
+ (rule "polySimp_homoEq" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0"))
+ (rule "replaceKnownSelect_taclet2012111_7" (formula "34") (term "0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_9" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "closeTrue" (formula "34"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "34"))
+ )
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1,1") (ifseqformula "23"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "29") (term "1,1,0,0,0,1,0"))
+ (rule "expand_inInt" (formula "29") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "replace_known_left" (formula "31") (term "0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0"))
+ (rule "commute_and" (formula "30") (term "1,0,0"))
+ (rule "commute_and" (formula "30") (term "0,0,0"))
+ (rule "shift_paren_and" (formula "30") (term "0,0"))
+ (rule "commute_and_2" (formula "30") (term "0,0,0"))
+ (rule "elim_double_block_2" (formula "36") (term "1"))
+ (rule "ifUnfold" (formula "36") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "replace_known_left" (formula "36") (term "0,0,1,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "ifSplit" (formula "36"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "36") (term "1"))
+ (rule "emptyStatement" (formula "36") (term "1"))
+ (rule "methodCallEmpty" (formula "36") (term "1"))
+ (rule "blockEmpty" (formula "36") (term "1"))
+ (rule "assignment_write_attribute" (formula "36"))
+ (branch "Normal Execution (self_207 != null)"
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "tryEmpty" (formula "36") (term "1"))
+ (rule "emptyModality" (formula "36") (term "1"))
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "polySimp_homoEq" (formula "25"))
+ (rule "polySimp_homoEq" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "28") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0"))
+ (rule "applyEq" (formula "10") (term "1,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "add_zero_left" (formula "10") (term "0"))
+ (rule "applyEq" (formula "19") (term "0,1,0") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "add_zero_left" (formula "19") (term "0,0"))
+ (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0"))
+ (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "0,1,0") (ifseqformula "25"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0"))
+ (rule "applyEq" (formula "23") (term "1,3,0,0,0,0,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "23") (term "3,0,0,0,0,0"))
+ (rule "add_literals" (formula "23") (term "0,3,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "23") (term "3,0,0,0,0,0"))
+ (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "15") (term "3,0"))
+ (rule "add_literals" (formula "15") (term "0,3,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1"))
+ (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "10") (term "0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "15") (term "1,3,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "19") (term "0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "30") (term "1,1,0,0,0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "14") (term "0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "26") (term "1,1,0,0,0,0,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "21") (term "1,0") (ifseqformula "28"))
+ (rule "applyEqReverse" (formula "23") (term "3,0,0,0,0,0") (ifseqformula "28"))
+ (rule "hideAuxiliaryEq" (formula "28"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "inEqSimp_and_subsumption3" (formula "25") (term "0,0,0"))
+ (rule "leq_literals" (formula "25") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "31") (inst "i=i") (inst "i_0=i_0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0,1"))
+ (rule "expand_inInt" (formula "31") (term "1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1"))
+ (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1,0"))
+ (rule "eqSymm" (formula "31") (term "1,0,1"))
+ (rule "translateJavaSubInt" (formula "31") (term "3,0,1,0,0"))
+ (rule "translateJavaShiftLeftInt" (formula "31") (term "1,1,0,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "31") (term "0,2,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "31") (term "3,0,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "1,3,0,1,0,0"))
+ (rule "polySimp_elimSub" (formula "31") (term "0,2,0,1,0,1"))
+ (rule "mul_literals" (formula "31") (term "1,0,2,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "31") (term "3,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,2,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,1,0,1,0"))
+ (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,0,1,1,0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,0,1,1,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "0,1,1,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "0,1,1,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,1,0,1,0"))
+ (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,1,0,1,0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,1,0,1,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_4" (formula "31") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_11" (formula "31") (term "0,0,1,0,0,0,0,0,0,0"))
+ (rule "replace_known_right" (formula "31") (term "0,1,0,0,0,0,0,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,1,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "0,1,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "0,1,0,0,0,0,0"))
+ (rule "eqSymm" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,1,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_4" (formula "31") (term "0,1,1,1,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_11" (formula "31") (term "0,1,1,1,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,0,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "0,1,1,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "0,1,1,0,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "31") (term "1,1,0,0,0,0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,1,0,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,1,0,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,1,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "0,1,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "0,1,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,0,1,0,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,0,1,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,0,1,0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,0,1,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,0,0,0,0,0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,1,0,1"))
+ (rule "replaceKnownSelect_taclet2012111_4" (formula "31") (term "1,1,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_11" (formula "31") (term "1,1,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,1,0,1,0"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,1,1,0,1,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,1,1,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,3,0,1,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,3,0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,3,0,1,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0,1"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,2,0,1,0,1"))
+ (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,1,0,2,0,1,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,1,0,2,0,1,0,1"))
+ (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "replace_known_left" (formula "31") (term "1,1,0,0,0,0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0,0,0"))
+ (rule "replace_known_left" (formula "31") (term "1,0,0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0,0,0,0"))
+ (rule "replace_known_left" (formula "31") (term "1,0,0,0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1"))
+ (rule "javaShiftLeftIntDef" (formula "31") (term "0,1,0,0,0,0"))
+ (rule "mod_axiom" (formula "31") (term "1,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "shiftLeftDef" (formula "31") (term "0,0,1,0,0,0,0"))
+ (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,0,1,0,0,0,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,0,1,0,0,0,0"))
+ (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,0,1,0,0,0,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,0,1,0,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,0,0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,0,1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,0,1,0,0,0,0"))
+ (rule "pullOutSelect" (formula "31") (term "0,0,1,0,0,0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0"))
+ (rule "applyEq" (formula "32") (term "1,0,1,0,1") (ifseqformula "1"))
+ (rule "applyEq" (formula "32") (term "0,0,0,0,0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "32") (term "1,0,1,0,0") (ifseqformula "1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "1") (term "0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "replaceKnownSelect_taclet2012111_7" (formula "1") (term "0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet2012111_9" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "32") (term "1,0,1,0,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "32") (term "1,0,1,0,1") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "32") (term "0,0,0,0,0,0,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "32") (term "0,0,1,0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "31") (term "1,0,0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "30")))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_imp2or" (formula "22") (term "0"))
+ (rule "expand_moduloInteger" (formula "31") (term "0,0,0,0"))
+ (rule "replace_int_HALFRANGE" (formula "31") (term "0,0,1,0,0,0,0"))
+ (rule "replace_int_RANGE" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "replace_int_MIN" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_homoEq" (formula "31") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "31") (term "0,1,0,0,0,0") (ifseqformula "21"))
+ (rule "polySimp_pullOutFactor1" (formula "31") (term "0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0"))
+ (rule "expand_inInt" (formula "12") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "31") (term "0,1"))
+ (rule "nnf_imp2or" (formula "31") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "25") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "22") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "22") (term "0,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,1"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "31") (term "1,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0,1"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "1,0,1,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0,1"))
+ (rule "add_literals" (formula "31") (term "0,0,1,1,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0,1"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0,1"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,1"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,1"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,1"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,1"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,1"))
+ (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,1"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "31") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "31") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0"))
+ (rule "div_axiom" (formula "21") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0"))
+ (rule "equal_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,1"))
+ (rule "qeq_literals" (formula "21") (term "0,1"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_addComm1" (formula "23") (term "1"))
+ (rule "add_literals" (formula "23") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "applyEq" (formula "24") (term "0,0,0,1,0,0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0"))
+ (rule "applyEq" (formula "24") (term "0,1,1,1,1,1,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,1,1,1,0,0"))
+ (rule "applyEq" (formula "24") (term "0,1,1,2,1,0,0") (ifseqformula "21"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "24") (term "0,1,0,0") (ifseqformula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "leq_literals" (formula "24") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "mod_axiom" (formula "24") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1"))
+ (rule "newSym_eq" (formula "24") (inst "l=l_0") (inst "newSymDef=add(mul(pow(Z(2(#)), log_buckets), Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ log_buckets)),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "24") (term "0,1,1"))
+ (rule "times_zero_1" (formula "24") (term "1,1,1"))
+ (rule "add_zero_right" (formula "24") (term "1,1"))
+ (rule "add_zero_right" (formula "24") (term "1"))
+ (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "24"))
+ (rule "polySimp_homoEq" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,1"))
+ (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "25"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "24") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "polySimp_homoEq" (formula "24"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "0,0"))
+ (rule "add_zero_left" (formula "24") (term "0"))
+ (rule "polySimp_invertEq" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7"))
+ (rule "polySimp_mulAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "24"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0"))
+ (rule "leq_literals" (formula "6") (term "0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "inEqSimp_antiSymm" (formula "6") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "25") (term "0,1") (ifseqformula "6"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "applyEq" (formula "24") (term "0") (ifseqformula "6"))
+ (rule "leq_literals" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEqRigid" (formula "24") (term "0,1,1") (ifseqformula "6"))
+ (rule "mul_literals" (formula "24") (term "1,1"))
+ (rule "add_literals" (formula "24") (term "1"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "6"))
+ (rule "applyEq" (formula "26") (term "0,0,1,0") (ifseqformula "6"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "add_zero_left" (formula "26") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "26"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_zero_right" (formula "26") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "7"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "8"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "elimGcdEq" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(9(2(7(6(9(4(9(2(4(#)))))))))))"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0"))
+ (rule "add_literals" (formula "24") (term "1,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,1,0"))
+ (rule "times_zero_1" (formula "24") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "times_zero_1" (formula "24") (term "0,0,0"))
+ (rule "times_zero_1" (formula "24") (term "0,1,0"))
+ (rule "leq_literals" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "qeq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "Definition_axiom_for_piInRangeUpper_in_de_wiesler_Tree" (formula "28") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "25") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "25") (term "1,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,2,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "34") (term "0,0,0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0,0,0"))
+ (rule "expand_inInt" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,0,0"))
+ (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,1,0,1,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "34") (term "1,1,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0,0,0"))
+ (rule "commute_or" (formula "25") (term "0,0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0"))
+ (rule "nnf_imp2or" (formula "34") (term "0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0,0"))
+ (rule "nnf_imp2or" (formula "34") (term "0,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "commute_or_2" (formula "13") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "34") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "34") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,1,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,1,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,0,0,1,0,0,0"))
+ (rule "Definition_axiom_for_piInRangeLower_in_de_wiesler_Tree" (formula "28") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "1,0,2,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "34") (term "0,1,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,0,0,1,0,2,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "1,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,1,0,2,0,1,0,1"))
+ (rule "mul_literals" (formula "34") (term "1,0,1,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,2,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,0,2,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "34") (term "1,1,0,2,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,2,0,1,0,1"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,1,0,2,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,2,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,2,0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,1,0,2,0,1,0,1"))
+ (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,0,2,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,0,2,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,2,0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,2,0,1,0,1"))
+ (rule "commute_or_2" (formula "25") (term "0,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,0,1,1,1,0"))
+ (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0"))
+ (rule "commute_or" (formula "13") (term "1,0,0,0"))
+ (rule "div_axiom" (formula "23") (term "0") (inst "quotient=quotient_1"))
+ (rule "qeq_literals" (formula "23") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,1"))
+ (rule "equal_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "andLeft" (formula "23"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,1"))
+ (rule "add_literals" (formula "25") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "25") (term "1"))
+ (rule "add_literals" (formula "25") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "24"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "0,1,0,0") (ifseqformula "26"))
+ (rule "mul_literals" (formula "24") (term "1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "26"))
+ (rule "times_zero_2" (formula "25") (term "1,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0"))
+ (rule "applyEqRigid" (formula "23") (term "1") (ifseqformula "26"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "18"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "11"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "commute_or" (formula "29") (term "0,0,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,1,0"))
+ (rule "andRight" (formula "35"))
+ (branch "Case 1"
+ (rule "commute_or_2" (formula "29") (term "0,0"))
+ (rule "shift_paren_or" (formula "13") (term "0,0,0"))
+ (rule "cnf_rightDist" (formula "29") (term "0"))
+ (rule "distr_forallAnd" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "commute_or" (formula "30") (term "0"))
+ (rule "commute_or_2" (formula "13") (term "0,0,1,0"))
+ (rule "commute_or" (formula "13") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "13") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "allRight" (formula "36") (inst "sk=i_0"))
+ (rule "orRight" (formula "36"))
+ (rule "cutUpperBound" (formula "36") (ifseqformula "13"))
+ (branch "Case 1"
+ (rule "crossInst" (formula "14") (inst "sk=i_1") (ifseqformula "37"))
+ (rule "orRight" (formula "38"))
+ (rule "andLeft" (formula "14"))
+ (rule "orRight" (formula "40"))
+ (rule "orRight" (formula "39"))
+ (rule "allRight" (formula "43") (inst "sk=j_0"))
+ (rule "orRight" (formula "43"))
+ (rule "orRight" (formula "43"))
+ (rule "orRight" (formula "44"))
+ (rule "orRight" (formula "43"))
+ (rule "polySimp_homoEq" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "41"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "42"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "42"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_leqRight" (formula "47"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_leqRight" (formula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1,0"))
+ (rule "applyEq" (formula "24") (term "0,0,0,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "1,1,1,0,0,1") (ifseqformula "23"))
+ (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "0,2,1,1,0,1") (ifseqformula "23"))
+ (rule "applyEqRigid" (formula "24") (term "0,1,0,0,1,0") (ifseqformula "23"))
+ (rule "polySimp_sepPosMonomial" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "applyEq" (formula "32") (term "3,0,0,0,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "42") (term "1,1,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "28") (term "1") (ifseqformula "10"))
+ (rule "applyEq" (formula "24") (term "1,0,1,0") (ifseqformula "10"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor2" (formula "24") (term "0,1,0"))
+ (rule "add_literals" (formula "24") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "24") (term "0,1,0"))
+ (rule "leq_literals" (formula "24") (term "1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "applyEq" (formula "40") (term "1,1,0,0") (ifseqformula "10"))
+ (rule "applyEq" (formula "24") (term "1,1,1,0,0") (ifseqformula "10"))
+ (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "24") (term "1,1,0,0"))
+ (rule "applyEq" (formula "6") (term "0,1,0") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_literals" (formula "6") (term "0"))
+ (rule "leq_literals" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "Case 2"
+ (rule "crossInst" (formula "14") (inst "sk=i_1") (ifseqformula "37"))
+ (rule "orRight" (formula "38"))
+ (rule "notLeft" (formula "1"))
+ (rule "andLeft" (formula "13"))
+ (rule "orRight" (formula "40"))
+ (rule "orRight" (formula "39"))
+ (rule "allRight" (formula "43") (inst "sk=j_0"))
+ (rule "orRight" (formula "43"))
+ (rule "orRight" (formula "43"))
+ (rule "orRight" (formula "44"))
+ (rule "orRight" (formula "43"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "42"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "42"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "41"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "42"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_geqRight" (formula "46"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "47"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_leqRight" (formula "47"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,1,0"))
+ (rule "applyEqRigid" (formula "23") (term "0,1,0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "23") (term "0,2,1,1,0,1") (ifseqformula "22"))
+ (rule "applyEqRigid" (formula "23") (term "0,0,0,0") (ifseqformula "22"))
+ (rule "applyEq" (formula "23") (term "1,1,1,0,0,1") (ifseqformula "22"))
+ (rule "applyEqRigid" (formula "23") (term "0,1,0,0,1,0") (ifseqformula "22"))
+ (rule "polySimp_sepPosMonomial" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1"))
+ (rule "polySimp_rightDist" (formula "42") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1"))
+ (rule "mul_literals" (formula "42") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0"))
+ (rule "inEqSimp_contradEq7" (formula "42") (ifseqformula "6"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "false_right" (formula "42"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "7"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "22") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "1,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "5") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "46")))
+ (rule "eqSymm" (formula "5") (term "0,0,0"))
+ (rule "replace_known_right" (formula "5") (term "0,0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "ifthenelse_negated" (formula "5") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "6"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "20"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "7"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "pullOutSelect" (formula "5") (term "1,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfCreate" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "44")))
+ (rule "applyEqReverse" (formula "6") (term "1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "pullOutSelect" (formula "5") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "44")))
+ (rule "castDel" (formula "5") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "5") (term "0,0"))
+ (rule "replace_known_right" (formula "5") (term "1,0,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "44")))
+ (rule "applyEqReverse" (formula "6") (term "0,0,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "5") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "46")))
+ (rule "eqSymm" (formula "5") (term "0,0,0"))
+ (rule "replace_known_right" (formula "5") (term "0,0,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0"))
+ (rule "replaceKnownSelect_taclet100001212012111_19" (formula "5") (term "0,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100001212012111_20" (formula "5") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "simplifySelectOfCreate" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "43")))
+ (rule "applyEqReverse" (formula "6") (term "0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "7"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "2"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "commute_or" (formula "23") (term "0,0,0,0,1,0"))
+ (rule "commute_or_2" (formula "22") (term "0,0"))
+ (rule "commute_or" (formula "22") (term "0,0,0,0"))
+ (rule "all_pull_out3" (formula "23") (term "0"))
+ (rule "shift_paren_or" (formula "23") (term "0,0"))
+ (rule "shift_paren_or" (formula "23") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "23") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "23") (term "0,0,0,0,0"))
+ (rule "allLeft" (formula "22") (inst "t=j_0"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (term "1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1"))
+ (rule "add_literals" (formula "22") (term "0,0,1"))
+ (rule "leq_literals" (formula "22") (term "0,1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "1,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "22") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "4"))
+ (rule "qeq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "3"))
+ (rule "andLeft" (formula "22"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0"))
+ (rule "add_literals" (formula "22") (term "0"))
+ (rule "leq_literals" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "36") (inst "sk=i_0_0"))
+ (rule "orRight" (formula "36"))
+ (rule "orRight" (formula "36"))
+ (rule "orRight" (formula "36"))
+ (rule "orRight" (formula "38"))
+ (rule "inEqSimp_geqRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "37"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "39"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "39"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "3"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "all_pull_out3" (formula "16") (term "0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0,0,0"))
+ (rule "andRight" (formula "39"))
+ (branch "Case 1"
+ (rule "inEqSimp_leqRight" (formula "39"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1"))
+ (rule "allLeft" (formula "33") (inst "t=i_0_0"))
+ (rule "inEqSimp_commuteGeq" (formula "33") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "33") (term "1,0,0") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "33") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_contradInEq1" (formula "33") (term "0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "33") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_contradInEq1" (formula "33") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "33") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0"))
+ (rule "leq_literals" (formula "33") (term "0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "inEqSimp_contradInEq2" (formula "1") (ifseqformula "33"))
+ (rule "greater_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "greater_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "inEqSimp_geqRight" (formula "39"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "allLeft" (formula "34") (inst "t=i_0_0"))
+ (rule "inEqSimp_commuteGeq" (formula "34") (term "1,0"))
+ (rule "inEqSimp_contradInEq2" (formula "34") (term "1") (ifseqformula "1"))
+ (rule "greater_literals" (formula "34") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "greater_literals" (formula "34") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0,1"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "34") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0,1"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "34") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0,1"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,1"))
+ (rule "add_literals" (formula "34") (term "0,0,1"))
+ (rule "leq_literals" (formula "34") (term "0,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_contradInEq1" (formula "34") (term "1") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,1"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0,1"))
+ (rule "add_literals" (formula "34") (term "0,0,1"))
+ (rule "leq_literals" (formula "34") (term "0,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_contradInEq0" (formula "34") (term "1") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "34") (term "0,1"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "34"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "33"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "35") (inst "sk=i_0"))
+ (rule "orRight" (formula "35"))
+ (rule "orRight" (formula "35"))
+ (rule "orRight" (formula "36"))
+ (rule "orRight" (formula "35"))
+ (rule "inEqSimp_leqRight" (formula "38"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "38"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "37"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_geqRight" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38")))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "2,0"))
+ (rule "ifthenelse_negated" (formula "1") (term "0"))
+ (rule "pullOutSelect" (formula "39") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "40") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "1,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36")))
+ (rule "applyEqReverse" (formula "2") (term "1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "2"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "pullOutSelect" (formula "1") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "applyEqReverse" (formula "2") (term "0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "38"))
+ (rule "commute_or_2" (formula "32") (term "0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "commute_or_2" (formula "16") (term "0,0,1,0"))
+ (rule "cnf_rightDist" (formula "32") (term "0"))
+ (rule "distr_forallAnd" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "commute_or" (formula "33") (term "0"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "commute_or" (formula "16") (term "0,0,0,0,1,0"))
+ (rule "all_pull_out3" (formula "16") (term "0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "16") (term "0,0,0,0,0"))
+ (rule "allLeft" (formula "29") (inst "t=i_0"))
+ (rule "replaceKnownSelect_taclet1001212012111_17" (formula "29") (term "1,1"))
+ (rule "replaceKnownSelect_taclet1001212012111_16" (formula "29") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1001212012111_18" (formula "29") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1001212012111_23" (formula "29") (term "0,1"))
+ (rule "replace_known_right" (formula "29") (term "1") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_commuteGeq" (formula "29") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "29") (term "1,0") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "29") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_contradInEq1" (formula "29") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0,1"))
+ (rule "add_literals" (formula "29") (term "0,0,1"))
+ (rule "leq_literals" (formula "29") (term "0,1"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "29"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "closeTrue" (formula "36"))
+ )
+ )
+ (branch "Null Reference (self_207 = null)"
+ (rule "false_right" (formula "37"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (build)"
+ (builtin "One Step Simplification" (formula "29"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1"))
+ (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1"))
+ (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1"))
+ (rule "andLeft" (formula "23"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "24") (term "1,0") (ifseqformula "23"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "26"))
+ (rule "notLeft" (formula "24"))
+ (rule "close" (formula "27") (ifseqformula "26"))
+ )
+ (branch "Pre (build)"
+ (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "26")) (ifInst "" (formula "26")) (ifInst "" (formula "26")))
+ (rule "translateJavaShiftLeftInt" (formula "27") (term "1,0,1,1,1,1,1,0"))
+ (rule "translateJavaShiftLeftInt" (formula "27") (term "0,3,0,1,1,1,1,1,1,0"))
+ (rule "translateJavaSubInt" (formula "27") (term "3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "27") (term "3,0,1,1,1,1,1,1,0"))
+ (rule "mul_literals" (formula "27") (term "1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "27") (term "3,0,1,1,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,1"))
+ (rule "disjointDefinition" (formula "27") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "eqSymm" (formula "27") (term "0,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,1"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,0,0,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "1,0,1,1,1,1,1,0"))
+ (rule "dismissNonSelectedField" (formula "27") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,1,0,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,1,0,0,1,1,1,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,1,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,1,1,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,1,0,1,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0"))
+ (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,1,0,1,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,1,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,1,1,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,1,1,1,0"))
+ (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "17"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "pullOutSelect" (formula "22") (term "0,1,1") (inst "selectSK=java_lang_Object_created__0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19")))
+ (rule "applyEqReverse" (formula "23") (term "0,1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "22") (term "1,1") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "1,3,0,1,1,1,1,1,1,0"))
+ (rule "wellFormedStoreObject" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "20")))
+ (rule "wellFormedStorePrimitive" (formula "22") (term "0,1"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,1,1"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,1,1"))
+ (rule "shiftLeftDef" (formula "22") (term "0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,1,3,0,1,1,1,1,1,1,0"))
+ (rule "javaShiftLeftIntDef" (formula "22") (term "0,0,1,1,1,1,1,0"))
+ (rule "wellFormedStoreObject" (formula "22") (term "0,1"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "21")))
+ (rule "wellFormedStorePrimitive" (formula "22") (term "0,0,1"))
+ (rule "wellFormedStorePrimitive" (formula "22") (term "0,0,1"))
+ (rule "wellFormedCreate" (formula "22") (term "0,0,1"))
+ (rule "replace_known_left" (formula "22") (term "0,0,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,1"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,1"))
+ (rule "replaceKnownSelect_taclet212111_0" (formula "22") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet212111_1" (formula "22") (term "0,0,1"))
+ (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "shiftLeftDef" (formula "22") (term "0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0,0,1,1,1,1,1,0"))
+ (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0,0,1,1,1,1,1,0"))
+ (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0,0,1,1,1,1,1,0"))
+ (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0,0,1,1,1,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0,0,1,1,1,1,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0,1,1,1,1,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,1,1,1,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,1,1,1,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,1,1,1,1,1,0"))
+ (rule "pullOutSelect" (formula "22") (term "0,0,1,0,1,1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_0"))
+ (rule "applyEq" (formula "23") (term "0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,0,0") (ifseqformula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,1,0,1,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,0,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_right" (formula "22") (term "0,0,1,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "20")))
+ (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0,1,1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "14"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "16"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "10"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "pullOutSelect" (formula "22") (term "0,1,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0"))
+ (rule "applyEq" (formula "23") (term "0,1,2,0,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,1,1,1,0,1,3,0,1,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,0,0,1,3,0,1,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,1,1,1,0,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,1,2,0,1,3,0,1,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "applyEqReverse" (formula "23") (term "0,1,0,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,1,2,0,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,1,1,1,0,1,3,0,1,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,0,0,1,3,0,1,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,1,1,1,0,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,1,2,0,1,3,0,1,1,1,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEqReverse" (formula "23") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "22") (term "0,0,1,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "7")))
+ (rule "mod_axiom" (formula "22") (term "1,2,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,2,0,1,3,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "22") (term "0,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "22") (term "0,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,1,3,0,1,1,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,3,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "22") (term "0,1,1,1,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,1,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,1,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,1,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,1,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,1,0,1,3,0,1,1,1,0"))
+ (rule "mod_axiom" (formula "22") (term "0,1,1,1,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,1,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1,1,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1,1,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,1,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,1,0,0,0,1,1,0"))
+ (rule "mod_axiom" (formula "22") (term "1,2,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,2,0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,1,0"))
+ (rule "eqSymm" (formula "22") (term "0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,3,0,1,1,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,3,0,1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,3,0,1,1,1,0"))
+ (rule "pullOutSelect" (formula "22") (term "0,1,0,1,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0"))
+ (rule "applyEq" (formula "23") (term "0,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0,0,1,1,0") (ifseqformula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "0"))
+ (rule "eqSymm" (formula "23") (term "0,1,1,0"))
+ (rule "polySimp_homoEq" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "applyEq" (formula "23") (term "1,3,0,0,0,0,0,1,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "3,0,0,0,0,0,1,1,1,0"))
+ (rule "add_literals" (formula "23") (term "0,3,0,0,0,0,0,1,1,1,0"))
+ (rule "add_zero_left" (formula "23") (term "3,0,0,0,0,0,1,1,1,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "1,3,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "3,0"))
+ (rule "add_literals" (formula "11") (term "0,3,0"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1"))
+ (rule "replace_known_left" (formula "23") (term "1,0,1,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1"))
+ (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "pullOutSelect" (formula "23") (term "0,1") (inst "selectSK=java_lang_Object_created__1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20")))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "sortsDisjointModuloNull" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "22")))
+ (rule "applyEqReverse" (formula "24") (term "0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "replace_known_left" (formula "23") (term "1") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "expand_moduloInteger" (formula "24") (term "0,0"))
+ (rule "replace_int_RANGE" (formula "24") (term "1,1,0,0"))
+ (rule "replace_int_HALFRANGE" (formula "24") (term "0,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "24") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "24") (term "0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "24") (term "0,0,0"))
+ (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "24") (term "0,0"))
+ (rule "add_literals" (formula "24") (term "1,0,0"))
+ (rule "times_zero_1" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_moduloInteger" (formula "24") (term "1,3,0"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,3,0"))
+ (rule "replace_int_HALFRANGE" (formula "24") (term "0,0,1,1,3,0"))
+ (rule "replace_int_RANGE" (formula "24") (term "1,1,1,3,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "3,0"))
+ (rule "add_literals" (formula "24") (term "0,3,0"))
+ (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "24") (term "3,0"))
+ (rule "add_literals" (formula "24") (term "0,3,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0"))
+ (rule "expand_inInt" (formula "11") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0"))
+ (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0"))
+ (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0"))
+ (rule "expand_inInt" (formula "24") (term "1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0"))
+ (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1,0"))
+ (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1,0"))
+ (rule "allRight" (formula "24") (inst "sk=i_0"))
+ (rule "impRight" (formula "24"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "28") (inst "sk=j_0"))
+ (rule "impRight" (formula "28"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "32") (term "0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "1"))
+ (rule "dismissNonSelectedField" (formula "32") (term "0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "1"))
+ (rule "dismissNonSelectedField" (formula "32") (term "0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "1"))
+ (rule "dismissNonSelectedField" (formula "32") (term "0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "1"))
+ (rule "dismissNonSelectedField" (formula "32") (term "0"))
+ (rule "dismissNonSelectedField" (formula "32") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "6"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "6"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfCreate" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")))
+ (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3"))
+ (rule "mul_literals" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "27"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7"))
+ (rule "times_zero_1" (formula "6") (term "0,0"))
+ (rule "add_zero_left" (formula "6") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "commute_or_2" (formula "19") (term "0,0"))
+ (rule "ifthenelse_split" (formula "9") (term "1,0,0"))
+ (branch "log_buckets / 32 * 32 >= 1 + log_buckets TRUE"
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "commute_or" (formula "20") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "all_pull_out3" (formula "20") (term "0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0"))
+ (rule "div_axiom" (formula "9") (term "0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "9") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "9") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "equal_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "polySimp_addComm1" (formula "11") (term "1"))
+ (rule "add_literals" (formula "11") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,1,0,0") (ifseqformula "9"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,0"))
+ (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "12"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_zero_right" (formula "10") (term "0"))
+ (rule "leq_literals" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ (branch "log_buckets / 32 * 32 >= 1 + log_buckets FALSE"
+ (rule "inEqSimp_geqRight" (formula "27"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "1,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0"))
+ (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "commute_or" (formula "20") (term "0,0,0,1,0"))
+ (rule "commute_or_2" (formula "20") (term "0,0,1,0"))
+ (rule "commute_or" (formula "20") (term "0,0,0,0,1,0"))
+ (rule "all_pull_out3" (formula "20") (term "0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0"))
+ (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0"))
+ (rule "div_axiom" (formula "10") (term "0,1,1,1,0,0") (inst "quotient=quotient_0"))
+ (rule "mul_literals" (formula "10") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "equal_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "polySimp_addComm1" (formula "12") (term "1"))
+ (rule "add_literals" (formula "12") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "applyEq" (formula "13") (term "0,1,1,1,0,0") (ifseqformula "10"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0"))
+ (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "mod_axiom" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "newSym_eq" (formula "12") (inst "l=l_0") (inst "newSymDef=add(mul(de_wiesler_Tree_num_buckets_0<>,
+ Z(0(#))),
+ mul(pow(Z(2(#)),
+ add(mul(quotient_0, Z(neglit(2(3(#))))),
+ log_buckets)),
+ Z(0(#))))"))
+ (rule "times_zero_1" (formula "12") (term "1,1,1"))
+ (rule "times_zero_1" (formula "12") (term "0,1,1"))
+ (rule "add_zero_left" (formula "12") (term "1,1"))
+ (rule "add_zero_right" (formula "12") (term "1"))
+ (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "12"))
+ (rule "polySimp_homoEq" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1"))
+ (rule "applyEq" (formula "12") (term "1,0,0") (ifseqformula "13"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polyDiv_pullOut" (formula "12") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "equal_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,1,1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,0,1,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor1" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "0,0"))
+ (rule "add_zero_left" (formula "12") (term "0"))
+ (rule "polySimp_invertEq" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "leq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "21"))
+ (rule "polySimp_mulAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0"))
+ (rule "neg_literal" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_antiSymm" (formula "20") (ifseqformula "10"))
+ (rule "applyEqRigid" (formula "12") (term "0,1,1") (ifseqformula "20"))
+ (rule "mul_literals" (formula "12") (term "1,1"))
+ (rule "add_zero_right" (formula "12") (term "1"))
+ (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "20"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "20"))
+ (rule "qeq_literals" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "applyEqRigid" (formula "13") (term "0,0,1,0") (ifseqformula "19"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "add_zero_left" (formula "13") (term "1,0"))
+ (rule "applyEq" (formula "9") (term "1") (ifseqformula "19"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "20"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "allLeft" (formula "22") (inst "t=i_0"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0,0,0,0,0,0,0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "22") (term "0,1,0,0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0,0,0,0,0,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0,1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,1,0,0,0,0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0,0,0,0,0,0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "22") (term "0,0,0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "div_axiom" (formula "10") (term "0") (inst "quotient=quotient_1"))
+ (rule "mul_literals" (formula "10") (term "1,1,1,1,1"))
+ (rule "qeq_literals" (formula "10") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "equal_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,1"))
+ (rule "add_literals" (formula "12") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "12") (term "1"))
+ (rule "add_literals" (formula "12") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "10"))
+ (rule "applyEq" (formula "11") (term "0,1,0,0") (ifseqformula "10"))
+ (rule "mul_literals" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "0,1,0,0") (ifseqformula "10"))
+ (rule "mul_literals" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "33"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "27"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "allLeft" (formula "23") (inst "t=j_0"))
+ (rule "inEqSimp_contradInEq0" (formula "23") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "23") (term "0,0,1"))
+ (rule "leq_literals" (formula "23") (term "0,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0,0") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "23") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "23") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "23") (term "0,0,1"))
+ (rule "leq_literals" (formula "23") (term "0,1"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq0" (formula "23") (term "0") (ifseqformula "4"))
+ (rule "qeq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq0" (formula "23") (ifseqformula "3"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "1,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0"))
+ (rule "add_zero_right" (formula "23") (term "0"))
+ (rule "leq_literals" (formula "23"))
+ (rule "closeFalse" (formula "23"))
+ )
+ )
+ )
+ )
+ )
+ )
+)
+)
+}
diff --git a/src/main/key-overflow/project-constr.key b/src/main/key-overflow/project-constr.key
new file mode 100644
index 0000000..ef4d21e
--- /dev/null
+++ b/src/main/key-overflow/project-constr.key
@@ -0,0 +1,50 @@
+\settings {
+"#Proof-Settings-Config-File
+#Thu May 05 18:49:23 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-constr-overflow";
+
+\chooseContract
diff --git a/src/main/key-overflow/project.key b/src/main/key-overflow/project.key
new file mode 100644
index 0000000..e0438d0
--- /dev/null
+++ b/src/main/key-overflow/project.key
@@ -0,0 +1,50 @@
+\settings {
+"#Proof-Settings-Config-File
+#Thu May 05 18:49:23 CEST 2022
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[Strategy]Timeout=-1
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../java-overflow";
+
+\chooseContract
diff --git a/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof
index bb8c8b1..eba1388 100644
--- a/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof
+++ b/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof
@@ -47,7 +47,7 @@
"
}
-\javaSource "../../../main/java";
+\javaSource "../../../main/java-constr";
\proofObligation "#Proof Obligation Settings
#Mon Apr 11 22:25:00 CEST 2022
diff --git a/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof
index 4c62a07..f913b13 100644
--- a/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof
+++ b/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof
@@ -47,7 +47,7 @@
"
}
-\javaSource "../../../main/java";
+\javaSource "../../../main/java-constr";
\proofObligation "#Proof Obligation Settings
#Thu May 05 18:54:06 CEST 2022
diff --git a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof
index efeb03b..b899e1c 100644
--- a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof
+++ b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof
@@ -47,7 +47,7 @@
"
}
-\javaSource "../../../main/java";
+\javaSource "../../../main/java-constr";
\proofObligation "#Proof Obligation Settings
#Mon Apr 11 20:11:07 CEST 2022
diff --git a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof
index 012af03..cf99bb8 100644
--- a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof
+++ b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof
@@ -63,7 +63,7 @@ name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I,
(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
(keyLog "4" (keyUser "weigl" ) (keyVersion "e1a85b31e7"))
-(autoModeTime "123863")
+(autoModeTime "63662")
(branch "dummy ID"
(builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
@@ -144,12 +144,10756 @@ name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I,
(rule "variableDeclarationAssign" (formula "17") (term "1"))
(rule "variableDeclaration" (formula "17") (term "1") (newnames "x_1"))
(rule "assignmentSubtractionInt" (formula "17") (term "1"))
-(branch "Overflow check"
- (builtin "One Step Simplification" (formula "17"))
- (rule "closeTrue" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+(rule "translateJavaSubInt" (formula "17") (term "0,1,0"))
+(rule "polySimp_elimSub" (formula "17") (term "0,1,0"))
+(rule "mul_literals" (formula "17") (term "1,0,1,0"))
+(rule "polySimp_addComm0" (formula "17") (term "0,1,0"))
+(rule "assignmentSubtractionInt" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+(rule "translateJavaSubInt" (formula "17") (term "0,1,0"))
+(rule "polySimp_elimSub" (formula "17") (term "0,1,0"))
+(rule "greater_equal_than_comparison_simple" (formula "17") (term "1"))
+ (builtin "One Step Simplification" (formula "17"))
+(rule "variableDeclarationAssign" (formula "17") (term "1"))
+(rule "variableDeclaration" (formula "17") (term "1") (newnames "log_buckets"))
+(rule "compound_addition_1" (formula "17") (term "1") (inst "#v=x"))
+(rule "variableDeclarationAssign" (formula "17") (term "1"))
+(rule "variableDeclaration" (formula "17") (term "1") (newnames "x_2"))
+ (builtin "Use Operation Contract" (formula "17") (newnames "heapBefore_log2,result_21,exc_25") (contract "de.wiesler.Constants[de.wiesler.Constants::log2(int)].JML normal_behavior operation contract.0"))
+(branch "Post (log2)"
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "assignmentAdditionInt" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (builtin "Block Contract (Internal)" (formula "19") (newnames "result_22,exc_26,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "4")) (ifInst "" (formula "1")))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "16"))
+ (rule "translateJavaAddInt" (formula "19") (term "0,0,0"))
+ (rule "eqSymm" (formula "19") (term "0,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0,0"))
+ (rule "variableDeclarationAssign" (formula "19") (term "1"))
+ (rule "variableDeclaration" (formula "19") (term "1") (newnames "exc_26_1"))
+ (rule "assignment" (formula "19") (term "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "emptyStatement" (formula "19") (term "1"))
+ (rule "emptyStatement" (formula "19") (term "1"))
+ (rule "tryEmpty" (formula "19") (term "1"))
+ (rule "blockEmptyLabel" (formula "19") (term "1"))
+ (rule "blockEmpty" (formula "19") (term "1"))
+ (rule "methodCallEmpty" (formula "19") (term "1"))
+ (rule "emptyModality" (formula "19") (term "1"))
+ (rule "andRight" (formula "19"))
+ (branch "Case 1"
+ (rule "andRight" (formula "19"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "cut" (inst "cutFormula=geq(result_21<>,
+ de.wiesler.Constants.LOG_MAX_BUCKETS)<>") (userinteraction))
+ (branch "CUT: result_21 >= 7 TRUE"
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "15") (term "0") (userinteraction))
+ (builtin "One Step Simplification" (formula "15") (userinteraction))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "impLeft" (formula "18") (userinteraction))
+ (branch "Case 1"
+ (rule "notRight" (formula "19"))
+ (rule "inEqSimp_leqRight" (formula "23"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "14") (term "0,1,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "14") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "14") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "14") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "qeq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "mod_axiom" (formula "13") (term "0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "2"))
+ (rule "translateJavaShiftLeftIntConstant" (formula "18") (term "0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "2"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "javaShiftLeftIntDef" (formula "14") (term "0"))
+ (rule "mod_axiom" (formula "14") (term "1,0,0"))
+ (rule "div_literals" (formula "14") (term "0,0,1,1,0,0"))
+ (rule "times_zero_2" (formula "14") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "nnf_imp2or" (formula "7") (term "0"))
+ (rule "expand_moduloInteger" (formula "14") (term "0"))
+ (rule "replace_int_RANGE" (formula "14") (term "1,1,0"))
+ (rule "replace_int_MIN" (formula "14") (term "0,0"))
+ (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "mod_axiom" (formula "14") (term "0,1,0"))
+ (rule "div_literals" (formula "14") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "14") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "14") (term "0,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "14"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "closeFalse" (formula "13"))
+ )
+ (branch "Case 2"
+ (rule "shiftLeftLowerBoundGe" (formula "17") (term "0") (ifseqformula "1") (userinteraction))
+ (rule "translateJavaAddInt" (formula "19") (term "1,1"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "16")))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_addComm0" (formula "19") (term "1,1"))
+ (rule "translateJavaShiftLeftIntConstant" (formula "17") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "24"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "18"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "mod_axiom" (formula "13") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mod_axiom" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "13") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "13") (term "0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "1"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "javaShiftLeftIntDef" (formula "15") (term "0"))
+ (rule "mod_axiom" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0"))
+ (rule "div_literals" (formula "15") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "15") (term "1,1,0,0"))
+ (rule "add_literals" (formula "15") (term "1,0,0"))
+ (rule "shiftleft_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "7") (term "0"))
+ (rule "expand_moduloInteger" (formula "16") (term "1"))
+ (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,1"))
+ (rule "replace_int_RANGE" (formula "16") (term "1,1,1"))
+ (rule "replace_int_MIN" (formula "16") (term "0,1"))
+ (rule "add_literals" (formula "16") (term "0,1,1"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "mod_axiom" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0"))
+ (rule "div_literals" (formula "16") (term "0,1,1,0"))
+ (rule "times_zero_2" (formula "16") (term "1,1,0"))
+ (rule "add_zero_right" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "16"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_antiSymm" (formula "15") (ifseqformula "6"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "1,1,0,0,0,0") (ifseqformula "15"))
+ (rule "add_literals" (formula "7") (term "1,0,0,0,0"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "15"))
+ (rule "leq_literals" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "applyEq" (formula "17") (term "1") (ifseqformula "14"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "applyEq" (formula "17") (term "1,1") (ifseqformula "14"))
+ (rule "add_literals" (formula "17") (term "1"))
+ (rule "applyEq" (formula "13") (term "1") (ifseqformula "14"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "8"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "closeFalse" (formula "8"))
+ )
+ )
+ (branch "CUT: result_21 >= 7 FALSE"
+ (rule "inEqSimp_geqRight" (formula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "20"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "mod_axiom" (formula "13") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "mod_axiom" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,0,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "13") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "19"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "20"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaAddInt" (formula "20") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0"))
+ (rule "elim_double_block_2" (formula "22") (term "1"))
+ (rule "ifUnfold" (formula "22") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_3"))
+ (rule "inequality_comparison_simple" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "replace_known_left" (formula "22") (term "0,0,1,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "arrayLengthNotNegative" (formula "12") (term "0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "13"))
+ (rule "qeq_literals" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthIsAShort" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "arrayLengthNotNegative" (formula "13") (term "0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "14"))
+ (rule "qeq_literals" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "arrayLengthIsAShort" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "ifSplit" (formula "22"))
+ (branch "if x_3 true"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_3 false"
+ (builtin "One Step Simplification" (formula "23"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "22") (term "1"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "actual_num_buckets"))
+ (rule "assignmentShiftLeftInt" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (builtin "Block Contract (Internal)" (formula "22") (newnames "result_23,exc_27,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "4")) (ifInst "" (formula "1")))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "19"))
+ (rule "eqSymm" (formula "22") (term "0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0,0,1"))
+ (rule "variableDeclarationAssign" (formula "22") (term "1"))
+ (rule "variableDeclaration" (formula "22") (term "1") (newnames "exc_27_1"))
+ (rule "assignment" (formula "22") (term "1"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "emptyStatement" (formula "22") (term "1"))
+ (rule "emptyStatement" (formula "22") (term "1"))
+ (rule "tryEmpty" (formula "22") (term "1"))
+ (rule "blockEmptyLabel" (formula "22") (term "1"))
+ (rule "blockEmpty" (formula "22") (term "1"))
+ (rule "methodCallEmpty" (formula "22") (term "1"))
+ (rule "emptyModality" (formula "22") (term "1"))
+ (rule "andRight" (formula "22"))
+ (branch "Case 1"
+ (rule "andRight" (formula "22"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "22"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "shiftLeftUpperBoundLe" (formula "22") (term "1") (ifseqformula "17") (userinteraction))
+ (rule "leq_literals" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "translateJavaShiftLeftIntConstant" (formula "1") (term "1,1"))
+ (rule "inEqSimp_geqRight" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "1"))
+ (rule "inEqSimp_homoInEq0" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "mod_axiom" (formula "13") (term "1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,0,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "13") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "14"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "mod_axiom" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "13") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0"))
+ (rule "div_literals" (formula "13") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "13") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "13") (term "0,1,0"))
+ (rule "mul_literals" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "19"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0"))
+ (rule "mul_literals" (formula "2") (term "1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "javaShiftLeftIntConstantDef" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1"))
+ (rule "div_literals" (formula "2") (term "0,1,1,0,0,1"))
+ (rule "times_zero_2" (formula "2") (term "1,1,0,0,1"))
+ (rule "add_zero_right" (formula "2") (term "1,0,0,1"))
+ (rule "shiftleft_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_commuteGeq" (formula "2") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "10"))
+ (rule "mul_literals" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "mul_literals" (formula "9") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "expand_moduloInteger" (formula "2") (term "1,1"))
+ (rule "replace_int_RANGE" (formula "2") (term "1,1,1,1"))
+ (rule "replace_int_HALFRANGE" (formula "2") (term "0,0,1,1,1"))
+ (rule "replace_int_MIN" (formula "2") (term "0,1,1"))
+ (rule "add_literals" (formula "2") (term "0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1"))
+ (rule "mod_axiom" (formula "2") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,1"))
+ (rule "div_literals" (formula "2") (term "0,1,1,0,1"))
+ (rule "times_zero_2" (formula "2") (term "1,1,0,1"))
+ (rule "add_zero_right" (formula "2") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1"))
+ (rule "add_literals" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (term "1") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "notLeft" (formula "2"))
+ (rule "inEqSimp_geqRight" (formula "19"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "1"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "translateJavaAddInt" (formula "15") (term "1,1,1,1"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "18") (term "0,0") (ifseqformula "1"))
+ (rule "mul_literals" (formula "18") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "15"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_ltRight" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "12") (term "0,0,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "12") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "mod_axiom" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "12") (term "0,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "12") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "12") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "12") (term "0,1,0"))
+ (rule "div_literals" (formula "12") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "12") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "nnf_imp2or" (formula "7") (term "0"))
+ (rule "nnf_notAnd" (formula "7") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "7") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "7") (term "1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "translateJavaAddInt" (formula "14") (term "1,1,1,1"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "polySimp_addComm0" (formula "17") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "17") (term "0,0") (ifseqformula "20"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "20"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "16"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "22"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "19"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "20"))
+ (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "applyEq" (formula "20") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_commuteGeq" (formula "20"))
+ (rule "elim_double_block_2" (formula "26") (term "1"))
+ (rule "ifUnfold" (formula "26") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_4"))
+ (rule "inequality_comparison_simple" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "replace_known_left" (formula "26") (term "0,0,1,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "ifSplit" (formula "26"))
+ (branch "if x_4 true"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_4 false"
+ (builtin "One Step Simplification" (formula "27"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "26") (term "1"))
+ (rule "for_to_while" (formula "26") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "variableDeclarationAssign" (formula "26") (term "1"))
+ (rule "variableDeclaration" (formula "26") (term "1") (newnames "i"))
+ (rule "assignment" (formula "26") (term "1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "elim_double_block_3" (formula "26") (term "1"))
+ (rule "loopScopeInvDia" (formula "26") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (branch "Invariant Initially Valid"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "26"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "mod_axiom" (formula "11") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "11") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "11") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "11") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "11") (term "0,0,1,1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "11") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "11") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "11") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "11") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "add_literals" (formula "11") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "11") (term "0,1,0"))
+ (rule "div_literals" (formula "11") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "11") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,1,0"))
+ (rule "mul_literals" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "7"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "20"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "25") (term "0"))
+ (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")) (ifInst "" (formula "2")))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaAddInt" (formula "12") (term "1,1,1,1"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1"))
+ (rule "replace_known_left" (formula "15") (term "1") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "17"))
+ (rule "leq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0"))
+ (rule "allRight" (formula "26") (inst "sk=i_1_0"))
+ (rule "impRight" (formula "26"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "commute_or" (formula "10") (term "0,0"))
+ (rule "cut_direct" (formula "22") (term "0"))
+ (branch "CUT: result_22 = null TRUE"
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "cut_direct" (formula "27") (term "0"))
+ (branch "CUT: result_23 = null TRUE"
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "allLeft" (formula "10") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (term "0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (term "0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0"))
+ (rule "leq_literals" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "1"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_literals" (formula "10") (term "0"))
+ (rule "leq_literals" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ (branch "CUT: result_23 = null FALSE"
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "allLeft" (formula "10") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1"))
+ (rule "leq_literals" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (term "1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1"))
+ (rule "leq_literals" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "CUT: result_22 = null FALSE"
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "cut_direct" (formula "27") (term "0"))
+ (branch "CUT: result_23 = null TRUE"
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "allLeft" (formula "10") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1"))
+ (rule "leq_literals" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (term "1") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1"))
+ (rule "leq_literals" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ (branch "CUT: result_23 = null FALSE"
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "allLeft" (formula "10") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (term "0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "10") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1"))
+ (rule "leq_literals" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "inEqSimp_contradInEq1" (formula "10") (ifseqformula "5"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_zero_right" (formula "10") (term "0"))
+ (rule "leq_literals" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ )
+ )
+ )
+ (branch "Invariant Preserved and Used"
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaSubInt" (formula "27") (term "2,1,0,1,1,0,1,0,0,0"))
+ (rule "translateJavaSubInt" (formula "27") (term "2,1,0,0,1,0,1,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "27") (term "2,1,0,1,0,1,0,1"))
+ (rule "translateJavaSubInt" (formula "27") (term "0,2,1,1,0,1,0,0,0,0,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "27") (term "0,1,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "27") (term "0,2,1,1,0,1,0,0,0"))
+ (rule "translateJavaSubInt" (formula "27") (term "2,1,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "27") (term "2,2,0,0,0,0,1,0,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "27") (term "2,1,0,0,1,0,1,0,0,0"))
+ (rule "translateJavaSubInt" (formula "27") (term "0,1,1,0,1"))
+ (rule "impRight" (formula "27"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "34") (term "1,0,0,1,0,1,1,0,1"))
+ (rule "eqSymm" (formula "34") (term "1,0,1,0,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "2,1,0,1,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "1,2,1,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "34") (term "2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "mul_literals" (formula "34") (term "1,2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,2,1,1,0,1,0,0,0,0,1,1,0,1"))
+ (rule "mul_literals" (formula "34") (term "1,0,2,1,1,0,1,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0"))
+ (rule "mul_literals" (formula "7") (term "1,2,1,0,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "0,2,1,1,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "2,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,2,1,1,0,1,0,0,0,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,1,0,0,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,1,0,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,1,0,0,0,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "6"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_5"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "20"))
+ (rule "inEqSimp_commuteGeq" (formula "6"))
+ (rule "elementOfArrayRange" (formula "34") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1"))
+ (rule "pullOutSelect" (formula "4") (term "1,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")) (ifInst "" (formula "11")))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "commute_and" (formula "5") (term "0,0"))
+ (rule "commute_and" (formula "3") (term "0,0"))
+ (rule "ifElseUnfold" (formula "35") (term "1") (inst "#boolv=x_6"))
+ (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_6"))
+ (rule "less_than_comparison_simple" (formula "35") (term "1"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "ifElseSplit" (formula "35"))
+ (branch "if x_6 true"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "eval_order_array_access3" (formula "36") (term "1") (inst "#v1=x_7") (inst "#v2=x_6") (inst "#v0=x_arr"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_arr"))
+ (rule "assignment" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_8"))
+ (rule "assignment" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_7"))
+ (rule "eval_order_array_access5" (formula "36") (term "1") (inst "#v1=x_9") (inst "#ar1=x_arr_1"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_arr_1"))
+ (rule "assignment" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_9"))
+ (rule "assignmentSubtractionInt" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,1,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0"))
+ (rule "assignment_array2" (formula "36"))
+ (branch "Normal Execution (x_arr_1 != null)"
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "36") (term "0,1,0"))
+ (rule "assignment_to_primitive_array_component" (formula "36"))
+ (branch "Normal Execution (x_arr != null)"
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "blockEmpty" (formula "36") (term "1"))
+ (rule "preincrement" (formula "36") (term "1"))
+ (rule "compound_int_cast_expression" (formula "36") (term "1") (inst "#v=x_6"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_10"))
+ (rule "remove_parentheses_right" (formula "36") (term "1"))
+ (rule "assignmentAdditionInt" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,1,0"))
+ (rule "widening_identity_cast_5" (formula "36") (term "1"))
+ (rule "assignment" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "blockEmpty" (formula "36") (term "1"))
+ (rule "lsContinue" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "36") (inst "sk=j_0"))
+ (rule "impRight" (formula "36"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "38"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0"))
+ (rule "inEqSimp_commuteGeq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "8") (term "1,1,0") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "38") (term "3,0,0") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "38") (term "3,0,1") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "mod_axiom" (formula "22") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "22") (term "0,1,1,2,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "22") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "22") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "22") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "22") (term "1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "22") (term "0,0,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "22") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "22") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "add_literals" (formula "22") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "22") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "div_literals" (formula "22") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "22") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "22") (term "0,1,0"))
+ (rule "mul_literals" (formula "22") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "19"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0"))
+ (rule "qeq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "1") (term "2,0"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "4"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "17"))
+ (rule "leq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "17"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "1"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "pullOutSelect" (formula "36") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "37"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "32"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "4"))
+ (rule "leq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3")))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "nnf_imp2or" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "8") (term "0"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "9") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "8") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "10") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "10") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaAddInt" (formula "25") (term "1,1,1,1"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "polySimp_addComm0" (formula "28") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "28") (term "1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "0,1"))
+ (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "30"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0"))
+ (rule "commute_or" (formula "8") (term "0,0"))
+ (rule "commute_or" (formula "16") (term "0,0"))
+ (rule "cut_direct" (formula "35") (term "0"))
+ (branch "CUT: result_23 = null TRUE"
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "cut_direct" (formula "30") (term "0"))
+ (branch "CUT: result_22 = null TRUE"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "j_0 = i_0 TRUE"
+ (rule "close" (formula "41") (ifseqformula "4"))
+ )
+ (branch "j_0 = i_0 FALSE"
+ (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "eqSymm" (formula "40"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36"))
+ (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "false_right" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "9") (inst "t=j_0"))
+ (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet00010000000112120_6" (formula "9") (term "0,1"))
+ (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1"))
+ (rule "leq_literals" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "4"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0"))
+ (rule "add_zero_right" (formula "9") (term "0"))
+ (rule "leq_literals" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "34"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "40") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "4"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "CUT: result_22 = null FALSE"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "j_0 = i_0 TRUE"
+ (rule "close" (formula "42") (ifseqformula "4"))
+ )
+ (branch "j_0 = i_0 FALSE"
+ (rule "applyEqReverse" (formula "42") (term "1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "eqSymm" (formula "41"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36"))
+ (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "false_right" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "9") (inst "t=j_0"))
+ (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet01010000000112120_6" (formula "9") (term "0,1"))
+ (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "9"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "3"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ )
+ (branch "CUT: result_23 = null FALSE"
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "cut_direct" (formula "30") (term "0"))
+ (branch "CUT: result_22 = null TRUE"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "true_left" (formula "31"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "j_0 = i_0 TRUE"
+ (rule "close" (formula "42") (ifseqformula "4"))
+ )
+ (branch "j_0 = i_0 FALSE"
+ (rule "applyEqReverse" (formula "42") (term "1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "eqSymm" (formula "41"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36"))
+ (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "false_right" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "9") (inst "t=j_0"))
+ (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet00110000000112120_6" (formula "9") (term "0,1"))
+ (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1"))
+ (rule "leq_literals" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "9"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "6"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "3"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch "CUT: result_22 = null FALSE"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "j_0 = i_0 TRUE"
+ (rule "close" (formula "43") (ifseqformula "4"))
+ )
+ (branch "j_0 = i_0 FALSE"
+ (rule "applyEqReverse" (formula "43") (term "1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "eqSymm" (formula "42"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36"))
+ (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "36") (term "1,0,0"))
+ (rule "add_zero_right" (formula "36") (term "0,0"))
+ (rule "qeq_literals" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "false_right" (formula "36"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "9") (inst "t=j_0"))
+ (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet01110000000112120_6" (formula "9") (term "0,1"))
+ (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,0"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "3"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0"))
+ (rule "add_zero_right" (formula "9") (term "0"))
+ (rule "leq_literals" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "34"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "2") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "42") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "4"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i_1") (userinteraction))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "9") (term "0") (inst "i=i_1") (userinteraction))
+ (builtin "One Step Simplification" (formula "9"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0"))
+ (rule "allRight" (formula "36") (inst "sk=i_1_0"))
+ (rule "impRight" (formula "36"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "38") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,0,1,0") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "9") (term "1,1,0") (ifseqformula "8"))
+ (rule "applyEqReverse" (formula "1") (term "3,0,1,0,0") (ifseqformula "8"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "23") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "23") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "23") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "mod_axiom" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "23") (term "0,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "23") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "23") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0"))
+ (rule "div_literals" (formula "23") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "23") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "23") (term "0,1,0"))
+ (rule "mul_literals" (formula "23") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "20"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36")) (ifInst "" (formula "14")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0"))
+ (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfStore" (formula "2"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "castDel" (formula "2") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4"))
+ (rule "leq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "32"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "7") (term "0,0"))
+ (rule "mul_literals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "7"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "19"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "9"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "20"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "38")) (ifInst "" (formula "15")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "10") (term "0"))
+ (rule "nnf_imp2or" (formula "18") (term "0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "translateJavaAddInt" (formula "26") (term "1,1,1,1"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "polySimp_addComm0" (formula "29") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "29") (term "1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "0,1"))
+ (rule "replace_known_left" (formula "29") (term "1") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "31"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "10") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0"))
+ (rule "mul_literals" (formula "10") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "10") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "18") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "18") (term "1,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0"))
+ (rule "mul_literals" (formula "18") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,0,0,0"))
+ (rule "cut_direct" (formula "36") (term "0"))
+ (branch "CUT: result_23 = null TRUE"
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "cut_direct" (formula "31") (term "0"))
+ (branch "CUT: result_22 = null TRUE"
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "commute_or" (formula "10") (term "0,0"))
+ (rule "commute_or" (formula "18") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "allLeft" (formula "11") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000100000112120_6" (formula "11") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "11"))
+ (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38"))
+ (rule "polySimp_addAssoc" (formula "5") (term "1"))
+ (rule "add_literals" (formula "5") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "false_right" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "allLeft" (formula "12") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "12") (term "1,1"))
+ (rule "replaceKnownSelect_taclet100000112120_5" (formula "12") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet000100000112120_6" (formula "12") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0000100000112120_7" (formula "12") (term "0,1"))
+ (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "10"))
+ (rule "inEqSimp_contradInEq0" (formula "12") (term "1,0") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_contradInEq0" (formula "12") (term "1") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "12"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "closeFalse" (formula "22"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_geqRight" (formula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "38"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0"))
+ (rule "add_zero_left" (formula "38") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,1,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "0,2,1,0,1,1,0"))
+ (rule "add_zero_left" (formula "14") (term "2,1,0,1,1,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1"))
+ (rule "qeq_literals" (formula "37") (term "0,1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_leqRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "13") (term "1,1,0,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "28") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "19") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "19") (term "1,1,0,0"))
+ (rule "add_literals" (formula "19") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "19") (term "1,1,0,0"))
+ (rule "applyEq" (formula "11") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "36") (term "1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "36") (term "1"))
+ (rule "add_literals" (formula "36") (term "0,1"))
+ (rule "applyEq" (formula "13") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "mul_literals" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "1,0,2,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,2,1,0"))
+ (rule "add_zero_left" (formula "4") (term "0,2,1,0"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,2,1,1,0"))
+ (rule "add_zero_left" (formula "11") (term "0,2,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "33"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_literals" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "false_right" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "7") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "7") (term "0,1,0"))
+ (rule "leq_literals" (formula "7") (term "1,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "7"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "37")) (ifInst "" (formula "14")))
+ (rule "eqSymm" (formula "8"))
+ (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "allLeft" (formula "9") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet10100100000112120_9" (formula "9") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10100100000112120_10" (formula "9") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "pullOutSelect" (formula "9") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "9"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "37")) (ifInst "" (formula "14")))
+ (rule "elementOfArrayRangeConcrete" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteGeq" (formula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "applyEqReverse" (formula "10") (term "1") (ifseqformula "9"))
+ (rule "hideAuxiliaryEq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "3"))
+ (rule "andLeft" (formula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0"))
+ (rule "add_literals" (formula "9") (term "0"))
+ (rule "leq_literals" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEqRigid" (formula "35") (term "1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1,0"))
+ (rule "add_literals" (formula "35") (term "0,1,0"))
+ (rule "add_zero_left" (formula "35") (term "1,0"))
+ (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "applyEqRigid" (formula "36") (term "1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "35") (term "1,1,1") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1,1"))
+ (rule "add_literals" (formula "35") (term "0,1,1"))
+ (rule "add_zero_left" (formula "35") (term "1,1"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "1") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1"))
+ (rule "andLeft" (formula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_zero_right" (formula "6") (term "0"))
+ (rule "leq_literals" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "false_right" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "mul_literals" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "allLeft" (formula "15") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq0" (formula "15") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1"))
+ (rule "leq_literals" (formula "15") (term "0,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "16"))
+ (rule "mul_literals" (formula "20") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "20"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "3"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ )
+ )
+ (branch "CUT: result_22 = null FALSE"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "commute_or" (formula "10") (term "0,0"))
+ (rule "commute_or" (formula "18") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "allLeft" (formula "11") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010100000112120_6" (formula "11") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "11"))
+ (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38"))
+ (rule "polySimp_addAssoc" (formula "5") (term "1"))
+ (rule "add_literals" (formula "5") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "false_right" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "allLeft" (formula "12") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_5" (formula "12") (term "0,1"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "12") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0010100000112120_7" (formula "12") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet010100000112120_6" (formula "12") (term "1,1"))
+ (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "10"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (term "0,0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_contradInEq0" (formula "12") (term "1") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "12"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_geqRight" (formula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "0,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,1,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "0,2,1,0,1,1,0"))
+ (rule "add_zero_left" (formula "14") (term "2,1,0,1,1,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "13") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "13") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "36") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0"))
+ (rule "add_zero_left" (formula "36") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "1"))
+ (rule "polySimp_elimOne" (formula "35") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1"))
+ (rule "qeq_literals" (formula "37") (term "0,1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_leqRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "14") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "35") (term "1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1"))
+ (rule "add_literals" (formula "35") (term "0,1"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "1,0,2,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,0"))
+ (rule "add_literals" (formula "3") (term "0,0,2,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,2,1,0"))
+ (rule "applyEq" (formula "10") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "11") (term "1,1,0,0"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "18") (term "1,1,0,0"))
+ (rule "applyEq" (formula "12") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,2,1,1,0"))
+ (rule "add_zero_left" (formula "11") (term "0,2,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_literals" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "false_right" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "7") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "7") (term "0,1,0"))
+ (rule "leq_literals" (formula "7") (term "1,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "7"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "38")) (ifInst "" (formula "14")))
+ (rule "eqSymm" (formula "8"))
+ (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "allLeft" (formula "9") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet10110100000112120_9" (formula "9") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10110100000112120_10" (formula "9") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "pullOutSelect" (formula "9") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "9"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "38")) (ifInst "" (formula "14")))
+ (rule "elementOfArrayRangeConcrete" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteGeq" (formula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "9") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "9") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "applyEqReverse" (formula "10") (term "1") (ifseqformula "9"))
+ (rule "hideAuxiliaryEq" (formula "9"))
+ (rule "inEqSimp_commuteLeq" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "9"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEq" (formula "35") (term "1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1,0"))
+ (rule "add_literals" (formula "35") (term "0,1,0"))
+ (rule "add_zero_left" (formula "35") (term "1,0"))
+ (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "35") (term "1,1,1") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1,1"))
+ (rule "add_literals" (formula "35") (term "0,1,1"))
+ (rule "add_zero_left" (formula "35") (term "1,1"))
+ (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "35") (term "1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "1") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1"))
+ (rule "andLeft" (formula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_zero_right" (formula "6") (term "0"))
+ (rule "leq_literals" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "false_right" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "allLeft" (formula "9") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "9") (term "1,1"))
+ (rule "replaceKnownSelect_taclet100000112120_5" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet110100000112120_6" (formula "9") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1110100000112120_7" (formula "9") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1"))
+ (rule "leq_literals" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ )
+ )
+ )
+ (branch "CUT: result_23 = null FALSE"
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "cut_direct" (formula "31") (term "0"))
+ (branch "CUT: result_22 = null TRUE"
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "true_left" (formula "32"))
+ (rule "commute_or" (formula "10") (term "0,0"))
+ (rule "commute_or" (formula "18") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "allLeft" (formula "11") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001100000112120_6" (formula "11") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "11"))
+ (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38"))
+ (rule "polySimp_addAssoc" (formula "5") (term "1"))
+ (rule "add_literals" (formula "5") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "false_right" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "allLeft" (formula "12") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_5" (formula "12") (term "0,1"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "12") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0001100000112120_7" (formula "12") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet001100000112120_6" (formula "12") (term "1,1"))
+ (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "10"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (term "0,0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_contradInEq0" (formula "12") (term "1") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "12") (term "0,0,1"))
+ (rule "leq_literals" (formula "12") (term "0,1"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "5"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "1,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0"))
+ (rule "add_literals" (formula "12") (term "0"))
+ (rule "leq_literals" (formula "12"))
+ (rule "closeFalse" (formula "12"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_geqRight" (formula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "11") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "13") (term "1,2,1,0,1,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,1,1,0"))
+ (rule "add_literals" (formula "13") (term "0,2,1,0,1,1,0"))
+ (rule "add_zero_left" (formula "13") (term "2,1,0,1,1,0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "add_zero_left" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1"))
+ (rule "qeq_literals" (formula "37") (term "0,1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_leqRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "3") (term "1,0,2,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,0"))
+ (rule "add_literals" (formula "3") (term "0,0,2,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,2,1,0"))
+ (rule "applyEq" (formula "12") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "applyEq" (formula "10") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "18") (term "1,1,0,0"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "35") (term "1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1"))
+ (rule "add_literals" (formula "35") (term "0,1"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "11") (term "1,1,0,0"))
+ (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,2,1,1,0"))
+ (rule "add_zero_left" (formula "11") (term "0,2,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "0"))
+ (rule "polySimp_elimOne" (formula "21") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_literals" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "false_right" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "7") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "7") (term "0,1,0"))
+ (rule "leq_literals" (formula "7") (term "1,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "7"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "38")) (ifInst "" (formula "14")))
+ (rule "eqSymm" (formula "8"))
+ (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "allLeft" (formula "8") (inst "t=add(Z(1(#)), i_1_0)"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,1,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "8") (term "0,1,0"))
+ (rule "qeq_literals" (formula "8") (term "1,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "8") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "pullOutSelect" (formula "8") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "8"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "38")) (ifInst "" (formula "14")))
+ (rule "eqSymm" (formula "9"))
+ (rule "applyEqReverse" (formula "8") (term "1") (ifseqformula "9"))
+ (rule "hideAuxiliaryEq" (formula "9"))
+ (rule "elementOfArrayRangeConcrete" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0"))
+ (rule "replace_known_left" (formula "8") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "qeq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEqRigid" (formula "3") (term "0") (ifseqformula "1"))
+ (rule "applyEq" (formula "36") (term "1,1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "36") (term "1,1"))
+ (rule "add_literals" (formula "36") (term "0,1,1"))
+ (rule "add_zero_left" (formula "36") (term "1,1"))
+ (rule "applyEqRigid" (formula "36") (term "1,0") (ifseqformula "1"))
+ (rule "applyEqRigid" (formula "35") (term "1,1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1,1"))
+ (rule "add_literals" (formula "35") (term "0,1,1"))
+ (rule "replace_known_left" (formula "35") (term "1") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_leqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEqRigid" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "1") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "35") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "35") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0"))
+ (rule "add_literals" (formula "35") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0,0"))
+ (rule "leq_literals" (formula "35") (term "0,0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "false_right" (formula "35"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "18"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "false_right" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "allLeft" (formula "9") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "9") (term "1,1"))
+ (rule "replaceKnownSelect_taclet100000112120_5" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet101100000112120_6" (formula "9") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1101100000112120_7" (formula "9") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "9") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1"))
+ (rule "leq_literals" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ )
+ )
+ (branch "CUT: result_22 = null FALSE"
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "commute_or" (formula "10") (term "0,0"))
+ (rule "commute_or" (formula "18") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7"))
+ (rule "mul_literals" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3"))
+ (rule "leq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "allLeft" (formula "11") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet011100000112120_6" (formula "11") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "11") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,0"))
+ (rule "leq_literals" (formula "11") (term "0,0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "11"))
+ (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "ifthenelse_split" (formula "4") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38"))
+ (rule "polySimp_addAssoc" (formula "5") (term "1"))
+ (rule "add_literals" (formula "5") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "38") (term "0,0,0"))
+ (rule "add_literals" (formula "38") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0"))
+ (rule "add_literals" (formula "38") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0"))
+ (rule "qeq_literals" (formula "38") (term "0"))
+ (builtin "One Step Simplification" (formula "38"))
+ (rule "false_right" (formula "38"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5"))
+ (rule "mul_literals" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "allLeft" (formula "11") (inst "t=add(Z(1(#)), i_1_0)"))
+ (rule "replaceKnownSelect_taclet100000112120_5" (formula "11") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0011100000112120_7" (formula "11") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0"))
+ (rule "inEqSimp_contradEq3" (formula "11") (term "1") (ifseqformula "4"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1"))
+ (rule "qeq_literals" (formula "11") (term "0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1"))
+ (rule "leq_literals" (formula "11") (term "0,1"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "5"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "1,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0"))
+ (rule "add_zero_right" (formula "11") (term "0"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
+ )
+ )
+ (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_geqRight" (formula "38"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,1,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,1,1,0"))
+ (rule "add_literals" (formula "14") (term "0,2,1,0,1,1,0"))
+ (rule "add_zero_left" (formula "14") (term "2,1,0,1,1,0"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "14") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "mul_literals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "add_literals" (formula "35") (term "0,0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "8") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0"))
+ (rule "add_zero_left" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1"))
+ (rule "polySimp_elimOne" (formula "36") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE"
+ (rule "andLeft" (formula "1"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1"))
+ (rule "add_literals" (formula "37") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "37") (term "0,0,1"))
+ (rule "qeq_literals" (formula "37") (term "0,1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "inEqSimp_leqRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "13") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "qeq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "13") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "1,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "11") (term "1,1,0,0"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "0,0"))
+ (rule "applyEq" (formula "10") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "1,0,2,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,0"))
+ (rule "add_literals" (formula "3") (term "0,0,2,1,0"))
+ (rule "add_zero_left" (formula "3") (term "0,2,1,0"))
+ (rule "applyEq" (formula "35") (term "1,1") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1"))
+ (rule "add_literals" (formula "35") (term "0,1"))
+ (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0"))
+ (rule "add_literals" (formula "18") (term "0,1,1,0,0"))
+ (rule "add_zero_left" (formula "18") (term "1,1,0,0"))
+ (rule "applyEq" (formula "9") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "11") (term "0,0,2,1,1,0"))
+ (rule "add_zero_left" (formula "11") (term "0,2,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5"))
+ (rule "mul_literals" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "add_literals" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "mul_literals" (formula "19") (term "1"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_zero_right" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1"))
+ (rule "add_literals" (formula "4") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0,0"))
+ (rule "add_zero_right" (formula "33") (term "0,0"))
+ (rule "qeq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "false_right" (formula "33"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4"))
+ (rule "mul_literals" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "mul_literals" (formula "18") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "allLeft" (formula "7") (inst "t=i_1_0"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "7") (term "0,1,0"))
+ (rule "leq_literals" (formula "7") (term "1,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "7"))
+ (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "39")) (ifInst "" (formula "14")))
+ (rule "eqSymm" (formula "8"))
+ (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "hideAuxiliaryEq" (formula "8"))
+ (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "7") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "allLeft" (formula "8") (inst "t=add(Z(1(#)), i_1_0)"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,1,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,1,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "8") (term "0,1,0"))
+ (rule "qeq_literals" (formula "8") (term "1,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "8") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0,0"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "pullOutSelect" (formula "8") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "8"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "39")) (ifInst "" (formula "14")))
+ (rule "eqSymm" (formula "9"))
+ (rule "applyEqReverse" (formula "8") (term "1") (ifseqformula "9"))
+ (rule "hideAuxiliaryEq" (formula "9"))
+ (rule "elementOfArrayRangeConcrete" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "8") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "8") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0"))
+ (rule "replace_known_left" (formula "8") (term "0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "qeq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
+ )
+ )
+ (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)"))
+ (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "i_1_0 = -1 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "applyEq" (formula "35") (term "1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1,0"))
+ (rule "add_literals" (formula "35") (term "0,1,0"))
+ (rule "add_zero_left" (formula "35") (term "1,0"))
+ (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "inEqSimp_geqRight" (formula "35"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "36") (term "1,0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "35") (term "1,1,1") (ifseqformula "2"))
+ (rule "polySimp_addAssoc" (formula "35") (term "1,1"))
+ (rule "add_literals" (formula "35") (term "0,1,1"))
+ (rule "add_zero_left" (formula "35") (term "1,1"))
+ (rule "applyEq" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "1") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1"))
+ (rule "andLeft" (formula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_zero_right" (formula "6") (term "0"))
+ (rule "leq_literals" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "i_1_0 = -1 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34"))
+ (rule "polySimp_addAssoc" (formula "3") (term "1"))
+ (rule "add_literals" (formula "3") (term "0,1"))
+ (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "qeq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "false_right" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "times_zero_1" (formula "2") (term "0,0"))
+ (rule "add_zero_left" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "mul_literals" (formula "2") (term "1"))
+ (rule "allLeft" (formula "9") (inst "t=i_1_0"))
+ (rule "replaceKnownSelect_taclet100000112120_3" (formula "9") (term "1,1"))
+ (rule "replaceKnownSelect_taclet100000112120_5" (formula "9") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet111100000112120_6" (formula "9") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1111100000112120_7" (formula "9") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1"))
+ (rule "leq_literals" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1"))
+ (rule "add_literals" (formula "9") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "9") (term "0,0,1"))
+ (rule "leq_literals" (formula "9") (term "0,1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "9"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (x_arr = null)"
+ (builtin "SMTRule")
+ )
+ (branch "Index Out of Bounds (x_arr != null, but x_8 Out of Bounds!)"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Null Reference (x_arr_1 = null)"
+ (builtin "SMTRule")
+ )
+ (branch "Index Out of Bounds (x_arr_1 != null, but x_9 Out of Bounds!)"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "if x_6 false"
+ (builtin "One Step Simplification" (formula "36"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "elim_double_block_2" (formula "36") (term "1"))
+ (rule "blockBreak" (formula "36") (term "1"))
+ (rule "lsBreak" (formula "36") (term "1"))
+ (rule "assignment" (formula "36") (term "1"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "variableDeclarationAssign" (formula "36") (term "1"))
+ (rule "variableDeclaration" (formula "36") (term "1") (newnames "classifier"))
+ (builtin "Use Operation Contract" (formula "36") (newnames "heapBefore_Classifier,self_25,exc_28,heapAfter_Classifier,anon_heap_Classifier") (contract "de.wiesler.Classifier[de.wiesler.Classifier::Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0"))
+ (branch "Post (Classifier)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "translateJavaMulInt" (formula "33") (term "1,1,1,0,1,0,1,1"))
+ (rule "andLeft" (formula "33"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,1,0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "35"))
+ (rule "notLeft" (formula "34"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "34"))
+ (rule "orRight" (formula "43"))
+ (rule "eqSymm" (formula "40"))
+ (rule "eqSymm" (formula "39"))
+ (rule "replace_known_right" (formula "34") (term "1,0") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "43")))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "assignment" (formula "50") (term "1"))
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "Block Contract (Internal)" (formula "50") (newnames "result_24,exc_29,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "13")))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "eqSymm" (formula "51") (term "0,0,1,0,1"))
+ (rule "variableDeclarationAssign" (formula "51") (term "1"))
+ (rule "variableDeclaration" (formula "51") (term "1") (newnames "exc_29_1"))
+ (rule "assignment" (formula "51") (term "1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "emptyStatement" (formula "51") (term "1"))
+ (rule "emptyStatement" (formula "51") (term "1"))
+ (rule "tryEmpty" (formula "51") (term "1"))
+ (rule "blockEmptyLabel" (formula "51") (term "1"))
+ (rule "blockEmpty" (formula "51") (term "1"))
+ (rule "methodCallEmpty" (formula "51") (term "1"))
+ (rule "emptyModality" (formula "51") (term "1"))
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (rule "andRight" (formula "51"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "inEqSimp_ltRight" (formula "47"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "41") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mod_axiom" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "20") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "17"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "39") (term "0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "29"))
+ (rule "polySimp_addComm1" (formula "29") (term "0"))
+ (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "7") (term "1,2,1,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "31") (term "1,2,1,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "2"))
+ (rule "applyEq" (formula "37") (term "2,0") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "14"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "26"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "nnf_imp2or" (formula "2") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "2") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "2") (term "1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "1,1,0,0"))
+ (rule "Contract_axiom_for_classOfFirstSplitters_in_Classifier" (formula "46") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38")) (ifInst "" (formula "40")) (ifInst "" (formula "31")) (ifInst "" (formula "43")) (ifInst "" (formula "47")) (ifInst "" (formula "38")))
+ (rule "notLeft" (formula "1"))
+ (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "notRight" (formula "47"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEq" (formula "1") (term "1,2,1") (ifseqformula "34"))
+ (rule "applyEq" (formula "1") (term "1,2,0") (ifseqformula "34"))
+ (rule "pullOutSelect" (formula "1") (term "2,1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "1,0,0") (ifseqformula "16"))
+ (rule "leq_literals" (formula "1") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "2,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "2"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "2") (term "2,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1"))
+ (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "26"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "translateJavaMulInt" (formula "39") (term "1,1,1,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,1,1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "41"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,1"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "35"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "44"))
+ (rule "pullOutSelect" (formula "44") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "44") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "56")) (ifInst "" (formula "9")))
+ (rule "simplifySelectOfAnonEQ" (formula "45") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "56")) (ifInst "" (formula "9")))
+ (rule "eqSymm" (formula "44") (term "0,0"))
+ (rule "eqSymm" (formula "45") (term "0,0"))
+ (rule "replace_known_right" (formula "44") (term "0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "simplifySelectOfAnon" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "56")) (ifInst "" (formula "9")))
+ (rule "replace_known_right" (formula "45") (term "0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "56")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "elementOfArrayRangeConcrete" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "translateJavaAddInt" (formula "6") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0"))
+ (rule "Contract_axiom_for_classOfFirstSplitters_in_Tree" (formula "50") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")) (ifInst "" (formula "49")) (ifInst "" (formula "50")) (ifInst "" (formula "51")) (ifInst "" (formula "47")))
+ (rule "notLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "49") (term "0"))
+ (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0"))
+ (rule "applyEq" (formula "49") (term "1,0,1,0,0") (ifseqformula "42"))
+ (rule "replaceKnownSelect_taclet10001112120_5" (formula "49") (term "0,1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "49") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0"))
+ (rule "applyEq" (formula "49") (term "1,1,0,0") (ifseqformula "42"))
+ (rule "replaceKnownSelect_taclet10001112120_2" (formula "49") (term "1,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "49") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "49") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0,0"))
+ (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Tree" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "notRight" (formula "51"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEq" (formula "1") (term "1,2,1") (ifseqformula "43"))
+ (rule "replaceKnownSelect_taclet10001112120_2" (formula "1") (term "2,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "1") (term "2,1"))
+ (rule "applyEq" (formula "1") (term "1,2,0") (ifseqformula "43"))
+ (rule "replaceKnownSelect_taclet10001112120_5" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "1") (term "2,0"))
+ (rule "commute_or" (formula "14") (term "0,0"))
+ (rule "commute_or" (formula "4") (term "0,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "2") (term "1"))
+ (rule "eqSymm" (formula "2"))
+ (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "2") (term "0") (inst "classify_sk=classify_sk_0") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "eqSymm" (formula "3"))
+ (rule "eqSymm" (formula "2") (term "0,1"))
+ (rule "boxToDiamond" (formula "2") (term "1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "notLeft" (formula "2"))
+ (rule "commute_or_2" (formula "51") (term "1"))
+ (rule "commute_and" (formula "45") (term "0,0"))
+ (rule "commute_and" (formula "46") (term "0,0"))
+ (rule "methodBodyExpand" (formula "50") (term "1") (newnames "heapBefore_classify,savedHeapBefore_classify"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "variableDeclarationAssign" (formula "50") (term "1"))
+ (rule "variableDeclaration" (formula "50") (term "1") (newnames "index_1"))
+ (rule "methodCallWithAssignmentUnfoldTarget" (formula "50") (term "1") (inst "#v0=t"))
+ (rule "variableDeclaration" (formula "50") (term "1") (newnames "t"))
+ (rule "assignment_read_attribute_this_final" (formula "50"))
+ (builtin "One Step Simplification" (formula "50"))
+ (builtin "Use Operation Contract" (formula "50") (newnames "heapBefore_classify_0,result_25,exc_30") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0"))
+ (branch "Post (classify)"
+ (builtin "One Step Simplification" (formula "51"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47")))
+ (rule "translateJavaMulInt" (formula "50") (term "1,1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "50") (term "3,0,1,0,1"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "eqSymm" (formula "50"))
+ (rule "polySimp_elimSub" (formula "53") (term "3,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "52"))
+ (rule "polySimp_mulAssoc" (formula "52") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "52") (term "0"))
+ (rule "assignment" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "variableDeclaration" (formula "55") (term "1") (newnames "bucket"))
+ (rule "applyEq" (formula "1") (term "1") (ifseqformula "50"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "0"))
+ (rule "inEqSimp_exactShadow1" (formula "52") (ifseqformula "51"))
+ (rule "greater_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "0,0"))
+ (rule "mul_literals" (formula "52") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "52") (term "0"))
+ (rule "add_literals" (formula "52") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "mul_literals" (formula "52") (term "1"))
+ (rule "allLeft" (formula "7") (inst "t=Z(0(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_3" (formula "7") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "7") (term "1,1"))
+ (rule "add_literals" (formula "7") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10001112120_6" (formula "7") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "7") (term "0,1"))
+ (rule "leq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "7") (term "0"))
+ (rule "mul_literals" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0"))
+ (rule "mul_literals" (formula "7") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "17"))
+ (rule "qeq_literals" (formula "7") (term "0,0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "allLeft" (formula "4") (inst "t=Z(1(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_6" (formula "4") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "4") (term "0,1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "allLeft" (formula "8") (inst "t=Z(1(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_6" (formula "8") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "8") (term "1,1"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "add_literals" (formula "8") (term "0,2,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "8") (term "0"))
+ (rule "mul_literals" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0"))
+ (rule "mul_literals" (formula "8") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "8") (term "0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "pullOutSelect" (formula "8") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "8"))
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "67")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_commuteGeq" (formula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "1,1,0,0"))
+ (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "allLeft" (formula "4") (inst "t=Z(0(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_3" (formula "4") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "4") (term "0,1"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "allLeft" (formula "18") (inst "t=Z(0(#))"))
+ (rule "add_zero_right" (formula "18") (term "0,2,0,1"))
+ (rule "leq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq1" (formula "18") (term "0"))
+ (rule "times_zero_2" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0"))
+ (rule "mul_literals" (formula "18") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "22"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "orRight" (formula "62"))
+ (rule "orRight" (formula "62"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "17") (term "0,0"))
+ (rule "mul_literals" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "ifElseUnfold" (formula "60") (term "1") (inst "#boolv=x_2"))
+ (rule "variableDeclaration" (formula "60") (term "1") (newnames "x_7"))
+ (rule "assignment_read_attribute_this_final" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "40") (term "0") (ifseqformula "35") (ifseqformula "37"))
+ (rule "applyEq" (formula "40") (term "1,0,1") (ifseqformula "41"))
+ (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "41"))
+ (rule "replace_known_right" (formula "40") (term "0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "39") (term "0,0") (ifseqformula "35") (ifseqformula "37"))
+ (rule "replace_known_right" (formula "39") (term "0") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "64")))
+ (rule "closeFalse" (formula "39"))
+ )
+ (branch "Exceptional Post (classify)"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47")))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "translateJavaMulInt" (formula "50") (term "1,1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "50") (term "3,0,1,0,1"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "50"))
+ (rule "andLeft" (formula "52"))
+ (rule "notLeft" (formula "50"))
+ (rule "close" (formula "54") (ifseqformula "53"))
+ )
+ (branch "Pre (classify)"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47")) (ifInst "" (formula "49")))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "orRight" (formula "50"))
+ (rule "orRight" (formula "50"))
+ (rule "replace_known_right" (formula "53") (term "1,1") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "50")) (ifInst "" (formula "52")))
+ (rule "false_right" (formula "53"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "44") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "44") (term "1,0") (ifseqformula "32"))
+ (rule "wellFormedAnon" (formula "44") (term "0,1,0"))
+ (rule "replace_known_left" (formula "44") (term "0,1") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "60")) (ifInst "" (formula "9")) (ifInst "" (formula "8")) (ifInst "" (formula "31")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "45") (term "0") (inst "i=i_1") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "45") (term "0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0"))
+ (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "45") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0"))
+ (rule "mul_literals" (formula "45") (term "1,0,0,0"))
+ (rule "nnf_imp2or" (formula "45") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "45") (term "0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_classOf_in_Classifier" (formula "2") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "51")) (ifInst "" (formula "34")) (ifInst "" (formula "58")))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,1"))
+ (rule "applyEq" (formula "2") (term "0,0,0,1") (ifseqformula "3"))
+ (rule "applyEq" (formula "2") (term "1,0,1,0,1") (ifseqformula "3"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,1"))
+ (rule "applyEq" (formula "2") (term "3,0,0,1,1") (ifseqformula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "3") (term "0"))
+ (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "3") (term "0") (inst "classify_sk=classify_sk_1") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "eqSymm" (formula "3") (term "0,1"))
+ (rule "applyEqRigid" (formula "3") (term "1,0,1") (ifseqformula "4"))
+ (rule "boxToDiamond" (formula "3") (term "1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "notLeft" (formula "3"))
+ (rule "commute_and_2" (formula "2") (term "1"))
+ (rule "commute_or" (formula "46") (term "0,0,1,0"))
+ (rule "commute_and" (formula "2") (term "0,1"))
+ (rule "methodBodyExpand" (formula "52") (term "1") (newnames "heapBefore_classify_1,savedHeapBefore_classify_0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "variableDeclarationAssign" (formula "52") (term "1"))
+ (rule "variableDeclaration" (formula "52") (term "1") (newnames "index_2"))
+ (rule "allLeft" (formula "8") (inst "t=Z(0(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_3" (formula "8") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "8") (term "1,1"))
+ (rule "leq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "add_literals" (formula "8") (term "0,2,0,1"))
+ (rule "replaceKnownSelect_taclet10001112120_6" (formula "8") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "8") (term "0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "8") (term "0"))
+ (rule "times_zero_2" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0"))
+ (rule "mul_literals" (formula "8") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "8") (term "0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "8") (term "0,0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "allLeft" (formula "5") (inst "t=Z(1(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_6" (formula "5") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "5") (term "0,1"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "allLeft" (formula "9") (inst "t=Z(1(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_6" (formula "9") (term "1,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "9") (term "1,1"))
+ (rule "add_literals" (formula "9") (term "0,2,0,1"))
+ (rule "leq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_homoInEq1" (formula "9") (term "0"))
+ (rule "mul_literals" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0"))
+ (rule "mul_literals" (formula "9") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "9") (term "0") (ifseqformula "19"))
+ (rule "qeq_literals" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "pullOutSelect" (formula "9") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "9"))
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "65")) (ifInst "" (formula "14")))
+ (rule "elementOfArrayRangeConcrete" (formula "9") (term "0,0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_commuteGeq" (formula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "1,1,0,0"))
+ (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "allLeft" (formula "5") (inst "t=Z(0(#))"))
+ (rule "replaceKnownSelect_taclet10001112120_3" (formula "5") (term "0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "5") (term "0,1"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "allLeft" (formula "19") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "add_zero_right" (formula "19") (term "0,2,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0"))
+ (rule "times_zero_2" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0"))
+ (rule "mul_literals" (formula "19") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "23"))
+ (rule "qeq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "18") (term "0,0"))
+ (rule "mul_literals" (formula "18") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "all_pull_out3" (formula "50") (term "0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0"))
+ (rule "shift_paren_or" (formula "50") (term "0,0,0"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "41") (term "0") (ifseqformula "36") (ifseqformula "38"))
+ (rule "applyEq" (formula "41") (term "1,0,1") (ifseqformula "42"))
+ (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "42"))
+ (rule "replace_known_right" (formula "41") (term "0") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "onlyCreatedObjectsAreReferencedFinal" (formula "40") (term "0,0") (ifseqformula "36") (ifseqformula "38"))
+ (rule "replace_known_right" (formula "40") (term "1") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "62")))
+ (rule "closeFalse" (formula "40"))
+ )
+ (branch "Null reference (t = null)"
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "52")))
+ (rule "closeTrue" (formula "50"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "50"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "wellFormedAnonEQ" (formula "50") (ifseqformula "33"))
+ (rule "wellFormedAnon" (formula "50") (term "0"))
+ (rule "replace_known_left" (formula "50") (term "0,0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "9")) (ifInst "" (formula "32")))
+ (rule "closeTrue" (formula "50"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "51"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,1,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0,1") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "43"))
+ (rule "andLeft" (formula "45"))
+ (rule "replace_known_left" (formula "46") (term "0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "true_left" (formula "46"))
+ (rule "commute_or_2" (formula "45") (term "1"))
+ (rule "shift_paren_or" (formula "45"))
+ (rule "shift_paren_or" (formula "45") (term "0"))
+ (rule "elim_double_block_2" (formula "53") (term "1"))
+ (rule "ifUnfold" (formula "53") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_7"))
+ (rule "inequality_comparison_simple" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "replace_known_left" (formula "53") (term "0,0,1,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "ifSplit" (formula "53"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "53") (term "1"))
+ (rule "methodCallReturn" (formula "53") (term "1"))
+ (rule "assignment" (formula "53") (term "1"))
+ (builtin "One Step Simplification" (formula "53"))
+ (rule "methodCallEmpty" (formula "53") (term "1"))
+ (rule "tryEmpty" (formula "53") (term "1"))
+ (rule "emptyModality" (formula "53") (term "1"))
+ (rule "andRight" (formula "53"))
+ (branch "Case 1"
+ (rule "impRight" (formula "53"))
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "42")))
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "ifthenelse_split" (formula "41") (term "0") (userinteraction))
+ (branch "-1 + num_buckets + num_splitters * -1 >= 5 TRUE"
+ (rule "true_left" (formula "1"))
+ (rule "eqSymm" (formula "41"))
+ (rule "replace_known_left" (formula "39") (term "0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "eqSymm" (formula "39"))
+ (rule "inEqSimp_ltRight" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "41"))
+ (rule "mod_axiom" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "20") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "20") (term "0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "jmod_axiom" (formula "53") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "53"))
+ (rule "polySimp_mulLiterals" (formula "53") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1"))
+ (rule "polySimp_rightDist" (formula "40") (term "1"))
+ (rule "mul_literals" (formula "40") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "17"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "39"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "elimGcdEq" (formula "51") (inst "elimGcdRightDiv=javaShiftLeftInt(Z(1(#)), add(Z(1(#)), result_21))") (inst "elimGcdLeftDiv=jdiv(mul(javaShiftLeftInt(Z(1(#)),
+ add(Z(1(#)), result_21)),
+ Z(2(#))),
+ Z(2(#)))") (inst "elimGcd=Z(2(#))"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0"))
+ (rule "add_literals" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "51") (term "0,0,1"))
+ (rule "add_literals" (formula "51") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "51") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0"))
+ (rule "polySimp_pullOutFactor0" (formula "51") (term "0,1,0"))
+ (rule "add_literals" (formula "51") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "51") (term "0,1,0"))
+ (rule "qeq_literals" (formula "51") (term "1,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "0,0"))
+ (rule "leq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1"))
+ (rule "applyEq" (formula "6") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "32") (term "1,2,1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "28"))
+ (rule "polySimp_addComm1" (formula "28") (term "0"))
+ (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "50") (term "0,0,0") (ifseqformula "2"))
+ (rule "eqSymm" (formula "50"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "2"))
+ (rule "applyEq" (formula "49") (term "0") (ifseqformula "2"))
+ (rule "eqSymm" (formula "49"))
+ (rule "applyEq" (formula "37") (term "0,1") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "26"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "35"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "25"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "nnf_imp2or" (formula "2") (term "0"))
+ (rule "Contract_axiom_for_classOfFirstSplitters_in_Classifier" (formula "40") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "37")) (ifInst "" (formula "29")) (ifInst "" (formula "45")) (ifInst "" (formula "41")) (ifInst "" (formula "37")))
+ (rule "true_left" (formula "40"))
+ (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "40") (term "0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "41"))
+ (rule "applyEq" (formula "41") (term "1,2,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "41"))
+ (rule "applyEq" (formula "41") (term "1,2,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "41"))
+ (rule "pullOutSelect" (formula "41") (term "2,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9")))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "1") (term "1,0,0") (ifseqformula "15"))
+ (rule "leq_literals" (formula "1") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "42") (term "2,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "41") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9")))
+ (rule "eqSymm" (formula "42"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "42") (term "2,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "37"))
+ (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "34")))
+ (rule "translateJavaSubInt" (formula "37") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "37") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "37") (term "1,1,0,0,0,0"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "37"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "notLeft" (formula "37"))
+ (rule "eqSymm" (formula "42"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,2,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "42"))
+ (rule "polySimp_elimSub" (formula "42") (term "0,2,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "42"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1"))
+ (rule "eqSymm" (formula "39"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "42") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "37"))
+ (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "42"))
+ (rule "applyEq" (formula "47") (term "0") (ifseqformula "32"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "40") (term "1") (ifseqformula "32"))
+ (rule "applyEq" (formula "38") (term "0") (ifseqformula "36"))
+ (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "32"))
+ (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "32"))
+ (rule "eqSymm" (formula "42"))
+ (rule "applyEq" (formula "39") (term "1") (ifseqformula "36"))
+ (rule "inEqSimp_subsumption6" (formula "37") (ifseqformula "14"))
+ (rule "greater_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "1,0"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "inEqSimp_subsumption4" (formula "37") (ifseqformula "4"))
+ (rule "greater_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "0,0"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "elimGcdEq" (formula "37") (inst "elimGcdRightDiv=i_0") (inst "elimGcdLeftDiv=int::final(de.wiesler.Tree::final(self_25,
+ de.wiesler.Classifier::$tree),
+ de.wiesler.Tree::$num_buckets)") (inst "elimGcd=Z(2(#))"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "37") (term "0,1,0,1,0"))
+ (rule "add_literals" (formula "37") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "37") (term "0,0,0"))
+ (rule "add_literals" (formula "37") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "37") (term "0,0,0"))
+ (rule "leq_literals" (formula "37") (term "0,0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "37") (term "0,0,1"))
+ (rule "add_literals" (formula "37") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "37") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "0,0"))
+ (rule "qeq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "applyEq" (formula "39") (term "3,0") (ifseqformula "37"))
+ (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "37"))
+ (rule "eqSymm" (formula "40"))
+ (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "37"))
+ (rule "eqSymm" (formula "40"))
+ (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "40") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "53")) (ifInst "" (formula "8")))
+ (rule "eqSymm" (formula "41"))
+ (rule "simplifySelectOfAnonEQ" (formula "41") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "53")) (ifInst "" (formula "8")))
+ (rule "eqSymm" (formula "40") (term "0,0"))
+ (rule "eqSymm" (formula "41") (term "0,0"))
+ (rule "replace_known_right" (formula "40") (term "0,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "simplifySelectOfAnon" (formula "40"))
+ (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "53")) (ifInst "" (formula "8")))
+ (rule "replace_known_right" (formula "41") (term "0,0") (ifseqformula "51"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "simplifySelectOfAnon" (formula "41"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "53")) (ifInst "" (formula "8")))
+ (rule "elementOfArrayRangeConcrete" (formula "40") (term "0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "elementOfArrayRangeConcrete" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "25")))
+ (rule "inEqSimp_homoInEq0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,1,0,0"))
+ (rule "add_literals" (formula "40") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "40") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "40") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "40") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "41") (term "0,0,0"))
+ (rule "add_literals" (formula "41") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "41") (term "0,0,0"))
+ (rule "qeq_literals" (formula "41") (term "0,0"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "applyEqReverse" (formula "40") (term "1") (ifseqformula "41"))
+ (rule "hideAuxiliaryEq" (formula "41"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "translateJavaAddInt" (formula "19") (term "1,1,1,1"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "19"))
+ (rule "polySimp_addComm0" (formula "22") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1"))
+ (rule "applyEq" (formula "22") (term "0,1,0,1") (ifseqformula "1"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1,1"))
+ (rule "replace_known_left" (formula "22") (term "1") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "24"))
+ (rule "leq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "2") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "2") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "2") (term "1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "5") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "translateJavaAddInt" (formula "5") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "5") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "47") (term "0"))
+ (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "47") (term "0") (inst "classify_sk=classify_sk_0") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "1") (term "0,1"))
+ (rule "boxToDiamond" (formula "1") (term "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0"))
+ (rule "jdiv_axiom" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "15"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "56") (term "0") (inst "polyDivCoeff=i_0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "56") (term "0,0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "polySimp_homoEq" (formula "56"))
+ (rule "polySimp_pullOutFactor0" (formula "56") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "56") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "56") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "56") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "56") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "1,0"))
+ (rule "times_zero_1" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "closeTrue" (formula "56"))
+ )
+ (branch "-1 + num_buckets + num_splitters * -1 >= 5 FALSE"
+ (rule "shiftLeftSplitTwo" (formula "41") (term "0") (userinteraction))
+ (rule "true_left" (formula "1"))
+ (rule "eqSymm" (formula "41"))
+ (rule "replace_known_right" (formula "39") (term "0,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "eqSymm" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "polySimp_elimSub" (formula "39") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "39") (term "1,0,0,1"))
+ (rule "add_literals" (formula "39") (term "0,1,0,0,1"))
+ (rule "add_zero_left" (formula "39") (term "1,0,0,1"))
+ (rule "eqSymm" (formula "39") (term "1"))
+ (rule "inEqSimp_geqRight" (formula "47"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0"))
+ (rule "mul_literals" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "41") (term "0,0,0"))
+ (rule "add_literals" (formula "41") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "41") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "41") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,1,0"))
+ (rule "add_literals" (formula "41") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,0,1,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "41"))
+ (rule "mod_axiom" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "21") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "jmod_axiom" (formula "54") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "54"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "40") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "40") (term "1,0") (ifseqformula "27"))
+ (rule "leq_literals" (formula "40") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "40") (term "0,1") (ifseqformula "4"))
+ (rule "eqSymm" (formula "40") (term "1"))
+ (rule "applyEq" (formula "54") (term "0,0,0") (ifseqformula "4"))
+ (rule "eqSymm" (formula "54"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "6") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "applyEq" (formula "33") (term "1,2,1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "51") (term "0") (ifseqformula "3"))
+ (rule "eqSymm" (formula "51"))
+ (rule "applyEq" (formula "38") (term "1") (ifseqformula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "13"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "19"))
+ (rule "leq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "28"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "17"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "1"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "17"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_imp2or" (formula "5") (term "0"))
+ (rule "nnf_imp2or" (formula "4") (term "0"))
+ (rule "Contract_axiom_for_classOfFirstSplitters_in_Classifier" (formula "42") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "39")) (ifInst "" (formula "32")) (ifInst "" (formula "48")) (ifInst "" (formula "43")) (ifInst "" (formula "39")))
+ (rule "true_left" (formula "42"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39"))
+ (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "44")))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,1,1,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "41"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "43") (term "3,0") (ifseqformula "41"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "35"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "39") (term "0") (ifseqformula "38"))
+ (rule "applyEq" (formula "44") (term "1,0,2,0") (ifseqformula "41"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "35"))
+ (rule "applyEq" (formula "41") (term "1") (ifseqformula "38"))
+ (rule "applyEq" (formula "43") (term "3,0") (ifseqformula "38"))
+ (rule "applyEq" (formula "44") (term "1,0,2,0") (ifseqformula "41"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "44") (term "1,0,2,0") (ifseqformula "38"))
+ (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "16"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "inEqSimp_subsumption0" (formula "39") (ifseqformula "6"))
+ (rule "leq_literals" (formula "39") (term "0"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "true_left" (formula "39"))
+ (rule "pullOutSelect" (formula "42") (term "1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "43") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "56")) (ifInst "" (formula "10")))
+ (rule "simplifySelectOfAnonEQ" (formula "42") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "56")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "43") (term "0,0"))
+ (rule "eqSymm" (formula "42") (term "0,0"))
+ (rule "replace_known_right" (formula "42") (term "0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "simplifySelectOfAnon" (formula "42"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "56")) (ifInst "" (formula "10")))
+ (rule "replace_known_right" (formula "43") (term "0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "simplifySelectOfAnon" (formula "43"))
+ (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "56")) (ifInst "" (formula "10")))
+ (rule "elementOfArrayRangeConcrete" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "28")))
+ (rule "elementOfArrayRangeConcrete" (formula "43") (term "0,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "42") (term "0,0,0"))
+ (rule "add_literals" (formula "42") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "42") (term "0,0,0"))
+ (rule "qeq_literals" (formula "42") (term "0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "applyEqReverse" (formula "43") (term "1") (ifseqformula "42"))
+ (rule "hideAuxiliaryEq" (formula "42"))
+ (rule "inEqSimp_homoInEq0" (formula "42") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "42") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,1,0,0"))
+ (rule "add_literals" (formula "42") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "42") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "42") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "46") (term "0"))
+ (builtin "One Step Simplification" (formula "46"))
+ (rule "notLeft" (formula "46"))
+ (rule "eqSymm" (formula "47"))
+ (rule "applyEq" (formula "47") (term "1,2,1") (ifseqformula "35"))
+ (rule "applyEq" (formula "47") (term "1,2,0") (ifseqformula "35"))
+ (rule "pullOutSelect" (formula "47") (term "2,1") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11")))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "48") (term "2,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "47") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11")))
+ (rule "eqSymm" (formula "48"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "48") (term "2,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "47"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "translateJavaAddInt" (formula "22") (term "1,1,1,1"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "andLeft" (formula "22"))
+ (rule "replace_known_left" (formula "40") (term "0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "polySimp_addComm0" (formula "25") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,1"))
+ (rule "applyEq" (formula "25") (term "0,1,0,1") (ifseqformula "3"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1"))
+ (rule "mul_literals" (formula "25") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1"))
+ (rule "replace_known_left" (formula "25") (term "1") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "27"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "newSym_eq" (formula "38") (inst "l=l_0") (inst "newSymDef=mul(i_0, Z(0(#)))"))
+ (rule "times_zero_1" (formula "38") (term "1,1"))
+ (rule "add_zero_right" (formula "38") (term "1"))
+ (rule "applyEq" (formula "23") (term "0") (ifseqformula "38"))
+ (rule "inEqSimp_commuteLeq" (formula "23"))
+ (rule "applyEq" (formula "39") (term "0,0") (ifseqformula "38"))
+ (rule "eqSymm" (formula "39"))
+ (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "39"))
+ (rule "applyEqRigid" (formula "7") (term "3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "5") (term "1,1,0,0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "7") (term "1,2,1,0,0") (ifseqformula "39"))
+ (rule "applyEqRigid" (formula "58") (term "0,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "32") (term "1,2,1,0,0") (ifseqformula "39"))
+ (rule "applyEqRigid" (formula "44") (term "1,0,2,2,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "43") (term "3,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "1,0,2,1,0") (ifseqformula "39"))
+ (rule "applyEqRigid" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "39"))
+ (rule "applyEqRigid" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "1,1,0,0") (ifseqformula "39"))
+ (rule "applyEq" (formula "29") (term "1,1") (ifseqformula "39"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "39"))
+ (rule "applyEqRigid" (formula "3") (term "1") (ifseqformula "39"))
+ (rule "applyEqRigid" (formula "41") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "40") (term "1") (ifseqformula "39"))
+ (rule "applyEq" (formula "44") (term "1,0,2,1") (ifseqformula "39"))
+ (rule "elimGcdEq" (formula "58") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(mul(l_0, Z(2(#))), Z(2(#)))") (inst "elimGcd=Z(2(#))"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,0"))
+ (rule "add_literals" (formula "58") (term "1,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,1"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,0"))
+ (rule "add_literals" (formula "58") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "58") (term "0,0,0"))
+ (rule "leq_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,1"))
+ (rule "add_literals" (formula "58") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "58") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "1,0,0"))
+ (rule "times_zero_1" (formula "58") (term "0,0"))
+ (rule "qeq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "elimGcdLeq_antec" (formula "6") (inst "elimGcdRightDiv=Z(2(3(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0"))
+ (rule "neg_literal" (formula "6") (term "0,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "6") (term "0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "elimGcdGeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "29"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "16"))
+ (rule "mul_literals" (formula "17") (term "1,1,0"))
+ (rule "greater_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "22"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "0"))
+ (rule "polySimp_elimOne" (formula "22") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "29"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "15"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "1,1"))
+ (rule "mul_literals" (formula "23") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "1"))
+ (rule "mul_literals" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "add_literals" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_subsumption6" (formula "14") (ifseqformula "16"))
+ (rule "greater_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1,0"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "18"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "polySimp_elimOne" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "23") (term "0,0"))
+ (rule "mul_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm1" (formula "23") (term "0,0"))
+ (rule "add_literals" (formula "23") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "23") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "23"))
+ (rule "mul_literals" (formula "23") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "15"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "nnf_notAnd" (formula "5") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "4") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "translateJavaAddInt" (formula "6") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "50") (term "0"))
+ (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "50") (term "0") (inst "classify_sk=classify_sk_0") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "35"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "51"))
+ (rule "eqSymm" (formula "1") (term "0,1"))
+ (rule "boxToDiamond" (formula "1") (term "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "commute_or" (formula "13") (term "0,0"))
+ (rule "commute_or" (formula "4") (term "0,0"))
+ (rule "jdiv_axiom" (formula "60") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "16"))
+ (rule "greater_literals" (formula "1") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "applyEqRigid" (formula "61") (term "0") (ifseqformula "1"))
+ (rule "polyDiv_pullOut" (formula "61") (term "0") (inst "polyDivCoeff=l_0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0,2,0"))
+ (rule "equal_literals" (formula "61") (term "0,0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "polySimp_homoEq" (formula "61"))
+ (rule "polySimp_pullOutFactor0" (formula "61") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "61") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "61") (term "0,0,0,1,0"))
+ (rule "div_literals" (formula "61") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "61") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "61") (term "0"))
+ (rule "add_literals" (formula "61") (term "1,0"))
+ (rule "times_zero_1" (formula "61") (term "0"))
+ (builtin "One Step Simplification" (formula "61"))
+ (rule "closeTrue" (formula "61"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "1"))
+ (rule "notRight" (formula "53"))
+ (rule "inEqSimp_ltRight" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0"))
+ (rule "add_literals" (formula "40") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,1,2,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "21") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "pullOutSelect" (formula "2") (term "2,1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13")))
+ (rule "eqSymm" (formula "2") (term "0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (term "0,0,0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13")))
+ (rule "eqSymm" (formula "3"))
+ (rule "eqSymm" (formula "2") (term "0,0"))
+ (rule "replace_known_right" (formula "2") (term "0,0") (ifseqformula "50"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "1,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "2") (term "0,0,0") (ifseqformula "18"))
+ (rule "qeq_literals" (formula "2") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "eqSymm" (formula "2"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "41") (term "0,1,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "41") (term "2,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "31") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "31"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "applyEq" (formula "10") (term "1,2,1,0,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "7") (term "1,2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "34") (term "1,2,1,0,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "27"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "4") (term "0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1"))
+ (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "26"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39"))
+ (builtin "One Step Simplification" (formula "39"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "39") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "1,1,1,0,0,0,0"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "39"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "39"))
+ (rule "notLeft" (formula "39"))
+ (rule "eqSymm" (formula "44"))
+ (rule "eqSymm" (formula "41"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,2,0"))
+ (rule "mul_literals" (formula "44") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,2,0"))
+ (rule "eqSymm" (formula "44"))
+ (rule "inEqSimp_commuteLeq" (formula "39"))
+ (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "35"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "44"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "35"))
+ (rule "applyEq" (formula "50") (term "0") (ifseqformula "35"))
+ (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35"))
+ (rule "eqSymm" (formula "44"))
+ (rule "pullOutSelect" (formula "44") (term "1") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "45") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "57")) (ifInst "" (formula "9")))
+ (rule "simplifySelectOfAnonEQ" (formula "44") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "57")) (ifInst "" (formula "9")))
+ (rule "eqSymm" (formula "45") (term "0,0"))
+ (rule "eqSymm" (formula "44") (term "0,0"))
+ (rule "replace_known_right" (formula "45") (term "0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "simplifySelectOfAnon" (formula "45"))
+ (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "57")) (ifInst "" (formula "9")))
+ (rule "replace_known_right" (formula "44") (term "0,0") (ifseqformula "55"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "simplifySelectOfAnon" (formula "44"))
+ (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "57")) (ifInst "" (formula "9")))
+ (rule "elementOfArrayRangeConcrete" (formula "45") (term "0,0"))
+ (builtin "One Step Simplification" (formula "45"))
+ (rule "elementOfArrayRangeConcrete" (formula "44") (term "0,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "45") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "45") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "44") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "notLeft" (formula "49"))
+ (rule "eqSymm" (formula "50"))
+ (rule "applyEq" (formula "50") (term "1,2,1") (ifseqformula "35"))
+ (rule "replaceKnownSelect_taclet0111110001201112120_2" (formula "50") (term "2,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0111110001201112120_4" (formula "50") (term "2,1"))
+ (rule "applyEq" (formula "50") (term "1,2,0") (ifseqformula "35"))
+ (rule "replaceKnownSelect_taclet0111110001201112120_5" (formula "50") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0111110001201112120_7" (formula "50") (term "2,0"))
+ (rule "close" (formula "50") (ifseqformula "1"))
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "54"))
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "53"))
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "54"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ )
+ )
+ (branch "Exceptional Post (Classifier)"
+ (builtin "One Step Simplification" (formula "38"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "translateJavaMulInt" (formula "33") (term "1,1,1,0,1,0,1,1"))
+ (rule "andLeft" (formula "33"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,1,0,1,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "36"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "38"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "36"))
+ (rule "notLeft" (formula "34"))
+ (rule "close" (formula "43") (ifseqformula "42"))
+ )
+ (branch "Pre (Classifier)"
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "33")) (ifInst "" (formula "26")) (ifInst "" (formula "35")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "11")) (ifInst "" (formula "34")) (ifInst "" (formula "12")))
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "6") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mod_axiom" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "21") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "2"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,0"))
+ (rule "times_zero_1" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "4"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "27") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "27"))
+ (rule "polySimp_addComm1" (formula "27") (term "0"))
+ (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "26"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "nnf_imp2or" (formula "4") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "4") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1"))
+ (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "21"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "8") (term "0") (userinteraction))
+ (rule "doubleImpLeft" (formula "8") (userinteraction))
+ (branch "Case 1"
+ (rule "wellFormedAnon" (formula "32") (term "1"))
+ (rule "replace_known_right" (formula "32") (term "0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "10")) (ifInst "" (formula "9")))
+ (rule "closeTrue" (formula "32"))
+ )
+ (branch "Case 2"
+ (rule "close" (formula "32") (ifseqformula "8"))
+ )
+ (branch "Case 3"
+ (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "mod_axiom" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "21") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "21") (term "0,1,0"))
+ (rule "div_literals" (formula "21") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "21") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,1,0"))
+ (rule "mul_literals" (formula "21") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "21") (term "0"))
+ (rule "add_literals" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21"))
+ (rule "mul_literals" (formula "21") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "34") (term "1,2,1,0,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "33") (term "3,0") (ifseqformula "2"))
+ (rule "close" (formula "33") (ifseqformula "7"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,0"))
+ (rule "translateJavaSubInt" (formula "36") (term "0,2,1"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,2,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_elimSub" (formula "36") (term "0,2,0"))
+ (rule "mul_literals" (formula "36") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "36"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,2,0"))
+ (rule "inEqSimp_ltRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,0"))
+ (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "20") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "mod_axiom" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,1,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "1,1,0,0,1,0"))
+ (rule "pow_literals" (formula "20") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "20") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "20") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0"))
+ (rule "div_literals" (formula "20") (term "0,1,0,1,0"))
+ (rule "times_zero_2" (formula "20") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "20") (term "0,1,0"))
+ (rule "mul_literals" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20"))
+ (rule "mul_literals" (formula "20") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "17"))
+ (rule "leq_literals" (formula "14") (term "0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "true_left" (formula "14"))
+ (rule "pullOutSelect" (formula "34") (term "1") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "1") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")) (ifInst "" (formula "12")))
+ (rule "eqSymm" (formula "35"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "1") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "2"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "qeq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "30"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,0"))
+ (rule "times_zero_1" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "applyEq" (formula "1") (term "1,0,2,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "3"))
+ (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "1") (term "1,0,2,2,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "3"))
+ (rule "applyEq" (formula "1") (term "0,0,0") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "mul_literals" (formula "28") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0"))
+ (rule "qeq_literals" (formula "2") (term "0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "mul_literals" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "mul_literals" (formula "15") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "27"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "4") (term "0"))
+ (rule "nnf_imp2or" (formula "3") (term "0"))
+ (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "polySimp_addComm0" (formula "24") (term "1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,1"))
+ (rule "mul_literals" (formula "24") (term "0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,1"))
+ (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "26"))
+ (rule "leq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "4") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "3") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i_1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "translateJavaAddInt" (formula "6") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "6") (term "0"))
+ (rule "nnf_notAnd" (formula "6") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0"))
+ (rule "commute_or" (formula "13") (term "0,0"))
+ (rule "cut_direct" (formula "26") (term "0"))
+ (branch "CUT: result_22 = null TRUE"
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "cut_direct" (formula "29") (term "0"))
+ (branch "CUT: result_23 = null TRUE"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "commute_or" (formula "3") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "num_splitters <= -2 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "34") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "eqSymm" (formula "33"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "33")) (ifInst "" (formula "11")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1")))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "4"))
+ (rule "eqSymm" (formula "33"))
+ (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34")) (ifInst "" (formula "12")))
+ (rule "eqSymm" (formula "6"))
+ (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "5") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34")))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "num_splitters <= -2 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "34") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "29"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_pullOutFactor1" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "1,0"))
+ (rule "times_zero_1" (formula "29") (term "0"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "5") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "6") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0"))
+ (rule "applyEq" (formula "6") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,2,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "commute_or" (formula "4") (term "0,0"))
+ (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "commute_or" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "30")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "30")))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ (branch "CUT: result_23 = null FALSE"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "commute_or" (formula "3") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "num_splitters <= -2 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "eqSymm" (formula "34"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")) (ifInst "" (formula "11")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1")))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "4"))
+ (rule "eqSymm" (formula "34"))
+ (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35")) (ifInst "" (formula "12")))
+ (rule "eqSymm" (formula "6"))
+ (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "5") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35")))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "num_splitters <= -2 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "29"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "6") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "6") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_pullOutFactor1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,0"))
+ (rule "times_zero_1" (formula "28") (term "0"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,2,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "commute_or" (formula "4") (term "0,0"))
+ (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "commute_or" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31")))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ )
+ (branch "CUT: result_22 = null FALSE"
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "cut_direct" (formula "29") (term "0"))
+ (branch "CUT: result_23 = null TRUE"
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "true_left" (formula "30"))
+ (rule "commute_or" (formula "3") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "num_splitters <= -2 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "eqSymm" (formula "34"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")) (ifInst "" (formula "11")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1")))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "4"))
+ (rule "eqSymm" (formula "34"))
+ (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35")) (ifInst "" (formula "12")))
+ (rule "eqSymm" (formula "6"))
+ (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "5") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35")))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "num_splitters <= -2 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "29"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "29"))
+ (rule "polySimp_pullOutFactor1" (formula "29") (term "0"))
+ (rule "add_literals" (formula "29") (term "1,0"))
+ (rule "times_zero_1" (formula "29") (term "0"))
+ (rule "qeq_literals" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "applyEq" (formula "5") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "5") (term "1,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "7") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "14") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "1,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "5") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "add_literals" (formula "17") (term "0,0"))
+ (rule "applyEq" (formula "13") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0"))
+ (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,2,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "commute_or" (formula "4") (term "0,0"))
+ (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "commute_or" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31")))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ (branch "CUT: result_23 = null FALSE"
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "commute_or" (formula "3") (term "0,0"))
+ (rule "ifthenelse_split" (formula "1") (term "0"))
+ (branch "num_splitters <= -2 + i_0 TRUE"
+ (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "eqSymm" (formula "35"))
+ (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "28") (term "0"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "qeq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1"))
+ (rule "mul_literals" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16"))
+ (rule "leq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "leq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "35")) (ifInst "" (formula "11")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1")))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "4"))
+ (rule "eqSymm" (formula "35"))
+ (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0"))
+ (rule "leq_literals" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "5"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "36")) (ifInst "" (formula "12")))
+ (rule "eqSymm" (formula "6"))
+ (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "1,0,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "0,1,0,0"))
+ (rule "qeq_literals" (formula "5") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "36")))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch "num_splitters <= -2 + i_0 FALSE"
+ (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "inEqSimp_leqRight" (formula "29"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28"))
+ (rule "applyEq" (formula "2") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,0"))
+ (rule "times_zero_1" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "applyEq" (formula "17") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "add_literals" (formula "16") (term "0,0"))
+ (rule "applyEq" (formula "6") (term "1,1,0,1,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "12") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "applyEq" (formula "22") (term "1") (ifseqformula "1"))
+ (rule "applyEq" (formula "4") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "6") (term "1,1,0,0,1,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "3") (term "1,1,0,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_pullOutFactor1" (formula "28") (term "0"))
+ (rule "add_literals" (formula "28") (term "1,0"))
+ (rule "times_zero_1" (formula "28") (term "0"))
+ (rule "qeq_literals" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0"))
+ (rule "add_literals" (formula "4") (term "0,0,2,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0"))
+ (rule "commute_or" (formula "4") (term "0,0"))
+ (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,1,0,0,0,0"))
+ (rule "add_zero_left" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "commute_or" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "4"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "32")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "5"))
+ (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0"))
+ (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "32")))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "wellFormedAnon" (formula "36"))
+ (rule "replace_known_left" (formula "36") (term "0") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "9")))
+ (rule "closeTrue" (formula "36"))
+ )
+ )
+ )
+ )
+ )
+ )
+ )
+ )
)
-(branch "Usage"
- (opengoal " ")
+(branch "Exceptional Post (log2)"
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "notLeft" (formula "14"))
+ (rule "close" (formula "16") (ifseqformula "15"))
+)
+(branch "Pre (log2)"
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "1")))
+ (rule "inEqSimp_gtRight" (formula "17"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,1,0,1,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "8") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "mod_axiom" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0"))
+ (rule "div_literals" (formula "12") (term "0,1,1,2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,2,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "pow_literals" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "mod_axiom" (formula "12") (term "1,0,0,1,0,0,1,0"))
+ (rule "div_literals" (formula "12") (term "0,0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "12") (term "0,1,1,0,0,1,0,0,1,0"))
+ (rule "times_zero_2" (formula "12") (term "1,1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "1,0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,0"))
+ (rule "leq_literals" (formula "12") (term "0,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "add_literals" (formula "12") (term "0,0,1,0"))
+ (rule "mod_axiom" (formula "12") (term "0,1,0"))
+ (rule "div_literals" (formula "12") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0"))
+ (rule "times_zero_2" (formula "12") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "12") (term "0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
)
)
}
+
diff --git a/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof b/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof
index db08845..f3ecf0c 100644
--- a/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof
+++ b/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof
@@ -2,7 +2,7 @@
\settings {
"#Proof-Settings-Config-File
-#Mon Apr 17 01:15:15 CEST 2023
+#Fri Oct 27 16:46:21 CEST 2023
[NewSMT]NoTypeHierarchy=false
[Labels]UseOriginLabels=true
[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
@@ -12,7 +12,7 @@
[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
-[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
[SMTSettings]UseBuiltUniqueness=false
@@ -50,7 +50,7 @@
\javaSource "../../../main/java";
\proofObligation "#Proof Obligation Settings
-#Mon Apr 17 01:15:15 CEST 2023
+#Fri Oct 27 16:46:21 CEST 2023
contract=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0
name=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0
class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
@@ -98,8 +98,9 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(keyLog "38" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
(keyLog "39" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
(keyLog "40" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "41" (keyUser "wolfram" ) (keyVersion "e1a85b31e7"))
-(autoModeTime "2536213")
+(autoModeTime "2536697")
(branch "dummy ID"
(builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
@@ -340,7 +341,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,0,1,0,0,0,0,1,0,1"))
(rule "commute_and" (formula "22") (term "0,0,1,0"))
(rule "commute_and" (formula "22") (term "0,0"))
-(rule "methodBodyExpand" (formula "57") (term "1") (newnames "heapBefore_cleanup,savedHeapBefore_cleanup,_beginBefore_cleanup,_bucket_pointersBefore_cleanup,_bucket_startsBefore_cleanup,_buffersBefore_cleanup,_classifierBefore_cleanup,_endBefore_cleanup,_overflowBefore_cleanup,_valuesBefore_cleanup,is_last_levelBefore_cleanup,startBefore_cleanup,stopBefore_cleanup,bucketBefore_cleanup,relative_startBefore_cleanup,relative_stopBefore_cleanup,writeBefore_cleanup,head_stopBefore_cleanup,tail_startBefore_cleanup"))
+(rule "methodBodyExpand" (formula "57") (term "1") (newnames "heapBefore_cleanup,savedHeapBefore_cleanup,_beginBefore_cleanup,_bucket_pointersBefore_cleanup,_bucket_startsBefore_cleanup,_buffersBefore_cleanup,_classifierBefore_cleanup,_endBefore_cleanup,_overflowBefore_cleanup,_valuesBefore_cleanup,is_last_levelBefore_cleanup,startBefore_cleanup,stopBefore_cleanup,bucketBefore_cleanup,relative_startBefore_cleanup,relative_stopBefore_cleanup,writeBefore_cleanup,head_stopBefore_cleanup,tail_startBefore_cleanup,tail_stopBefore_cleanup"))
(builtin "One Step Simplification" (formula "57"))
(rule "variableDeclarationGhostAssign" (formula "57") (term "1"))
(rule "variableDeclarationGhost" (formula "57") (term "1") (newnames "heapOld"))
@@ -72226,7 +72227,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "blockEmpty" (formula "89") (term "1"))
(builtin "Block Contract (Internal)" (formula "89") (newnames "anonOut_heap_0,exc_5,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f"))
(branch "Validity"
- (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "23")))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "23")) (ifInst "" (formula "89")) (ifInst "" (formula "17")))
(builtin "One Step Simplification" (formula "90"))
(rule "translateJavaSubInt" (formula "90") (term "2,2,0,0,0,0,1,0,1"))
(rule "translateJavaAddInt" (formula "90") (term "0,0,1,1,0,0,1"))
@@ -72243,754 +72244,7985 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(builtin "One Step Simplification" (formula "90"))
(rule "elementOfArrayRange" (formula "90") (term "0,0,0,0,1,0,1") (inst "iv=iv"))
(rule "inEqSimp_commuteLeq" (formula "90") (term "1,0,0,1,0,0,0,0,1,0,1"))
- (rule "translateJavaMulInt" (formula "38") (term "3,0,0,1,0,0,1,0"))
- (rule "translateJavaAddInt" (formula "38") (term "4,0,0,1,0,0,1,0"))
- (rule "translateJavaMulInt" (formula "38") (term "0,4,0,0,1,0,0,1,0"))
- (rule "emptyStatement" (formula "90") (term "1"))
- (rule "emptyStatement" (formula "90") (term "1"))
- (rule "emptyStatement" (formula "90") (term "1"))
- (rule "tryEmpty" (formula "90") (term "1"))
- (rule "blockEmptyLabel" (formula "90") (term "1"))
- (rule "blockEmpty" (formula "90") (term "1"))
- (rule "methodCallEmpty" (formula "90") (term "1"))
- (rule "emptyModality" (formula "90") (term "1"))
- (rule "andRight" (formula "90"))
- (branch "Case 1"
- (rule "andRight" (formula "90"))
- (branch
- (builtin "One Step Simplification" (formula "90"))
- (rule "closeTrue" (formula "90"))
+ (rule "ifUnfold" (formula "90") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_7"))
+ (rule "compound_assignment_5_mixed" (formula "90") (term "1") (inst "#v0=x_8"))
+ (rule "variableDeclarationAssign" (formula "90") (term "1"))
+ (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_8"))
+ (rule "compound_less_equal_than_comparison_1" (formula "90") (term "1") (inst "#v0=x_9"))
+ (rule "variableDeclarationAssign" (formula "90") (term "1"))
+ (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_9"))
+ (rule "assignmentSubtractionInt" (formula "90") (term "1"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "translateJavaSubInt" (formula "90") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "90") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "90") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "90") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "90") (term "0,0,0,1,0"))
+ (rule "add_literals" (formula "90") (term "1,0,0,0,1,0"))
+ (rule "times_zero_1" (formula "90") (term "0,0,0,1,0"))
+ (rule "add_zero_left" (formula "90") (term "0,0,1,0"))
+ (rule "less_equal_than_comparison_simple" (formula "90") (term "1"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "compound_assignment_5_simple" (formula "90") (term "1"))
+ (builtin "One Step Simplification" (formula "90"))
+ (rule "ifSplit" (formula "90"))
+ (branch "if x_7 true"
+ (builtin "One Step Simplification" (formula "91"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "commute_or" (formula "1"))
+ (builtin "Use Dependency Contract" (formula "44") (term "1,1") (ifInst "" (formula "39") (term "0,1,1,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "88")) (ifInst "" (formula "21")) (ifInst "" (formula "17")) (ifInst "" (formula "35")))
+ (rule "wellFormedAnon" (formula "57") (term "0,0,0"))
+ (rule "translateJavaAddInt" (formula "57") (term "0,1,1,1,0"))
+ (rule "translateJavaMulInt" (formula "57") (term "0,0,1,1,1,0"))
+ (rule "replace_known_left" (formula "57") (term "1,0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "17")))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,1,1,1,0"))
+ (rule "disjointDefinition" (formula "57") (term "1,0"))
+ (rule "disjointWithSingleton1" (formula "57") (term "1,0"))
+ (rule "elementOfArrayRangeConcrete" (formula "57") (term "0,1,0"))
+ (rule "replace_known_right" (formula "57") (term "0,0,0,1,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0"))
+ (rule "replace_known_left" (formula "57") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "41"))
+ (rule "replace_known_left" (formula "57") (term "0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "57"))
+ (builtin "Use Dependency Contract" (formula "44") (term "1,1") (ifInst "" (formula "57") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "89")) (ifInst "" (formula "21")) (ifInst "" (formula "17")) (ifInst "" (formula "35")) (ifInst "" (formula "57")))
+ (rule "true_left" (formula "58"))
+ (rule "variableDeclarationGhostAssign" (formula "92") (term "1"))
+ (rule "variableDeclarationGhost" (formula "92") (term "1") (newnames "bucketValuesBeforeSort"))
+ (rule "assignment" (formula "92") (term "1"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "57"))
+ (builtin "Use Operation Contract" (formula "92") (newnames "heapBefore_fallback_sort,exc_6,heapAfter_fallback_sort,anon_heap_fallback_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::fallback_sort([I,int,int)].JML normal_behavior operation contract.0"))
+ (branch "Post (fallback_sort)"
+ (builtin "One Step Simplification" (formula "59"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "translateJavaSubInt" (formula "59") (term "2,1,0,0"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "62"))
+ (rule "eqSymm" (formula "62") (term "0"))
+ (rule "polySimp_elimSub" (formula "59") (term "2,1,0"))
+ (rule "mul_literals" (formula "59") (term "1,2,1,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "2,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0"))
+ (rule "narrowSelectArrayType" (formula "61") (term "2,1") (ifseqformula "56") (ifseqformula "97"))
+ (rule "variableDeclarationGhostAssign" (formula "98") (term "1"))
+ (rule "variableDeclarationGhost" (formula "98") (term "1") (newnames "bucketValuesAfterSort"))
+ (rule "assignment" (formula "98") (term "1"))
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "emptyStatement" (formula "98") (term "1"))
+ (builtin "Block Contract (Internal)" (formula "98") (newnames "exc_7,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f"))
+ (branch "Validity"
+ (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "24")))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "translateJavaCastInt" (formula "99") (term "2,0,1,0,1,0,0,1"))
+ (rule "eqSymm" (formula "99") (term "0,0,1,0,1"))
+ (rule "castedGetAny" (formula "99") (term "2,0,1,0,1,0,0,1"))
+ (rule "narrowSelectArrayType" (formula "99") (term "2,0,1,0,0") (ifseqformula "64") (ifseqformula "98"))
+ (rule "narrowSelectArrayType" (formula "61") (term "2,0") (ifseqformula "64") (ifseqformula "98"))
+ (rule "inEqSimp_commuteLeq" (formula "99") (term "0,0,0,1,0,0,1"))
+ (rule "variableDeclarationAssign" (formula "99") (term "1"))
+ (rule "variableDeclaration" (formula "99") (term "1") (newnames "exc_7_1"))
+ (rule "assignment" (formula "99") (term "1"))
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "emptyStatement" (formula "99") (term "1"))
+ (rule "emptyStatement" (formula "99") (term "1"))
+ (rule "tryEmpty" (formula "99") (term "1"))
+ (rule "blockEmptyLabel" (formula "99") (term "1"))
+ (rule "blockEmpty" (formula "99") (term "1"))
+ (rule "methodCallEmpty" (formula "99") (term "1"))
+ (rule "emptyModality" (formula "99") (term "1"))
+ (rule "andRight" (formula "99"))
+ (branch "Case 1"
+ (rule "andRight" (formula "99"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "99"))
+ (rule "seqPermForall" (inst "phi=( de.wiesler.Classifier::classOf(heapAfter_fallback_sort,
+ classifier,
+ (int)x)
+ = bucket_0)<>") (inst "iv=iv") (inst "x=x") (ifseqformula "61") (userinteraction))
+ (rule "equiv_left" (formula "1") (userinteraction))
+ (branch "Case 1"
+ (rule "allRight" (formula "101") (inst "sk=i_0") (userinteraction))
+ (rule "allLeftHide" (formula "1") (inst "t=i_0") (userinteraction))
+ (rule "translateJavaAddInt" (formula "41") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "41") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "41") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "impRight" (formula "101"))
+ (rule "andLeft" (formula "1"))
+ (rule "replace_known_left" (formula "3") (term "1,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_homoEq" (formula "58") (term "0"))
+ (rule "polySimp_homoEq" (formula "43") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "48"))
+ (rule "polySimp_homoEq" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0"))
+ (rule "castedGetAny" (formula "4") (term "2,0,1,0"))
+ (rule "lenOfSeqDef" (formula "4") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1,1,0,0"))
+ (rule "getOfSeqDef" (formula "103") (term "2,0"))
+ (rule "castDel" (formula "103") (term "1,2,0"))
+ (rule "polySimp_elimSub" (formula "103") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "1,1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,1,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "1,1,0,2,0"))
+ (rule "lenOfSeqDef" (formula "2") (term "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1,1"))
+ (rule "castedGetAny" (formula "3") (term "2,0,1"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "58") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "43") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1,1,0,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,1,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "103") (term "0,0,2,1,2,0"))
+ (rule "getOfSeqDef" (formula "4") (term "2,0,1,0"))
+ (rule "castDel" (formula "4") (term "1,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,2,1,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,1,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,1,1,0,2,0"))
+ (rule "add_literals" (formula "103") (term "1,0,0,1,1,0,2,0"))
+ (rule "times_zero_1" (formula "103") (term "0,0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "103") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,1,1"))
+ (rule "getOfSeqDef" (formula "3") (term "2,0,1"))
+ (rule "castDel" (formula "3") (term "1,2,0,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,1,1,1,0,2,0,1"))
+ (rule "polySimp_addComm1" (formula "3") (term "1,1,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "add_literals" (formula "4") (term "1,0,0,1,1,0,2,0,1,0"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1,1,0,2,0,1,0"))
+ (rule "add_zero_left" (formula "4") (term "0,1,1,0,2,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0"))
+ (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "103") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "103") (term "0,0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "103"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,2,1,2,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,1,1,0,2,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0,1,1,0,2,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "3") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "5") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0,1,0,2,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0,1,0,2,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "103") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "103") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "103") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "103") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "103") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "103") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,2,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "103") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "103") (term "0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "3") (term "0,0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "103")))
+ (rule "closeFalse" (formula "3"))
+ )
+ (branch "Case 2"
+ (rule "allRight" (formula "66") (inst "sk=iv_0") (userinteraction))
+ (rule "impRight" (formula "66") (userinteraction))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "54") (term "0") (inst "i=i") (userinteraction))
+ (builtin "One Step Simplification" (formula "54") (userinteraction))
+ (rule "allLeftHide" (formula "54") (inst "t=add(add(iv_0, begin),
+ int::select(heap, bucket_starts, arr(bucket_0)))") (userinteraction))
+ (rule "impLeft" (formula "54") (userinteraction))
+ (branch "Case 1"
+ (rule "translateJavaAddInt" (formula "40") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "40") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "40") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "103") (inst "sk=i_0"))
+ (rule "impRight" (formula "103"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "69") (inst "sk=iv_1"))
+ (rule "impRight" (formula "69"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_homoEq" (formula "17") (term "0"))
+ (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "59") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "70") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0"))
+ (rule "castedGetAny" (formula "72") (term "2,0"))
+ (rule "lenOfSeqDef" (formula "6") (term "1"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "1,1"))
+ (rule "getOfSeqDef" (formula "107") (term "2,0"))
+ (rule "castDel" (formula "107") (term "1,2,0"))
+ (rule "polySimp_elimSub" (formula "107") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "1,1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,1,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "1,1,0,2,0"))
+ (rule "lenOfSeqDef" (formula "4") (term "1"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1"))
+ (rule "castedGetAny" (formula "71") (term "2,0"))
+ (rule "lenOfSeqDef" (formula "2") (term "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1"))
+ (rule "add_literals" (formula "6") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "6") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "107") (term "0,0,2,1,2,0"))
+ (rule "getOfSeqDef" (formula "72") (term "2,0"))
+ (rule "castDel" (formula "72") (term "1,2,0"))
+ (rule "replace_known_left" (formula "72") (term "0,0,2,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "polySimp_elimSub" (formula "72") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,1,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,1,1,0,2,0"))
+ (rule "add_literals" (formula "107") (term "1,0,0,1,1,0,2,0"))
+ (rule "times_zero_1" (formula "107") (term "0,0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "107") (term "0,1,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "70") (term "1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1"))
+ (rule "add_literals" (formula "4") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "4") (term "0,1,1"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,1,1"))
+ (rule "getOfSeqDef" (formula "71") (term "2,0"))
+ (rule "castDel" (formula "71") (term "1,2,0"))
+ (rule "replace_known_left" (formula "71") (term "0,0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "polySimp_elimSub" (formula "71") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0,2,1,2,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "72") (term "0,0,1,0,2,0"))
+ (rule "add_literals" (formula "72") (term "1,0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "72") (term "0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "72") (term "0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "107") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "107") (term "0,0,2,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "107"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0,2,1,2,0"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "71") (term "0,0,1,0,2,0"))
+ (rule "add_literals" (formula "71") (term "1,0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "71") (term "0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "71") (term "0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "70") (term "0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "70") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "72") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "107") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "70") (term "0,0,0"))
+ (rule "add_literals" (formula "70") (term "1,0,0,0"))
+ (rule "times_zero_1" (formula "70") (term "0,0,0"))
+ (rule "add_zero_left" (formula "70") (term "0,0"))
+ (rule "replace_known_left" (formula "70") (term "0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "71") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "107") (term "0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "70") (term "0,0,0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,0"))
+ (rule "replace_known_right" (formula "72") (term "0,2,0") (ifseqformula "70"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "70"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1"))
+ (rule "applyEq" (formula "63") (term "1") (ifseqformula "51"))
+ (rule "polySimp_sepNegMonomial" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "46") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "60") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "107") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "107") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "107") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "71") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "pullOutSelect" (formula "106") (term "1,2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "65"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "106")) (ifInst "" (formula "25")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "71") (term "1,2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "66"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")) (ifInst "" (formula "26")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "3"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "1,1,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0"))
+ (rule "add_zero_right" (formula "57") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "109")) (ifInst "" (formula "27")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "28")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "111")) (ifInst "" (formula "29")))
+ (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "112")) (ifInst "" (formula "30")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "times_zero_1" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1"))
+ (rule "polySimp_elimOne" (formula "60") (term "1"))
+ (rule "nnf_imp2or" (formula "50") (term "0"))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "24") (term "1,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaMulInt" (formula "24") (term "0,3,1,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "24") (term "2,1,0,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,1,0,0,1,1,0"))
+ (rule "eqSymm" (formula "24") (term "0,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "25") (term "1,1,1,0,0,0,0"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "25"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "26"))
+ (rule "notLeft" (formula "25"))
+ (rule "eqSymm" (formula "30"))
+ (rule "eqSymm" (formula "27"))
+ (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "replace_known_right" (formula "16") (term "0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,2,1"))
+ (rule "mul_literals" (formula "30") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,2,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "27") (term "1") (ifseqformula "50"))
+ (rule "pullOutSelect" (formula "30") (term "1") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "31"))
+ (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "85")) (ifInst "" (formula "15")))
+ (rule "simplifySelectOfAnon" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "85")) (ifInst "" (formula "15")))
+ (rule "elementOfArrayRangeConcrete" (formula "31") (term "0,0"))
+ (rule "replace_known_right" (formula "31") (term "0,0,0,0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "31"))
+ (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "31"))
+ (rule "hideAuxiliaryEq" (formula "31"))
+ (rule "elementOfArrayRangeConcrete" (formula "30") (term "0,0"))
+ (rule "replace_known_right" (formula "30") (term "0,0,0,0") (ifseqformula "92"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "eqSymm" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "26"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "58") (term "1,1,1,0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "71") (term "0"))
+ (rule "translateJavaCastInt" (formula "71") (term "0,0"))
+ (rule "castedGetAny" (formula "71") (term "0,0"))
+ (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "58") (term "0,1,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "translateJavaSubInt" (formula "58") (term "0,1,1,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "58") (term "0,1,1,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "58") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,1,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,1,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "58") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0,0,1,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0,1,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,0,1,1,0,0,1,0"))
+ (rule "inEqSimp_or_subsumption6" (formula "58") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "58") (term "0,1,1,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,1,1,0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "58") (term "0,0,1,1,1,0,0,1,0"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0,1,1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0,1,1,1,0,0,1,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,1,1,1,0,0,1,0"))
+ (rule "qeq_literals" (formula "58") (term "0,1,1,1,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "82") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "82") (term "1,0") (ifseqformula "78"))
+ (rule "wellFormedAnon" (formula "82") (term "0,1,0"))
+ (rule "wellFormedAnon" (formula "82") (term "0,0,1,0"))
+ (rule "replace_known_right" (formula "82") (term "0,0,0") (ifseqformula "122"))
+ (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "36")) (ifInst "" (formula "35")) (ifInst "" (formula "74")) (ifInst "" (formula "77")) (ifInst "" (formula "83")))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "33")) (ifInst "" (formula "120")) (ifInst "" (formula "33")) (ifInst "" (formula "40")))
+ (rule "wellFormedAnon" (formula "62") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "62") (term "0,1,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "35")))
+ (rule "polySimp_addComm0" (formula "62") (term "1,0,1,0,1"))
+ (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0"))
+ (rule "replace_known_left" (formula "62") (term "0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,0,1") (ifseqformula "63"))
+ (rule "inEqSimp_commuteGeq" (formula "62") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0,1") (ifseqformula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1"))
+ (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "60"))
+ (rule "applyEq" (formula "62") (term "0,0,1,1") (ifseqformula "63"))
+ (rule "applyEq" (formula "62") (term "0,1,0,0") (ifseqformula "60"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0"))
+ (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63"))
+ (rule "mul_literals" (formula "62") (term "0,0"))
+ (rule "add_zero_left" (formula "62") (term "0"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "68") (term "0"))
+ (rule "translateJavaAddInt" (formula "68") (term "0,2,0"))
+ (rule "translateJavaMulInt" (formula "68") (term "0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "68") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "68"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "eqSymm" (formula "69"))
+ (rule "applyEqReverse" (formula "68") (term "1") (ifseqformula "69"))
+ (rule "hideAuxiliaryEq" (formula "69"))
+ (rule "elementOfArrayRangeConcrete" (formula "68") (term "0,0,0"))
+ (rule "replace_known_right" (formula "68") (term "0,0,0,0,0") (ifseqformula "97"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "71") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,0,1,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,0,0,0,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,0,1,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,0"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "71"))
+ (rule "andLeft" (formula "71"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "74") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "72"))
+ (rule "inEqSimp_commuteLeq" (formula "71"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "50"))
+ (rule "inEqSimp_commuteGeq" (formula "71"))
+ (rule "applyEq" (formula "71") (term "1,1,1,1,1,0") (ifseqformula "50"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "71") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "71") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1,0,1,1,0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "49") (term "0"))
+ (builtin "One Step Simplification" (formula "49"))
+ (rule "translateJavaAddInt" (formula "49") (term "0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "49") (term "3,0,1,0"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "49"))
+ (rule "andLeft" (formula "49"))
+ (rule "polySimp_addComm0" (formula "51") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "79") (term "1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "translateJavaSubInt" (formula "79") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "79") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "79") (term "0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "79") (term "1,1,1"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "79") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "79") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "79") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "79") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "79") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "79") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "79") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "79") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "79") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "79") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "79") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "0,1,0"))
+ (rule "replace_known_left" (formula "79") (term "1,0") (ifseqformula "48"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "79") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "79") (term "1,0"))
+ (rule "replace_known_left" (formula "79") (term "0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "80"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "23") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "translateJavaAddInt" (formula "23") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "4,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "94") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "94"))
+ (rule "translateJavaSubInt" (formula "94") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "94") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "94") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "94") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "94") (term "1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "94") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "94") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "0,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "94") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "94") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "94") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "94") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "94") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "94") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "94") (term "1,0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "94") (term "1,0,1,1,0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "92") (term "1,0") (inst "i=i"))
+ (rule "eqSymm" (formula "92") (term "0"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "87") (term "0"))
+ (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "33")) (ifInst "" (formula "131")) (ifInst "" (formula "33")))
+ (rule "true_left" (formula "87"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "55") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "translateJavaMulInt" (formula "55") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "55") (term "1,1,0,0,0"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "56"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "56"))
+ (rule "notLeft" (formula "55"))
+ (rule "eqSymm" (formula "102"))
+ (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "100"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "54"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "54"))
+ (rule "applyEq" (formula "58") (term "0,1,0,0,1,0,0") (ifseqformula "54"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "26"))
+ (rule "leq_literals" (formula "57") (term "0"))
+ (builtin "One Step Simplification" (formula "57"))
+ (rule "true_left" (formula "57"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "89") (term "0"))
+ (rule "translateJavaSubInt" (formula "89") (term "0"))
+ (rule "polySimp_elimSub" (formula "89") (term "0"))
+ (rule "polySimp_homoEq" (formula "89"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "89") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "89") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "89") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "89") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "89") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "89") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "89") (term "0,0"))
+ (rule "add_literals" (formula "89") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "89") (term "1,0,0"))
+ (rule "add_zero_right" (formula "89") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "89"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0"))
+ (rule "polySimp_elimOne" (formula "89") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "34") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "98")) (ifInst "" (formula "99")) (ifInst "" (formula "56")))
+ (rule "translateJavaMulInt" (formula "34") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,1,0,0"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "35"))
+ (rule "andLeft" (formula "34"))
+ (rule "notLeft" (formula "34"))
+ (rule "eqSymm" (formula "100"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0") (ifseqformula "56"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "86") (term "1"))
+ (builtin "One Step Simplification" (formula "86"))
+ (rule "translateJavaUnaryMinusInt" (formula "86") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "86") (term "0,0,1"))
+ (rule "translateJavaSubInt" (formula "86") (term "0,1"))
+ (rule "neg_literal" (formula "86") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "86") (term "0,1"))
+ (rule "mul_literals" (formula "86") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "86") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "86") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "86") (term "0,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "61"))
+ (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "102")) (ifInst "" (formula "103")) (ifInst "" (formula "29")))
+ (rule "translateJavaSubInt" (formula "61") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,2,0,1,0"))
+ (rule "translateJavaMulInt" (formula "61") (term "1,1,1,0,0,0"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "61"))
+ (rule "eqSymm" (formula "65"))
+ (rule "eqSymm" (formula "63"))
+ (rule "polySimp_elimSub" (formula "65") (term "0,2,1"))
+ (rule "mul_literals" (formula "65") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "65") (term "0,2,0"))
+ (rule "mul_literals" (formula "65") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "28"))
+ (rule "eqSymm" (formula "63"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "55"))
+ (rule "applyEq" (formula "61") (term "0") (ifseqformula "55"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "60") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "translateJavaMulInt" (formula "60") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "60") (term "1,1,0,0,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "60") (term "1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "60") (term "0,1,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "60") (term "0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "60") (term "0,1,0,1,0,0,0"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "61"))
+ (rule "notLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "replace_known_right" (formula "84") (term "0,0,0,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "replace_known_right" (formula "17") (term "0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "replace_known_left" (formula "84") (term "0,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "84"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0"))
+ (rule "polySimp_addComm0" (formula "66") (term "1"))
+ (rule "castedGetAny" (formula "67") (term "0"))
+ (rule "castedGetAny" (formula "64") (term "0"))
+ (rule "castedGetAny" (formula "63") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "56"))
+ (rule "applyEq" (formula "35") (term "0") (ifseqformula "56"))
+ (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "75"))
+ (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "75"))
+ (rule "applyEq" (formula "63") (term "1,0") (ifseqformula "75"))
+ (rule "applyEq" (formula "60") (term "0,0") (ifseqformula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "65") (term "1,1") (ifseqformula "75"))
+ (rule "applyEq" (formula "68") (term "0,1,0,0,1,0,0") (ifseqformula "75"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "26"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "true_left" (formula "34"))
+ (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "26"))
+ (rule "greater_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "mul_literals" (formula "58") (term "1,0"))
+ (rule "leq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "0"))
+ (rule "polySimp_elimOne" (formula "60") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "33") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "108")) (ifInst "" (formula "63")) (ifInst "" (formula "66")))
+ (rule "translateJavaMulInt" (formula "33") (term "0,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "33") (term "1,1,0,1,0,0,0"))
+ (rule "translateJavaCastInt" (formula "33") (term "0,1,0"))
+ (rule "translateJavaAddInt" (formula "33") (term "1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "33") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "33") (term "1,0,0,0,0,0"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "33"))
+ (rule "andLeft" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_addComm0" (formula "38") (term "1"))
+ (rule "castedGetAny" (formula "39") (term "0"))
+ (rule "castedGetAny" (formula "37") (term "0"))
+ (rule "castedGetAny" (formula "36") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_commuteLeq" (formula "35"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "69"))
+ (rule "polySimp_homoEq" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "37") (term "1,0"))
+ (rule "mul_literals" (formula "37") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "37") (term "0"))
+ (rule "polySimp_addAssoc" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "0,0,0"))
+ (rule "add_zero_left" (formula "37") (term "0,0"))
+ (rule "apply_eq_monomials" (formula "34") (term "0") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "34") (term "0"))
+ (rule "add_literals" (formula "34") (term "1,1,0"))
+ (rule "times_zero_1" (formula "34") (term "1,0"))
+ (rule "add_zero_right" (formula "34") (term "0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "34"))
+ (rule "apply_eq_monomials" (formula "33") (term "0") (ifseqformula "78"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "1,1,0"))
+ (rule "times_zero_1" (formula "33") (term "1,0"))
+ (rule "add_zero_right" (formula "33") (term "0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0"))
+ (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0") (ifseqformula "78"))
+ (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "78"))
+ (rule "polySimp_pullOutFactor2" (formula "36") (term "0"))
+ (rule "add_literals" (formula "36") (term "1,0"))
+ (rule "times_zero_1" (formula "36") (term "0"))
+ (builtin "One Step Simplification" (formula "36"))
+ (rule "true_left" (formula "36"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "33") (ifseqformula "26"))
+ (rule "greater_literals" (formula "33") (term "0,0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "mul_literals" (formula "33") (term "1,0"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "75"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "114") (term "0"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "83") (term "0"))
+ (rule "replace_known_left" (formula "83") (term "1,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "40")) (ifInst "" (formula "146")))
+ (rule "inEqSimp_ltToLeq" (formula "83") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,0"))
+ (rule "replace_known_left" (formula "83") (term "0,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "applyEq" (formula "83") (term "0,1,0,0,0") (ifseqformula "74"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "83") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0,0,0"))
+ (rule "replace_known_left" (formula "83") (term "0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "83") (term "0"))
+ (rule "translateJavaSubInt" (formula "83") (term "0"))
+ (rule "polySimp_elimSub" (formula "83") (term "0"))
+ (rule "polySimp_homoEq" (formula "83"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "83") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "83") (term "0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0"))
+ (rule "add_zero_right" (formula "83") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "83"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0"))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "24") (term "2,0,0,1,0"))
+ (rule "replace_known_left" (formula "24") (term "1,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "37")) (ifInst "" (formula "148")))
+ (rule "true_left" (formula "24"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "24") (term "1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "24") (term "0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "24") (term "0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "96") (term "1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "96") (term "0"))
+ (rule "polySimp_addComm1" (formula "96") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "96") (term "0"))
+ (rule "polySimp_mulComm0" (formula "96") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "96") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "96") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "96") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "96") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "96") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "96") (term "0,1,0"))
+ (rule "Contract_axiom_for_classOf_in_Classifier" (formula "149") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "108")) (ifInst "" (formula "144")) (ifInst "" (formula "42")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1"))
+ (rule "applyEq" (formula "1") (term "0,1,0,0,1,0,1") (ifseqformula "54"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,1"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "150") (term "0"))
+ (rule "nnf_imp2or" (formula "26") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "47") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "71") (term "0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "arrayLengthIsAShort" (formula "47") (term "0"))
+ (builtin "One Step Simplification" (formula "47"))
+ (rule "true_left" (formula "47"))
+ (rule "arrayLengthNotNegative" (formula "71") (term "0"))
+ (rule "applyEq" (formula "71") (term "0") (ifseqformula "72"))
+ (rule "qeq_literals" (formula "71"))
+ (rule "true_left" (formula "71"))
+ (rule "nnf_notAnd" (formula "72") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "72") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "72") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "72") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "72") (term "0,0,0"))
+ (rule "mul_literals" (formula "72") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "72") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "0,0,0"))
+ (rule "mul_literals" (formula "72") (term "1,0,0,0"))
+ (rule "Contract_axiom_for_classOf_in_Classifier" (formula "114") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "145")) (ifInst "" (formula "43")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1"))
+ (rule "applyEq" (formula "1") (term "0,1,0,0,1,0,1") (ifseqformula "55"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,1"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "115") (term "0"))
+ (rule "nnf_imp2or" (formula "74") (term "0"))
+ (rule "nnf_imp2or" (formula "87") (term "0"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "73") (term "1,1,0"))
+ (rule "translateJavaCastInt" (formula "73") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "73") (term "1,0"))
+ (rule "castedGetAny" (formula "73") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "73") (term "1,0"))
+ (rule "ifthenelse_split" (formula "13") (term "0"))
+ (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] TRUE"
+ (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "replace_known_left" (formula "7") (term "0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "8") (term "2,0") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "replace_known_left" (formula "151") (term "0,2,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "151"))
+ (rule "replace_known_left" (formula "7") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "applyEqReverse" (formula "2") (term "1,2,3,0,0,1,1") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "2") (term "1,2,0,0,0,1") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "2") (term "1,2,0,1,0,1") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "2") (term "1,2,0,0,1,1") (ifseqformula "7"))
+ (rule "applyEqReverse" (formula "151") (term "2,0") (ifseqformula "7"))
+ (rule "hideAuxiliaryEq" (formula "7"))
+ (rule "replace_known_left" (formula "2") (term "0,2,0,0,1,1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "12")) (ifInst "" (formula "12")) (ifInst "" (formula "12")))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "replace_known_left" (formula "114") (term "0,2,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "114"))
+ (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "applyEqReverse" (formula "114") (term "2,0") (ifseqformula "5"))
+ (rule "applyEqReverse" (formula "1") (term "1,2,3,0,0,1,1") (ifseqformula "5"))
+ (rule "applyEqReverse" (formula "1") (term "1,2,0,1,0,1") (ifseqformula "5"))
+ (rule "applyEqReverse" (formula "1") (term "1,2,0,0,1,1") (ifseqformula "5"))
+ (rule "applyEqReverse" (formula "1") (term "1,2,0,0,0,1") (ifseqformula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "replace_known_left" (formula "1") (term "0,2,0,0,1,1") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "7")) (ifInst "" (formula "7")) (ifInst "" (formula "7")))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "12"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] FALSE"
+ (rule "replace_known_right" (formula "15") (term "0,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "replace_known_right" (formula "11") (term "0,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_geqRight" (formula "110"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1,0"))
+ (rule "add_zero_right" (formula "14") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1,0"))
+ (rule "add_zero_right" (formula "16") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1,0"))
+ (rule "add_zero_right" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16"))
+ (rule "mul_literals" (formula "16") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "15") (ifseqformula "16"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "closeFalse" (formula "15"))
+ )
+ )
+ (branch "Case 2"
+ (rule "eqTermCut" (formula "54") (term "2,0") (inst "s=(int)(any::seqGet(seqDef{int j;}(add(begin,
+ int::select(heap,
+ bucket_starts,
+ arr(bucket_0))),
+ add(begin,
+ int::select(heap,
+ bucket_starts,
+ arr(add(Z(1(#)),
+ bucket_0)))),
+ int::select(anon(anon(heap,
+ arrayRange(values,
+ begin,
+ add(Z(neglit(1(#))),
+ end)),
+ anon_heap_LOOP_0<>),
+ arrayRange(values,
+ add(begin,
+ int::select(heap,
+ bucket_starts,
+ arr(bucket_0))),
+ add(add(Z(neglit(1(#))),
+ begin),
+ int::select(heap,
+ bucket_starts,
+ arr(add(Z(1(#)),
+ bucket_0))))),
+ anonOut_heap<>),
+ values<>,
+ arr(j))),
+ iv_0))") (userinteraction))
+ (branch "Assume values[iv_0 + begin + bucket_starts[bucket_0]]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))] = (int)(seqDef{int j;}(begin + bucket_starts[bucket_0], begin + bucket_starts[1 + bucket_0], values[j]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))])[iv_0])"
+ (rule "applyEqReverse" (formula "68") (term "2,0") (ifseqformula "54") (userinteraction))
+ (builtin "Use Dependency Contract" (formula "68") (term "0") (ifInst "" (formula "55") (term "0")) (ifInst "" (formula "61")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0") (userinteraction))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "98")) (ifInst "" (formula "58")) (ifInst "" (formula "66")) (ifInst "" (formula "23")) (userinteraction))
+ (rule "impLeft" (formula "67") (userinteraction))
+ (branch "Case 1"
+ (rule "andRight" (formula "67"))
+ (branch "Case 1"
+ (builtin "Use Dependency Contract" (formula "67") (ifInst "" (formula "14")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0") (userinteraction))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "99")) (ifInst "" (formula "58")) (ifInst "" (formula "14")) (ifInst "" (formula "68")) (ifInst "" (formula "14")) (ifInst "" (formula "23")))
+ (rule "wellFormedAnon" (formula "67") (term "0,0"))
+ (rule "andLeft" (formula "1"))
+ (rule "notLeft" (formula "68"))
+ (rule "allRight" (formula "70") (inst "sk=iv_1"))
+ (rule "impRight" (formula "70"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "108") (inst "sk=i_0"))
+ (rule "impRight" (formula "108"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "replace_known_left" (formula "72") (term "1,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "23")))
+ (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_homoEq" (formula "17") (term "0"))
+ (rule "polySimp_homoEq" (formula "61") (term "0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "75") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0"))
+ (rule "lenOfSeqDef" (formula "6") (term "1"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "1,1"))
+ (rule "castedGetAny" (formula "74") (term "2,0"))
+ (rule "lenOfSeqDef" (formula "4") (term "1"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1"))
+ (rule "getOfSeqDef" (formula "110") (term "2,0"))
+ (rule "castDel" (formula "110") (term "1,2,0"))
+ (rule "polySimp_elimSub" (formula "110") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "1,1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,1,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "1,1,0,2,0"))
+ (rule "lenOfSeqDef" (formula "2") (term "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1,1"))
+ (rule "castedGetAny" (formula "59") (term "0"))
+ (rule "disjointDefinition" (formula "72"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1"))
+ (rule "add_literals" (formula "6") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "6") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1"))
+ (rule "add_literals" (formula "4") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "4") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "110") (term "0,0,2,1,2,0"))
+ (rule "getOfSeqDef" (formula "74") (term "2,0"))
+ (rule "castDel" (formula "74") (term "1,2,0"))
+ (rule "replace_known_left" (formula "74") (term "0,0,2,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "polySimp_elimSub" (formula "74") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,1,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "110") (term "0,0,1,1,0,2,0"))
+ (rule "add_literals" (formula "110") (term "1,0,0,1,1,0,2,0"))
+ (rule "times_zero_1" (formula "110") (term "0,0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "110") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1"))
+ (rule "getOfSeqDef" (formula "59") (term "0"))
+ (rule "castDel" (formula "59") (term "1,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0,2,1,2,0"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "74") (term "0,0,1,0,2,0"))
+ (rule "add_literals" (formula "74") (term "1,0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "74") (term "0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "74") (term "0,1,0,2,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "110") (term "0,0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "110"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,1,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,1,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "59") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "74") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "74") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "110") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "110") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "110") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0,1,0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "110") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "110") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1"))
+ (rule "polySimp_rightDist" (formula "50") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "50"))
+ (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "74") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "110") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "110") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "110") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "distributeIntersection" (formula "71") (term "0"))
+ (rule "pullOutSelect" (formula "74") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "applyEq" (formula "60") (term "2,0") (ifseqformula "1"))
+ (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "24")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "74") (term "1,2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "25")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "111") (term "1,2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "111")) (ifInst "" (formula "26")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "unionEqualsEmpty" (formula "74"))
+ (rule "disjointArrayRangeAllFields2" (formula "74") (term "1"))
+ (rule "eqSymm" (formula "74") (term "0,0,1"))
+ (rule "replace_known_right" (formula "74") (term "0,0,1") (ifseqformula "84"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "disjointArrayRangeAllFields2" (formula "74"))
+ (rule "notRight" (formula "74"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "close" (formula "84") (ifseqformula "1"))
+ )
+ (branch "Case 2"
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "69") (inst "sk=iv_1"))
+ (rule "impRight" (formula "69"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "107") (inst "sk=i_0"))
+ (rule "impRight" (formula "107"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_homoEq" (formula "61") (term "0"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_homoEq" (formula "17") (term "0"))
+ (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "disjointDefinition" (formula "72"))
+ (rule "lenOfSeqDef" (formula "6") (term "1"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "1,1"))
+ (rule "castedGetAny" (formula "73") (term "2,0"))
+ (rule "lenOfSeqDef" (formula "4") (term "1"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1"))
+ (rule "getOfSeqDef" (formula "109") (term "2,0"))
+ (rule "castDel" (formula "109") (term "1,2,0"))
+ (rule "polySimp_elimSub" (formula "109") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "1,1,0,2,0"))
+ (rule "lenOfSeqDef" (formula "2") (term "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1,1"))
+ (rule "castedGetAny" (formula "59") (term "0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1"))
+ (rule "add_literals" (formula "6") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "6") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1"))
+ (rule "add_literals" (formula "4") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "4") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,0,2,1,2,0"))
+ (rule "getOfSeqDef" (formula "73") (term "2,0"))
+ (rule "castDel" (formula "73") (term "1,2,0"))
+ (rule "replace_known_left" (formula "73") (term "0,0,2,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "polySimp_elimSub" (formula "73") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,1,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "109") (term "0,0,1,1,0,2,0"))
+ (rule "add_literals" (formula "109") (term "1,0,0,1,1,0,2,0"))
+ (rule "times_zero_1" (formula "109") (term "0,0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "109") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1"))
+ (rule "getOfSeqDef" (formula "59") (term "0"))
+ (rule "castDel" (formula "59") (term "1,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0,2,1,2,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,2,0"))
+ (rule "add_literals" (formula "73") (term "1,0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "73") (term "0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "73") (term "0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "109") (term "0,0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,1,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,1,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,1,0"))
+ (rule "add_zero_left" (formula "59") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "109") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1"))
+ (rule "polySimp_rightDist" (formula "50") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "50"))
+ (rule "polySimp_sepNegMonomial" (formula "61") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "109") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "distributeIntersection" (formula "71") (term "0"))
+ (rule "pullOutSelect" (formula "59") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "applyEq" (formula "74") (term "2,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "58") (term "1,1") (ifseqformula "59"))
+ (rule "simplifySelectOfAnon" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "23")))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "73") (term "1,2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "24")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "110") (term "1,2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "25")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "unionEqualsEmpty" (formula "74"))
+ (rule "disjointArrayRangeAllFields2" (formula "74") (term "1"))
+ (rule "eqSymm" (formula "74") (term "0,0,1"))
+ (rule "replace_known_right" (formula "74") (term "0,0,1") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "disjointArrayRangeAllFields2" (formula "74"))
+ (rule "notRight" (formula "74"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "close" (formula "83") (ifseqformula "1"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "69") (inst "sk=iv_1"))
+ (rule "impRight" (formula "69"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "107") (inst "sk=i_0"))
+ (rule "impRight" (formula "107"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "72"))
+ (rule "eqSymm" (formula "59"))
+ (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "17") (term "0"))
+ (rule "polySimp_homoEq" (formula "61") (term "0"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "74") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0,2,2,1"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0"))
+ (rule "lenOfSeqDef" (formula "6") (term "1"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "1,1"))
+ (rule "castedGetAny" (formula "73") (term "2,0"))
+ (rule "lenOfSeqDef" (formula "4") (term "1"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1"))
+ (rule "getOfSeqDef" (formula "109") (term "2,0"))
+ (rule "castDel" (formula "109") (term "1,2,0"))
+ (rule "polySimp_elimSub" (formula "109") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "1,1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,1,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "1,1,0,2,0"))
+ (rule "lenOfSeqDef" (formula "2") (term "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1,1"))
+ (rule "getOfSeqDef" (formula "59") (term "0,0"))
+ (rule "castDel" (formula "59") (term "1,0,0"))
+ (rule "castDel" (formula "59") (term "2,0,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "polySimp_elimSub" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "polySimp_addAssoc" (formula "61") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1"))
+ (rule "add_literals" (formula "6") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "6") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1"))
+ (rule "add_literals" (formula "4") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "4") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "109") (term "0,0,2,1,2,0"))
+ (rule "getOfSeqDef" (formula "73") (term "2,0"))
+ (rule "castDel" (formula "73") (term "1,2,0"))
+ (rule "replace_known_left" (formula "73") (term "0,0,2,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "polySimp_elimSub" (formula "73") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,1,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "109") (term "0,0,1,1,0,2,0"))
+ (rule "add_literals" (formula "109") (term "1,0,0,1,1,0,2,0"))
+ (rule "times_zero_1" (formula "109") (term "0,0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "109") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,1,1"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "inEqSimp_commuteLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0,2,1,2,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,2,0"))
+ (rule "add_literals" (formula "73") (term "1,0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "73") (term "0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "73") (term "0,1,0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "109") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "109") (term "0,0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "109"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "6") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "4") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "109") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "50") (term "1"))
+ (rule "polySimp_rightDist" (formula "50") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "50") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "50") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "50") (term "0,1"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "50"))
+ (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "45") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "109") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "pullOutSelect" (formula "59") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "applyEq" (formula "58") (term "1,0,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "74") (term "2,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "72") (term "2,0") (ifseqformula "59"))
+ (rule "applyEq" (formula "72") (term "2,1") (ifseqformula "59"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "59"))
+ (rule "simplifySelectOfAnon" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "23")))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "applyEq" (formula "72") (term "0") (ifseqformula "60"))
+ (rule "eqSymm" (formula "72"))
+ (rule "close" (formula "74") (ifseqformula "72"))
+ )
+ )
+ (branch "Assume values[iv_0 + begin + bucket_starts[bucket_0]]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))] != (int)(seqDef{int j;}(begin + bucket_starts[bucket_0], begin + bucket_starts[1 + bucket_0], values[j]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))])[iv_0])"
+ (rule "translateJavaAddInt" (formula "40") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "40") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "40") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "notLeft" (formula "54"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "104") (inst "sk=i_0"))
+ (rule "impRight" (formula "104"))
+ (rule "andLeft" (formula "1"))
+ (rule "allRight" (formula "70") (inst "sk=iv_1"))
+ (rule "impRight" (formula "70"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "71"))
+ (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "60") (term "0"))
+ (rule "polySimp_homoEq" (formula "17") (term "0"))
+ (rule "polySimp_homoEq" (formula "50"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_addComm0" (formula "59") (term "0,0,2,2,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0,2,1"))
+ (rule "polySimp_addComm1" (formula "50") (term "0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "60") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0"))
+ (rule "getOfSeqDef" (formula "73") (term "0,2,0"))
+ (rule "castDel" (formula "73") (term "2,0,2,0"))
+ (rule "castDel" (formula "73") (term "1,0,2,0"))
+ (rule "replace_known_left" (formula "73") (term "0,0,0,2,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "73"))
+ (rule "polySimp_elimSub" (formula "73") (term "1,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,0,2,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,1,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "1,0,0,2,0"))
+ (rule "lenOfSeqDef" (formula "6") (term "1"))
+ (rule "polySimp_elimSub" (formula "6") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "1,1"))
+ (rule "getOfSeqDef" (formula "108") (term "2,0"))
+ (rule "castDel" (formula "108") (term "1,2,0"))
+ (rule "polySimp_elimSub" (formula "108") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "1,1,1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "108") (term "1,1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "108") (term "0,1,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "108") (term "1,1,0,2,0"))
+ (rule "lenOfSeqDef" (formula "4") (term "1"))
+ (rule "polySimp_elimSub" (formula "4") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "1,1"))
+ (rule "castedGetAny" (formula "72") (term "2,0"))
+ (rule "lenOfSeqDef" (formula "2") (term "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,1"))
+ (rule "castedGetAny" (formula "71") (term "0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1,1"))
+ (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "60") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,2,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "73") (term "0,0,2,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,0,2,0"))
+ (rule "add_literals" (formula "73") (term "1,0,0,1,0,0,2,0"))
+ (rule "times_zero_1" (formula "73") (term "0,0,1,0,0,2,0"))
+ (rule "add_zero_left" (formula "73") (term "0,1,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1"))
+ (rule "add_literals" (formula "6") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "6") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "6") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "108") (term "0,0,2,1,2,0"))
+ (rule "polySimp_addAssoc" (formula "108") (term "0,1,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "108") (term "0,0,1,1,0,2,0"))
+ (rule "add_literals" (formula "108") (term "1,0,0,1,1,0,2,0"))
+ (rule "times_zero_1" (formula "108") (term "0,0,1,1,0,2,0"))
+ (rule "add_zero_left" (formula "108") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1"))
+ (rule "add_literals" (formula "4") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "4") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "4") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1"))
+ (rule "add_literals" (formula "2") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "2") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "2") (term "0,1,1"))
+ (rule "getOfSeqDef" (formula "72") (term "2,0"))
+ (rule "castDel" (formula "72") (term "1,2,0"))
+ (rule "replace_known_left" (formula "72") (term "0,0,2,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "72"))
+ (rule "polySimp_elimSub" (formula "72") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "getOfSeqDef" (formula "71") (term "0"))
+ (rule "castDel" (formula "71") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "71") (term "1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "72") (term "1,1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,1,1,0,2,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "1,0,2,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,1,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "35"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "72") (term "0,2,1,2,0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0,2,1,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "108") (term "0,0,2,0"))
+ (rule "replace_known_left" (formula "108") (term "0,0,2,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,0"))
+ (rule "polySimp_addComm0" (formula "71") (term "0,0,2,1,0"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "orRight" (formula "71"))
+ (rule "polySimp_rightDist" (formula "74") (term "1,0,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "74") (term "0,1,0,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,0,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "74") (term "0,1,0,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "74") (term "0,1,0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,2,0"))
+ (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,2,0"))
+ (rule "add_literals" (formula "73") (term "1,0,0,1,0,2,0"))
+ (rule "times_zero_1" (formula "73") (term "0,0,1,0,2,0"))
+ (rule "add_zero_left" (formula "73") (term "0,1,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,1"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "71") (term "0,0,1,1"))
+ (rule "add_literals" (formula "71") (term "1,0,0,1,1"))
+ (rule "times_zero_1" (formula "71") (term "0,0,1,1"))
+ (rule "add_zero_left" (formula "71") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "74") (term "0,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "109") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "109") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,1,0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "73") (term "0,2,0"))
+ (rule "polySimp_rightDist" (formula "73") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulAssoc" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "73") (term "0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,1,0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "109") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "109") (term "0,0,0,2,0"))
+ (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,2,0"))
+ (rule "polySimp_addComm1" (formula "73") (term "0,0,0,2,0"))
+ (rule "inEqSimp_ltToLeq" (formula "71") (term "1"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0,0,1"))
+ (rule "polySimp_elimOne" (formula "71") (term "0,1,0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "71") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "71") (term "0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "71") (term "0"))
+ (rule "replace_known_left" (formula "71") (term "0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "71"))
+ (rule "replace_known_right" (formula "74") (term "0,0,2,0") (ifseqformula "71"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "71"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "51") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "0,1"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "51"))
+ (rule "polySimp_sepNegMonomial" (formula "46") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "61") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "61") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "61") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "46") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "8") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "109") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "109") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "109") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "73") (term "0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "73") (term "0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "7") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "pullOutSelect" (formula "59") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "applyEq" (formula "72") (term "1") (ifseqformula "59"))
+ (rule "simplifySelectOfAnon" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "24")))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,1,0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "59") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "59") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "59") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "simplifySelectOfAnon" (formula "59"))
+ (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "24")))
+ (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "59") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0"))
+ (rule "pullOutSelect" (formula "73") (term "1,2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "25")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "110") (term "1,2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "68"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "26")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "3"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "57") (term "0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "57") (term "0"))
+ (rule "add_literals" (formula "57") (term "1,1,0"))
+ (rule "times_zero_1" (formula "57") (term "1,0"))
+ (rule "add_zero_right" (formula "57") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58"))
+ (rule "polySimp_mulComm0" (formula "57") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "57") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "57"))
+ (rule "polySimp_mulLiterals" (formula "57") (term "0"))
+ (rule "polySimp_elimOne" (formula "57") (term "0"))
+ (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfAnon" (formula "2"))
+ (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "112")) (ifInst "" (formula "27")))
+ (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "2") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "2") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "113")) (ifInst "" (formula "28")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0"))
+ (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfAnon" (formula "3"))
+ (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "114")) (ifInst "" (formula "29")))
+ (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "115")) (ifInst "" (formula "30")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61"))
+ (rule "times_zero_1" (formula "60") (term "0,0"))
+ (rule "add_zero_left" (formula "60") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "60"))
+ (rule "polySimp_mulLiterals" (formula "60") (term "1"))
+ (rule "polySimp_elimOne" (formula "60") (term "1"))
+ (rule "nnf_imp2or" (formula "50") (term "0"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "translateJavaAddInt" (formula "42") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "42") (term "0,1,0,0"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "42"))
+ (rule "polySimp_addComm0" (formula "44") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "inEqSimp_commuteLeq" (formula "43"))
+ (rule "Definition_axiom_for_bufferSizeForBucketLen_in_de_wiesler_Buffers" (formula "54") (term "0,1,1,0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "translateJavaMod" (formula "54") (term "0,1,0,0,1,1,0"))
+ (rule "translateJavaMod" (formula "54") (term "2,0,1,1,0"))
+ (rule "inEqSimp_homoInEq1" (formula "54") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,1,0,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,1,1,0"))
+ (rule "jmod_axiom" (formula "54") (term "0,1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,1,1,0"))
+ (rule "jmod_axiom" (formula "54") (term "2,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,2,0,1,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "54") (term "1,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "0,0,0,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "27") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaMulInt" (formula "27") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,1,0,0,0"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "notLeft" (formula "29"))
+ (rule "notLeft" (formula "28"))
+ (rule "notLeft" (formula "27"))
+ (rule "eqSymm" (formula "88"))
+ (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "31") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "31") (term "0,1,0,0,1,0,0") (ifseqformula "52"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "46"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29"))
+ (rule "polySimp_rightDist" (formula "20") (term "0,0"))
+ (rule "mul_literals" (formula "20") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "20") (term "0"))
+ (rule "add_literals" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "25") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaAddInt" (formula "25") (term "3,0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "4,0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "4,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "3,0,0,1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "25") (term "0,4,0,0,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "25") (term "4,0,0,1,0,1,0"))
+ (rule "mul_literals" (formula "25") (term "1,4,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "4,0,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "25") (term "0,4,0,0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "83") (term "0,0") (inst "i=i"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaCastInt" (formula "27") (term "0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "27") (term "1,1,0,0,1,0,0,0"))
+ (rule "translateJavaCastInt" (formula "27") (term "0,1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "27") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaMulInt" (formula "27") (term "0,1,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "27"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "27"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "replace_known_right" (formula "17") (term "0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "1"))
+ (rule "castedGetAny" (formula "34") (term "0"))
+ (rule "castedGetAny" (formula "31") (term "0"))
+ (rule "castedGetAny" (formula "30") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "27"))
+ (rule "inEqSimp_commuteLeq" (formula "30"))
+ (rule "applyEq" (formula "27") (term "0,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "31") (term "1,0") (ifseqformula "69"))
+ (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "69"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "33") (term "1,1") (ifseqformula "69"))
+ (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0") (ifseqformula "69"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "55"))
+ (rule "mul_literals" (formula "27") (term "1,1,0"))
+ (rule "greater_literals" (formula "27") (term "0,0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "30"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "29") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "29"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "0"))
+ (rule "polySimp_elimOne" (formula "29") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "64"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaMulInt" (formula "64") (term "1,1,1,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "64") (term "0,2,0,1,0"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "66"))
+ (rule "notLeft" (formula "64"))
+ (rule "notLeft" (formula "64"))
+ (rule "eqSymm" (formula "69"))
+ (rule "eqSymm" (formula "66"))
+ (rule "replace_known_right" (formula "16") (term "0") (ifseqformula "102"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,2,1"))
+ (rule "mul_literals" (formula "69") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "69") (term "0,2,0"))
+ (rule "mul_literals" (formula "69") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "69") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "applyEq" (formula "65") (term "0") (ifseqformula "60"))
+ (rule "applyEq" (formula "64") (term "0") (ifseqformula "60"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "60"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "75") (term "0"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "138")) (ifInst "" (formula "46")))
+ (rule "wellFormedAnon" (formula "75") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "75") (term "1,1,1,0,0,1"))
+ (rule "translateJavaAddInt" (formula "75") (term "1,0,1,0,1"))
+ (rule "replace_known_left" (formula "75") (term "0,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "41")))
+ (rule "polySimp_addComm0" (formula "75") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "75") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "75") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0"))
+ (rule "replace_known_left" (formula "75") (term "0,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "75") (term "0,0,0,1,1") (ifseqformula "76"))
+ (rule "applyEq" (formula "75") (term "0,1,0,0,0") (ifseqformula "73"))
+ (rule "applyEq" (formula "75") (term "0,1,0,0,1") (ifseqformula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,0,1"))
+ (rule "applyEq" (formula "75") (term "1,0,1,0,1") (ifseqformula "73"))
+ (rule "applyEq" (formula "75") (term "0,1,0,0,0,1") (ifseqformula "76"))
+ (rule "inEqSimp_commuteGeq" (formula "75") (term "1,0,0,0,1"))
+ (rule "applyEq" (formula "75") (term "0,1,0,1") (ifseqformula "85"))
+ (rule "inEqSimp_commuteGeq" (formula "75") (term "1,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "75") (term "0,0,0"))
+ (rule "replace_known_left" (formula "75") (term "0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "75"))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "76") (term "0"))
+ (rule "translateJavaMulInt" (formula "76") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "76") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "76") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "76") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "76"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "103")) (ifInst "" (formula "17")))
+ (rule "eqSymm" (formula "77"))
+ (rule "applyEqReverse" (formula "76") (term "1") (ifseqformula "77"))
+ (rule "hideAuxiliaryEq" (formula "77"))
+ (rule "elementOfArrayRangeConcrete" (formula "76") (term "0,0"))
+ (rule "replace_known_right" (formula "76") (term "0,0,0,0") (ifseqformula "110"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "98") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "98") (term "1,0") (ifseqformula "94"))
+ (rule "wellFormedAnon" (formula "98") (term "0,1,0"))
+ (rule "wellFormedAnon" (formula "98") (term "0,0,1,0"))
+ (rule "replace_known_left" (formula "98") (term "0,1") (ifseqformula "99"))
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "142")) (ifInst "" (formula "42")) (ifInst "" (formula "41")) (ifInst "" (formula "90")) (ifInst "" (formula "93")))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "85") (term "0"))
+ (rule "translateJavaCastInt" (formula "85") (term "0,0"))
+ (rule "castedGetAny" (formula "85") (term "0,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "85") (term "1"))
+ (builtin "One Step Simplification" (formula "85"))
+ (rule "translateJavaUnaryMinusInt" (formula "85") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "85") (term "0,0,1"))
+ (rule "translateJavaSubInt" (formula "85") (term "0,1"))
+ (rule "neg_literal" (formula "85") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "85") (term "0,1"))
+ (rule "mul_literals" (formula "85") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "85") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "85") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "85") (term "0,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "62") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "104")) (ifInst "" (formula "105")) (ifInst "" (formula "38")))
+ (rule "translateJavaMulInt" (formula "62") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "62") (term "1,1,0,0"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "62"))
+ (rule "eqSymm" (formula "103"))
+ (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62"))
+ (rule "applyEq" (formula "62") (term "0") (ifseqformula "61"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "61"))
+ (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0") (ifseqformula "61"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "63") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "55"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "63") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "103")) (ifInst "" (formula "32")) (ifInst "" (formula "35")))
+ (rule "translateJavaCastInt" (formula "63") (term "0,1,0"))
+ (rule "translateJavaMulInt" (formula "63") (term "1,0,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "63") (term "1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "63") (term "1,1,0,1,0,0,0"))
+ (rule "translateJavaCastInt" (formula "63") (term "0,1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "63") (term "0,1,0,0,0,0"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "63"))
+ (rule "andLeft" (formula "65"))
+ (rule "polySimp_mulComm0" (formula "63") (term "1"))
+ (rule "polySimp_mulComm0" (formula "64") (term "0"))
+ (rule "polySimp_addComm0" (formula "68") (term "1"))
+ (rule "castedGetAny" (formula "69") (term "0"))
+ (rule "castedGetAny" (formula "67") (term "0"))
+ (rule "castedGetAny" (formula "66") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "78"))
+ (rule "applyEq" (formula "64") (term "0,0") (ifseqformula "77"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "applyEq" (formula "63") (term "0,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "64") (term "1,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "33") (term "0") (ifseqformula "64"))
+ (rule "polySimp_homoEq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "mul_literals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0"))
+ (rule "applyEq" (formula "64") (term "1,1") (ifseqformula "75"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,1,0,0") (ifseqformula "75"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "75"))
+ (rule "polySimp_pullOutFactor1" (formula "33") (term "0"))
+ (rule "add_literals" (formula "33") (term "1,0"))
+ (rule "times_zero_1" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "64") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "62") (ifseqformula "54"))
+ (rule "greater_literals" (formula "62") (term "0,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "mul_literals" (formula "62") (term "1,0"))
+ (rule "leq_literals" (formula "62") (term "0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "true_left" (formula "62"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "97") (term "1,0") (inst "i=i"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26"))
+ (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "102")) (ifInst "" (formula "101")) (ifInst "" (formula "65")))
+ (rule "translateJavaSubInt" (formula "26") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "26") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "26") (term "1,1,1,0,0,0"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "andLeft" (formula "26"))
+ (rule "eqSymm" (formula "30"))
+ (rule "eqSymm" (formula "28"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,2,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_elimSub" (formula "30") (term "0,2,0"))
+ (rule "mul_literals" (formula "30") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "26"))
+ (rule "applyEq" (formula "69") (term "0") (ifseqformula "28"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "64"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "63"))
+ (rule "applyEq" (formula "26") (term "1") (ifseqformula "62"))
+ (rule "pullOutSelect" (formula "28") (term "1") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "104")) (ifInst "" (formula "15")))
+ (rule "simplifySelectOfAnon" (formula "28"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "104")) (ifInst "" (formula "15")))
+ (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0,0,0") (ifseqformula "117"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0"))
+ (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "116"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "eqSymm" (formula "28"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "23") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "translateJavaAddInt" (formula "23") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "23") (term "4,0,0,1,0"))
+ (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "80") (term "0"))
+ (rule "replace_known_left" (formula "80") (term "1,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "142")) (ifInst "" (formula "81")))
+ (rule "true_left" (formula "80"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "93") (term "0"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "141")) (ifInst "" (formula "47")))
+ (rule "wellFormedAnon" (formula "93") (term "1,0"))
+ (rule "replace_known_left" (formula "93") (term "1,1,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "43")))
+ (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "93") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0"))
+ (rule "replace_known_left" (formula "93") (term "0,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "applyEq" (formula "93") (term "0,1,0,0,0") (ifseqformula "74"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,0,0"))
+ (rule "replace_known_left" (formula "93") (term "0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "93"))
+ (rule "true_left" (formula "93"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "80") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "translateJavaAddInt" (formula "80") (term "0,2,0,1,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "80") (term "0,2,1,1,0,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "80") (term "0,2,1,1,0,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "80") (term "0,2,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "80") (term "0,2,0,1,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "80") (term "0,2,0,0,0,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "80") (term "0,2,0,1,0"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "80"))
+ (rule "andLeft" (formula "80"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "82") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "83") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "83") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "80"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "81"))
+ (rule "inEqSimp_commuteLeq" (formula "80"))
+ (rule "applyEq" (formula "81") (term "1,1,1,1,1,0") (ifseqformula "60"))
+ (rule "applyEq" (formula "80") (term "0") (ifseqformula "60"))
+ (rule "inEqSimp_commuteGeq" (formula "80"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "80") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "80") (term "0,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "80") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "80") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "80") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "80") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "80") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "80") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "80") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "80") (term "1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "100") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "translateJavaAddInt" (formula "100") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "100") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "100") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "100") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "100") (term "1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "100") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "100") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "0,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "100") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "100") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "100") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "100") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "100") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "100") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "100") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "100") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "100") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "100") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "100") (term "1,0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "100") (term "1,0,1,1,0,0"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "93") (term "0"))
+ (rule "translateJavaSubInt" (formula "93") (term "0"))
+ (rule "polySimp_elimSub" (formula "93") (term "0"))
+ (rule "polySimp_homoEq" (formula "93"))
+ (rule "polySimp_mulComm0" (formula "93") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "93") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "93") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "93") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "93") (term "0,0"))
+ (rule "add_literals" (formula "93") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "93") (term "1,0,0"))
+ (rule "add_zero_right" (formula "93") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "93"))
+ (rule "polySimp_mulLiterals" (formula "93") (term "0"))
+ (rule "polySimp_elimOne" (formula "93") (term "0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "109") (term "0"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "78") (term "0"))
+ (rule "replace_known_left" (formula "78") (term "1,0,0") (ifseqformula "47"))
+ (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "43")) (ifInst "" (formula "141")))
+ (rule "inEqSimp_ltToLeq" (formula "78") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0"))
+ (rule "replace_known_left" (formula "78") (term "0,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "applyEq" (formula "78") (term "0,1,0,0,0") (ifseqformula "74"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,0,0"))
+ (rule "replace_known_left" (formula "78") (term "0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "true_left" (formula "78"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "78") (term "0"))
+ (rule "translateJavaSubInt" (formula "78") (term "0"))
+ (rule "polySimp_elimSub" (formula "78") (term "0"))
+ (rule "polySimp_homoEq" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "78") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "polySimp_elimOne" (formula "78") (term "0"))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "90") (term "0,0,1,0"))
+ (rule "replace_known_left" (formula "90") (term "1,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "43")) (ifInst "" (formula "143")))
+ (rule "true_left" (formula "90"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "90") (term "1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "90") (term "0"))
+ (rule "polySimp_addComm1" (formula "90") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "90") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "90") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "90") (term "0,1,0"))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "24") (term "2,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "translateJavaMulInt" (formula "24") (term "0,3,2,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "24") (term "2,2,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "24") (term "3,2,0,0,1,0"))
+ (rule "Contract_axiom_for_classOf_in_Classifier" (formula "89") (term "0"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "93")) (ifInst "" (formula "139")) (ifInst "" (formula "48")))
+ (rule "inEqSimp_ltToLeq" (formula "89") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "89") (term "0,0,1"))
+ (rule "applyEq" (formula "89") (term "0,0,0,1") (ifseqformula "90"))
+ (rule "replace_known_left" (formula "89") (term "0,0,1") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "applyEq" (formula "89") (term "1,0,0,1") (ifseqformula "90"))
+ (rule "polySimp_addComm1" (formula "89") (term "0,0,1"))
+ (rule "applyEq" (formula "89") (term "3,0,0,1,1") (ifseqformula "90"))
+ (rule "applyEq" (formula "89") (term "0,1,0,0,1") (ifseqformula "61"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "89") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "89") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "89") (term "0,0,1"))
+ (rule "replace_known_left" (formula "89") (term "0,1") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "90") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "53") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "70") (term "0"))
+ (rule "applyEq" (formula "70") (term "0") (ifseqformula "71"))
+ (rule "qeq_literals" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "arrayLengthIsAShort" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "arrayLengthIsAShort" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "true_left" (formula "70"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "109") (term "0"))
+ (rule "nnf_notAnd" (formula "71") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "71") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "71") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "71") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "71") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "71") (term "0,0,0"))
+ (rule "mul_literals" (formula "71") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "71") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "0,0,0"))
+ (rule "mul_literals" (formula "71") (term "1,0,0,0"))
+ (rule "nnf_imp2or" (formula "72") (term "0"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "145") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "nnf_imp2or" (formula "25") (term "0"))
+ (rule "nnf_imp2or" (formula "37") (term "0"))
+ (rule "ifthenelse_split" (formula "13") (term "0"))
+ (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] TRUE"
+ (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "replace_known_left" (formula "6") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "applyEqReverse" (formula "110") (term "1,2,0") (ifseqformula "6"))
+ (rule "hideAuxiliaryEq" (formula "6"))
+ (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "hideAuxiliaryEq" (formula "5"))
+ (rule "replace_known_left" (formula "108") (term "0,2,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "108"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "9"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "143") (term "1,2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "replace_known_left" (formula "142") (term "0,2,0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "142"))
+ (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "3"))
+ (rule "andLeft" (formula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm1" (formula "10") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0"))
+ (rule "add_literals" (formula "10") (term "1,1,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0"))
+ (rule "add_literals" (formula "10") (term "0"))
+ (rule "leq_literals" (formula "10"))
+ (rule "closeFalse" (formula "10"))
+ )
+ (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] FALSE"
+ (rule "replace_known_right" (formula "9") (term "0,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "replace_known_right" (formula "11") (term "0,0") (ifseqformula "103"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "inEqSimp_geqRight" (formula "103"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "14"))
+ (rule "times_zero_2" (formula "14") (term "1,0"))
+ (rule "add_zero_right" (formula "14") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "10"))
+ (rule "times_zero_2" (formula "10") (term "1,0"))
+ (rule "add_zero_right" (formula "10") (term "0"))
+ (rule "inEqSimp_homoInEq1" (formula "12"))
+ (rule "times_zero_2" (formula "12") (term "1,0"))
+ (rule "add_zero_right" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "mul_literals" (formula "14") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_subsumption0" (formula "15") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "15") (term "0,0,1"))
+ (rule "qeq_literals" (formula "15") (term "0,1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeFalse" (formula "9"))
+ )
+ )
+ )
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ (branch "Precondition"
+ (rule "andRight" (formula "98"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "98"))
+ (rule "wellFormedAnonEQ" (formula "98") (ifseqformula "59"))
+ (rule "wellFormedAnon" (formula "98") (term "0"))
+ (rule "wellFormedAnon" (formula "98") (term "0,0"))
+ (rule "replace_known_left" (formula "98") (term "1") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "55")))
+ (rule "closeTrue" (formula "98"))
+ )
+ )
+ (branch "Usage"
+ (builtin "One Step Simplification" (formula "99"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "1,1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "64"))
+ (rule "translateJavaCastInt" (formula "64") (term "2,0,1,0,1,0"))
+ (rule "andLeft" (formula "64"))
+ (rule "andLeft" (formula "64"))
+ (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "true_left" (formula "66"))
+ (rule "getOfSeqDef" (formula "65") (term "0,2,0,1,0"))
+ (rule "castDel" (formula "65") (term "2,0,2,0,1,0"))
+ (rule "castDel" (formula "65") (term "1,0,2,0,1,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "1,1,0,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,1,0,0,2,0,1,0"))
+ (rule "polySimp_addComm0" (formula "65") (term "0,2,1,0,2,0,1,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,1,0,0,2,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,1,0,0,2,0,1,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "1,1,0,0,2,0,1,0"))
+ (rule "lenOfSeqDef" (formula "65") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "65") (term "1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "65") (term "1,1,1,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,1,1,0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "1,1,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,1,1,0,0,2,0,1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "65") (term "0,0,1,1,0,0,2,0,1,0"))
+ (rule "add_literals" (formula "65") (term "1,0,0,1,1,0,0,2,0,1,0"))
+ (rule "times_zero_1" (formula "65") (term "0,0,1,1,0,0,2,0,1,0"))
+ (rule "add_zero_left" (formula "65") (term "0,1,1,0,0,2,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "65") (term "0,1,1,1,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "65") (term "0,0,1,1,1,0,0"))
+ (rule "add_literals" (formula "65") (term "1,0,0,1,1,1,0,0"))
+ (rule "times_zero_1" (formula "65") (term "0,0,1,1,1,0,0"))
+ (rule "add_zero_left" (formula "65") (term "0,1,1,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,2,0,1,0"))
+ (rule "commute_and" (formula "65") (term "0,0"))
+ (rule "elim_double_block_2" (formula "100") (term "1"))
+ (rule "commute_and" (formula "65") (term "0,0,2,0,1,0"))
+ (rule "ifUnfold" (formula "100") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "100") (term "1") (newnames "x_10"))
+ (rule "inequality_comparison_simple" (formula "100") (term "1"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "replace_known_left" (formula "100") (term "0,0,1,0") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthNotNegative" (formula "37") (term "0"))
+ (rule "applyEq" (formula "37") (term "0") (ifseqformula "38"))
+ (rule "qeq_literals" (formula "37"))
+ (rule "true_left" (formula "37"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "ifSplit" (formula "100"))
+ (branch "if x_10 true"
+ (builtin "One Step Simplification" (formula "101"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "if x_10 false"
+ (builtin "One Step Simplification" (formula "101"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "blockEmpty" (formula "100") (term "1"))
+ (rule "emptyStatement" (formula "100") (term "1"))
+ (rule "tryEmpty" (formula "100") (term "1"))
+ (rule "blockEmptyLabel" (formula "100") (term "1"))
+ (rule "blockEmpty" (formula "100") (term "1"))
+ (rule "methodCallEmpty" (formula "100") (term "1"))
+ (rule "emptyModality" (formula "100") (term "1"))
+ (rule "andRight" (formula "100"))
+ (branch "Case 1"
+ (rule "andRight" (formula "100"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "100"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "100") (term "0") (userinteraction))
+ (builtin "One Step Simplification" (formula "100") (userinteraction))
+ (rule "andRight" (formula "100") (userinteraction))
+ (branch "Case 1"
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "100") (term "0") (inst "i=i") (userinteraction))
+ (builtin "One Step Simplification" (formula "100") (userinteraction))
+ (rule "allRight" (formula "100") (inst "sk=i_0") (userinteraction))
+ (rule "allLeftHide" (formula "65") (inst "t=sub(i_0,
+ javaAddInt(begin,
+ int::select(heap,
+ bucket_starts,
+ arr(bucket_0))))") (userinteraction))
+ (rule "translateJavaAddInt" (formula "100") (term "1,1,0"))
+ (rule "translateJavaAddInt" (formula "100") (term "0,0,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,0,1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,0,0,0,0,2,0,1"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,0,1,0,0,2,0,1"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,1,0,2,1,0,2,0,1"))
+ (rule "impRight" (formula "100"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "13") (term "0"))
+ (rule "polySimp_homoEq" (formula "41") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "46"))
+ (rule "polySimp_homoEq" (formula "56") (term "0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,0,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,0,0,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "67") (term "0,1,0,0,2,0,1"))
+ (rule "polySimp_elimSub" (formula "67") (term "1,0,2,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,2,1,0,2,0,1"))
+ (rule "polySimp_addComm1" (formula "46") (term "0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,0,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,1,0,2,1,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,2,1,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "41") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "56") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "56") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0,0,0,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,1,0,0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,0,1,0,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "67") (term "1,0,2,1,0,2,0,1"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,1,0,2,1,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,2,1,0,2,0,1"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0,2,1,0,2,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,2,1,0,2,0,1"))
+ (rule "add_literals" (formula "67") (term "1,1,0,2,1,0,2,0,1"))
+ (rule "times_zero_1" (formula "67") (term "1,0,2,1,0,2,0,1"))
+ (rule "add_zero_right" (formula "67") (term "0,2,1,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "67") (term "0,0,0,0,1,0,0"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,2,1,0,2,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "67") (term "0,0,2,1,0,2,0,1"))
+ (rule "add_literals" (formula "67") (term "1,0,0,2,1,0,2,0,1"))
+ (rule "times_zero_1" (formula "67") (term "0,0,2,1,0,2,0,1"))
+ (rule "add_zero_left" (formula "67") (term "0,2,1,0,2,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,0,2,0,1"))
+ (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,0,0,2,0,1"))
+ (rule "polySimp_mulAssoc" (formula "67") (term "0,1,0,0,0,0,0,2,0,1"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,0,0,0,2,0,1"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,1,0,0,0,0,0,2,0,1"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,1,0,0,0,0,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,0,2,0,1"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0,0,0,2,0,1"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,0,2,0,1"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0,0,0,0,0,2,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0,0,0,0,2,0,1"))
+ (rule "add_literals" (formula "67") (term "1,1,0,0,0,0,0,2,0,1"))
+ (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,0,2,0,1"))
+ (rule "add_zero_right" (formula "67") (term "0,0,0,0,0,2,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,0,2,0,1"))
+ (rule "replace_known_left" (formula "67") (term "0,0,0,2,0,1") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "replace_known_left" (formula "67") (term "0,0,2,0,1") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "1")))
+ (rule "inEqSimp_ltToLeq" (formula "67") (term "0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "67") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "46"))
+ (rule "polySimp_mulComm0" (formula "46") (term "1"))
+ (rule "polySimp_rightDist" (formula "46") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "46") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "46") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "46") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "46") (term "0,1"))
+ (rule "applyEq" (formula "59") (term "1") (ifseqformula "46"))
+ (rule "polySimp_sepNegMonomial" (formula "13") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "41") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "56") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "41") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "67") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "67") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "qeq_literals" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "pullOutSelect" (formula "101") (term "2,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "101")) (ifInst "" (formula "20")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "102") (term "2,0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "pullOutSelect" (formula "66") (term "0,2,0,1") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "101")) (ifInst "" (formula "19")))
+ (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "narrowSelectArrayType" (formula "66") (term "2,0") (ifseqformula "57") (ifseqformula "101"))
+ (rule "narrowSelectArrayType" (formula "66") (term "1,0") (ifseqformula "59") (ifseqformula "101"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "66") (term "0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "66") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "66") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "66") (term "0,0,1,1,0,0"))
+ (rule "replace_known_left" (formula "66") (term "1,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "66") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "66") (term "0,0,0"))
+ (rule "replace_known_left" (formula "66") (term "0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "applyEqReverse" (formula "67") (term "0,2,0,1") (ifseqformula "66"))
+ (rule "castDel" (formula "67") (term "2,0,1"))
+ (rule "hideAuxiliaryEq" (formula "66"))
+ (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "66"))
+ (rule "notLeft" (formula "66"))
+ (rule "inEqSimp_geqRight" (formula "66"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "52"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "51"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "0"))
+ (rule "polySimp_elimOne" (formula "51") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "50") (term "0,0"))
+ (rule "add_zero_left" (formula "50") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "50"))
+ (rule "polySimp_mulLiterals" (formula "50") (term "1"))
+ (rule "polySimp_elimOne" (formula "50") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "54"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53"))
+ (rule "mul_literals" (formula "52") (term "0,0"))
+ (rule "add_zero_left" (formula "52") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1"))
+ (rule "polySimp_elimOne" (formula "52") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "3"))
+ (rule "polySimp_mulComm0" (formula "51") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1"))
+ (rule "polySimp_rightDist" (formula "51") (term "1"))
+ (rule "mul_literals" (formula "51") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "51"))
+ (rule "inEqSimp_homoInEq0" (formula "29") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "qeq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "true_left" (formula "29"))
+ (rule "nnf_imp2or" (formula "40") (term "0"))
+ (rule "nnf_imp2or" (formula "15") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "41") (term "0"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "48") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,0,0,0,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,1,1,0,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,0,1,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,1,1,0,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,2,0,1,1,1,1,0,1"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "51") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "50") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0,2,1"))
+ (rule "inEqSimp_gtToGeq" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "49"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "applyEq" (formula "49") (term "1,1,1,1,1,0") (ifseqformula "33"))
+ (rule "applyEq" (formula "48") (term "0") (ifseqformula "33"))
+ (rule "inEqSimp_commuteGeq" (formula "48"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "68") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "68"))
+ (rule "translateJavaAddInt" (formula "68") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "68") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "68") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "68") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm1" (formula "68") (term "1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "68") (term "0,1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "68") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0,0"))
+ (rule "mul_literals" (formula "68") (term "0,0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "68") (term "1,0,1,1,0,0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "37")) (ifInst "" (formula "101")))
+ (rule "translateJavaAddInt" (formula "56") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "56") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "56") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "56") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "56") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "56") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "56") (term "1,1,0,0,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "1,0,1,0,0,1") (ifseqformula "43"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,0,1,1,1") (ifseqformula "43"))
+ (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "56") (term "1,1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "56") (term "1,0,0,0,1,1,1"))
+ (rule "add_zero_right" (formula "56") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "56") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "applyEq" (formula "56") (term "0,0,0,0,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "1,0,1,0,1") (ifseqformula "43"))
+ (rule "applyEq" (formula "56") (term "0,1,0,0,1") (ifseqformula "57"))
+ (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "56") (term "0,1,0,0,1"))
+ (rule "add_literals" (formula "56") (term "1,0,1,0,0,1"))
+ (rule "times_zero_1" (formula "56") (term "0,1,0,0,1"))
+ (rule "leq_literals" (formula "56") (term "1,0,0,1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "applyEq" (formula "56") (term "0,1,0,1,1,1") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "56") (term "0,1,0,1,1,1"))
+ (rule "add_literals" (formula "56") (term "1,0,1,0,1,1,1"))
+ (rule "times_zero_1" (formula "56") (term "0,1,0,1,1,1"))
+ (rule "leq_literals" (formula "56") (term "1,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "applyEq" (formula "56") (term "0,0,0,1,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "0,1,0,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "1,1,1,1,1") (ifseqformula "57"))
+ (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "43"))
+ (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "56") (term "0,1,0"))
+ (rule "add_literals" (formula "56") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "56") (term "0,1,0"))
+ (rule "leq_literals" (formula "56") (term "1,0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "56") (term "0,0,1,1,1"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "32") (term "0"))
+ (builtin "One Step Simplification" (formula "32"))
+ (rule "translateJavaAddInt" (formula "32") (term "3,0,1,0"))
+ (rule "translateJavaAddInt" (formula "32") (term "0,1,0,0"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "andLeft" (formula "32"))
+ (rule "polySimp_addComm0" (formula "34") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "32"))
+ (rule "inEqSimp_commuteLeq" (formula "33"))
+ (rule "inEqSimp_subsumption1" (formula "59") (term "0,1,1,1") (ifseqformula "32"))
+ (rule "leq_literals" (formula "59") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "inEqSimp_subsumption1" (formula "59") (term "0") (ifseqformula "32"))
+ (rule "leq_literals" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "59"))
+ (rule "andLeft" (formula "61"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "111")) (ifInst "" (formula "69")) (ifInst "" (formula "106")) (ifInst "" (formula "25")))
+ (rule "true_left" (formula "65"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "17")) (ifInst "" (formula "108")) (ifInst "" (formula "17")))
+ (rule "true_left" (formula "69"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "69") (term "0"))
+ (rule "translateJavaSubInt" (formula "69") (term "0"))
+ (rule "polySimp_elimSub" (formula "69") (term "0"))
+ (rule "polySimp_homoEq" (formula "69"))
+ (rule "polySimp_mulComm0" (formula "69") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "69") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "69") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "69") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "69") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "69") (term "0,0"))
+ (rule "add_literals" (formula "69") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "69") (term "1,0,0"))
+ (rule "add_zero_right" (formula "69") (term "0,0"))
+ (rule "applyEq" (formula "69") (term "0,1,0") (ifseqformula "48"))
+ (rule "polySimp_pullOutFactor1" (formula "69") (term "0"))
+ (rule "add_literals" (formula "69") (term "1,0"))
+ (rule "times_zero_1" (formula "69") (term "0"))
+ (builtin "One Step Simplification" (formula "69"))
+ (rule "true_left" (formula "69"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "63") (term "0"))
+ (rule "translateJavaCastInt" (formula "63") (term "0,0"))
+ (rule "castedGetAny" (formula "63") (term "0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "41"))
+ (builtin "One Step Simplification" (formula "41"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "41") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "41") (term "1,1,1,0,0,0,0"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "41"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "41"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "41"))
+ (rule "eqSymm" (formula "46"))
+ (rule "eqSymm" (formula "43"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "82"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "83"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "polySimp_elimSub" (formula "46") (term "0,2,1"))
+ (rule "mul_literals" (formula "46") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "46") (term "0,2,0"))
+ (rule "mul_literals" (formula "46") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "46") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "41"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "42") (term "1") (ifseqformula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "41"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "79") (term "0,0") (inst "i=i"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "40") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "40"))
+ (rule "translateJavaAddInt" (formula "50") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "50") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "40") (term "1,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "50") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "40") (term "1,1,0,0,0"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "42"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "andLeft" (formula "40"))
+ (rule "notLeft" (formula "42"))
+ (rule "notLeft" (formula "40"))
+ (rule "notLeft" (formula "40"))
+ (rule "eqSymm" (formula "88"))
+ (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "42"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "42") (term "0") (ifseqformula "39"))
+ (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0") (ifseqformula "39"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "43") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "33"))
+ (rule "leq_literals" (formula "42") (term "0"))
+ (builtin "One Step Simplification" (formula "42"))
+ (rule "true_left" (formula "42"))
+ (rule "nnf_imp2or" (formula "59") (term "0"))
+ (rule "nnf_imp2or" (formula "82") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "52") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0"))
+ (rule "mul_literals" (formula "52") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "52") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "52") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "52") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,0,0,0"))
+ (rule "nnf_imp2or" (formula "42") (term "0"))
+ (rule "nnf_notAnd" (formula "59") (term "0,0"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "nnf_notAnd" (formula "82") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "82") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "82") (term "0,0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,0,1,1,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,0,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "82") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "82") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "82") (term "0,0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "82") (term "1,0,1,0,0,0"))
+ (rule "nnf_notAnd" (formula "42") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "42") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0"))
+ (rule "mul_literals" (formula "42") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "42") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "42") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "59") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,0,1,0"))
+ (rule "nnf_notAnd" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0"))
+ (rule "nnf_imp2or" (formula "59") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "59") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "59") (term "0,1,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "59") (term "0,0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "59") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "59") (term "1,0,1,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "18") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaAddInt" (formula "18") (term "1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "18") (term "0,1,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "18") (term "0,1,1,0,0,0,0"))
+ (rule "translateJavaMulInt" (formula "18") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "18") (term "0,0,1,0"))
+ (rule "translateJavaCastInt" (formula "18") (term "1,1,0,0,1,0,0,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "19"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "19"))
+ (rule "notLeft" (formula "18"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "93"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "24") (term "1"))
+ (rule "castedGetAny" (formula "25") (term "0"))
+ (rule "castedGetAny" (formula "22") (term "0"))
+ (rule "castedGetAny" (formula "21") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "21"))
+ (rule "applyEq" (formula "22") (term "1,0") (ifseqformula "63"))
+ (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "63"))
+ (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "63"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0") (ifseqformula "63"))
+ (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "63"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "18") (ifseqformula "42"))
+ (rule "mul_literals" (formula "18") (term "1,1,0"))
+ (rule "greater_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "leq_literals" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "true_left" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "20"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0"))
+ (rule "polySimp_elimOne" (formula "20") (term "0"))
+ (rule "nnf_imp2or" (formula "27") (term "0"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "61") (term "0,0,1,1,0,1,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "1"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "translateJavaAddInt" (formula "79") (term "0,0,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,1"))
+ (rule "translateJavaSubInt" (formula "79") (term "0,1"))
+ (rule "neg_literal" (formula "79") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "79") (term "0,1"))
+ (rule "mul_literals" (formula "79") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "79") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0,1"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "22")))
+ (rule "translateJavaSubInt" (formula "80") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "80") (term "0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "80") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "80") (term "1,1,1"))
+ (rule "mul_literals" (formula "80") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "80") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "80") (term "0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "0"))
+ (rule "applyEq" (formula "80") (term "1,0,1,1,1") (ifseqformula "81"))
+ (rule "polySimp_addComm1" (formula "80") (term "0,1,1,1"))
+ (rule "applyEq" (formula "80") (term "0,0,1,1") (ifseqformula "81"))
+ (rule "inEqSimp_commuteGeq" (formula "80") (term "0,1,1"))
+ (rule "applyEq" (formula "80") (term "0,0,0,1") (ifseqformula "81"))
+ (rule "replace_known_left" (formula "80") (term "0,1") (ifseqformula "78"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "80") (term "1,1"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0,1,1"))
+ (rule "polySimp_elimOne" (formula "80") (term "0,1,1"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "0"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaSubInt" (formula "81") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,0,0"))
+ (rule "neg_literal" (formula "81") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "81") (term "0,0"))
+ (rule "mul_literals" (formula "81") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "81") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0"))
+ (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "61") (term "1,0,1,1,0,1,0"))
+ (rule "polySimp_addComm1" (formula "61") (term "1,1,0,1,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "79")))
+ (rule "translateJavaSubInt" (formula "77") (term "0,1,1"))
+ (rule "polySimp_elimSub" (formula "77") (term "0,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1"))
+ (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,1"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "77") (term "1,1"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,1,1"))
+ (rule "add_literals" (formula "77") (term "0,0,1,1"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,1"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0"))
+ (rule "mul_literals" (formula "77") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "77") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "77") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1,1,1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,1,1,1"))
+ (rule "mul_literals" (formula "77") (term "0,0,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,1,0"))
+ (rule "replace_known_left" (formula "77") (term "1,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "inEqSimp_subsumption1" (formula "77") (term "0") (ifseqformula "70"))
+ (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0"))
+ (rule "add_literals" (formula "77") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "77") (term "1,0,0,0"))
+ (rule "add_literals" (formula "77") (term "0,0,0"))
+ (rule "qeq_literals" (formula "77") (term "0,0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "andLeft" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "78"))
+ (rule "mul_literals" (formula "76") (term "0,0"))
+ (rule "add_zero_left" (formula "76") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "76"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1"))
+ (rule "polySimp_rightDist" (formula "76") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,1"))
+ (rule "mul_literals" (formula "76") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "70"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "76") (term "1,0,0"))
+ (rule "mul_literals" (formula "76") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "76") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0"))
+ (rule "qeq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "true_left" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "79"))
+ (rule "polySimp_rightDist" (formula "77") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "77") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "0"))
+ (builtin "One Step Simplification" (formula "79"))
+ (rule "translateJavaSubInt" (formula "79") (term "0,0"))
+ (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "79") (term "0,0,0"))
+ (rule "neg_literal" (formula "79") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "79") (term "0,0"))
+ (rule "mul_literals" (formula "79") (term "1,0,0"))
+ (rule "polySimp_addLiterals" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "79") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "79") (term "0,0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "translateJavaMod" (formula "80") (term "0"))
+ (rule "jmod_axiom" (formula "80") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "80"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0"))
+ (rule "newSym_eq" (formula "80") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(add(mul(begin,
+ Z(neglit(1(#)))),
+ end)),
+ Z(0(#)))") (inst "l=l_0"))
+ (rule "times_zero_1" (formula "80") (term "1,1"))
+ (rule "add_zero_right" (formula "80") (term "1"))
+ (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "80"))
+ (rule "eqSymm" (formula "81"))
+ (rule "applyEq" (formula "77") (term "0") (ifseqformula "81"))
+ (rule "inEqSimp_homoInEq1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "77") (term "0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0,0"))
+ (rule "applyEq" (formula "76") (term "0") (ifseqformula "81"))
+ (rule "applyEq" (formula "83") (term "1,1,1,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "78") (term "0") (ifseqformula "81"))
+ (rule "inEqSimp_homoInEq0" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0"))
+ (rule "applyEq" (formula "80") (term "0,0") (ifseqformula "81"))
+ (rule "applyEq" (formula "83") (term "1,0,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "84") (term "1") (ifseqformula "81"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "77"))
+ (rule "polySimp_mulComm0" (formula "77") (term "1"))
+ (rule "polySimp_rightDist" (formula "77") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "77") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "78"))
+ (rule "polySimp_mulComm0" (formula "78") (term "1"))
+ (rule "polySimp_rightDist" (formula "78") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "78") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,1"))
+ (rule "mul_literals" (formula "78") (term "0,0,1"))
+ (rule "elimGcdGeq_antec" (formula "76") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "1,0,1,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "76") (term "0,0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "mul_literals" (formula "76") (term "0,1,0,0,0,0"))
+ (rule "mul_literals" (formula "76") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0"))
+ (rule "add_zero_right" (formula "76") (term "0,0"))
+ (rule "leq_literals" (formula "76") (term "0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "77"))
+ (rule "polySimp_rightDist" (formula "70") (term "0,0"))
+ (rule "mul_literals" (formula "70") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "70") (term "0"))
+ (rule "polySimp_addComm1" (formula "70") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "70") (term "0"))
+ (rule "add_literals" (formula "70") (term "1,1,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0"))
+ (rule "add_zero_right" (formula "70") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "70"))
+ (rule "mul_literals" (formula "70") (term "1"))
+ (rule "elimGcdGeq_antec" (formula "70") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "70") (term "0,0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "mul_literals" (formula "70") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "70") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "70") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "70") (term "0,0"))
+ (rule "add_literals" (formula "70") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "70") (term "1,0,0"))
+ (rule "add_zero_right" (formula "70") (term "0,0"))
+ (rule "leq_literals" (formula "70") (term "0"))
+ (builtin "One Step Simplification" (formula "70"))
+ (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "70"))
+ (rule "leq_literals" (formula "77") (term "0"))
+ (builtin "One Step Simplification" (formula "77"))
+ (rule "true_left" (formula "77"))
+ (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "41"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "78") (term "0,0,0"))
+ (rule "mul_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "78") (term "0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "1,1,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0"))
+ (rule "add_zero_right" (formula "78") (term "0"))
+ (rule "polySimp_addComm1" (formula "78") (term "0"))
+ (rule "add_literals" (formula "78") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "78"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "0"))
+ (rule "elimGcdLeq_antec" (formula "78") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "78") (term "0,0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "neg_literal" (formula "78") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0"))
+ (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addLiterals" (formula "78") (term "0,0,0,0"))
+ (rule "add_literals" (formula "78") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "78") (term "0,0"))
+ (rule "add_literals" (formula "78") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "78") (term "1,0,0"))
+ (rule "add_zero_right" (formula "78") (term "0,0"))
+ (rule "qeq_literals" (formula "78") (term "0"))
+ (builtin "One Step Simplification" (formula "78"))
+ (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "65") (term "0"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "134")) (ifInst "" (formula "34")))
+ (rule "wellFormedAnon" (formula "65") (term "1,0"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "65") (term "1,1,1,0,0,1"))
+ (rule "replace_known_left" (formula "65") (term "0,1,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "29")))
+ (rule "polySimp_addComm0" (formula "65") (term "1,1,1,0,0,1"))
+ (rule "polySimp_addComm0" (formula "65") (term "1,0,1,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "65") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0"))
+ (rule "replace_known_left" (formula "65") (term "0,0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,1") (ifseqformula "66"))
+ (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,1"))
+ (rule "applyEq" (formula "65") (term "1,0,1,0,1") (ifseqformula "63"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,0") (ifseqformula "63"))
+ (rule "applyEq" (formula "65") (term "0,0,0,1,1") (ifseqformula "66"))
+ (rule "applyEq" (formula "65") (term "0,1,0,0,0,1") (ifseqformula "66"))
+ (rule "inEqSimp_commuteGeq" (formula "65") (term "1,0,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "65") (term "0,0,0"))
+ (rule "replace_known_left" (formula "65") (term "0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "65"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "56") (term "0"))
+ (rule "replace_known_right" (formula "56") (term "0,0,0") (ifseqformula "104"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "30")) (ifInst "" (formula "57")))
+ (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "67") (term "0"))
+ (rule "translateJavaMulInt" (formula "67") (term "0,0,2,0"))
+ (rule "translateJavaAddInt" (formula "67") (term "0,2,0"))
+ (rule "polySimp_mulComm0" (formula "67") (term "0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "67") (term "0,2,0"))
+ (rule "pullOutSelect" (formula "67") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "67"))
+ (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "101")) (ifInst "" (formula "8")))
+ (rule "eqSymm" (formula "68"))
+ (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "68"))
+ (rule "hideAuxiliaryEq" (formula "68"))
+ (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0"))
+ (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "107"))
+ (builtin "One Step Simplification" (formula "67"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "44") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "44") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "44") (term "0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "97") (term "1,0") (inst "i=i"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "90") (term "1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "90") (term "0"))
+ (rule "polySimp_addComm1" (formula "90") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "90") (term "0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "90") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "90") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "90") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "90") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "90") (term "0,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "62") (term "0,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "62"))
+ (rule "translateJavaSubInt" (formula "62") (term "4,0,0,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "3,0,2,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "4,0,2,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "62") (term "0,0,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "3,0,0,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "62") (term "0,4,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "62") (term "4,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "62") (term "1,4,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "4,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "62") (term "0,4,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "62") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "62") (term "0,0,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "16") (term "0,0,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaAddInt" (formula "16") (term "3,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "2,0,0,0,1,1,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "0,3,0,0,0,1,1,0"))
+ (rule "Contract_axiom_for_classOf_in_Classifier" (formula "139") (term "0"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "134")) (ifInst "" (formula "36")))
+ (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "95"))
+ (rule "wellFormedAnon" (formula "1") (term "0,1,0"))
+ (rule "wellFormedAnon" (formula "1") (term "0,0,1,0"))
+ (rule "replace_known_left" (formula "1") (term "1,0,0,1,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")) (ifInst "" (formula "92")) (ifInst "" (formula "94")))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1"))
+ (rule "applyEq" (formula "1") (term "0,1,0,0,1,0,1") (ifseqformula "48"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,1"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "62") (term "1,1,0"))
+ (rule "translateJavaCastInt" (formula "62") (term "0,1,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "castedGetAny" (formula "62") (term "0,0,1,0"))
+ (rule "eqSymm" (formula "62") (term "1,0"))
+ (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "16") (term "2,0,0,1,0"))
+ (rule "replace_known_right" (formula "16") (term "0,1,0") (ifseqformula "139"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "32")) (ifInst "" (formula "34")))
+ (rule "true_left" (formula "16"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "16") (term "2,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaSubInt" (formula "16") (term "3,0,1,2,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "2,2,2,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "2,0,1,2,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "3,2,2,0,0"))
+ (rule "translateJavaSubInt" (formula "16") (term "0,0,0,2,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "0,3,0,1,2,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1,2,0,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,0,0,2,0,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "3,0,1,2,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,3,0,1,2,0,0"))
+ (rule "polySimp_homoEq" (formula "16") (term "0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "3,0,1,2,0,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0,0,2,0,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,3,0,1,2,0,1,0,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,2,0,1,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,2,0,1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,2,0,1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0,2,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,2,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,2,0,1,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,2,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,2,1,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,0,0,2,1,1,0"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "15") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "translateJavaAddInt" (formula "15") (term "3,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "15") (term "4,0,0,1,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "60"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "translateJavaSubInt" (formula "60") (term "3,0,1"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "notLeft" (formula "60"))
+ (rule "polySimp_elimSub" (formula "66") (term "3,0"))
+ (rule "mul_literals" (formula "66") (term "1,3,0"))
+ (rule "polySimp_addComm0" (formula "66") (term "3,0"))
+ (rule "inEqSimp_commuteLeq" (formula "65"))
+ (rule "inEqSimp_commuteLeq" (formula "63"))
+ (rule "inEqSimp_commuteLeq" (formula "64"))
+ (rule "inEqSimp_commuteLeq" (formula "60"))
+ (rule "applyEq" (formula "108") (term "0") (ifseqformula "56"))
+ (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "56"))
+ (rule "applyEq" (formula "65") (term "1") (ifseqformula "62"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "59"))
+ (rule "applyEq" (formula "55") (term "0,1,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "56"))
+ (rule "inEqSimp_commuteGeq" (formula "65"))
+ (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "55") (term "2,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "57") (term "3,0") (ifseqformula "62"))
+ (rule "applyEq" (formula "64") (term "1") (ifseqformula "62"))
+ (rule "applyEq" (formula "63") (term "0") (ifseqformula "62"))
+ (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62"))
+ (rule "eqSymm" (formula "59"))
+ (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "65"))
+ (rule "mul_literals" (formula "63") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "63"))
+ (rule "mul_literals" (formula "63") (term "1"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "76") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "53")) (ifInst "" (formula "145")))
+ (rule "translateJavaAddInt" (formula "76") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "76") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "76") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "76") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "76") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "76") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "76") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "76") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0"))
+ (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "76") (term "1,0,1,0,1") (ifseqformula "72"))
+ (rule "applyEq" (formula "76") (term "1,0,1,0,0,1") (ifseqformula "72"))
+ (rule "applyEq" (formula "76") (term "0,1,0,0,0,1,1,1") (ifseqformula "72"))
+ (rule "applyEq" (formula "76") (term "0,0") (ifseqformula "72"))
+ (rule "applyEq" (formula "76") (term "0,1,0,1,1,1,1") (ifseqformula "72"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "76") (term "0,0,1,1,1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "76") (term "1,0,1,1,1,1") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "76") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "76") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "inEqSimp_subsumption1" (formula "76") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "76") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,0"))
+ (rule "add_literals" (formula "76") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "76") (term "1,0,0,0"))
+ (rule "add_literals" (formula "76") (term "0,0,0"))
+ (rule "qeq_literals" (formula "76") (term "0,0"))
+ (builtin "One Step Simplification" (formula "76"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "77"))
+ (rule "andLeft" (formula "76"))
+ (rule "andLeft" (formula "79"))
+ (rule "andLeft" (formula "76"))
+ (rule "replace_known_left" (formula "74") (term "0,0,0,0,1") (ifseqformula "76"))
+ (builtin "One Step Simplification" (formula "74"))
+ (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "78"))
+ (rule "polySimp_mulComm0" (formula "77") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "77") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "77"))
+ (rule "polySimp_mulLiterals" (formula "77") (term "0"))
+ (rule "polySimp_elimOne" (formula "77") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "53") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "116")) (ifInst "" (formula "24")) (ifInst "" (formula "27")))
+ (rule "translateJavaMulInt" (formula "53") (term "0,1,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "53") (term "0,1,0"))
+ (rule "translateJavaCastInt" (formula "53") (term "0,1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "53") (term "1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "53") (term "1,0,0,0,0,0"))
+ (rule "translateJavaCastInt" (formula "53") (term "1,1,0,1,0,0,0"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "53"))
+ (rule "andLeft" (formula "55"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1"))
+ (rule "polySimp_addComm0" (formula "58") (term "1"))
+ (rule "castedGetAny" (formula "59") (term "0"))
+ (rule "castedGetAny" (formula "57") (term "0"))
+ (rule "castedGetAny" (formula "56") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "53"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "77"))
+ (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "77"))
+ (rule "applyEq" (formula "25") (term "0") (ifseqformula "56"))
+ (rule "polySimp_homoEq" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "polySimp_addComm1" (formula "25") (term "0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0"))
+ (rule "applyEq" (formula "55") (term "1,0") (ifseqformula "76"))
+ (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "75"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "54") (term "1,1") (ifseqformula "74"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0") (ifseqformula "74"))
+ (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "74"))
+ (rule "polySimp_pullOutFactor1" (formula "25") (term "0"))
+ (rule "add_literals" (formula "25") (term "1,0"))
+ (rule "times_zero_1" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "52") (ifseqformula "42"))
+ (rule "mul_literals" (formula "52") (term "1,1,0"))
+ (rule "greater_literals" (formula "52") (term "0,0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "leq_literals" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52"))
+ (rule "true_left" (formula "52"))
+ (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "83") (term "0"))
+ (rule "replace_known_left" (formula "83") (term "1,0,0,0") (ifseqformula "30"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "34")) (ifInst "" (formula "152")))
+ (rule "inEqSimp_ltToLeq" (formula "83") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "83") (term "0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,0"))
+ (rule "replace_known_left" (formula "83") (term "0,0,0") (ifseqformula "14"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "applyEq" (formula "83") (term "0,1,0,0,0") (ifseqformula "72"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "83") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0,0,0"))
+ (rule "replace_known_left" (formula "83") (term "0,0") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "83"))
+ (rule "true_left" (formula "83"))
+ (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "83") (term "0"))
+ (rule "translateJavaSubInt" (formula "83") (term "0"))
+ (rule "polySimp_elimSub" (formula "83") (term "0"))
+ (rule "polySimp_homoEq" (formula "83"))
+ (rule "polySimp_mulComm0" (formula "83") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "83") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "83") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "83") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "83") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "83") (term "0,0"))
+ (rule "add_literals" (formula "83") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "83") (term "1,0,0"))
+ (rule "add_zero_right" (formula "83") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "83"))
+ (rule "polySimp_mulLiterals" (formula "83") (term "0"))
+ (rule "polySimp_elimOne" (formula "83") (term "0"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "104") (term "0"))
+ (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "155")) (ifInst "" (formula "108")) (ifInst "" (formula "150")) (ifInst "" (formula "35")))
+ (rule "true_left" (formula "104"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "28") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "118")) (ifInst "" (formula "117")) (ifInst "" (formula "50")))
+ (rule "translateJavaMulInt" (formula "28") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,1,0,0"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "28"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "28"))
+ (rule "notLeft" (formula "28"))
+ (rule "eqSymm" (formula "117"))
+ (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "30") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "28"))
+ (rule "applyEq" (formula "29") (term "0") (ifseqformula "50"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "49"))
+ (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0") (ifseqformula "49"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "29") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "43"))
+ (rule "leq_literals" (formula "28") (term "0"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "true_left" (formula "28"))
+ (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "104") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "104"))
+ (rule "inEqSimp_ltToLeq" (formula "104") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,0,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "104") (term "0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "104") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "104") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "104") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "104") (term "1,1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "104") (term "0,1,1,0,0"))
+ (rule "mul_literals" (formula "104") (term "0,0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "104") (term "1,0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "104") (term "1,0,1,1,0,0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "119")) (ifInst "" (formula "120")) (ifInst "" (formula "56")))
+ (rule "translateJavaSubInt" (formula "18") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0"))
+ (rule "translateJavaMulInt" (formula "18") (term "1,1,1,0,0,0"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "eqSymm" (formula "22"))
+ (rule "eqSymm" (formula "20"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,2,1"))
+ (rule "mul_literals" (formula "22") (term "1,0,2,1"))
+ (rule "polySimp_elimSub" (formula "22") (term "0,2,0"))
+ (rule "mul_literals" (formula "22") (term "1,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,2,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "51"))
+ (rule "applyEq" (formula "20") (term "1,0,2,0") (ifseqformula "65"))
+ (rule "eqSymm" (formula "20"))
+ (rule "applyEq" (formula "18") (term "2,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "18") (term "0,1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "19") (term "3,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "18") (term "1") (ifseqformula "50"))
+ (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "64"))
+ (rule "eqSymm" (formula "19"))
+ (rule "pullOutSelect" (formula "19") (term "1") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfAnon" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "123")) (ifInst "" (formula "7")))
+ (rule "simplifySelectOfAnon" (formula "19"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "123")) (ifInst "" (formula "7")))
+ (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0"))
+ (rule "replace_known_right" (formula "20") (term "0,0,0,0") (ifseqformula "129"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "20"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0"))
+ (rule "replace_known_right" (formula "19") (term "0,0,0,0") (ifseqformula "128"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "eqSymm" (formula "19"))
+ (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "156") (term "0"))
+ (rule "nnf_notAnd" (formula "28") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0,0"))
+ (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "27") (term "0") (inst "j=j") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "translateJavaCastInt" (formula "27") (term "1,1,0,1,0"))
+ (rule "translateJavaCastInt" (formula "27") (term "0,1,0,1,0"))
+ (rule "castedGetAny" (formula "27") (term "1,1,0,1,0"))
+ (rule "castedGetAny" (formula "27") (term "0,1,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,1,0") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0"))
+ (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0") (ifseqformula "53"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "translateJavaMod" (formula "25") (term "0"))
+ (rule "jmod_axiom" (formula "25") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "25"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0"))
+ (rule "newSym_eq" (formula "25") (inst "newSymDef=mul(int::final(bucket_pointers,
+ de.wiesler.BucketPointers::$first_empty_position),
+ Z(0(#)))") (inst "l=l_1"))
+ (rule "times_zero_1" (formula "25") (term "1,1"))
+ (rule "add_zero_right" (formula "25") (term "1"))
+ (rule "applyEq" (formula "26") (term "0,0") (ifseqformula "25"))
+ (rule "eqSymm" (formula "26"))
+ (rule "applyEq" (formula "22") (term "0") (ifseqformula "26"))
+ (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "26"))
+ (rule "applyEq" (formula "23") (term "1") (ifseqformula "26"))
+ (rule "applyEq" (formula "21") (term "0") (ifseqformula "26"))
+ (rule "elimGcdGeq_antec" (formula "21") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "leq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0"))
+ (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "24"))
+ (rule "polySimp_mulAssoc" (formula "23") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "23") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "23"))
+ (rule "polySimp_mulLiterals" (formula "23") (term "0"))
+ (rule "inEqSimp_subsumption4" (formula "23") (ifseqformula "22"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "greater_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "leq_literals" (formula "23") (term "0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "true_left" (formula "23"))
+ (rule "commute_or_2" (formula "87") (term "0,0"))
+ (rule "cnf_rightDist" (formula "53") (term "0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "102") (term "0"))
+ (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "154")))
+ (rule "translateJavaSubInt" (formula "102") (term "1,0,1,1,1,1,1"))
+ (rule "translateJavaAddInt" (formula "102") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "102") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "102") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm1" (formula "102") (term "1,1,1,0,1,1,1"))
+ (rule "add_literals" (formula "102") (term "0,1,1,1,0,1,1,1"))
+ (rule "add_zero_left" (formula "102") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "102") (term "1,0,1,1,1,1,1"))
+ (rule "add_literals" (formula "102") (term "0,1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "102") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "102") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "102") (term "1,0,0,0,1,1,1,1"))
+ (rule "mul_literals" (formula "102") (term "0,1,0,0,0,1,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0,0,1,1,1,1"))
+ (rule "add_literals" (formula "102") (term "0,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "102") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "102") (term "0,0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "102") (term "0,0,0,0,1,1,1"))
+ (rule "add_literals" (formula "102") (term "0,0,0,0,0,1,1,1"))
+ (rule "add_zero_left" (formula "102") (term "0,0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "102") (term "0,0,0"))
+ (rule "mul_literals" (formula "102") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "102") (term "0,0,0,0"))
+ (rule "applyEq" (formula "102") (term "0,1,0,0") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq1" (formula "102") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,1,0,0"))
+ (rule "add_literals" (formula "102") (term "1,1,0,1,0,0"))
+ (rule "times_zero_1" (formula "102") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "102") (term "0,1,0,0"))
+ (rule "leq_literals" (formula "102") (term "1,0,0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "applyEq" (formula "102") (term "0,1,0,0,0,1,1,1") (ifseqformula "74"))
+ (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0,1,1,1"))
+ (rule "add_literals" (formula "102") (term "1,0,0,0,1,1,1"))
+ (rule "times_zero_1" (formula "102") (term "0,0,0,1,1,1"))
+ (rule "leq_literals" (formula "102") (term "0,0,1,1,1"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "applyEq" (formula "102") (term "1,0,1,0,1") (ifseqformula "74"))
+ (rule "replace_known_left" (formula "102") (term "1,0,1") (ifseqformula "81"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "applyEq" (formula "102") (term "0,1,0,1,1,1,1") (ifseqformula "74"))
+ (rule "inEqSimp_homoInEq1" (formula "102") (term "1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "102") (term "1,1,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "102") (term "1,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "102") (term "0,1,0,1,1,1,1"))
+ (rule "leq_literals" (formula "102") (term "1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "applyEq" (formula "102") (term "1,0,1,0,1") (ifseqformula "74"))
+ (rule "inEqSimp_commuteGeq" (formula "102") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "102") (term "0,0"))
+ (rule "mul_literals" (formula "102") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "102") (term "0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "102") (term "0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "102") (term "0,0,1,1,1,1"))
+ (rule "replace_known_left" (formula "102") (term "0,1,1,1,1") (ifseqformula "44"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "inEqSimp_subsumption1" (formula "102") (term "0,0") (ifseqformula "44"))
+ (rule "leq_literals" (formula "102") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "102"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "103") (term "0"))
+ (rule "translateJavaCastInt" (formula "103") (term "0,0"))
+ (rule "castedGetAny" (formula "103") (term "0,0"))
+ (rule "cnf_rightDist" (formula "87") (term "0,1,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] TRUE"
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "95") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "95") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0"))
+ (rule "add_literals" (formula "95") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "95") (term "1,0,0"))
+ (rule "add_literals" (formula "95") (term "0,0"))
+ (rule "qeq_literals" (formula "95") (term "0"))
+ (builtin "One Step Simplification" (formula "95"))
+ (rule "true_left" (formula "95"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "3"))
+ (rule "andLeft" (formula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "6") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_zero_right" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_literals" (formula "6") (term "0"))
+ (rule "leq_literals" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] FALSE"
+ (rule "inEqSimp_geqRight" (formula "118"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "6") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,1"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "6") (term "0,0,1"))
+ (rule "qeq_literals" (formula "6") (term "0,1"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_antiSymm" (formula "93") (ifseqformula "1"))
+ (rule "applyEq" (formula "110") (term "1,2,1,0") (ifseqformula "93"))
+ (rule "applyEq" (formula "112") (term "1,2,1,0,0") (ifseqformula "93"))
+ (rule "applyEq" (formula "94") (term "0") (ifseqformula "93"))
+ (rule "inEqSimp_homoInEq1" (formula "94"))
+ (rule "polySimp_pullOutFactor1" (formula "94") (term "0"))
+ (rule "add_literals" (formula "94") (term "1,0"))
+ (rule "times_zero_1" (formula "94") (term "0"))
+ (rule "leq_literals" (formula "94"))
+ (rule "true_left" (formula "94"))
+ (rule "applyEq" (formula "111") (term "1,2,1,0") (ifseqformula "93"))
+ (rule "applyEq" (formula "106") (term "1,2,1,0,0,1,0") (ifseqformula "93"))
+ (rule "applyEq" (formula "113") (term "1,1,1") (ifseqformula "93"))
+ (rule "seqDef_lower_equals_upper" (formula "113") (term "1"))
+ (rule "seqPermEmpty2" (formula "113"))
+ (rule "eqSymm" (formula "113"))
+ (rule "eqSeqEmpty" (formula "113"))
+ (rule "lenOfSeqDef" (formula "113") (term "0"))
+ (builtin "One Step Simplification" (formula "113"))
+ (rule "polySimp_elimSub" (formula "113") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "113") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "113") (term "0,1,0,1"))
+ (rule "polySimp_addComm1" (formula "113") (term "0,1"))
+ (rule "polySimp_addAssoc" (formula "113") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "113") (term "0,0,0,1"))
+ (rule "add_literals" (formula "113") (term "1,0,0,0,1"))
+ (rule "times_zero_1" (formula "113") (term "0,0,0,1"))
+ (rule "add_zero_left" (formula "113") (term "0,0,1"))
+ (rule "inEqSimp_ltToLeq" (formula "113") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "113") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "113") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "113") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "113") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "113") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "113") (term "1,1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "113") (term "1,0,0,0,0,0"))
+ (rule "add_literals" (formula "113") (term "0,0,0,0,0"))
+ (rule "applyEq" (formula "114") (term "1,1,0,0") (ifseqformula "93"))
+ (rule "bsum_lower_equals_upper" (formula "114") (term "0,0"))
+ (rule "eqSymm" (formula "114") (term "0"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "93"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "93") (term "0") (ifseqformula "92"))
+ (rule "applyEq" (formula "105") (term "1,2,1,0,0,0,2,0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "92"))
+ (rule "applyEq" (formula "85") (term "1,0,0,1,1,1,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "105") (term "1,1,0,0") (ifseqformula "92"))
+ (rule "bsum_lower_equals_upper" (formula "105") (term "0,0"))
+ (rule "polySimp_homoEq" (formula "105") (term "0"))
+ (rule "mul_literals" (formula "105") (term "1,0,0"))
+ (rule "add_zero_right" (formula "105") (term "0,0"))
+ (rule "applyEq" (formula "104") (term "1,2,1,0,2,0,1,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "113") (term "1,1,1,0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "104") (term "1,1,1,0,0") (ifseqformula "92"))
+ (rule "applyEq" (formula "112") (term "1,1,0,0") (ifseqformula "92"))
+ (rule "bsum_lower_equals_upper" (formula "112") (term "0,0"))
+ (builtin "One Step Simplification" (formula "112"))
+ (rule "true_left" (formula "112"))
+ (rule "applyEq" (formula "111") (term "0,1,0,0,0") (ifseqformula "92"))
+ (rule "polySimp_pullOutFactor1b" (formula "111") (term "0,0,0"))
+ (rule "add_literals" (formula "111") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "111") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "111") (term "0,0,0"))
+ (rule "leq_literals" (formula "111") (term "0,0"))
+ (builtin "One Step Simplification" (formula "111"))
+ (rule "true_left" (formula "111"))
+ (rule "polySimp_sepPosMonomial" (formula "105") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "2"))
+ (rule "andLeft" (formula "4"))
+ (rule "inEqSimp_homoInEq1" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "1,1,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0"))
+ (rule "add_literals" (formula "4") (term "0"))
+ (rule "leq_literals" (formula "4"))
+ (rule "closeFalse" (formula "4"))
+ )
+ )
+ (branch "Case 2"
+ (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "100") (term "0") (userinteraction))
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "closeTrue" (formula "100"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "100"))
+ (rule "allRight" (formula "100") (inst "sk=f_0"))
+ (rule "allRight" (formula "100") (inst "sk=o_0"))
+ (rule "orRight" (formula "100"))
+ (rule "orRight" (formula "100"))
+ (rule "eqSymm" (formula "100") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "100") (term "1,1,0,1"))
+ (rule "pullOutSelect" (formula "102") (term "1") (inst "selectSK=f_0_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "102")))
+ (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv"))
+ (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "101"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "103")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
)
- (branch "Case 2"
- (rule "andRight" (formula "90"))
+ (branch "Exceptional Post (fallback_sort)"
+ (builtin "One Step Simplification" (formula "94"))
+ (builtin "One Step Simplification" (formula "59"))
+ (rule "translateJavaSubInt" (formula "59") (term "2,1,0,0"))
+ (rule "andLeft" (formula "59"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "60") (term "1,0") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "60"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "61"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "62"))
+ (rule "notLeft" (formula "60"))
+ (rule "close" (formula "64") (ifseqformula "63"))
+ )
+ (branch "Pre (fallback_sort)"
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "91")) (ifInst "" (formula "56")) (ifInst "" (formula "91")) (ifInst "" (formula "18")))
+ (rule "andRight" (formula "92"))
(branch "Case 1"
- (builtin "One Step Simplification" (formula "90") (userinteraction))
- (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "90") (term "0") (userinteraction))
- (builtin "One Step Simplification" (formula "90"))
- (rule "translateJavaAddInt" (formula "90") (term "4,0,0"))
- (rule "translateJavaAddInt" (formula "90") (term "3,0,0"))
- (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "52"))
- (builtin "One Step Simplification" (formula "90"))
- (rule "polySimp_homoEq" (formula "53") (term "0"))
- (rule "polySimp_homoEq" (formula "38") (term "1,0,1,0"))
- (rule "polySimp_homoEq" (formula "10") (term "0"))
- (rule "polySimp_homoEq" (formula "43"))
- (rule "polySimp_mulComm0" (formula "53") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0,1,0"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
- (rule "polySimp_addComm1" (formula "43") (term "0"))
- (rule "polySimp_addComm0" (formula "43") (term "0,0"))
- (rule "polySimp_rightDist" (formula "53") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0"))
- (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0,1,0"))
- (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,1,0,1,0"))
- (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,1,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,1,0,1,0"))
- (rule "polySimp_elimOne" (formula "38") (term "0,1,0,1,0,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "53") (term "0,0"))
- (rule "polySimp_addComm0" (formula "53") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "38") (term "0,1,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "andRight" (formula "92"))
+ (branch "Case 1"
+ (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "54") (term "0"))
+ (rule "polySimp_homoEq" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "0"))
+ (rule "polySimp_homoEq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "92"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "45"))
+ (rule "polySimp_sepNegMonomial" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "1"))
+ (rule "times_zero_1" (formula "48") (term "0,0"))
+ (rule "add_zero_left" (formula "48") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "48"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "0"))
+ (rule "polySimp_elimOne" (formula "48") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "25") (ifseqformula "48"))
+ (rule "qeq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "closeFalse" (formula "25"))
+ )
+ (branch "Case 2"
+ (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "0"))
+ (rule "polySimp_homoEq" (formula "54") (term "0"))
+ (rule "polySimp_homoEq" (formula "44"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "92"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "45"))
+ (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_subsumption0" (formula "2") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1"))
+ (rule "add_literals" (formula "2") (term "0,0,1"))
+ (rule "qeq_literals" (formula "2") (term "0,1"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "true_left" (formula "2"))
+ (rule "inEqSimp_contradInEq0" (formula "48") (ifseqformula "1"))
+ (rule "andLeft" (formula "48"))
+ (rule "inEqSimp_homoInEq1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0"))
+ (rule "polySimp_addComm0" (formula "48") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "48") (term "0"))
+ (rule "add_literals" (formula "48") (term "1,1,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0"))
+ (rule "add_literals" (formula "48") (term "0"))
+ (rule "leq_literals" (formula "48"))
+ (rule "closeFalse" (formula "48"))
+ )
+ )
+ (branch "Case 2"
+ (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "polySimp_homoEq" (formula "54") (term "0"))
+ (rule "polySimp_homoEq" (formula "44"))
+ (rule "polySimp_homoEq" (formula "39") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "11") (term "0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "54") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "54") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "92"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0"))
(rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
(rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "6"))
- (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
- (rule "polySimp_addComm1" (formula "6") (term "0"))
- (rule "inEqSimp_homoInEq0" (formula "28"))
- (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
- (rule "polySimp_rightDist" (formula "28") (term "1,0"))
- (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0"))
- (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "28") (term "0,1,0"))
- (rule "polySimp_addAssoc" (formula "28") (term "0"))
- (rule "polySimp_sepPosMonomial" (formula "43"))
- (rule "polySimp_mulComm0" (formula "43") (term "1"))
- (rule "polySimp_rightDist" (formula "43") (term "1"))
- (rule "polySimp_mulAssoc" (formula "43") (term "0,1"))
- (rule "polySimp_mulComm0" (formula "43") (term "0,0,1"))
- (rule "polySimp_mulLiterals" (formula "43") (term "0,1"))
- (rule "polySimp_elimOne" (formula "43") (term "0,1"))
- (rule "polySimp_sepNegMonomial" (formula "53") (term "0"))
- (rule "polySimp_mulLiterals" (formula "53") (term "0,0"))
- (rule "polySimp_elimOne" (formula "53") (term "0,0"))
- (rule "polySimp_sepNegMonomial" (formula "38") (term "1,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,1,0"))
- (rule "polySimp_elimOne" (formula "38") (term "0,1,0,1,0"))
- (rule "polySimp_sepNegMonomial" (formula "10") (term "0"))
- (rule "polySimp_mulLiterals" (formula "10") (term "0,0"))
- (rule "polySimp_elimOne" (formula "10") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0"))
- (rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0"))
- (rule "mul_literals" (formula "38") (term "0,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,1"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1"))
+ (rule "applyEq" (formula "58") (term "1") (ifseqformula "45"))
+ (rule "polySimp_sepNegMonomial" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
(rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
(rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
(rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
(rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
(rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
(rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "6"))
- (rule "polySimp_mulLiterals" (formula "6") (term "0"))
- (rule "polySimp_elimOne" (formula "6") (term "0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "28"))
- (rule "polySimp_mulLiterals" (formula "28") (term "0"))
- (rule "polySimp_elimOne" (formula "28") (term "0"))
- (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6"))
- (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
- (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
- (rule "add_literals" (formula "8") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "8") (term "1,0,0"))
- (rule "add_zero_right" (formula "8") (term "0,0"))
- (rule "qeq_literals" (formula "8") (term "0"))
- (builtin "One Step Simplification" (formula "8"))
- (rule "true_left" (formula "8"))
- (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "48"))
- (rule "polySimp_mulComm0" (formula "47") (term "0,0"))
- (rule "polySimp_addComm0" (formula "47") (term "0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "47"))
- (rule "polySimp_mulLiterals" (formula "47") (term "0"))
- (rule "polySimp_elimOne" (formula "47") (term "0"))
- (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "47"))
- (rule "times_zero_1" (formula "46") (term "0,0"))
- (rule "add_zero_left" (formula "46") (term "0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "46"))
- (rule "polySimp_mulLiterals" (formula "46") (term "1"))
- (rule "polySimp_elimOne" (formula "46") (term "1"))
- (rule "nnf_imp2or" (formula "36") (term "0"))
- (rule "nnf_imp2or" (formula "8") (term "0"))
- (rule "nnf_imp2or" (formula "37") (term "0"))
- (rule "nnf_imp2or" (formula "10") (term "0"))
- (rule "nnf_notAnd" (formula "36") (term "0,0"))
- (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0"))
- (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0"))
- (rule "add_zero_right" (formula "36") (term "0,0,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0"))
- (rule "mul_literals" (formula "36") (term "1,0,0,0"))
- (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0"))
- (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0"))
- (rule "mul_literals" (formula "36") (term "0,1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0"))
- (rule "nnf_notAnd" (formula "8") (term "0,0"))
- (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "8") (term "0,0,0,0,0,0"))
- (rule "add_zero_left" (formula "8") (term "0,0,0,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0"))
- (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0"))
- (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0"))
- (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0"))
- (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0"))
- (rule "add_zero_right" (formula "8") (term "0,0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0"))
- (rule "mul_literals" (formula "8") (term "1,1,0,0"))
- (rule "nnf_notAnd" (formula "37") (term "0,0"))
- (rule "inEqSimp_notGeq" (formula "37") (term "1,0,0"))
- (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0"))
- (rule "add_zero_right" (formula "37") (term "0,0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0"))
- (rule "mul_literals" (formula "37") (term "1,1,0,0"))
- (rule "inEqSimp_notLeq" (formula "37") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "37") (term "0,1,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "37") (term "0,0,0,0,0,0"))
- (rule "add_zero_left" (formula "37") (term "0,0,0,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,0"))
- (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0"))
- (rule "polySimp_elimOne" (formula "37") (term "1,0,0,0"))
- (rule "nnf_notAnd" (formula "10") (term "0,0"))
- (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "10") (term "0,0,0,0,0,0"))
- (rule "add_zero_left" (formula "10") (term "0,0,0,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0"))
- (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0"))
- (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0"))
- (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0"))
- (rule "mul_literals" (formula "10") (term "0,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0"))
- (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "12") (inst "b=b"))
- (builtin "One Step Simplification" (formula "12"))
- (rule "translateJavaMulInt" (formula "12") (term "1,0,1,0,0,0,0"))
- (rule "translateJavaAddInt" (formula "12") (term "1,1,0,0"))
- (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,0,0,0"))
- (rule "translateJavaCastInt" (formula "12") (term "1,1,0,0,1,0,0,0"))
- (rule "translateJavaMulInt" (formula "12") (term "0,1,1,0,0,0,0"))
- (rule "translateJavaCastInt" (formula "12") (term "0,0,1,0"))
- (rule "andLeft" (formula "12"))
- (rule "andLeft" (formula "12"))
- (rule "andLeft" (formula "12"))
- (rule "andLeft" (formula "14"))
- (rule "andLeft" (formula "12"))
- (rule "andLeft" (formula "13"))
- (rule "andLeft" (formula "12"))
- (rule "andLeft" (formula "14"))
- (rule "andLeft" (formula "13"))
- (rule "notLeft" (formula "12"))
- (rule "andLeft" (formula "14"))
- (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "65"))
- (builtin "One Step Simplification" (formula "3"))
- (rule "polySimp_mulComm0" (formula "13") (term "0"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_addComm0" (formula "18") (term "1"))
- (rule "castedGetAny" (formula "19") (term "0"))
- (rule "castedGetAny" (formula "16") (term "0"))
- (rule "castedGetAny" (formula "15") (term "1"))
- (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "14"))
- (rule "inEqSimp_commuteLeq" (formula "12"))
- (rule "inEqSimp_commuteLeq" (formula "15"))
- (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "48"))
- (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "48"))
- (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "48"))
- (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "48"))
- (rule "inEqSimp_commuteLeq" (formula "13"))
- (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "48"))
- (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0") (ifseqformula "48"))
- (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0"))
- (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0"))
- (rule "mul_literals" (formula "21") (term "0,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0"))
- (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=result") (inst "elimGcd=Z(2(#))"))
- (rule "leq_literals" (formula "12") (term "0,0"))
- (builtin "One Step Simplification" (formula "12"))
- (rule "add_zero_right" (formula "12") (term "0,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0"))
- (rule "times_zero_1" (formula "12") (term "1,0,0,0,0"))
- (rule "add_zero_right" (formula "12") (term "0,0,0,0"))
- (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0"))
- (rule "add_literals" (formula "12") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "12") (term "1,0,0"))
- (rule "add_zero_right" (formula "12") (term "0,0"))
- (rule "leq_literals" (formula "12") (term "0"))
- (builtin "One Step Simplification" (formula "12"))
- (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
- (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
- (rule "polySimp_addComm0" (formula "15") (term "0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "15"))
- (rule "polySimp_mulLiterals" (formula "15") (term "0"))
- (rule "polySimp_elimOne" (formula "15") (term "0"))
- (rule "nnf_imp2or" (formula "22") (term "0"))
- (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "62") (term "0") (inst "i=i"))
- (builtin "One Step Simplification" (formula "62"))
- (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0,0"))
- (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0"))
- (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0"))
- (rule "polySimp_rightDist" (formula "62") (term "0,1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,1,0,0"))
- (rule "mul_literals" (formula "62") (term "0,0,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "62") (term "1,0,1,1,0,0"))
- (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "60") (term "1"))
- (builtin "One Step Simplification" (formula "60"))
- (rule "translateJavaSubInt" (formula "60") (term "0,1,1,1"))
- (rule "polySimp_elimSub" (formula "60") (term "0,1,1,1"))
- (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,1,1"))
- (rule "polySimp_rightDist" (formula "60") (term "1,0,1,1,1"))
- (rule "polySimp_mulAssoc" (formula "60") (term "0,1,0,1,1,1"))
- (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,1"))
- (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,1,1,1"))
- (rule "polySimp_elimOne" (formula "60") (term "0,1,0,1,1,1"))
- (rule "polySimp_addComm0" (formula "60") (term "0,1,1,1"))
- (rule "inEqSimp_ltToLeq" (formula "60") (term "1,1,1"))
- (rule "mul_literals" (formula "60") (term "1,0,0,1,1,1"))
- (rule "add_literals" (formula "60") (term "0,0,1,1,1"))
- (rule "polySimp_addAssoc" (formula "60") (term "0,1,1,1"))
- (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,1,1"))
- (rule "inEqSimp_homoInEq0" (formula "60") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0"))
- (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0"))
- (rule "polySimp_mulAssoc" (formula "60") (term "0,1,0,1,0"))
- (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,1,0"))
- (rule "polySimp_elimOne" (formula "60") (term "0,1,0,1,0"))
- (rule "polySimp_addAssoc" (formula "60") (term "0,1,0"))
- (rule "inEqSimp_homoInEq0" (formula "60") (term "0,0"))
- (rule "times_zero_2" (formula "60") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "60") (term "0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,1,1"))
- (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,1"))
- (rule "polySimp_rightDist" (formula "60") (term "1,1,1,1"))
- (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,1"))
- (rule "polySimp_elimOne" (formula "60") (term "1,1,1,1,1"))
- (rule "polySimp_rightDist" (formula "60") (term "0,1,1,1,1"))
- (rule "mul_literals" (formula "60") (term "0,0,1,1,1,1"))
- (rule "inEqSimp_sepNegMonomial1" (formula "60") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "60") (term "0,1,0"))
- (rule "replace_known_left" (formula "60") (term "1,0") (ifseqformula "37"))
- (builtin "One Step Simplification" (formula "60"))
- (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0"))
- (rule "polySimp_mulLiterals" (formula "60") (term "1,0"))
- (rule "polySimp_elimOne" (formula "60") (term "1,0"))
- (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "34"))
- (builtin "One Step Simplification" (formula "60"))
- (rule "andLeft" (formula "60"))
- (rule "andLeft" (formula "61"))
- (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11"))
- (builtin "One Step Simplification" (formula "11"))
- (rule "translateJavaSubInt" (formula "11") (term "0,2,1,1,0"))
- (rule "translateJavaSubInt" (formula "11") (term "0,2,0,1,0"))
- (rule "translateJavaMulInt" (formula "11") (term "1,1,1,0,0,0,0"))
- (rule "andLeft" (formula "11"))
- (rule "andLeft" (formula "11"))
- (rule "andLeft" (formula "11"))
- (rule "andLeft" (formula "11"))
- (rule "andLeft" (formula "11"))
- (rule "andLeft" (formula "11"))
- (rule "andLeft" (formula "12"))
- (rule "andLeft" (formula "11"))
- (rule "notLeft" (formula "11"))
- (rule "notLeft" (formula "11"))
- (rule "eqSymm" (formula "16"))
- (rule "eqSymm" (formula "13"))
- (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "75"))
- (builtin "One Step Simplification" (formula "1"))
- (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "76"))
- (builtin "One Step Simplification" (formula "2"))
- (rule "polySimp_elimSub" (formula "16") (term "0,2,1"))
- (rule "mul_literals" (formula "16") (term "1,0,2,1"))
- (rule "polySimp_elimSub" (formula "16") (term "0,2,0"))
- (rule "mul_literals" (formula "16") (term "1,0,2,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
- (rule "polySimp_addComm0" (formula "16") (term "0,2,1"))
- (rule "polySimp_addComm0" (formula "16") (term "0,2,0"))
- (rule "inEqSimp_commuteLeq" (formula "11"))
- (rule "applyEq" (formula "12") (term "0") (ifseqformula "46"))
- (rule "applyEq" (formula "11") (term "0") (ifseqformula "46"))
- (rule "applyEq" (formula "13") (term "1") (ifseqformula "46"))
- (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "11"))
- (rule "leq_literals" (formula "18") (term "0"))
- (builtin "One Step Simplification" (formula "18"))
- (rule "true_left" (formula "18"))
- (rule "pullOutSelect" (formula "16") (term "1") (inst "selectSK=arr_3"))
- (rule "simplifySelectOfAnon" (formula "16"))
- (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "75")) (ifInst "" (formula "1")))
- (rule "simplifySelectOfAnon" (formula "17"))
- (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "75")) (ifInst "" (formula "1")))
- (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0"))
- (rule "replace_known_right" (formula "16") (term "0,0,0,0") (ifseqformula "83"))
- (builtin "One Step Simplification" (formula "16"))
- (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "16"))
- (rule "hideAuxiliaryEq" (formula "16"))
- (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0"))
- (rule "replace_known_right" (formula "16") (term "0,0,0,0") (ifseqformula "82"))
- (builtin "One Step Simplification" (formula "16"))
- (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "12"))
- (rule "polySimp_rightDist" (formula "6") (term "0,0"))
- (rule "mul_literals" (formula "6") (term "0,0,0"))
- (rule "polySimp_addComm1" (formula "6") (term "0"))
- (rule "add_literals" (formula "6") (term "0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "6"))
- (rule "polySimp_mulLiterals" (formula "6") (term "0"))
- (rule "polySimp_elimOne" (formula "6") (term "0"))
- (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "44") (term "0"))
- (builtin "One Step Simplification" (formula "44"))
- (rule "translateJavaAddInt" (formula "44") (term "3,0,1,0"))
- (rule "translateJavaAddInt" (formula "44") (term "0,1,0,0"))
- (rule "andLeft" (formula "44"))
- (rule "andLeft" (formula "44"))
- (rule "andLeft" (formula "44"))
- (rule "polySimp_addComm0" (formula "46") (term "3,0"))
- (rule "polySimp_addComm0" (formula "45") (term "0"))
- (rule "inEqSimp_commuteLeq" (formula "44"))
- (rule "inEqSimp_commuteLeq" (formula "44"))
- (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "59") (term "0"))
- (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "111")) (ifInst "" (formula "35")))
- (rule "wellFormedAnon" (formula "59") (term "1,0"))
- (rule "translateJavaAddInt" (formula "59") (term "1,0,1,0,1"))
- (rule "translateJavaAddInt" (formula "59") (term "1,1,1,0,0,1"))
- (rule "replace_known_left" (formula "59") (term "1,1,0") (ifseqformula "30"))
- (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "31")))
- (rule "polySimp_addComm0" (formula "59") (term "1,1,1,0,0,1"))
- (rule "polySimp_addComm0" (formula "59") (term "1,0,1,0,1"))
- (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0"))
- (rule "polySimp_addComm1" (formula "59") (term "0,1,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1"))
- (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0"))
- (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "8"))
- (builtin "One Step Simplification" (formula "59"))
- (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1"))
- (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,0,0,1"))
- (rule "applyEq" (formula "59") (term "0,1,0,0,1") (ifseqformula "60"))
- (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,0,1"))
- (rule "applyEq" (formula "59") (term "1,0,1,0,1") (ifseqformula "57"))
- (rule "applyEq" (formula "59") (term "0,0,0,1,1") (ifseqformula "60"))
- (rule "applyEq" (formula "59") (term "0,1,0,0,0") (ifseqformula "57"))
- (rule "applyEq" (formula "59") (term "0,1,0,0,0,1") (ifseqformula "60"))
- (rule "inEqSimp_commuteGeq" (formula "59") (term "1,0,0,0,1"))
- (rule "applyEq" (formula "59") (term "0,1,0,1") (ifseqformula "72"))
- (rule "inEqSimp_commuteGeq" (formula "59") (term "1,0,1"))
- (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0"))
- (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0"))
- (rule "polySimp_elimOne" (formula "59") (term "0,0,0"))
- (rule "replace_known_left" (formula "59") (term "0,0") (ifseqformula "7"))
- (builtin "One Step Simplification" (formula "59"))
- (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "60") (term "0"))
- (rule "translateJavaMulInt" (formula "60") (term "0,0,2,0"))
- (rule "translateJavaAddInt" (formula "60") (term "0,2,0"))
- (rule "polySimp_mulComm0" (formula "60") (term "0,0,2,0"))
- (rule "polySimp_addComm0" (formula "60") (term "0,2,0"))
- (rule "pullOutSelect" (formula "60") (term "0") (inst "selectSK=arr_4"))
- (rule "simplifySelectOfAnon" (formula "60"))
- (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "81")) (ifInst "" (formula "3")))
- (rule "eqSymm" (formula "61"))
- (rule "applyEqReverse" (formula "60") (term "1") (ifseqformula "61"))
- (rule "hideAuxiliaryEq" (formula "61"))
- (rule "elementOfArrayRangeConcrete" (formula "60") (term "0,0"))
- (rule "replace_known_right" (formula "60") (term "0,0,0,0") (ifseqformula "83"))
- (builtin "One Step Simplification" (formula "60"))
- (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "51") (inst "b=b"))
- (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "80")) (ifInst "" (formula "24")) (ifInst "" (formula "27")))
- (rule "translateJavaCastInt" (formula "51") (term "1,1,0,1,0,0,0"))
- (rule "translateJavaAddInt" (formula "51") (term "1,1,0,0"))
- (rule "translateJavaCastInt" (formula "51") (term "0,1,1,0,0,0"))
- (rule "translateJavaMulInt" (formula "51") (term "1,0,0,0,0,0"))
- (rule "translateJavaMulInt" (formula "51") (term "0,1,0,0,0,0"))
- (rule "translateJavaCastInt" (formula "51") (term "0,1,0"))
- (rule "andLeft" (formula "51"))
- (rule "andLeft" (formula "51"))
- (rule "andLeft" (formula "51"))
- (rule "andLeft" (formula "51"))
- (rule "andLeft" (formula "52"))
- (rule "andLeft" (formula "51"))
- (rule "andLeft" (formula "53"))
- (rule "polySimp_mulComm0" (formula "51") (term "1"))
- (rule "polySimp_mulComm0" (formula "52") (term "0"))
- (rule "polySimp_addComm0" (formula "56") (term "1"))
- (rule "castedGetAny" (formula "57") (term "0"))
- (rule "castedGetAny" (formula "55") (term "0"))
- (rule "castedGetAny" (formula "54") (term "1"))
- (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "53"))
- (rule "inEqSimp_commuteLeq" (formula "51"))
- (rule "inEqSimp_commuteLeq" (formula "53"))
- (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "62"))
- (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "61"))
- (rule "applyEq" (formula "53") (term "1,0") (ifseqformula "61"))
- (rule "applyEq" (formula "25") (term "0") (ifseqformula "53"))
- (rule "polySimp_homoEq" (formula "25"))
- (rule "polySimp_mulComm0" (formula "25") (term "1,0"))
- (rule "polySimp_rightDist" (formula "25") (term "1,0"))
- (rule "mul_literals" (formula "25") (term "0,1,0"))
- (rule "polySimp_addAssoc" (formula "25") (term "0"))
- (rule "polySimp_addComm1" (formula "25") (term "0,0"))
- (rule "add_literals" (formula "25") (term "0,0,0"))
- (rule "add_zero_left" (formula "25") (term "0,0"))
- (rule "applyEq" (formula "52") (term "0,0") (ifseqformula "60"))
- (rule "inEqSimp_commuteLeq" (formula "52"))
- (rule "applyEq" (formula "52") (term "1,1") (ifseqformula "59"))
- (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0") (ifseqformula "59"))
- (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "59"))
- (rule "polySimp_pullOutFactor1" (formula "25") (term "0"))
- (rule "add_literals" (formula "25") (term "1,0"))
- (rule "times_zero_1" (formula "25") (term "0"))
- (builtin "One Step Simplification" (formula "25"))
- (rule "true_left" (formula "25"))
- (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0"))
- (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0"))
- (rule "mul_literals" (formula "52") (term "0,1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0"))
- (rule "inEqSimp_subsumption6" (formula "50") (ifseqformula "12"))
- (rule "greater_literals" (formula "50") (term "0,0"))
- (builtin "One Step Simplification" (formula "50"))
- (rule "mul_literals" (formula "50") (term "1,0"))
- (rule "leq_literals" (formula "50") (term "0"))
- (builtin "One Step Simplification" (formula "50"))
- (rule "true_left" (formula "50"))
- (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "72") (term "0"))
- (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "112")))
- (rule "translateJavaSubInt" (formula "72") (term "1,0,1,1,1,1,1"))
- (rule "translateJavaAddInt" (formula "72") (term "1,1,1,0,1,1,1"))
- (rule "polySimp_elimSub" (formula "72") (term "1,0,1,1,1,1,1"))
- (rule "mul_literals" (formula "72") (term "1,1,0,1,1,1,1,1"))
- (rule "polySimp_addComm0" (formula "72") (term "1,1,1,0,1,1,1"))
- (rule "polySimp_addComm0" (formula "72") (term "1,0,1,1,1,1,1"))
- (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1,1"))
- (rule "add_zero_right" (formula "72") (term "0,0,0,1,1,1,1"))
- (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,1,1,1,1"))
- (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1"))
- (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,0,1,1,1"))
- (rule "polySimp_addComm1" (formula "72") (term "0,0,0,1,1,1"))
- (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,1"))
- (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0,1"))
- (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1,1"))
- (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1"))
- (rule "applyEq" (formula "72") (term "0,0,0,0,1") (ifseqformula "73"))
- (rule "applyEq" (formula "72") (term "0,1,0,0") (ifseqformula "57"))
- (rule "inEqSimp_homoInEq1" (formula "72") (term "1,0,0"))
- (rule "polySimp_pullOutFactor1" (formula "72") (term "0,1,0,0"))
- (rule "add_literals" (formula "72") (term "1,0,1,0,0"))
- (rule "times_zero_1" (formula "72") (term "0,1,0,0"))
- (rule "leq_literals" (formula "72") (term "1,0,0"))
- (builtin "One Step Simplification" (formula "72"))
- (rule "applyEq" (formula "72") (term "1,1,0,0,1") (ifseqformula "73"))
- (rule "applyEq" (formula "72") (term "1,0,1,0,1") (ifseqformula "57"))
- (rule "applyEq" (formula "72") (term "0,1,0,1,1,1,1") (ifseqformula "57"))
- (rule "inEqSimp_homoInEq1" (formula "72") (term "1,0,1,1,1,1"))
- (rule "polySimp_pullOutFactor1" (formula "72") (term "0,1,0,1,1,1,1"))
- (rule "add_literals" (formula "72") (term "1,0,1,0,1,1,1,1"))
- (rule "times_zero_1" (formula "72") (term "0,1,0,1,1,1,1"))
- (rule "leq_literals" (formula "72") (term "1,0,1,1,1,1"))
- (builtin "One Step Simplification" (formula "72"))
- (rule "applyEq" (formula "72") (term "0,0,0,1,1") (ifseqformula "73"))
- (rule "replace_known_left" (formula "72") (term "0,1,1") (ifseqformula "69"))
- (builtin "One Step Simplification" (formula "72"))
- (rule "applyEq" (formula "72") (term "1,1,0,1,1") (ifseqformula "73"))
- (rule "applyEq" (formula "72") (term "0,1,0,0,0,1,1") (ifseqformula "57"))
- (rule "polySimp_pullOutFactor1b" (formula "72") (term "0,0,0,1,1"))
- (rule "add_literals" (formula "72") (term "1,1,0,0,0,1,1"))
- (rule "times_zero_1" (formula "72") (term "1,0,0,0,1,1"))
- (rule "add_zero_right" (formula "72") (term "0,0,0,1,1"))
- (rule "leq_literals" (formula "72") (term "0,0,1,1"))
- (builtin "One Step Simplification" (formula "72"))
- (rule "applyEq" (formula "72") (term "0,1,0,1") (ifseqformula "73"))
- (rule "applyEq" (formula "72") (term "1,1,1,1") (ifseqformula "73"))
- (rule "applyEq" (formula "72") (term "1,0,1,0,0,1") (ifseqformula "57"))
- (rule "applyEq" (formula "72") (term "0,1,0,0,1") (ifseqformula "73"))
- (rule "inEqSimp_homoInEq1" (formula "72") (term "1,0,0,1"))
- (rule "polySimp_pullOutFactor1" (formula "72") (term "0,1,0,0,1"))
- (rule "add_literals" (formula "72") (term "1,0,1,0,0,1"))
- (rule "times_zero_1" (formula "72") (term "0,1,0,0,1"))
- (rule "leq_literals" (formula "72") (term "1,0,0,1"))
- (builtin "One Step Simplification" (formula "72"))
- (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "72") (term "0,0,1,1"))
- (rule "polySimp_elimOne" (formula "72") (term "0,0,1,1"))
- (rule "inEqSimp_subsumption1" (formula "72") (term "0,0") (ifseqformula "12"))
- (rule "leq_literals" (formula "72") (term "0,0,0"))
- (builtin "One Step Simplification" (formula "72"))
- (rule "inEqSimp_subsumption1" (formula "72") (term "0,1,1") (ifseqformula "12"))
- (rule "leq_literals" (formula "72") (term "0,0,1,1"))
- (builtin "One Step Simplification" (formula "72"))
- (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "63") (term "0") (inst "b=b"))
- (builtin "One Step Simplification" (formula "63"))
- (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0,0"))
- (rule "translateJavaAddInt" (formula "63") (term "0,2,0,0,0,1,1,1,0,1"))
- (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0,1,0,1,0,1"))
- (rule "translateJavaAddInt" (formula "63") (term "0,2,0,1,1,0,1,0,1"))
- (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0,1,1,1,0,1"))
- (rule "translateJavaAddInt" (formula "63") (term "0,2,0,1,0"))
- (rule "translateJavaAddInt" (formula "63") (term "0,2,0,1,1,1,1,0,1"))
- (rule "andLeft" (formula "63"))
- (rule "andLeft" (formula "63"))
- (rule "andLeft" (formula "63"))
- (rule "polySimp_addComm0" (formula "66") (term "0,2,0,0,0,1,1,1,0"))
- (rule "polySimp_addComm0" (formula "66") (term "0,2,0,1,1,1,1,0"))
- (rule "polySimp_addComm0" (formula "66") (term "0,2,0,1,1,0,1,0"))
- (rule "polySimp_addComm0" (formula "66") (term "0,2,1,1,0,1,0,1,0"))
- (rule "polySimp_addComm0" (formula "66") (term "0,2,1,1,0,1,1,1,0"))
- (rule "polySimp_addComm0" (formula "65") (term "0,2,0"))
- (rule "polySimp_addComm0" (formula "64") (term "0,2,1"))
- (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0"))
- (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1,0,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "66") (term "0,1,1,0"))
- (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,1,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0,1,0"))
- (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,1,0,1,0"))
- (rule "inEqSimp_commuteLeq" (formula "63"))
- (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,1,1,1,0"))
- (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,0,1,0"))
- (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1,0"))
- (rule "inEqSimp_commuteLeq" (formula "64"))
- (rule "inEqSimp_commuteLeq" (formula "63"))
- (rule "applyEq" (formula "64") (term "1,1,1,1,1,0") (ifseqformula "46"))
- (rule "applyEq" (formula "63") (term "0") (ifseqformula "46"))
- (rule "inEqSimp_commuteGeq" (formula "63"))
- (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0"))
- (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0"))
- (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0"))
- (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "0,1,1,0"))
- (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,1,0"))
- (rule "polySimp_rightDist" (formula "63") (term "1,0,1,1,0"))
- (rule "mul_literals" (formula "63") (term "0,1,0,1,1,0"))
- (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,0"))
- (rule "polySimp_elimOne" (formula "63") (term "1,1,0,1,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0"))
- (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "63") (term "1,1,0,0,1,0"))
- (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "73") (term "1"))
- (builtin "One Step Simplification" (formula "73"))
- (rule "translateJavaSubInt" (formula "73") (term "0,1"))
- (rule "translateJavaUnaryMinusInt" (formula "73") (term "1,1"))
- (rule "translateJavaAddInt" (formula "73") (term "0,0,1"))
- (rule "neg_literal" (formula "73") (term "1,1"))
- (rule "polySimp_elimSub" (formula "73") (term "0,1"))
- (rule "mul_literals" (formula "73") (term "1,0,1"))
- (rule "polySimp_addLiterals" (formula "73") (term "0,1"))
- (rule "polySimp_addComm1" (formula "73") (term "0,1"))
- (rule "polySimp_addComm0" (formula "73") (term "0,0,1"))
- (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "52"))
- (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "80")) (ifInst "" (formula "79")) (ifInst "" (formula "15")))
- (rule "translateJavaSubInt" (formula "52") (term "0,2,0,1,0"))
- (rule "translateJavaSubInt" (formula "52") (term "0,2,1,1,0"))
- (rule "translateJavaMulInt" (formula "52") (term "1,1,1,0,0,0"))
- (rule "andLeft" (formula "52"))
- (rule "andLeft" (formula "52"))
- (rule "andLeft" (formula "52"))
- (rule "andLeft" (formula "52"))
- (rule "andLeft" (formula "52"))
- (rule "eqSymm" (formula "56"))
- (rule "eqSymm" (formula "54"))
- (rule "polySimp_elimSub" (formula "56") (term "0,2,0"))
- (rule "mul_literals" (formula "56") (term "1,0,2,0"))
- (rule "eqSymm" (formula "56"))
- (rule "polySimp_elimSub" (formula "56") (term "0,2,0"))
- (rule "mul_literals" (formula "56") (term "1,0,2,0"))
- (rule "eqSymm" (formula "56"))
- (rule "polySimp_mulComm0" (formula "54") (term "1,0"))
- (rule "polySimp_addComm0" (formula "56") (term "0,2,1"))
- (rule "polySimp_addComm0" (formula "56") (term "0,2,0"))
- (rule "inEqSimp_commuteLeq" (formula "52"))
- (rule "applyEq" (formula "54") (term "0") (ifseqformula "14"))
- (rule "eqSymm" (formula "54"))
- (rule "applyEq" (formula "52") (term "0") (ifseqformula "47"))
- (rule "applyEq" (formula "52") (term "0") (ifseqformula "47"))
- (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "49") (inst "b=b"))
- (builtin "One Step Simplification" (formula "49"))
- (rule "translateJavaMulInt" (formula "49") (term "1,1,0,0,0"))
- (rule "mul_literals" (formula "49") (term "1,1,0,0,0"))
- (rule "andLeft" (formula "49"))
- (rule "andLeft" (formula "49"))
- (rule "andLeft" (formula "50"))
- (rule "andLeft" (formula "49"))
- (rule "andLeft" (formula "49"))
- (rule "andLeft" (formula "49"))
- (rule "andLeft" (formula "49"))
- (rule "notLeft" (formula "51"))
- (rule "notLeft" (formula "50"))
- (rule "notLeft" (formula "49"))
- (rule "eqSymm" (formula "86"))
- (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "85"))
- (builtin "One Step Simplification" (formula "4"))
- (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "84"))
- (builtin "One Step Simplification" (formula "5"))
- (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0"))
- (rule "inEqSimp_commuteLeq" (formula "51"))
- (rule "applyEq" (formula "52") (term "0") (ifseqformula "48"))
- (rule "applyEq" (formula "51") (term "0") (ifseqformula "48"))
- (rule "applyEq" (formula "52") (term "0,1,0,0,1,0,0") (ifseqformula "48"))
- (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0"))
- (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0"))
- (rule "mul_literals" (formula "52") (term "0,1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0"))
- (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "12"))
- (rule "leq_literals" (formula "51") (term "0"))
- (builtin "One Step Simplification" (formula "51"))
- (rule "true_left" (formula "51"))
- (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "28") (inst "b=b"))
- (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "82")) (ifInst "" (formula "83")) (ifInst "" (formula "50")))
- (rule "translateJavaMulInt" (formula "28") (term "1,1,0,0"))
- (rule "mul_literals" (formula "28") (term "1,1,0,0"))
- (rule "andLeft" (formula "28"))
- (rule "andLeft" (formula "28"))
- (rule "andLeft" (formula "29"))
- (rule "andLeft" (formula "28"))
- (rule "notLeft" (formula "28"))
- (rule "eqSymm" (formula "84"))
- (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "30") (term "0,1,0"))
- (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0"))
- (rule "inEqSimp_commuteLeq" (formula "28"))
- (rule "applyEq" (formula "30") (term "0,1,0,0,1,0,0") (ifseqformula "50"))
- (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0"))
- (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0"))
- (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0"))
- (rule "mul_literals" (formula "30") (term "0,1,1,0,0"))
- (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0"))
- (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "123") (term "0"))
- (builtin "One Step Simplification" (formula "123"))
- (rule "closeTrue" (formula "123"))
- )
- (branch
- (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "53")))
- (rule "closeTrue" (formula "90"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,0"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "50"))
+ (rule "polySimp_mulComm0" (formula "49") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "49"))
+ (rule "polySimp_mulLiterals" (formula "49") (term "0"))
+ (rule "polySimp_elimOne" (formula "49") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "51"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "29"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
)
)
)
- (branch
- (builtin "One Step Simplification" (formula "90"))
- (rule "closeTrue" (formula "90"))
+ (branch "if x_7 false"
+ (builtin "One Step Simplification" (formula "1"))
+ (builtin "One Step Simplification" (formula "91"))
+ (rule "notLeft" (formula "1"))
+ (rule "orRight" (formula "56"))
+ (rule "tryEmpty" (formula "92") (term "1"))
+ (rule "blockEmptyLabel" (formula "92") (term "1"))
+ (rule "blockEmpty" (formula "92") (term "1"))
+ (rule "methodCallEmpty" (formula "92") (term "1"))
+ (rule "emptyModality" (formula "92") (term "1"))
+ (rule "andRight" (formula "92"))
+ (branch "Case 1"
+ (rule "andRight" (formula "92"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "92"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "92") (term "0") (userinteraction))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "translateJavaAddInt" (formula "92") (term "3,0,0"))
+ (rule "translateJavaAddInt" (formula "92") (term "4,0,0"))
+ (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "52"))
+ (builtin "One Step Simplification" (formula "92"))
+ (rule "polySimp_homoEq" (formula "38") (term "1,0,1,0"))
+ (rule "polySimp_homoEq" (formula "10") (term "0"))
+ (rule "polySimp_homoEq" (formula "43"))
+ (rule "polySimp_homoEq" (formula "53") (term "0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "43") (term "0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "0,1,0,1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "53") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "38") (term "0,1,0,1,0"))
+ (rule "inEqSimp_leqRight" (formula "56"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "57"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "8"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "8") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_sepPosMonomial" (formula "45"))
+ (rule "polySimp_mulComm0" (formula "45") (term "1"))
+ (rule "polySimp_rightDist" (formula "45") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "45") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "45") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "45") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "45") (term "0,1"))
+ (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "55") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "8"))
+ (rule "polySimp_mulLiterals" (formula "8") (term "0"))
+ (rule "polySimp_elimOne" (formula "8") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "40") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "30"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0"))
+ (rule "polySimp_elimOne" (formula "30") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "50") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,0"))
+ (rule "add_literals" (formula "50") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "50") (term "1,0,0"))
+ (rule "add_zero_right" (formula "50") (term "0,0"))
+ (rule "qeq_literals" (formula "50") (term "0"))
+ (builtin "One Step Simplification" (formula "50"))
+ (rule "true_left" (formula "50"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "27") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "qeq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "10") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0"))
+ (rule "add_literals" (formula "10") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_zero_right" (formula "10") (term "0,0"))
+ (rule "qeq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "48"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "48") (term "0,0"))
+ (rule "add_zero_left" (formula "48") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "48"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1"))
+ (rule "polySimp_rightDist" (formula "48") (term "1"))
+ (rule "mul_literals" (formula "48") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "48") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "48") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "48") (term "0"))
+ (rule "polySimp_mulComm0" (formula "48") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "48") (term "1,0,0"))
+ (rule "mul_literals" (formula "48") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "48") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "48") (term "0,0,0"))
+ (rule "add_literals" (formula "48") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0"))
+ (rule "add_literals" (formula "48") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "48") (term "1,0,0"))
+ (rule "add_zero_right" (formula "48") (term "0,0"))
+ (rule "qeq_literals" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "true_left" (formula "48"))
+ (rule "nnf_imp2or" (formula "38") (term "0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_imp2or" (formula "39") (term "0"))
+ (rule "nnf_notAnd" (formula "38") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0"))
+ (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "38") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0"))
+ (rule "mul_literals" (formula "38") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "38") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "11") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "13") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "39") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "39") (term "1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "39") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0"))
+ (rule "mul_literals" (formula "39") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "39") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "39") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "39") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "39") (term "1,0,0,0"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "52") (term "0"))
+ (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "90")) (ifInst "" (formula "56")) (ifInst "" (formula "85")) (ifInst "" (formula "23")))
+ (rule "true_left" (formula "52"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "16") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaMulInt" (formula "16") (term "1,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "notLeft" (formula "17"))
+ (rule "notLeft" (formula "16"))
+ (rule "eqSymm" (formula "62"))
+ (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "61"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "applyEq" (formula "19") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "18") (term "0") (ifseqformula "37"))
+ (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0") (ifseqformula "37"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "20") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "19"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "nnf_imp2or" (formula "21") (term "0"))
+ (rule "nnf_notAnd" (formula "21") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0"))
+ (rule "mul_literals" (formula "21") (term "1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "21") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "21") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "44") (term "0,0,0,0,1,0"))
+ (builtin "One Step Simplification" (formula "44"))
+ (rule "translateJavaSubInt" (formula "44") (term "0,0,0,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "44") (term "3,0,2,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "44") (term "0,4,0,0,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "44") (term "3,0,0,1,0,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "44") (term "4,0,2,0,0,0,1,0"))
+ (rule "translateJavaSubInt" (formula "44") (term "4,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "44") (term "4,0,0,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "44") (term "1,4,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "4,0,0,1,0,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "44") (term "0,4,0,0,1,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "44") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "44") (term "0,0,0,0,0,0,1,0"))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "13") (term "1,1,0") (inst "i=i"))
+ (rule "polySimp_homoEq" (formula "13") (term "0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "13") (term "0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0"))
+ (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "58") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "translateJavaMulInt" (formula "58") (term "0,3,0,0,1,0"))
+ (rule "translateJavaMulInt" (formula "58") (term "2,0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "58") (term "3,0,0,1,0"))
+ (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "14") (term "1,1,0,1,1,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "3,2,1,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "2,2,1,1,0,1,1,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "3,0,1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "2,0,1,1,1,0,1,1,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,3,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "3,0,1,1,1,0,1,1,0"))
+ (rule "mul_literals" (formula "14") (term "1,3,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "3,0,1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,3,1,1,1,1,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,1,0,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,0,1,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,0,1,1,0"))
+ (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "51") (term "0") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,0,1,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,0,0,0,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,0,1,1,1,1,0,1"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,0,1,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,1,1,0,1,0,1,0,1"))
+ (rule "translateJavaAddInt" (formula "51") (term "0,2,1,1,0,1,1,1,0,1"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "andLeft" (formula "51"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,0,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,1,1,0"))
+ (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "53") (term "0,2,0"))
+ (rule "polySimp_addComm0" (formula "52") (term "0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "54") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,1,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "52"))
+ (rule "inEqSimp_commuteLeq" (formula "51"))
+ (rule "applyEq" (formula "52") (term "0") (ifseqformula "36"))
+ (rule "inEqSimp_commuteGeq" (formula "52"))
+ (rule "applyEq" (formula "52") (term "1,1,1,1,1,0") (ifseqformula "36"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0"))
+ (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "51") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "51") (term "0,0"))
+ (rule "add_literals" (formula "51") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0"))
+ (rule "qeq_literals" (formula "51") (term "0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "true_left" (formula "51"))
+ (rule "nnf_imp2or" (formula "51") (term "0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0"))
+ (builtin "One Step Simplification" (formula "51"))
+ (rule "nnf_imp2or" (formula "51") (term "0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,0,1,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "51") (term "1,1,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,1,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,1,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,1,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,0,1,1,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,0,1,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,1,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,0,1,1,0"))
+ (rule "nnf_notAnd" (formula "51") (term "0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0"))
+ (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0,0"))
+ (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "1,0,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0"))
+ (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0"))
+ (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "43") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "43"))
+ (rule "translateJavaUnaryMinusInt" (formula "43") (term "1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "43") (term "0,0,1,0"))
+ (rule "translateJavaAddInt" (formula "43") (term "0,0,0,1,0"))
+ (rule "neg_literal" (formula "43") (term "1,0,1,0"))
+ (rule "polySimp_elimSub" (formula "43") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "43") (term "1,0,0,1,0"))
+ (rule "polySimp_addLiterals" (formula "43") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "43") (term "0,0,1,0"))
+ (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "55") (term "1"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "translateJavaSubInt" (formula "55") (term "0,1,1,1"))
+ (rule "polySimp_elimSub" (formula "55") (term "0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,1"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "55") (term "0,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,1"))
+ (rule "mul_literals" (formula "55") (term "1,0,0,1,1,1"))
+ (rule "add_literals" (formula "55") (term "0,0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,1,1,1"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,1,1"))
+ (rule "inEqSimp_homoInEq0" (formula "55") (term "0,0"))
+ (rule "times_zero_2" (formula "55") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "55") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "55") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,1"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,1"))
+ (rule "polySimp_rightDist" (formula "55") (term "0,1,1,1,1"))
+ (rule "mul_literals" (formula "55") (term "0,0,1,1,1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "55") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "0,1,0"))
+ (rule "replace_known_left" (formula "55") (term "1,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "inEqSimp_subsumption1" (formula "55") (term "0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "55") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,0,0"))
+ (rule "add_literals" (formula "55") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "55") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "55") (term "0,0,0"))
+ (rule "qeq_literals" (formula "55") (term "0,0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "56"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "16") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "translateJavaCastInt" (formula "16") (term "0,1,0,1,0,0,0"))
+ (rule "translateJavaCastInt" (formula "16") (term "1,1,0,0,1,0,0,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "0,1,1,0,0,0,0"))
+ (rule "translateJavaMulInt" (formula "16") (term "1,0,1,0,0,0,0"))
+ (rule "translateJavaAddInt" (formula "16") (term "1,1,0,0"))
+ (rule "translateJavaCastInt" (formula "16") (term "0,0,1,0"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "notLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "73"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "1"))
+ (rule "castedGetAny" (formula "23") (term "0"))
+ (rule "castedGetAny" (formula "20") (term "0"))
+ (rule "castedGetAny" (formula "19") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "18"))
+ (rule "inEqSimp_commuteLeq" (formula "16"))
+ (rule "inEqSimp_commuteLeq" (formula "19"))
+ (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "17"))
+ (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "22") (term "1,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0") (ifseqformula "55"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "16") (ifseqformula "28"))
+ (rule "times_zero_1" (formula "16") (term "1,1,0"))
+ (rule "greater_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "18"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0"))
+ (rule "polySimp_elimOne" (formula "18") (term "0"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "58") (term "0,1,1"))
+ (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "49")) (ifInst "" (formula "107")))
+ (rule "translateJavaAddInt" (formula "58") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "58") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "58") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "58") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "58") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "58") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0"))
+ (rule "replace_known_left" (formula "58") (term "0,0") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "55"))
+ (rule "applyEq" (formula "58") (term "1,0,1,0,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "58") (term "0,1,0,0,0,1,1,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "58") (term "0,1,0,1,1,1,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "58") (term "1,0,1,0,0,1") (ifseqformula "55"))
+ (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "68"))
+ (rule "applyEq" (formula "58") (term "0,1,0,0,1") (ifseqformula "68"))
+ (rule "inEqSimp_commuteGeq" (formula "58") (term "1,0,0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,1,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0,0,1,1,1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,1,1,1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,1,1,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "0,0,0,1,1,1"))
+ (rule "replace_known_left" (formula "58") (term "0,0,1,1,1") (ifseqformula "10"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "inEqSimp_subsumption1" (formula "58") (term "1,0,1,1,1,1") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "58") (term "0,1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0,1,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "58") (term "0,0,1,0,1,1,1,1"))
+ (rule "qeq_literals" (formula "58") (term "0,1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "inEqSimp_subsumption1" (formula "58") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "58") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0,0"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0,0"))
+ (rule "qeq_literals" (formula "58") (term "0,0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "60"))
+ (rule "andLeft" (formula "58"))
+ (rule "andLeft" (formula "62"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "59"))
+ (rule "mul_literals" (formula "58") (term "0,0"))
+ (rule "add_zero_left" (formula "58") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "61"))
+ (rule "polySimp_rightDist" (formula "72") (term "0,0"))
+ (rule "polySimp_mulAssoc" (formula "72") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "72") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "72") (term "0"))
+ (rule "polySimp_addComm0" (formula "72") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "72"))
+ (rule "polySimp_mulLiterals" (formula "72") (term "0"))
+ (rule "polySimp_elimOne" (formula "72") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "73"))
+ (rule "times_zero_1" (formula "58") (term "0,0"))
+ (rule "add_zero_left" (formula "58") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1"))
+ (rule "polySimp_rightDist" (formula "58") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "58") (term "1,1"))
+ (rule "mul_literals" (formula "58") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "58") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "58") (term "0"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0,0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "58") (term "1,0,0"))
+ (rule "add_zero_right" (formula "58") (term "0,0"))
+ (rule "qeq_literals" (formula "58") (term "0"))
+ (builtin "One Step Simplification" (formula "58"))
+ (rule "true_left" (formula "58"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,2,0,1,0"))
+ (rule "translateJavaMulInt" (formula "15") (term "1,1,1,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "15") (term "0,2,1,1,0"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "17"))
+ (rule "notLeft" (formula "15"))
+ (rule "notLeft" (formula "15"))
+ (rule "eqSymm" (formula "20"))
+ (rule "eqSymm" (formula "17"))
+ (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "87"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "86"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,2,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "20"))
+ (rule "polySimp_elimSub" (formula "20") (term "0,2,0"))
+ (rule "mul_literals" (formula "20") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "20"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,2,0"))
+ (rule "eqSymm" (formula "20"))
+ (rule "polySimp_addComm0" (formula "20") (term "0,2,0"))
+ (rule "eqSymm" (formula "20"))
+ (rule "inEqSimp_commuteLeq" (formula "15"))
+ (rule "applyEq" (formula "15") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "16") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "51"))
+ (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "15"))
+ (rule "leq_literals" (formula "33") (term "0"))
+ (builtin "One Step Simplification" (formula "33"))
+ (rule "true_left" (formula "33"))
+ (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "19"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "85")) (ifInst "" (formula "4")))
+ (rule "eqSymm" (formula "20"))
+ (rule "simplifySelectOfAnon" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "85")) (ifInst "" (formula "4")))
+ (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0"))
+ (rule "replace_known_right" (formula "19") (term "0,0,0,0") (ifseqformula "95"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19"))
+ (rule "hideAuxiliaryEq" (formula "19"))
+ (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0"))
+ (rule "replace_known_right" (formula "19") (term "0,0,0,0") (ifseqformula "94"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "eqSymm" (formula "19"))
+ (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "48") (term "0"))
+ (builtin "One Step Simplification" (formula "48"))
+ (rule "translateJavaAddInt" (formula "48") (term "0,1,0,0"))
+ (rule "translateJavaAddInt" (formula "48") (term "3,0,1,0"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "andLeft" (formula "48"))
+ (rule "polySimp_addComm0" (formula "50") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "49") (term "0"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "inEqSimp_commuteLeq" (formula "48"))
+ (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "80") (term "0"))
+ (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "55")) (ifInst "" (formula "122")))
+ (rule "translateJavaAddInt" (formula "80") (term "1,1,1,0,1,1,1"))
+ (rule "translateJavaSubInt" (formula "80") (term "1,0,1,1,1,1,1"))
+ (rule "polySimp_elimSub" (formula "80") (term "1,0,1,1,1,1,1"))
+ (rule "mul_literals" (formula "80") (term "1,1,0,1,1,1,1,1"))
+ (rule "polySimp_addComm0" (formula "80") (term "1,1,1,0,1,1,1"))
+ (rule "polySimp_addComm0" (formula "80") (term "1,0,1,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "80") (term "0,0,1,1,1,1"))
+ (rule "add_zero_right" (formula "80") (term "0,0,0,1,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,0,1,1,1,1"))
+ (rule "inEqSimp_ltToLeq" (formula "80") (term "0,0,1,1,1"))
+ (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,0,0,1,1,1"))
+ (rule "polySimp_addComm1" (formula "80") (term "0,0,0,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0,1,1,1,1"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "0,0,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0,1,1,1"))
+ (rule "applyEq" (formula "80") (term "1,1,0,1,1,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "80") (term "0,0,0,0,1") (ifseqformula "81"))
+ (rule "replace_known_left" (formula "80") (term "0,0,0,1") (ifseqformula "64"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "applyEq" (formula "80") (term "0,1,0,1,1,1,1") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq1" (formula "80") (term "1,0,1,1,1,1"))
+ (rule "polySimp_pullOutFactor1" (formula "80") (term "0,1,0,1,1,1,1"))
+ (rule "add_literals" (formula "80") (term "1,0,1,0,1,1,1,1"))
+ (rule "times_zero_1" (formula "80") (term "0,1,0,1,1,1,1"))
+ (rule "leq_literals" (formula "80") (term "1,0,1,1,1,1"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "applyEq" (formula "80") (term "0,0,0,1,1") (ifseqformula "81"))
+ (rule "replace_known_left" (formula "80") (term "0,1,1") (ifseqformula "77"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "applyEq" (formula "80") (term "0,1,0,0,0,1,1") (ifseqformula "61"))
+ (rule "polySimp_pullOutFactor1b" (formula "80") (term "0,0,0,1,1"))
+ (rule "add_literals" (formula "80") (term "1,1,0,0,0,1,1"))
+ (rule "times_zero_1" (formula "80") (term "1,0,0,0,1,1"))
+ (rule "add_zero_right" (formula "80") (term "0,0,0,1,1"))
+ (rule "leq_literals" (formula "80") (term "0,0,1,1"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "applyEq" (formula "80") (term "1,0,0,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "80") (term "0,1,0") (ifseqformula "61"))
+ (rule "inEqSimp_homoInEq1" (formula "80") (term "1,0"))
+ (rule "polySimp_pullOutFactor1" (formula "80") (term "0,1,0"))
+ (rule "add_literals" (formula "80") (term "1,0,1,0"))
+ (rule "times_zero_1" (formula "80") (term "0,1,0"))
+ (rule "leq_literals" (formula "80") (term "1,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "applyEq" (formula "80") (term "1,0,0,0,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "80") (term "1,1,1,1") (ifseqformula "81"))
+ (rule "applyEq" (formula "80") (term "1,0,1,0,1") (ifseqformula "61"))
+ (rule "applyEq" (formula "80") (term "0,1,0,1") (ifseqformula "81"))
+ (rule "replace_known_left" (formula "80") (term "1,0,1") (ifseqformula "67"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "applyEq" (formula "80") (term "0,0,1") (ifseqformula "81"))
+ (rule "inEqSimp_homoInEq1" (formula "80") (term "0,1"))
+ (rule "polySimp_pullOutFactor1" (formula "80") (term "0,0,1"))
+ (rule "add_literals" (formula "80") (term "1,0,0,1"))
+ (rule "times_zero_1" (formula "80") (term "0,0,1"))
+ (rule "leq_literals" (formula "80") (term "0,1"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "80") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "80") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "80") (term "0,0,1"))
+ (rule "inEqSimp_subsumption1" (formula "80") (term "0") (ifseqformula "15"))
+ (rule "leq_literals" (formula "80") (term "0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "inEqSimp_subsumption1" (formula "80") (term "0") (ifseqformula "15"))
+ (rule "leq_literals" (formula "80") (term "0,0"))
+ (builtin "One Step Simplification" (formula "80"))
+ (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "83") (term "0"))
+ (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "126")) (ifInst "" (formula "87")) (ifInst "" (formula "121")) (ifInst "" (formula "41")))
+ (rule "true_left" (formula "83"))
+ (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "1"))
+ (builtin "One Step Simplification" (formula "81"))
+ (rule "translateJavaSubInt" (formula "81") (term "0,1"))
+ (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,1"))
+ (rule "translateJavaAddInt" (formula "81") (term "0,0,1"))
+ (rule "neg_literal" (formula "81") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "81") (term "0,1"))
+ (rule "mul_literals" (formula "81") (term "1,0,1"))
+ (rule "polySimp_addLiterals" (formula "81") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "81") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "81") (term "0,0,1"))
+ (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "55") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "89")) (ifInst "" (formula "26")) (ifInst "" (formula "29")))
+ (rule "translateJavaCastInt" (formula "55") (term "0,1,1,0,0,0"))
+ (rule "translateJavaCastInt" (formula "55") (term "0,1,0"))
+ (rule "translateJavaCastInt" (formula "55") (term "1,1,0,1,0,0,0"))
+ (rule "translateJavaAddInt" (formula "55") (term "1,1,0,0"))
+ (rule "translateJavaMulInt" (formula "55") (term "0,1,0,0,0,0"))
+ (rule "translateJavaMulInt" (formula "55") (term "1,0,0,0,0,0"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "55"))
+ (rule "andLeft" (formula "57"))
+ (rule "andLeft" (formula "57"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1"))
+ (rule "polySimp_mulComm0" (formula "56") (term "0"))
+ (rule "polySimp_addComm0" (formula "60") (term "1"))
+ (rule "castedGetAny" (formula "61") (term "0"))
+ (rule "castedGetAny" (formula "59") (term "0"))
+ (rule "castedGetAny" (formula "58") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "inEqSimp_commuteLeq" (formula "55"))
+ (rule "inEqSimp_commuteLeq" (formula "57"))
+ (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "66"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "27"))
+ (rule "polySimp_homoEq" (formula "58"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "58") (term "1,0"))
+ (rule "mul_literals" (formula "58") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "58") (term "0"))
+ (rule "polySimp_addAssoc" (formula "58") (term "0,0"))
+ (rule "add_literals" (formula "58") (term "0,0,0"))
+ (rule "add_zero_left" (formula "58") (term "0,0"))
+ (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "65"))
+ (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "64"))
+ (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "64"))
+ (rule "applyEq" (formula "57") (term "0,1,0,0,1,0,0") (ifseqformula "63"))
+ (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "63"))
+ (rule "polySimp_pullOutFactor2" (formula "56") (term "0"))
+ (rule "add_literals" (formula "56") (term "1,0"))
+ (rule "times_zero_1" (formula "56") (term "0"))
+ (builtin "One Step Simplification" (formula "56"))
+ (rule "true_left" (formula "56"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "56") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption6" (formula "55") (ifseqformula "15"))
+ (rule "mul_literals" (formula "55") (term "1,1,0"))
+ (rule "greater_literals" (formula "55") (term "0,0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "leq_literals" (formula "55") (term "0"))
+ (builtin "One Step Simplification" (formula "55"))
+ (rule "true_left" (formula "55"))
+ (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "71") (term "0,1,1"))
+ (rule "translateJavaCastInt" (formula "71") (term "0,0,1,1"))
+ (rule "polySimp_homoEq" (formula "71"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "castedGetAny" (formula "71") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "71") (term "0"))
+ (rule "polySimp_sepNegMonomial" (formula "71"))
+ (rule "polySimp_mulLiterals" (formula "71") (term "0"))
+ (rule "polySimp_elimOne" (formula "71") (term "0"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "54") (inst "b=b"))
+ (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "32")))
+ (rule "translateJavaMulInt" (formula "54") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "54") (term "1,1,0,0"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "54"))
+ (rule "andLeft" (formula "55"))
+ (rule "notLeft" (formula "54"))
+ (rule "eqSymm" (formula "89"))
+ (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "56") (term "0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "54"))
+ (rule "applyEq" (formula "54") (term "0") (ifseqformula "53"))
+ (rule "applyEq" (formula "55") (term "0") (ifseqformula "53"))
+ (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0") (ifseqformula "53"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "55") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0"))
+ (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "15"))
+ (rule "leq_literals" (formula "54") (term "0"))
+ (builtin "One Step Simplification" (formula "54"))
+ (rule "true_left" (formula "54"))
+ (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "56"))
+ (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "88")) (ifInst "" (formula "87")) (ifInst "" (formula "17")))
+ (rule "translateJavaMulInt" (formula "56") (term "1,1,1,0,0,0"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,2,0,1,0"))
+ (rule "translateJavaSubInt" (formula "56") (term "0,2,1,1,0"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "andLeft" (formula "56"))
+ (rule "eqSymm" (formula "60"))
+ (rule "eqSymm" (formula "58"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,2,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "60"))
+ (rule "polySimp_elimSub" (formula "60") (term "0,2,0"))
+ (rule "mul_literals" (formula "60") (term "1,0,2,0"))
+ (rule "eqSymm" (formula "60"))
+ (rule "polySimp_mulComm0" (formula "58") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,2,0"))
+ (rule "eqSymm" (formula "60"))
+ (rule "polySimp_addComm0" (formula "60") (term "0,2,0"))
+ (rule "eqSymm" (formula "60"))
+ (rule "inEqSimp_commuteLeq" (formula "56"))
+ (rule "applyEq" (formula "58") (term "0") (ifseqformula "16"))
+ (rule "eqSymm" (formula "58"))
+ (rule "applyEq" (formula "57") (term "0") (ifseqformula "52"))
+ (rule "applyEq" (formula "56") (term "0") (ifseqformula "52"))
+ (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "127") (term "0"))
+ (builtin "One Step Simplification" (formula "127"))
+ (rule "closeTrue" (formula "127"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "53")))
+ (builtin "SMTRule")
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "SMTRule")
+ )
)
)
(branch "Precondition"
(rule "andRight" (formula "89"))
(branch "Case 1"
- (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "23")))
- (rule "closeTrue" (formula "89"))
+ (rule "andRight" (formula "89"))
+ (branch "Case 1"
+ (builtin "SMTRule")
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "wellFormedAnon" (formula "89"))
+ (rule "wellFormedAnon" (formula "89") (term "0"))
+ (rule "replace_known_left" (formula "89") (term "1") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "16")) (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "89"))
+ )
)
(branch "Case 2"
- (builtin "One Step Simplification" (formula "89"))
- (rule "wellFormedAnon" (formula "89"))
- (rule "wellFormedAnon" (formula "89") (term "0"))
- (rule "translateJavaAddInt" (formula "38") (term "4,0,0,1,0,0,1,0"))
- (rule "translateJavaMulInt" (formula "38") (term "3,0,0,1,0,0,1,0"))
- (rule "translateJavaMulInt" (formula "38") (term "0,4,0,0,1,0,0,1,0"))
- (rule "replace_known_left" (formula "89") (term "1") (ifseqformula "54"))
- (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "16")) (ifInst "" (formula "15")))
- (rule "closeTrue" (formula "89"))
+ (rule "andRight" (formula "89"))
+ (branch "Case 1"
+ (rule "andRight" (formula "89"))
+ (branch "Case 1"
+ (rule "orRight" (formula "89"))
+ (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "17")))
+ (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "88")))
+ (rule "closeTrue" (formula "90"))
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "closeTrue" (formula "89"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "89"))
+ (rule "closeTrue" (formula "89"))
+ )
)
)
(branch "Usage"
diff --git a/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof
index f105684..a1565c6 100644
--- a/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof
+++ b/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof
@@ -2,7 +2,7 @@
\settings {
"#Proof-Settings-Config-File
-#Sun Apr 16 17:38:18 CEST 2023
+#Fri Oct 27 16:25:50 CEST 2023
[NewSMT]NoTypeHierarchy=false
[Labels]UseOriginLabels=true
[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_OFF
@@ -12,7 +12,7 @@
[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
-[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
[SMTSettings]UseBuiltUniqueness=false
@@ -20,16 +20,14 @@
[SMTSettings]instantiateHierarchyAssumptions=true
[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_COMPLETION
[SMTSettings]SelectedTaclets=
-[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF
[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
[Strategy]MaximumNumberOfAutomaticApplications=10000
[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
-[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_OFF
[SMTSettings]useConstantsForBigOrSmallIntegers=true
[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
-[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
[Strategy]Timeout=-1
-[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
[SMTSettings]useUninterpretedMultiplication=true
[NewSMT]sqrtSMTTranslation=SMT
@@ -50,7 +48,7 @@
\javaSource "../../../main/java";
\proofObligation "#Proof Obligation Settings
-#Sun Apr 16 17:38:18 CEST 2023
+#Fri Oct 27 16:25:50 CEST 2023
contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0
name=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0
class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
@@ -63,8 +61,9 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(keyLog "3" (keyUser "Julian" ) (keyVersion "802059dea3"))
(keyLog "4" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
(keyLog "5" (keyUser "Julian" ) (keyVersion "e1a85b31e7"))
+(keyLog "6" (keyUser "wolfram" ) (keyVersion "e1a85b31e7"))
-(autoModeTime "401205")
+(autoModeTime "580008")
(branch "dummy ID"
(builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f"))
@@ -159,14 +158,157 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "emptyModality" (formula "16") (term "1"))
(rule "andRight" (formula "16"))
(branch "Case 1"
- (rule "andRight" (formula "16"))
- (branch "Case 1"
- (builtin "One Step Simplification" (formula "16"))
- (rule "closeTrue" (formula "16"))
- )
- (branch "Case 2"
- (builtin "SMTRule")
- )
+ (builtin "One Step Simplification" (formula "16") (userinteraction))
+ (rule "hide_left" (formula "8") (userinteraction))
+ (rule "inEqSimp_ltRight" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "10"))
+ (rule "times_zero_1" (formula "10") (term "1,0,0"))
+ (rule "add_literals" (formula "10") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "11"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "mul_literals" (formula "10") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11"))
+ (rule "mul_literals" (formula "11") (term "1"))
+ (rule "arrayLengthIsAShort" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "arrayLengthIsAShort" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "arrayLengthNotNegative" (formula "9") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "8") (term "0"))
+ (rule "multiply_2_inEq3" (formula "1") (ifseqformula "12"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_elimNeg" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0,1"))
+ (rule "polySimp_mulComm1" (formula "1") (term "1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "15"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "multiply_2_inEq3" (formula "9") (ifseqformula "14"))
+ (rule "polySimp_elimNeg" (formula "9") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,1"))
+ (rule "polySimp_addComm1" (formula "9") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,0"))
+ (rule "polySimp_mulAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "9") (term "0"))
+ (rule "add_literals" (formula "9") (term "1,1,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0"))
+ (rule "add_zero_right" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "9"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "0"))
+ (rule "polySimp_elimOne" (formula "9") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "0,0"))
+ (rule "add_zero_left" (formula "3") (term "0"))
+ (rule "inEqSimp_invertInEq1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "times_zero_2" (formula "3") (term "1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "closeFalse" (formula "17"))
)
(branch "Case 2"
(builtin "One Step Simplification" (formula "16"))
@@ -224,7 +366,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(builtin "One Step Simplification" (formula "1"))
(rule "true_left" (formula "1"))
(rule "blockEmpty" (formula "19") (term "1"))
- (rule "eval_order_array_access3" (formula "19") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr"))
+ (rule "eval_order_array_access3" (formula "19") (term "1") (inst "#v0=x_arr") (inst "#v2=x") (inst "#v1=x_1"))
(rule "variableDeclarationAssign" (formula "19") (term "1"))
(rule "variableDeclaration" (formula "19") (term "1") (newnames "x_arr"))
(rule "assignment" (formula "19") (term "1"))
@@ -250,7 +392,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "variableDeclarationAssign" (formula "19") (term "1"))
(rule "variableDeclaration" (formula "19") (term "1") (newnames "x_4"))
(rule "remove_parentheses_right" (formula "19") (term "1"))
- (rule "compound_addition_2" (formula "19") (term "1") (inst "#v1=x_6") (inst "#v0=x_5"))
+ (rule "compound_addition_2" (formula "19") (term "1") (inst "#v0=x_5") (inst "#v1=x_6"))
(rule "variableDeclarationAssign" (formula "19") (term "1"))
(rule "variableDeclaration" (formula "19") (term "1") (newnames "x_5"))
(rule "assignment" (formula "19") (term "1"))
@@ -267,13 +409,13 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "widening_identity_cast_5" (formula "19") (term "1"))
(rule "assignment" (formula "19") (term "1"))
(builtin "One Step Simplification" (formula "19"))
- (rule "for_to_while" (formula "19") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "for_to_while" (formula "19") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1"))
(rule "variableDeclarationAssign" (formula "19") (term "1"))
(rule "variableDeclaration" (formula "19") (term "1") (newnames "i"))
(rule "assignment" (formula "19") (term "1"))
(builtin "One Step Simplification" (formula "19"))
(rule "elim_double_block_3" (formula "19") (term "1"))
- (rule "loopScopeInvDia" (formula "19") (term "1") (newnames "i_0,offset_0,target_offset_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0"))
+ (rule "loopScopeInvDia" (formula "19") (term "1") (newnames "i_0,offset_0,target_offset_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1"))
(branch "Invariant Initially Valid"
(rule "andRight" (formula "19"))
(branch "Case 1"
@@ -460,8 +602,244 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
)
)
(branch "Case 2"
- (rule "impRight" (formula "19"))
- (builtin "SMTRule")
+ (builtin "One Step Simplification" (formula "19") (userinteraction))
+ (rule "hide_left" (formula "8") (userinteraction))
+ (rule "impRight" (formula "18"))
+ (rule "inEqSimp_ltRight" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "12"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "13"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "mul_literals" (formula "12") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "mul_literals" (formula "13") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "2"))
+ (rule "leq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "15"))
+ (rule "mul_literals" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "15"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "arrayLengthNotNegative" (formula "8") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "11") (term "0"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "true_left" (formula "11"))
+ (rule "arrayLengthIsAShort" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "arrayLengthNotNegative" (formula "11") (term "0"))
+ (rule "multiply_2_inEq3" (formula "1") (ifseqformula "2"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimNeg" (formula "1") (term "0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1"))
+ (rule "polySimp_mulComm1" (formula "1") (term "0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0,1"))
+ (rule "polySimp_mulComm1" (formula "1") (term "1,0,1,0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,1"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1"))
+ (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "15"))
+ (rule "greater_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor3b" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "multiply_2_inEq3" (formula "15") (ifseqformula "4"))
+ (rule "neg_literal" (formula "15") (term "0,0,0,1"))
+ (rule "mul_literals" (formula "15") (term "0,0,1"))
+ (rule "polySimp_elimOneLeft0" (formula "15") (term "1,0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "17"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0"))
+ (rule "polySimp_rightDist" (formula "15") (term "0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "15"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0"))
+ (rule "inEqSimp_exactShadow2" (formula "17") (ifseqformula "15"))
+ (rule "mul_literals" (formula "17") (term "1,0,0,1"))
+ (rule "greater_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "mul_literals" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "polySimp_mulAssoc" (formula "17") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "0,1"))
+ (rule "inEqSimp_exactShadow0" (formula "3") (ifseqformula "15"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "greater_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_zero_right" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "5"))
+ (rule "greater_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1,0"))
+ (rule "qeq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "closeFalse" (formula "3"))
)
)
(branch "Case 2"
@@ -1242,7 +1620,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "methodCallWithAssignmentUnfoldArguments" (formula "33") (term "1"))
(rule "variableDeclarationAssign" (formula "33") (term "1"))
(rule "variableDeclaration" (formula "33") (term "1") (newnames "var"))
- (rule "eval_order_array_access5" (formula "33") (term "1") (inst "#v1=x_11") (inst "#ar1=x_arr"))
+ (rule "eval_order_array_access5" (formula "33") (term "1") (inst "#ar1=x_arr") (inst "#v1=x_11"))
(rule "variableDeclarationAssign" (formula "33") (term "1"))
(rule "variableDeclaration" (formula "33") (term "1") (newnames "x_arr_1"))
(rule "assignment" (formula "33") (term "1"))
@@ -1322,7 +1700,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(branch "if x_10 true"
(builtin "One Step Simplification" (formula "36"))
(builtin "One Step Simplification" (formula "1"))
- (rule "eval_order_array_access3" (formula "36") (term "1") (inst "#v1=x_9") (inst "#v2=x_8") (inst "#v0=x_arr"))
+ (rule "eval_order_array_access3" (formula "36") (term "1") (inst "#v0=x_arr") (inst "#v2=x_8") (inst "#v1=x_9"))
(rule "variableDeclarationAssign" (formula "36") (term "1"))
(rule "variableDeclaration" (formula "36") (term "1") (newnames "x_arr_2"))
(rule "assignment" (formula "36") (term "1"))
@@ -1346,7 +1724,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "variableDeclarationAssign" (formula "36") (term "1"))
(rule "variableDeclaration" (formula "36") (term "1") (newnames "x_16"))
(rule "remove_parentheses_right" (formula "36") (term "1"))
- (rule "compound_addition_2" (formula "36") (term "1") (inst "#v1=x_18") (inst "#v0=x_17"))
+ (rule "compound_addition_2" (formula "36") (term "1") (inst "#v0=x_17") (inst "#v1=x_18"))
(rule "variableDeclarationAssign" (formula "36") (term "1"))
(rule "variableDeclaration" (formula "36") (term "1") (newnames "x_17"))
(rule "assignment" (formula "36") (term "1"))
@@ -1369,7 +1747,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "variableDeclarationAssign" (formula "36") (term "1"))
(rule "variableDeclaration" (formula "36") (term "1") (newnames "x_19"))
(rule "remove_parentheses_right" (formula "36") (term "1"))
- (rule "compound_addition_2" (formula "36") (term "1") (inst "#v1=x_21") (inst "#v0=x_20"))
+ (rule "compound_addition_2" (formula "36") (term "1") (inst "#v0=x_20") (inst "#v1=x_21"))
(rule "variableDeclarationAssign" (formula "36") (term "1"))
(rule "variableDeclaration" (formula "36") (term "1") (newnames "x_20"))
(rule "assignment" (formula "36") (term "1"))
@@ -1409,7 +1787,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(branch "Case 1"
(rule "andRight" (formula "36"))
(branch "Case 1"
- (rule "andRight" (formula "36"))
+ (rule "impLeft" (formula "32"))
(branch "Case 1"
(rule "andRight" (formula "36"))
(branch "Case 1"
@@ -1419,1277 +1797,2584 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(branch "Case 1"
(rule "andRight" (formula "36"))
(branch "Case 1"
- (rule "polySimp_homoEq" (formula "2") (term "0,0"))
- (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "2") (term "0,0,0"))
- (rule "polySimp_homoEq" (formula "10"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
- (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "inEqSimp_geqRight" (formula "36"))
- (rule "mul_literals" (formula "1") (term "1,0,0"))
- (rule "add_literals" (formula "1") (term "0,0"))
- (rule "add_zero_left" (formula "1") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
- (rule "polySimp_addComm1" (formula "2") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
- (rule "mul_literals" (formula "3") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "11"))
- (rule "polySimp_mulLiterals" (formula "11") (term "0"))
- (rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "1"))
- (rule "mul_literals" (formula "1") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "mul_literals" (formula "12") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
- (rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepNegMonomial0" (formula "2"))
- (rule "polySimp_mulLiterals" (formula "2") (term "0"))
- (rule "polySimp_elimOne" (formula "2") (term "0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1"))
- (rule "qeq_literals" (formula "6") (term "0"))
- (builtin "One Step Simplification" (formula "6"))
- (rule "closeFalse" (formula "6"))
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_leqRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "6") (ifseqformula "2"))
+ (rule "andLeft" (formula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "1,1,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0"))
+ (rule "add_literals" (formula "6") (term "0"))
+ (rule "leq_literals" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
)
(branch "Case 2"
- (rule "polySimp_homoEq" (formula "2") (term "0,0"))
- (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "2") (term "0,0,0"))
- (rule "polySimp_homoEq" (formula "10"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
- (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "inEqSimp_leqRight" (formula "36"))
- (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "polySimp_addComm1" (formula "1") (term "0,0"))
- (rule "add_literals" (formula "1") (term "0,0,0"))
- (rule "add_zero_left" (formula "1") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
- (rule "polySimp_addComm1" (formula "2") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
- (rule "mul_literals" (formula "3") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "11"))
- (rule "polySimp_mulLiterals" (formula "11") (term "0"))
- (rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "1"))
- (rule "polySimp_mulLiterals" (formula "1") (term "1"))
- (rule "polySimp_elimOne" (formula "1") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "2"))
- (rule "polySimp_mulLiterals" (formula "2") (term "0"))
- (rule "polySimp_elimOne" (formula "2") (term "0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "mul_literals" (formula "12") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
- (rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "1"))
- (rule "andLeft" (formula "5"))
- (rule "inEqSimp_homoInEq1" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
- (rule "polySimp_rightDist" (formula "5") (term "1,0"))
- (rule "mul_literals" (formula "5") (term "0,1,0"))
- (rule "polySimp_addAssoc" (formula "5") (term "0"))
- (rule "polySimp_addComm0" (formula "5") (term "0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
- (rule "add_literals" (formula "5") (term "1,1,0"))
- (rule "times_zero_1" (formula "5") (term "1,0"))
- (rule "add_literals" (formula "5") (term "0"))
- (rule "leq_literals" (formula "5"))
- (rule "closeFalse" (formula "5"))
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_contradEq3" (formula "4") (term "0,0") (ifseqformula "1"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "4") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4"))
+ (rule "hideAuxiliaryEq" (formula "4"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
)
)
(branch "Case 2"
- (rule "andRight" (formula "36"))
- (branch "Case 1"
- (rule "polySimp_homoEq" (formula "2") (term "0,0"))
- (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "2") (term "0,0,0"))
- (rule "polySimp_homoEq" (formula "10"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
- (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "inEqSimp_geqRight" (formula "36"))
- (rule "mul_literals" (formula "1") (term "1,0,0"))
- (rule "add_literals" (formula "1") (term "0,0"))
- (rule "add_zero_left" (formula "1") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
- (rule "polySimp_addComm1" (formula "2") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
- (rule "mul_literals" (formula "3") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "11"))
- (rule "polySimp_mulLiterals" (formula "11") (term "0"))
- (rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "1"))
- (rule "mul_literals" (formula "1") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "2"))
- (rule "polySimp_mulLiterals" (formula "2") (term "0"))
- (rule "polySimp_elimOne" (formula "2") (term "0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "mul_literals" (formula "12") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
- (rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_contradEq3" (formula "3") (term "0,0") (ifseqformula "1"))
- (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
- (rule "add_literals" (formula "3") (term "0,0,0,0"))
- (rule "qeq_literals" (formula "3") (term "0,0,0"))
- (builtin "One Step Simplification" (formula "3"))
- (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
- (rule "hideAuxiliaryEq" (formula "3"))
- (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
- (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
- (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
- (rule "mul_literals" (formula "6") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
- (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
- (rule "add_literals" (formula "6") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "6") (term "1,0,0"))
- (rule "add_zero_right" (formula "6") (term "0,0"))
- (rule "qeq_literals" (formula "6") (term "0"))
- (builtin "One Step Simplification" (formula "6"))
- (rule "true_left" (formula "6"))
- (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6"))
- (rule "qeq_literals" (formula "1") (term "0"))
- (builtin "One Step Simplification" (formula "1"))
- (rule "closeFalse" (formula "1"))
- )
- (branch "Case 2"
- (rule "polySimp_homoEq" (formula "10"))
- (rule "polySimp_homoEq" (formula "2") (term "0,0"))
- (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "2") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
- (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "inEqSimp_leqRight" (formula "36"))
- (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
- (rule "mul_literals" (formula "1") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
- (rule "add_literals" (formula "1") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "polySimp_addComm1" (formula "1") (term "0,0"))
- (rule "add_literals" (formula "1") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
- (rule "polySimp_addComm1" (formula "2") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
- (rule "mul_literals" (formula "3") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "11"))
- (rule "polySimp_mulLiterals" (formula "11") (term "0"))
- (rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "1"))
- (rule "polySimp_mulComm0" (formula "1") (term "1"))
- (rule "polySimp_rightDist" (formula "1") (term "1"))
- (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
- (rule "mul_literals" (formula "1") (term "0,1"))
- (rule "polySimp_elimOne" (formula "1") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "2"))
- (rule "polySimp_mulLiterals" (formula "2") (term "0"))
- (rule "polySimp_elimOne" (formula "2") (term "0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "mul_literals" (formula "12") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
- (rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1"))
- (rule "andLeft" (formula "9"))
- (rule "inEqSimp_homoInEq1" (formula "9"))
- (rule "polySimp_pullOutFactor1b" (formula "9") (term "0"))
- (rule "add_literals" (formula "9") (term "1,1,0"))
- (rule "times_zero_1" (formula "9") (term "1,0"))
- (rule "add_literals" (formula "9") (term "0"))
- (rule "leq_literals" (formula "9"))
- (rule "closeFalse" (formula "9"))
- )
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6"))
+ (rule "applyEq" (formula "10") (term "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "12") (term "0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "6"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "1"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "9"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_literals" (formula "26") (term "0"))
+ (rule "leq_literals" (formula "26"))
+ (rule "closeFalse" (formula "26"))
)
)
(branch "Case 2"
+ (rule "polySimp_homoEq" (formula "36"))
+ (rule "polySimp_homoEq" (formula "10"))
(rule "polySimp_homoEq" (formula "2") (term "0,0"))
(rule "times_zero_2" (formula "2") (term "1,0,0,0"))
(rule "add_zero_right" (formula "2") (term "0,0,0"))
- (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
(rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
(rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0"))
(rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0"))
(rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
(rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,0,1,0"))
(rule "polySimp_addAssoc" (formula "10") (term "0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "inEqSimp_leqRight" (formula "32"))
(rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0"))
(rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
(rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
(rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
(rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
(rule "inEqSimp_ltToLeq" (formula "2"))
(rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
(rule "polySimp_addComm1" (formula "2") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
(rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
(rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
(rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
(rule "inEqSimp_ltToLeq" (formula "12"))
(rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
- (rule "mul_literals" (formula "3") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "11"))
- (rule "polySimp_mulLiterals" (formula "11") (term "0"))
- (rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "1"))
- (rule "polySimp_mulComm0" (formula "1") (term "1"))
- (rule "polySimp_rightDist" (formula "1") (term "1"))
- (rule "polySimp_rightDist" (formula "1") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
- (rule "mul_literals" (formula "1") (term "0,0,1"))
- (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "2"))
- (rule "polySimp_mulLiterals" (formula "2") (term "0"))
- (rule "polySimp_elimOne" (formula "2") (term "0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "mul_literals" (formula "12") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
- (rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
- (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
- (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
- (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
- (rule "mul_literals" (formula "7") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
- (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
- (rule "add_literals" (formula "7") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "7") (term "1,0,0"))
- (rule "add_zero_right" (formula "7") (term "0,0"))
- (rule "qeq_literals" (formula "7") (term "0"))
- (builtin "One Step Simplification" (formula "7"))
- (rule "true_left" (formula "7"))
- (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
- (rule "mul_literals" (formula "7") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "7"))
- (rule "mul_literals" (formula "7") (term "1"))
- (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "9") (term "0"))
- (rule "polySimp_addComm0" (formula "9") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "9"))
- (rule "polySimp_mulComm0" (formula "9") (term "1"))
- (rule "polySimp_rightDist" (formula "9") (term "1"))
- (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
- (rule "mul_literals" (formula "9") (term "0,1"))
- (rule "polySimp_elimOne" (formula "9") (term "1,1"))
- (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9"))
- (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
- (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
- (rule "add_literals" (formula "21") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "21") (term "1,0,0"))
- (rule "add_zero_right" (formula "21") (term "0,0"))
- (rule "qeq_literals" (formula "21") (term "0"))
- (builtin "One Step Simplification" (formula "21"))
- (rule "true_left" (formula "21"))
- (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30"))
- (rule "mul_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "27") (term "0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "polySimp_mulComm0" (formula "27") (term "1"))
- (rule "polySimp_rightDist" (formula "27") (term "1"))
- (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
- (rule "mul_literals" (formula "27") (term "0,1"))
- (rule "polySimp_elimOne" (formula "27") (term "1,1"))
- (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5"))
- (rule "mul_literals" (formula "6") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "6") (term "0"))
- (rule "add_literals" (formula "6") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "6"))
- (rule "mul_literals" (formula "6") (term "1"))
- (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6"))
- (rule "leq_literals" (formula "27") (term "0"))
- (builtin "One Step Simplification" (formula "27"))
- (rule "true_left" (formula "27"))
- (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1"))
- (rule "mul_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "27") (term "0"))
- (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
- (rule "add_literals" (formula "27") (term "0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "27"))
- (rule "polySimp_mulLiterals" (formula "27") (term "0"))
- (rule "polySimp_elimOne" (formula "27") (term "0"))
- (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "27"))
- (rule "andLeft" (formula "11"))
- (rule "inEqSimp_homoInEq1" (formula "11"))
- (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
- (rule "polySimp_rightDist" (formula "11") (term "1,0"))
- (rule "mul_literals" (formula "11") (term "0,1,0"))
- (rule "polySimp_addAssoc" (formula "11") (term "0"))
- (rule "polySimp_addComm0" (formula "11") (term "0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "11") (term "0"))
- (rule "add_literals" (formula "11") (term "1,1,0"))
- (rule "times_zero_1" (formula "11") (term "1,0"))
- (rule "add_literals" (formula "11") (term "0"))
- (rule "leq_literals" (formula "11"))
- (rule "closeFalse" (formula "11"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0,0"))
+ (rule "close" (formula "36") (ifseqformula "11"))
)
)
(branch "Case 2"
- (rule "polySimp_homoEq" (formula "10"))
- (rule "polySimp_homoEq" (formula "36"))
- (rule "polySimp_homoEq" (formula "2") (term "0,0"))
- (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "2") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
- (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
- (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "1,1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0"))
- (rule "mul_literals" (formula "36") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0"))
- (rule "polySimp_addAssoc" (formula "36") (term "1,0"))
- (rule "polySimp_pullOutFactor3b" (formula "36") (term "0,1,0"))
- (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "36") (term "0"))
- (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
- (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
- (rule "add_literals" (formula "36") (term "1,1,0,0"))
- (rule "polySimp_addComm0" (formula "36") (term "0,0,0"))
- (rule "close" (formula "36") (ifseqformula "10"))
+ (rule "impRight" (formula "36"))
+ (rule "polySimp_homoEq" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "30"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,1,0,0"))
+ (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "1"))
+ (rule "andLeft" (formula "3"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,1,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0"))
+ (rule "add_literals" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "closeFalse" (formula "3"))
)
)
(branch "Case 2"
- (rule "impRight" (formula "36"))
- (rule "polySimp_homoEq" (formula "11"))
- (rule "polySimp_homoEq" (formula "3") (term "0,0"))
- (rule "times_zero_2" (formula "3") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "3") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
- (rule "polySimp_rightDist" (formula "11") (term "1,0"))
- (rule "polySimp_rightDist" (formula "11") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0"))
- (rule "mul_literals" (formula "11") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "11") (term "0"))
- (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
- (rule "polySimp_addComm0" (formula "11") (term "0,0,0"))
- (rule "inEqSimp_ltRight" (formula "37"))
- (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "3"))
- (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
- (rule "polySimp_addComm1" (formula "3") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "2") (term "0"))
- (rule "polySimp_addComm1" (formula "2") (term "0,0"))
- (rule "add_literals" (formula "2") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "6"))
- (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "30"))
- (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "30") (term "0"))
- (rule "polySimp_addComm1" (formula "30") (term "0,0"))
- (rule "inEqSimp_gtToGeq" (formula "29"))
- (rule "times_zero_1" (formula "29") (term "1,0,0"))
- (rule "add_literals" (formula "29") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "32"))
- (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
- (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
- (rule "add_literals" (formula "30") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "30") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0"))
- (rule "polySimp_addComm1" (formula "32") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
- (rule "add_literals" (formula "32") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "32") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "34") (term "1"))
- (rule "polySimp_mulComm0" (formula "34") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "34") (term "0,1"))
- (rule "polySimp_addComm0" (formula "34") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "34") (term "0"))
- (rule "polySimp_mulComm0" (formula "34") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
- (rule "mul_literals" (formula "34") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
- (rule "polySimp_addComm0" (formula "34") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
- (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
- (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "12"))
- (rule "polySimp_mulLiterals" (formula "12") (term "0"))
- (rule "polySimp_elimOne" (formula "12") (term "0"))
- (rule "applyEq" (formula "34") (term "0,1,0,1") (ifseqformula "12"))
- (rule "polySimp_mulComm0" (formula "34") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "34") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "34") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "34") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "34") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1"))
- (rule "add_literals" (formula "34") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "1"))
- (rule "polySimp_mulComm0" (formula "1") (term "1"))
- (rule "polySimp_rightDist" (formula "1") (term "1"))
- (rule "polySimp_mulAssoc" (formula "1") (term "0,1"))
- (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
- (rule "polySimp_mulLiterals" (formula "1") (term "0,1"))
- (rule "polySimp_elimOne" (formula "1") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "3"))
- (rule "polySimp_mulLiterals" (formula "3") (term "0"))
- (rule "polySimp_elimOne" (formula "3") (term "0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1"))
- (rule "polySimp_rightDist" (formula "2") (term "1"))
- (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
- (rule "mul_literals" (formula "2") (term "0,1"))
- (rule "polySimp_elimOne" (formula "2") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "6"))
- (rule "polySimp_mulComm0" (formula "6") (term "1"))
- (rule "polySimp_rightDist" (formula "6") (term "1"))
- (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
- (rule "mul_literals" (formula "6") (term "0,1"))
- (rule "polySimp_elimOne" (formula "6") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "29"))
- (rule "mul_literals" (formula "29") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13"))
- (rule "polySimp_mulComm0" (formula "13") (term "1"))
- (rule "polySimp_rightDist" (formula "13") (term "1"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
- (rule "mul_literals" (formula "13") (term "0,1"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "30"))
- (rule "polySimp_mulComm0" (formula "30") (term "1"))
- (rule "polySimp_rightDist" (formula "30") (term "1"))
- (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
- (rule "polySimp_elimOne" (formula "30") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
- (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "32"))
- (rule "polySimp_mulComm0" (formula "32") (term "1"))
- (rule "polySimp_rightDist" (formula "32") (term "1"))
- (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
- (rule "polySimp_elimOne" (formula "32") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
- (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0"))
- (rule "polySimp_mulLiterals" (formula "34") (term "0,0"))
- (rule "polySimp_elimOne" (formula "34") (term "0,0"))
- (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "2"))
- (builtin "One Step Simplification" (formula "34"))
- (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
- (rule "mul_literals" (formula "5") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "34"))
- (rule "polySimp_mulComm0" (formula "34") (term "1"))
- (rule "polySimp_rightDist" (formula "34") (term "1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,0,1"))
- (rule "mul_literals" (formula "34") (term "0,0,0,1"))
- (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
- (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
- (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
- (rule "mul_literals" (formula "6") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
- (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
- (rule "add_literals" (formula "6") (term "0,0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
- (rule "add_literals" (formula "6") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "6") (term "1,0,0"))
- (rule "add_zero_right" (formula "6") (term "0,0"))
- (rule "qeq_literals" (formula "6") (term "0"))
- (builtin "One Step Simplification" (formula "6"))
- (rule "true_left" (formula "6"))
- (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "2"))
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "1"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_literals" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_contradEq3" (formula "3") (term "0,0") (ifseqformula "1"))
+ (rule "mul_literals" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0,0"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "1") (term "0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "8"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "10"))
+ (rule "andLeft" (formula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "27") (term "1,0"))
+ (rule "mul_literals" (formula "27") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addComm0" (formula "27") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "27") (term "0"))
+ (rule "add_literals" (formula "27") (term "1,1,0"))
+ (rule "times_zero_1" (formula "27") (term "1,0"))
+ (rule "add_literals" (formula "27") (term "0"))
+ (rule "leq_literals" (formula "27"))
+ (rule "closeFalse" (formula "27"))
+ )
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0,0"))
+ (rule "close" (formula "36") (ifseqformula "10"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "36"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_homoEq" (formula "3") (term "0,0"))
+ (rule "times_zero_2" (formula "3") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "11") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "32"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "impLeft" (formula "32"))
+ (branch "Case 1"
+ (rule "hide_left" (formula "23") (userinteraction))
+ (rule "hide_left" (formula "13") (userinteraction))
+ (rule "hide_left" (formula "2") (userinteraction))
+ (rule "hide_left" (formula "2") (userinteraction))
+ (rule "allRight" (formula "32") (inst "sk=j_0"))
+ (rule "impRight" (formula "32"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "25"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "add_zero_left" (formula "3") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
(rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
(rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
(rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
@@ -2703,51 +4388,2253 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "qeq_literals" (formula "7") (term "0"))
(builtin "One Step Simplification" (formula "7"))
(rule "true_left" (formula "7"))
- (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28"))
- (rule "polySimp_rightDist" (formula "32") (term "0,0"))
- (rule "polySimp_addComm1" (formula "32") (term "0"))
- (rule "polySimp_rightDist" (formula "32") (term "0,0,0"))
- (rule "polySimp_addComm1" (formula "32") (term "0,0"))
- (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0"))
- (rule "mul_literals" (formula "32") (term "0,0,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0"))
- (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0"))
- (rule "add_literals" (formula "32") (term "1,1,0,0,0,0"))
- (rule "times_zero_1" (formula "32") (term "1,0,0,0,0"))
- (rule "add_literals" (formula "32") (term "0,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "32"))
- (rule "polySimp_mulLiterals" (formula "32") (term "0"))
- (rule "polySimp_elimOne" (formula "32") (term "0"))
- (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "32"))
- (rule "andLeft" (formula "1"))
- (rule "inEqSimp_homoInEq1" (formula "1"))
- (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
- (rule "polySimp_rightDist" (formula "1") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0"))
- (rule "polySimp_elimOne" (formula "1") (term "1,1,0"))
- (rule "polySimp_rightDist" (formula "1") (term "0,1,0"))
- (rule "mul_literals" (formula "1") (term "0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "polySimp_addComm1" (formula "1") (term "0,0"))
- (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
- (rule "add_literals" (formula "1") (term "1,1,0"))
- (rule "times_zero_1" (formula "1") (term "1,0"))
- (rule "add_zero_right" (formula "1") (term "0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "polySimp_addComm0" (formula "1") (term "0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
- (rule "add_literals" (formula "1") (term "1,1,0"))
- (rule "times_zero_1" (formula "1") (term "1,0"))
- (rule "add_literals" (formula "1") (term "0"))
- (rule "leq_literals" (formula "1"))
- (rule "closeFalse" (formula "1"))
+ (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "9") (term "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "11") (term "0"))
+ (rule "polySimp_homoEq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0"))
+ (rule "add_literals" (formula "11") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0,0"))
+ (rule "add_zero_right" (formula "11") (term "0,0"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "27"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6"))
+ (rule "times_zero_1" (formula "5") (term "0,0"))
+ (rule "add_zero_left" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "nnf_ex2all" (formula "34"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "nnf_notAnd" (formula "1") (term "0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "1") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "commute_or" (formula "17") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "arrayLengthNotNegative" (formula "27") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "commute_and" (formula "17") (term "0,0,1,0"))
+ (rule "ex_pull_out3" (formula "17") (term "0"))
+ (rule "cnf_rightDist" (formula "17") (term "0,0"))
+ (rule "commute_or" (formula "17") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "17") (term "0,0,0"))
+ (rule "commute_or" (formula "17") (term "1,0,0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "j_0 = 0 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEq" (formula "8") (term "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "2"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7"))
+ (rule "times_zero_2" (formula "7") (term "1,0"))
+ (rule "add_zero_right" (formula "7") (term "0"))
+ (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "3") (term "1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "inEqSimp_contradEq7" (formula "3") (term "0,0") (ifseqformula "9"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8"))
+ (rule "leq_literals" (formula "5") (term "0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "6"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "commute_and_2" (formula "12") (term "0,0"))
+ (rule "commute_and" (formula "12") (term "0,0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "27"))
+ (rule "allLeft" (formula "12") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "exLeft" (formula "12") (inst "sk=k_0"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteGeq" (formula "14") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "13") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "12") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "pullOutSelect" (formula "12") (term "0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "12"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "34")))
+ (rule "eqSymm" (formula "13"))
+ (rule "simplifySelectOfAnon" (formula "13"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "33")))
+ (rule "elementOfArrayRangeConcrete" (formula "12") (term "0,0,0"))
+ (rule "replace_known_right" (formula "12") (term "0,0,0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "dismissNonSelectedField" (formula "13") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,1,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "ifthenelse_negated" (formula "12") (term "0"))
+ (rule "elementOfArrayRangeConcrete" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "leq_literals" (formula "13") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "simplifySelectOfStore" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "castDel" (formula "13") (term "0"))
+ (rule "applyEqReverse" (formula "12") (term "1") (ifseqformula "13"))
+ (rule "hideAuxiliaryEq" (formula "13"))
+ (rule "dismissNonSelectedField" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "pullOutSelect" (formula "12") (term "0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfStore" (formula "12"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "castDel" (formula "12") (term "1,0"))
+ (rule "eqSymm" (formula "13"))
+ (rule "applyEqReverse" (formula "12") (term "1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "hideAuxiliaryEq" (formula "13"))
+ (rule "eqSymm" (formula "12") (term "1"))
+ (rule "eqSymm" (formula "12") (term "0,0"))
+ (rule "eqSymm" (formula "12") (term "1,0"))
+ (rule "replace_known_right" (formula "12") (term "0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "applyEq" (formula "15") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "30"))
+ (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "12"))
+ (rule "allLeft" (formula "1") (inst "t=k_0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "31"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "j_0 = 0 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "31"))
+ (rule "add_zero_right" (formula "5") (term "1"))
+ (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_zero_right" (formula "30") (term "0,0"))
+ (rule "leq_literals" (formula "30") (term "0"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "false_right" (formula "30"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "commute_and_2" (formula "15") (term "0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "15") (term "0,0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "target_offset_0 = j_0 TRUE"
+ (rule "close" (formula "31") (ifseqformula "3"))
+ )
+ (branch "target_offset_0 = j_0 FALSE"
+ (rule "applyEqReverse" (formula "31") (term "1") (ifseqformula "2"))
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "eqSymm" (formula "30"))
+ (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "29"))
+ (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0"))
+ (rule "add_literals" (formula "29") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "false_right" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_zero_right" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "3"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "allLeft" (formula "14") (inst "t=j_0"))
+ (rule "replaceKnownSelect_taclet010000000012010012_10" (formula "14") (term "1,1,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet1010000000012010012_13" (formula "14") (term "1,1,0,0,0"))
+ (rule "exLeft" (formula "14") (inst "sk=k_0"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteGeq" (formula "16") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "15") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "14") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0,0") (ifseqformula "4"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "4"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,0") (ifseqformula "4"))
+ (rule "qeq_literals" (formula "14") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "14"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "36")))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15"))
+ (rule "hideAuxiliaryEq" (formula "15"))
+ (rule "dismissNonSelectedField" (formula "14") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "14") (term "0,1,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0"))
+ (rule "replace_known_right" (formula "14") (term "0,0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfStore" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "castDel" (formula "14") (term "1,0"))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15"))
+ (rule "hideAuxiliaryEq" (formula "15"))
+ (rule "eqSymm" (formula "14") (term "1,0,0"))
+ (rule "eqSymm" (formula "14") (term "0,0,0"))
+ (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "14"))
+ (rule "eqSymm" (formula "32"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "14"))
+ (rule "allLeft" (formula "17") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "17") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "exLeft" (formula "17") (inst "sk=k_1"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteGeq" (formula "19") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "17") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "18") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "pullOutSelect" (formula "17") (term "1") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "17"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "38")))
+ (rule "simplifySelectOfAnon" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "39")))
+ (rule "dismissNonSelectedField" (formula "17") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,1,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0,0"))
+ (rule "replace_known_right" (formula "18") (term "0,0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "simplifySelectOfStore" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "castDel" (formula "17") (term "0"))
+ (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "17"))
+ (rule "hideAuxiliaryEq" (formula "17"))
+ (rule "dismissNonSelectedField" (formula "17") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "pullOutSelect" (formula "17") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfStore" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "castDel" (formula "17") (term "1,0"))
+ (rule "eqSymm" (formula "18"))
+ (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "eqSymm" (formula "17") (term "1"))
+ (rule "eqSymm" (formula "17") (term "0,0"))
+ (rule "eqSymm" (formula "17") (term "1,0"))
+ (rule "replace_known_right" (formula "17") (term "0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "20") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "20") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "17"))
+ (rule "allLeft" (formula "20") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "20") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "exLeft" (formula "20") (inst "sk=k_2"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteGeq" (formula "22") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "21") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "20") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "42")))
+ (rule "eqSymm" (formula "21"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "41")))
+ (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0,0"))
+ (rule "replace_known_right" (formula "20") (term "0,0,0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,1,0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "ifthenelse_negated" (formula "20") (term "0"))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "simplifySelectOfStore" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "castDel" (formula "21") (term "0"))
+ (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "21"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "replace_known_left" (formula "20") (term "0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfStore" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "castDel" (formula "20") (term "1,0"))
+ (rule "eqSymm" (formula "21"))
+ (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "eqSymm" (formula "20") (term "0,0"))
+ (rule "eqSymm" (formula "20") (term "1,0"))
+ (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "ifthenelse_negated" (formula "1") (term "0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "38"))
+ (rule "allLeft" (formula "1") (inst "t=k_0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_14"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "39"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "hide_left" (formula "23") (userinteraction))
+ (rule "hide_left" (formula "13") (userinteraction))
+ (rule "hide_left" (formula "2") (userinteraction))
+ (rule "hide_left" (formula "2") (userinteraction))
+ (rule "allRight" (formula "32") (inst "sk=j_0"))
+ (rule "impRight" (formula "32"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "24"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "25"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "add_zero_left" (formula "2") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,0,1"))
+ (rule "mul_literals" (formula "30") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "6"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "29"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11"))
+ (rule "leq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "33"))
+ (rule "mul_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "27"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "13") (term "0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0,0"))
+ (rule "add_zero_right" (formula "13") (term "0,0"))
+ (rule "qeq_literals" (formula "13") (term "0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "true_left" (formula "13"))
+ (rule "nnf_ex2all" (formula "38"))
+ (rule "nnf_imp2or" (formula "17") (term "0"))
+ (rule "nnf_notAnd" (formula "1") (term "0"))
+ (rule "nnf_notAnd" (formula "17") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "17") (term "1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "17") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "17") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "1") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "commute_or" (formula "17") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "arrayLengthNotNegative" (formula "26") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "commute_and" (formula "17") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "j_0 = 0 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "5"))
+ (rule "true_left" (formula "5"))
+ (rule "applyEq" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_commuteLeq" (formula "5"))
+ (rule "applyEqRigid" (formula "3") (term "0,0,0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEqRigid" (formula "5") (term "1") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "3") (term "1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_contradEq7" (formula "3") (term "0,0") (ifseqformula "10"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8"))
+ (rule "leq_literals" (formula "3") (term "0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "ex_pull_out3" (formula "12") (term "0"))
+ (rule "cnf_rightDist" (formula "12") (term "0,0"))
+ (rule "commute_or" (formula "12") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "12") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "1,0,0,0"))
+ (rule "commute_and_2" (formula "12") (term "0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "31") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "31"))
+ (rule "allLeft" (formula "12") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "exLeft" (formula "12") (inst "sk=k_0"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteGeq" (formula "14") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "13") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "12") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (term "0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (term "0") (ifseqformula "7"))
+ (rule "qeq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "pullOutSelect" (formula "13") (term "1") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "14"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "38")))
+ (rule "simplifySelectOfAnon" (formula "13"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "37")))
+ (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0,0"))
+ (rule "replace_known_right" (formula "14") (term "0,0,0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "elementOfArrayRangeConcrete" (formula "13") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "leq_literals" (formula "13") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "dismissNonSelectedField" (formula "14") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "14") (term "0,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "simplifySelectOfStore" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "castDel" (formula "14") (term "1,0"))
+ (rule "eqSymm" (formula "14") (term "1,0,0"))
+ (rule "eqSymm" (formula "14") (term "0,0,0"))
+ (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "applyEqReverse" (formula "13") (term "1") (ifseqformula "14"))
+ (rule "hideAuxiliaryEq" (formula "14"))
+ (rule "ifthenelse_negated" (formula "13") (term "0"))
+ (rule "dismissNonSelectedField" (formula "13") (term "0,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "pullOutSelect" (formula "13") (term "0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfStore" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "castDel" (formula "13") (term "0"))
+ (rule "applyEqReverse" (formula "14") (term "0") (ifseqformula "13"))
+ (rule "hideAuxiliaryEq" (formula "13"))
+ (rule "applyEq" (formula "15") (term "3,0,0,0,1,1,0,0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "34") (term "0") (ifseqformula "13"))
+ (rule "eqSymm" (formula "34"))
+ (rule "applyEq" (formula "15") (term "3,0,0,1,1,1,0,0,0") (ifseqformula "13"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "13"))
+ (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "commute_and" (formula "15") (term "0,0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "ifthenelse_negated" (formula "1") (term "0"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "34"))
+ (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_invertInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "31"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "28"))
+ (rule "qeq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "35"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "34"))
+ (rule "close" (formula "34") (ifseqformula "13"))
+ )
+ (branch "j_0 = 0 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_strengthen1" (formula "4") (ifseqformula "35"))
+ (rule "add_zero_right" (formula "4") (term "1"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_contradEq7" (formula "35") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "35") (term "1,0,0"))
+ (rule "add_zero_right" (formula "35") (term "0,0"))
+ (rule "leq_literals" (formula "35") (term "0"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "false_right" (formula "35"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "ex_pull_out3" (formula "16") (term "0"))
+ (rule "cnf_rightDist" (formula "16") (term "0,0"))
+ (rule "commute_or" (formula "16") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "16") (term "0,0,0"))
+ (rule "commute_or" (formula "16") (term "1,0,0,0"))
+ (rule "commute_and_2" (formula "16") (term "0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "commute_and" (formula "16") (term "0,0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "j_0 ≤ -1 + count TRUE"
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "allLeft" (formula "16") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "16") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "exLeft" (formula "16") (inst "sk=k_0"))
+ (rule "andLeft" (formula "16"))
+ (rule "andLeft" (formula "16"))
+ (rule "inEqSimp_commuteGeq" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "16") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "17") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "11"))
+ (rule "qeq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "11"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "11"))
+ (rule "qeq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "pullOutSelect" (formula "16") (term "1") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "17"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "42")))
+ (rule "simplifySelectOfAnon" (formula "16"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "41")))
+ (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0,0"))
+ (rule "replace_known_right" (formula "17") (term "0,0,0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "leq_literals" (formula "16") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "dismissNonSelectedField" (formula "17") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "simplifySelectOfStore" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "castDel" (formula "17") (term "1,0"))
+ (rule "eqSymm" (formula "17") (term "0,0,0"))
+ (rule "eqSymm" (formula "17") (term "1,0,0"))
+ (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "17"))
+ (rule "hideAuxiliaryEq" (formula "17"))
+ (rule "ifthenelse_negated" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "16") (term "0,0,0"))
+ (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18"))
+ (rule "polySimp_mulComm0" (formula "17") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0"))
+ (rule "polySimp_addComm0" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1"))
+ (rule "polySimp_rightDist" (formula "17") (term "1"))
+ (rule "mul_literals" (formula "17") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "polySimp_mulComm0" (formula "17") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "17") (term "1,0,0"))
+ (rule "mul_literals" (formula "17") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "17") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "qeq_literals" (formula "17") (term "0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "true_left" (formula "17"))
+ (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfStore" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "castDel" (formula "16") (term "0"))
+ (rule "applyEqReverse" (formula "17") (term "0") (ifseqformula "16"))
+ (rule "hideAuxiliaryEq" (formula "16"))
+ (rule "applyEq" (formula "19") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "16"))
+ (rule "applyEq" (formula "19") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "16"))
+ (rule "ifthenelse_split" (formula "3") (term "0"))
+ (branch "target_offset_0 = j_0 TRUE"
+ (rule "close" (formula "39") (ifseqformula "4"))
+ )
+ (branch "target_offset_0 = j_0 FALSE"
+ (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "eqSymm" (formula "38"))
+ (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "37"))
+ (rule "inEqSimp_contradEq7" (formula "37") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "37") (term "1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0"))
+ (rule "add_literals" (formula "37") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "37") (term "1,0,0"))
+ (rule "add_literals" (formula "37") (term "0,0"))
+ (rule "leq_literals" (formula "37") (term "0"))
+ (builtin "One Step Simplification" (formula "37"))
+ (rule "false_right" (formula "37"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "11"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "4") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "4") (term "1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "qeq_literals" (formula "4") (term "0"))
+ (builtin "One Step Simplification" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "3"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "8"))
+ (rule "mul_literals" (formula "3") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "3"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_invertInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "34"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "31"))
+ (rule "qeq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "37") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "38"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42")))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "38") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "applyEq" (formula "37") (term "1") (ifseqformula "15"))
+ (rule "allLeft" (formula "18") (inst "t=j_0"))
+ (rule "exLeft" (formula "18") (inst "sk=k_1"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteGeq" (formula "20") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "18") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "19") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0,0") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "20") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0,0") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "19") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "1,0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "18") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "18") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "18") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0"))
+ (rule "leq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0"))
+ (rule "add_literals" (formula "20") (term "0,0,0"))
+ (rule "leq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "45")))
+ (rule "eqSymm" (formula "19"))
+ (rule "simplifySelectOfAnon" (formula "19"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "44")))
+ (rule "dismissNonSelectedField" (formula "18") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "18") (term "0,1,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "dismissNonSelectedField" (formula "19") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "19") (term "0,1,0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0"))
+ (rule "replace_known_right" (formula "18") (term "0,0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "simplifySelectOfStore" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "castDel" (formula "18") (term "1,0"))
+ (rule "eqSymm" (formula "18") (term "1,0,0"))
+ (rule "eqSymm" (formula "18") (term "0,0,0"))
+ (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "2")))
+ (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0"))
+ (rule "replace_known_left" (formula "18") (term "0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "applyEq" (formula "41") (term "0") (ifseqformula "18"))
+ (rule "eqSymm" (formula "41"))
+ (rule "applyEq" (formula "40") (term "0") (ifseqformula "18"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "allLeft" (formula "21") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "21") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "exLeft" (formula "21") (inst "sk=k_2"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteGeq" (formula "23") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "21") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "22") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "pullOutSelect" (formula "21") (term "1") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "47")))
+ (rule "simplifySelectOfAnon" (formula "22"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "48")))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "leq_literals" (formula "21") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0,0"))
+ (rule "replace_known_right" (formula "22") (term "0,0,0,0,0") (ifseqformula "46"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "ifthenelse_negated" (formula "21") (term "0"))
+ (rule "ifthenelse_negated" (formula "22") (term "0"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "simplifySelectOfStore" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "castDel" (formula "21") (term "0"))
+ (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfStore" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "castDel" (formula "21") (term "1,0"))
+ (rule "eqSymm" (formula "22"))
+ (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "22"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "hideAuxiliaryEq" (formula "22"))
+ (rule "eqSymm" (formula "21") (term "0,0"))
+ (rule "eqSymm" (formula "21") (term "1,0"))
+ (rule "replace_known_right" (formula "21") (term "0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_zero_right" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "allLeft" (formula "24") (inst "t=add(add(Z(neglit(1(#))), begin), step)"))
+ (rule "exLeft" (formula "24") (inst "sk=k_3"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteGeq" (formula "26") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "26") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "25") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0"))
+ (rule "add_literals" (formula "25") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "25") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "25") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "51")))
+ (rule "eqSymm" (formula "25") (term "1"))
+ (rule "dismissNonSelectedField" (formula "24") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "24") (term "0,1,0,0") (ifseqformula "31"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (rule "replace_known_right" (formula "24") (term "0,0,0,0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "simplifySelectOfStore" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "castDel" (formula "24") (term "1,0"))
+ (rule "eqSymm" (formula "24") (term "1,0,0"))
+ (rule "eqSymm" (formula "24") (term "0,0,0"))
+ (rule "replace_known_right" (formula "24") (term "0,0,0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "24"))
+ (rule "hideAuxiliaryEq" (formula "24"))
+ (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_14"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "50")))
+ (rule "eqSymm" (formula "25") (term "1"))
+ (rule "dismissNonSelectedField" (formula "24") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "24") (term "0,1,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "24") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0"))
+ (rule "pullOutSelect" (formula "24") (term "2,0") (inst "selectSK=arr_15"))
+ (rule "simplifySelectOfStore" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "castDel" (formula "24") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "24") (term "0,0"))
+ (rule "mul_literals" (formula "24") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "24") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "24") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "24") (term "1,0,0"))
+ (rule "mul_literals" (formula "24") (term "0,1,0,0"))
+ (rule "commute_or_2" (formula "28"))
+ (rule "commute_or_2" (formula "27"))
+ (rule "commute_or" (formula "28") (term "0"))
+ (rule "commute_or" (formula "27") (term "0"))
+ (rule "allLeft" (formula "29") (inst "t=k_0"))
+ (rule "exLeft" (formula "29") (inst "sk=k_4"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteGeq" (formula "31") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "30") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "29") (term "1,0"))
+ (rule "pullOutSelect" (formula "29") (term "0,1") (inst "selectSK=arr_16"))
+ (rule "simplifySelectOfAnon" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "56")))
+ (rule "eqSymm" (formula "30") (term "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0,0,0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "ifthenelse_negated" (formula "29") (term "0"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,0"))
+ (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "simplifySelectOfStore" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "castDel" (formula "29") (term "1,0"))
+ (rule "eqSymm" (formula "29") (term "1,0,0"))
+ (rule "eqSymm" (formula "29") (term "0,0,0"))
+ (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "applyEqReverse" (formula "30") (term "1,1") (ifseqformula "29"))
+ (rule "hideAuxiliaryEq" (formula "29"))
+ (rule "pullOutSelect" (formula "29") (term "0,1") (inst "selectSK=arr_17"))
+ (rule "simplifySelectOfAnon" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "55")))
+ (rule "eqSymm" (formula "30") (term "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "29") (term "0,1,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "29") (term "2,0") (inst "selectSK=arr_18"))
+ (rule "simplifySelectOfStore" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "castDel" (formula "29") (term "1,0"))
+ (rule "eqSymm" (formula "29") (term "0,0"))
+ (rule "commute_or_2" (formula "33"))
+ (rule "commute_or_2" (formula "32"))
+ (rule "allLeft" (formula "34") (inst "t=offset_0"))
+ (rule "exLeft" (formula "34") (inst "sk=k_5"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteGeq" (formula "36") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "35") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "34") (term "1,0"))
+ (rule "pullOutSelect" (formula "34") (term "1,1") (inst "selectSK=arr_19"))
+ (rule "simplifySelectOfAnon" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "60")))
+ (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "34") (term "0,1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "35") (term "0,1") (inst "selectSK=arr_20"))
+ (rule "simplifySelectOfAnon" (formula "35"))
+ (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "62")))
+ (rule "dismissNonSelectedField" (formula "35") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "35") (term "0,1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "elementOfArrayRangeConcrete" (formula "35") (term "0,0"))
+ (rule "replace_known_right" (formula "35") (term "0,0,0,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "simplifySelectOfStore" (formula "35"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "castDel" (formula "35") (term "1,0"))
+ (rule "eqSymm" (formula "35") (term "0,0,0"))
+ (rule "eqSymm" (formula "35") (term "1,0,0"))
+ (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "60"))
+ (builtin "One Step Simplification" (formula "35"))
+ (rule "applyEqReverse" (formula "36") (term "0,1") (ifseqformula "35"))
+ (rule "hideAuxiliaryEq" (formula "35"))
+ (rule "pullOutSelect" (formula "34") (term "2,0") (inst "selectSK=arr_21"))
+ (rule "simplifySelectOfStore" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "castDel" (formula "34") (term "1,0"))
+ (rule "eqSymm" (formula "34") (term "0,0"))
+ (rule "commute_or_2" (formula "38"))
+ (rule "commute_or_2" (formula "37"))
+ (rule "commute_or" (formula "38") (term "0"))
+ (rule "commute_or" (formula "37") (term "0"))
+ (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)"))
+ (rule "replaceKnownSelect_taclet101110000000012010012_23" (formula "1") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet101110000000012010012_26" (formula "1") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "applyEq" (formula "1") (term "0,0,1") (ifseqformula "16"))
+ (rule "eqSymm" (formula "1") (term "0,1"))
+ (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "allLeft" (formula "1") (inst "t=k_1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "20"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "21"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "58") (term "0") (inst "selectSK=arr_22"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "replaceKnownSelect_taclet101110000000012010012_27" (formula "1") (term "2,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet101110000000012010012_30" (formula "1") (term "2,0"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "59"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "62"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59")))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "j_0 ≤ -1 + count FALSE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "34"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
)
)
- (branch "Case 2"
- (builtin "SMTRule")
- )
)
(branch "Case 2"
(rule "allRight" (formula "36") (inst "sk=j_0"))
@@ -7502,7 +11389,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "variableDeclarationAssign" (formula "36") (term "1"))
(rule "variableDeclaration" (formula "36") (term "1") (newnames "x_14"))
(rule "remove_parentheses_right" (formula "36") (term "1"))
- (rule "compound_addition_2" (formula "36") (term "1") (inst "#v1=x_16") (inst "#v0=x_15"))
+ (rule "compound_addition_2" (formula "36") (term "1") (inst "#v0=x_15") (inst "#v1=x_16"))
(rule "variableDeclarationAssign" (formula "36") (term "1"))
(rule "variableDeclaration" (formula "36") (term "1") (newnames "x_15"))
(rule "assignment" (formula "36") (term "1"))
@@ -7541,17 +11428,343 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "andRight" (formula "36"))
(branch "Case 1"
(rule "andRight" (formula "36"))
- (branch
- (rule "andRight" (formula "36"))
- (branch
+ (branch "Case 1"
+ (rule "impLeft" (formula "31"))
+ (branch "Case 1"
(rule "andRight" (formula "36"))
- (branch
+ (branch "Case 1"
(rule "andRight" (formula "36"))
- (branch
+ (branch "Case 1"
(rule "andRight" (formula "36"))
- (branch
+ (branch "Case 1"
(rule "andRight" (formula "36"))
- (branch
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "mul_literals" (formula "3") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "3"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "closeFalse" (formula "7"))
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ (branch "Case 2"
(rule "polySimp_homoEq" (formula "1") (term "0,0"))
(rule "times_zero_2" (formula "1") (term "1,0,0,0"))
(rule "add_zero_right" (formula "1") (term "0,0,0"))
@@ -7564,173 +11777,1076 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "polySimp_addAssoc" (formula "9") (term "0"))
(rule "polySimp_addAssoc" (formula "9") (term "0,0"))
(rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
- (rule "inEqSimp_geqRight" (formula "36"))
- (rule "mul_literals" (formula "1") (term "1,0,0"))
- (rule "add_literals" (formula "1") (term "0,0"))
- (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
(rule "inEqSimp_ltRight" (formula "33"))
(rule "polySimp_mulComm0" (formula "1") (term "0,0"))
(rule "polySimp_addComm0" (formula "1") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
(rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
(rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
(rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
- (rule "mul_literals" (formula "3") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "11"))
- (rule "polySimp_mulLiterals" (formula "11") (term "0"))
- (rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "2"))
- (rule "mul_literals" (formula "2") (term "1"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
(rule "inEqSimp_sepNegMonomial1" (formula "1"))
(rule "polySimp_mulLiterals" (formula "1") (term "0"))
(rule "polySimp_elimOne" (formula "1") (term "0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
(rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
(rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
(rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
(rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
(rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
(rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
(rule "inEqSimp_sepPosMonomial1" (formula "28"))
(rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "mul_literals" (formula "12") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
- (rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "2"))
- (rule "qeq_literals" (formula "6") (term "0"))
- (builtin "One Step Simplification" (formula "6"))
- (rule "closeFalse" (formula "6"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "9"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1"))
+ (rule "mul_literals" (formula "3") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6"))
+ (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "12") (term "0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "9") (term "1") (ifseqformula "2"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "28") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "28") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "28") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "28"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "0"))
+ (rule "polySimp_elimOne" (formula "28") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "5") (term "1,0,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm0" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "5") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "5") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "5"))
+ (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "6"))
+ (rule "leq_literals" (formula "26") (term "0"))
+ (builtin "One Step Simplification" (formula "26"))
+ (rule "true_left" (formula "26"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "3"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "9"))
+ (rule "andLeft" (formula "26"))
+ (rule "inEqSimp_homoInEq1" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "mul_literals" (formula "26") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "26") (term "0"))
+ (rule "add_literals" (formula "26") (term "1,1,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0"))
+ (rule "add_literals" (formula "26") (term "0"))
+ (rule "leq_literals" (formula "26"))
+ (rule "closeFalse" (formula "26"))
+ )
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "36"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "inEqSimp_ltRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_zero_right" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0,0"))
+ (rule "close" (formula "36") (ifseqformula "11"))
+ )
+ )
+ (branch "Case 2"
+ (rule "impRight" (formula "36"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0,0"))
+ (rule "add_literals" (formula "33") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "30"))
+ (rule "times_zero_1" (formula "30") (term "1,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "6") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1"))
+ (rule "mul_literals" (formula "14") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
+ (rule "mul_literals" (formula "30") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "7"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1"))
+ (rule "polySimp_rightDist" (formula "7") (term "1"))
+ (rule "mul_literals" (formula "7") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "7") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "7") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0"))
+ (rule "mul_literals" (formula "6") (term "1,0,0,0"))
+ (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq0" (formula "9") (term "0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0,0"))
+ (rule "mul_literals" (formula "9") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0"))
+ (rule "add_literals" (formula "9") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "9") (term "1,0,0"))
+ (rule "add_zero_right" (formula "9") (term "0,0"))
+ (rule "qeq_literals" (formula "9") (term "0"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "true_left" (formula "9"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "4"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "andRight" (formula "36"))
+ (branch "Case 1"
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "closeFalse" (formula "6"))
+ )
+ (branch "Case 2"
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_homoEq" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
+ (rule "mul_literals" (formula "3") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "5"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
)
- (branch
+ (branch "Case 2"
(rule "polySimp_homoEq" (formula "1") (term "0,0"))
(rule "times_zero_2" (formula "1") (term "1,0,0,0"))
(rule "add_zero_right" (formula "1") (term "0,0,0"))
@@ -7744,60 +12860,61 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "polySimp_addAssoc" (formula "9") (term "0,0"))
(rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
(rule "inEqSimp_leqRight" (formula "36"))
- (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
(rule "add_literals" (formula "1") (term "0,0,0"))
- (rule "add_zero_left" (formula "1") (term "0,0"))
(rule "inEqSimp_ltRight" (formula "33"))
(rule "polySimp_mulComm0" (formula "1") (term "0,0"))
(rule "polySimp_addComm0" (formula "1") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
(rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
(rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
(rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
(rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
(rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0"))
(rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
(rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
(rule "polySimp_addAssoc" (formula "31") (term "0"))
(rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
(rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
(rule "add_literals" (formula "31") (term "0,0,0,0"))
(rule "add_zero_left" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
(rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
(rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
(rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
(rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
(rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
(rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
(rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
@@ -7806,124 +12923,111 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
(rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
(rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
(rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
(rule "mul_literals" (formula "3") (term "1,0,0"))
(rule "polySimp_sepNegMonomial" (formula "11"))
(rule "polySimp_mulLiterals" (formula "11") (term "0"))
(rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
(rule "inEqSimp_sepPosMonomial1" (formula "2"))
- (rule "polySimp_mulLiterals" (formula "2") (term "1"))
- (rule "polySimp_elimOne" (formula "2") (term "1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
(rule "inEqSimp_sepNegMonomial1" (formula "1"))
(rule "polySimp_mulLiterals" (formula "1") (term "0"))
(rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
(rule "inEqSimp_sepPosMonomial0" (formula "5"))
(rule "polySimp_mulComm0" (formula "5") (term "1"))
(rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
(rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
(rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
(rule "inEqSimp_sepPosMonomial0" (formula "12"))
(rule "polySimp_mulComm0" (formula "12") (term "1"))
(rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
(rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
(rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
(rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
(rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
(rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
(rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
(rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
(rule "inEqSimp_sepPosMonomial0" (formula "31"))
(rule "polySimp_mulComm0" (formula "31") (term "1"))
(rule "polySimp_rightDist" (formula "31") (term "1"))
(rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
(rule "polySimp_elimOne" (formula "31") (term "1,1"))
(rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
(rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
(rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
(rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
(rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
(rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "2"))
- (rule "andLeft" (formula "5"))
- (rule "inEqSimp_homoInEq1" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
- (rule "polySimp_rightDist" (formula "5") (term "1,0"))
- (rule "mul_literals" (formula "5") (term "0,1,0"))
- (rule "polySimp_addAssoc" (formula "5") (term "0"))
- (rule "polySimp_addComm0" (formula "5") (term "0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
- (rule "add_literals" (formula "5") (term "1,1,0"))
- (rule "times_zero_1" (formula "5") (term "1,0"))
- (rule "add_literals" (formula "5") (term "0"))
- (rule "leq_literals" (formula "5"))
- (rule "closeFalse" (formula "5"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "9"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_literals" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
)
)
- (branch
+ (branch "Case 2"
(rule "polySimp_homoEq" (formula "9"))
(rule "polySimp_homoEq" (formula "1") (term "0,0"))
(rule "times_zero_2" (formula "1") (term "1,0,0,0"))
@@ -7939,57 +13043,45 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "inEqSimp_ltRight" (formula "32"))
(rule "polySimp_mulComm0" (formula "1") (term "0,0"))
(rule "polySimp_addComm0" (formula "1") (term "0"))
- (rule "inEqSimp_leqRight" (formula "36"))
- (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
- (rule "mul_literals" (formula "1") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
- (rule "add_literals" (formula "1") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_geqRight" (formula "36"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
(rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
(rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
(rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
(rule "inEqSimp_ltToLeq" (formula "29"))
(rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
(rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
(rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
(rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
(rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
(rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
(rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "mul_literals" (formula "28") (term "1,0,0"))
(rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
(rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
(rule "add_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "add_literals" (formula "31") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "31") (term "0,0,0"))
(rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
(rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
(rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
@@ -7998,645 +13090,1607 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
(rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
(rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
+ (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
(rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
(rule "mul_literals" (formula "3") (term "1,0,0"))
(rule "polySimp_sepNegMonomial" (formula "11"))
(rule "polySimp_mulLiterals" (formula "11") (term "0"))
(rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
+ (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "33") (term "0"))
+ (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0"))
+ (rule "add_literals" (formula "33") (term "1,1,0,0"))
(rule "inEqSimp_sepNegMonomial1" (formula "2"))
(rule "polySimp_mulLiterals" (formula "2") (term "0"))
(rule "polySimp_elimOne" (formula "2") (term "0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
(rule "polySimp_mulComm0" (formula "1") (term "1"))
(rule "polySimp_rightDist" (formula "1") (term "1"))
- (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
- (rule "mul_literals" (formula "1") (term "0,1"))
- (rule "polySimp_elimOne" (formula "1") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
(rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
(rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
(rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
(rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
(rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
(rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
(rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
(rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
(rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
(rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
(rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
(rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
(rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
(rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
(rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
(rule "inEqSimp_sepPosMonomial1" (formula "28"))
(rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "mul_literals" (formula "27") (term "1"))
(rule "inEqSimp_sepPosMonomial0" (formula "12"))
(rule "polySimp_mulComm0" (formula "12") (term "1"))
(rule "polySimp_rightDist" (formula "12") (term "1"))
(rule "mul_literals" (formula "12") (term "0,1"))
(rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
(rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "31"))
+ (rule "polySimp_mulComm0" (formula "31") (term "1"))
+ (rule "polySimp_rightDist" (formula "31") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
(rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
(rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
(rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1"))
- (rule "andLeft" (formula "9"))
- (rule "inEqSimp_homoInEq1" (formula "9"))
- (rule "polySimp_pullOutFactor1b" (formula "9") (term "0"))
- (rule "add_literals" (formula "9") (term "1,1,0"))
- (rule "times_zero_1" (formula "9") (term "1,0"))
- (rule "add_literals" (formula "9") (term "0"))
- (rule "leq_literals" (formula "9"))
- (rule "closeFalse" (formula "9"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "33") (term "1"))
+ (rule "polySimp_rightDist" (formula "33") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "33") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "33") (term "0,0,1"))
+ (rule "mul_literals" (formula "33") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8"))
+ (rule "mul_literals" (formula "7") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "7"))
+ (rule "mul_literals" (formula "7") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "27"))
+ (rule "andLeft" (formula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "11") (term "0"))
+ (rule "add_literals" (formula "11") (term "1,1,0"))
+ (rule "times_zero_1" (formula "11") (term "1,0"))
+ (rule "add_literals" (formula "11") (term "0"))
+ (rule "leq_literals" (formula "11"))
+ (rule "closeFalse" (formula "11"))
)
)
- (branch
+ (branch "Case 2"
(rule "polySimp_homoEq" (formula "1") (term "0,0"))
(rule "times_zero_2" (formula "1") (term "1,0,0,0"))
(rule "add_zero_right" (formula "1") (term "0,0,0"))
(rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_homoEq" (formula "36"))
(rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
(rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0"))
(rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,1,0"))
(rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
(rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,1,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,0,1,0"))
(rule "polySimp_addAssoc" (formula "9") (term "0"))
- (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
- (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
- (rule "inEqSimp_geqRight" (formula "36"))
- (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "inEqSimp_ltRight" (formula "32"))
(rule "polySimp_mulComm0" (formula "1") (term "0,0"))
(rule "polySimp_addComm0" (formula "1") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0"))
- (rule "polySimp_addComm1" (formula "29") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
- (rule "add_literals" (formula "29") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "29") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "1,0"))
+ (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
(rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_literals" (formula "27") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "14") (term "0,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0"))
- (rule "polySimp_addComm1" (formula "31") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
- (rule "add_literals" (formula "31") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "31") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,1"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "4") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "4") (term "0,0,1,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "33") (term "0"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,0"))
- (rule "mul_literals" (formula "33") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0"))
- (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0"))
- (rule "mul_literals" (formula "3") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "11"))
- (rule "polySimp_mulLiterals" (formula "11") (term "0"))
- (rule "polySimp_elimOne" (formula "11") (term "0"))
- (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "33") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "33") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1"))
- (rule "add_literals" (formula "33") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1"))
- (rule "polySimp_rightDist" (formula "2") (term "1"))
- (rule "polySimp_rightDist" (formula "2") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1"))
- (rule "mul_literals" (formula "2") (term "0,0,1"))
- (rule "polySimp_elimOne" (formula "2") (term "1,0,1"))
- (rule "inEqSimp_sepNegMonomial1" (formula "1"))
- (rule "polySimp_mulLiterals" (formula "1") (term "0"))
- (rule "polySimp_elimOne" (formula "1") (term "0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "5"))
- (rule "polySimp_mulComm0" (formula "5") (term "1"))
- (rule "polySimp_rightDist" (formula "5") (term "1"))
- (rule "mul_literals" (formula "5") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
- (rule "polySimp_elimOne" (formula "5") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "29"))
- (rule "polySimp_mulComm0" (formula "29") (term "1"))
- (rule "polySimp_rightDist" (formula "29") (term "1"))
- (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
- (rule "polySimp_elimOne" (formula "29") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "12"))
- (rule "polySimp_mulComm0" (formula "12") (term "1"))
- (rule "polySimp_rightDist" (formula "12") (term "1"))
- (rule "mul_literals" (formula "12") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
- (rule "polySimp_elimOne" (formula "12") (term "1,1"))
- (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "mul_literals" (formula "27") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "31"))
- (rule "polySimp_mulComm0" (formula "31") (term "1"))
- (rule "polySimp_rightDist" (formula "31") (term "1"))
- (rule "polySimp_mulLiterals" (formula "31") (term "1,1"))
- (rule "polySimp_elimOne" (formula "31") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "31") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0"))
- (rule "polySimp_mulLiterals" (formula "33") (term "0,0"))
- (rule "polySimp_elimOne" (formula "33") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1"))
- (rule "polySimp_mulComm0" (formula "33") (term "1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,1,1"))
- (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1"))
- (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1"))
- (rule "mul_literals" (formula "33") (term "0,0,0,1,1"))
- (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
- (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
- (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
- (rule "mul_literals" (formula "7") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
- (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
- (rule "add_literals" (formula "7") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "7") (term "1,0,0"))
- (rule "add_zero_right" (formula "7") (term "0,0"))
- (rule "qeq_literals" (formula "7") (term "0"))
- (builtin "One Step Simplification" (formula "7"))
- (rule "true_left" (formula "7"))
- (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
- (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "9") (term "0"))
- (rule "polySimp_addComm0" (formula "9") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "9"))
- (rule "polySimp_mulComm0" (formula "9") (term "1"))
- (rule "polySimp_rightDist" (formula "9") (term "1"))
- (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
- (rule "mul_literals" (formula "9") (term "0,1"))
- (rule "polySimp_elimOne" (formula "9") (term "1,1"))
- (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9"))
- (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
- (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
- (rule "add_literals" (formula "21") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "21") (term "1,0,0"))
- (rule "add_zero_right" (formula "21") (term "0,0"))
- (rule "qeq_literals" (formula "21") (term "0"))
- (builtin "One Step Simplification" (formula "21"))
- (rule "true_left" (formula "21"))
- (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5"))
- (rule "mul_literals" (formula "6") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "6") (term "0"))
- (rule "add_literals" (formula "6") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "6"))
- (rule "mul_literals" (formula "6") (term "1"))
- (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6"))
- (rule "leq_literals" (formula "27") (term "0"))
- (builtin "One Step Simplification" (formula "27"))
- (rule "true_left" (formula "27"))
- (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "2"))
- (rule "mul_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "27") (term "0"))
- (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
- (rule "add_literals" (formula "27") (term "0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "27"))
- (rule "polySimp_mulLiterals" (formula "27") (term "0"))
- (rule "polySimp_elimOne" (formula "27") (term "0"))
- (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "27"))
- (rule "andLeft" (formula "11"))
- (rule "inEqSimp_homoInEq1" (formula "11"))
- (rule "polySimp_mulComm0" (formula "11") (term "1,0"))
- (rule "polySimp_rightDist" (formula "11") (term "1,0"))
- (rule "mul_literals" (formula "11") (term "0,1,0"))
- (rule "polySimp_addAssoc" (formula "11") (term "0"))
- (rule "polySimp_addComm0" (formula "11") (term "0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "11") (term "0"))
- (rule "add_literals" (formula "11") (term "1,1,0"))
- (rule "times_zero_1" (formula "11") (term "1,0"))
- (rule "add_literals" (formula "11") (term "0"))
- (rule "leq_literals" (formula "11"))
- (rule "closeFalse" (formula "11"))
+ (rule "mul_literals" (formula "27") (term "1,0,0"))
+ (rule "add_zero_right" (formula "27") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
+ (rule "add_literals" (formula "36") (term "1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "36") (term "0,0,0"))
+ (rule "close" (formula "36") (ifseqformula "10"))
)
)
- (branch
- (rule "polySimp_homoEq" (formula "9"))
- (rule "polySimp_homoEq" (formula "1") (term "0,0"))
- (rule "times_zero_2" (formula "1") (term "1,0,0,0"))
+ (branch "Case 2"
+ (rule "impRight" (formula "36"))
+ (rule "polySimp_homoEq" (formula "10"))
+ (rule "polySimp_homoEq" (formula "2") (term "0,0"))
+ (rule "mul_literals" (formula "2") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "33"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "37"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
+ (rule "add_literals" (formula "30") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "30") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "29"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "28"))
+ (rule "times_zero_1" (formula "28") (term "1,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "32") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
+ (rule "mul_literals" (formula "4") (term "1,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "34") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0"))
+ (rule "add_literals" (formula "34") (term "1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1"))
+ (rule "polySimp_rightDist" (formula "30") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1"))
+ (rule "polySimp_rightDist" (formula "6") (term "1"))
+ (rule "mul_literals" (formula "6") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "6") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "29"))
+ (rule "mul_literals" (formula "29") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "28"))
+ (rule "mul_literals" (formula "28") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1"))
+ (rule "polySimp_rightDist" (formula "32") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
+ (rule "mul_literals" (formula "5") (term "1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1"))
+ (rule "polySimp_rightDist" (formula "34") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,0,1"))
+ (rule "mul_literals" (formula "34") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
+ (rule "mul_literals" (formula "8") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "3"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "3"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6"))
+ (rule "leq_literals" (formula "27") (term "0"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "true_left" (formula "27"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "mul_literals" (formula "27") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0"))
+ (rule "add_zero_right" (formula "21") (term "0,0"))
+ (rule "qeq_literals" (formula "21") (term "0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "true_left" (formula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "12"))
+ (rule "polySimp_mulComm0" (formula "10") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "10") (term "0"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "10") (term "1"))
+ (rule "polySimp_rightDist" (formula "10") (term "1"))
+ (rule "mul_literals" (formula "10") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "10") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "30"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "32") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "32"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "0"))
+ (rule "polySimp_elimOne" (formula "32") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "1"))
+ (rule "andLeft" (formula "32"))
+ (rule "inEqSimp_homoInEq1" (formula "32"))
+ (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "32") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "32") (term "0,1,0"))
+ (rule "mul_literals" (formula "32") (term "0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm1" (formula "32") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "1,1,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0"))
+ (rule "add_zero_right" (formula "32") (term "0"))
+ (rule "polySimp_addAssoc" (formula "32") (term "0"))
+ (rule "polySimp_addComm0" (formula "32") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "32") (term "0"))
+ (rule "add_literals" (formula "32") (term "1,1,0"))
+ (rule "times_zero_1" (formula "32") (term "1,0"))
+ (rule "add_literals" (formula "32") (term "0"))
+ (rule "leq_literals" (formula "32"))
+ (rule "closeFalse" (formula "32"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (rule "impLeft" (formula "31"))
+ (branch "Case 1"
+ (rule "hide_left" (formula "22") (userinteraction))
+ (rule "hide_left" (formula "12") (userinteraction))
+ (rule "hide_left" (formula "1") (userinteraction))
+ (rule "hide_left" (formula "1") (userinteraction))
+ (rule "allRight" (formula "32") (inst "sk=j_0"))
+ (rule "impRight" (formula "32"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0"))
+ (rule "polySimp_addComm1" (formula "29") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "29") (term "0,0,0"))
+ (rule "add_literals" (formula "29") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "29") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_gtToGeq" (formula "25"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "26"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "4") (term "0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addComm1" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "27") (term "0,0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "2"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1"))
+ (rule "polySimp_rightDist" (formula "5") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "1,1"))
+ (rule "mul_literals" (formula "5") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "5") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "29"))
+ (rule "polySimp_mulComm0" (formula "29") (term "1"))
+ (rule "polySimp_rightDist" (formula "29") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "29") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "29") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "29") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1"))
+ (rule "polySimp_rightDist" (formula "12") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1"))
+ (rule "mul_literals" (formula "12") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "mul_literals" (formula "26") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "4"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "0"))
+ (rule "polySimp_elimOne" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "27"))
+ (rule "polySimp_mulComm0" (formula "27") (term "1"))
+ (rule "polySimp_rightDist" (formula "27") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "27") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "27") (term "0,1"))
+ (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_mulComm0" (formula "7") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "7") (term "1,0,0"))
+ (rule "mul_literals" (formula "7") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "7") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "7") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "17"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6"))
+ (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "2"))
+ (rule "polySimp_rightDist" (formula "12") (term "0"))
+ (rule "polySimp_homoEq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0"))
+ (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "qeq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "3") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "3"))
+ (rule "polySimp_pullOutFactor1" (formula "3") (term "0"))
+ (rule "add_literals" (formula "3") (term "1,0"))
+ (rule "times_zero_1" (formula "3") (term "0"))
+ (rule "leq_literals" (formula "3"))
+ (rule "true_left" (formula "3"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "6"))
+ (rule "polySimp_mulComm0" (formula "6") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "6") (term "1,0"))
+ (rule "mul_literals" (formula "6") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "applyEq" (formula "8") (term "1") (ifseqformula "2"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "26") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "26") (term "0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0"))
+ (rule "mul_literals" (formula "26") (term "0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "26") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "26") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "26"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "0"))
+ (rule "polySimp_elimOne" (formula "26") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6"))
+ (rule "leq_literals" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "27"))
+ (rule "mul_literals" (formula "25") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "25") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "polySimp_mulComm0" (formula "25") (term "1"))
+ (rule "polySimp_rightDist" (formula "25") (term "1"))
+ (rule "mul_literals" (formula "25") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "25") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "25") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
+ (rule "mul_literals" (formula "8") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "8") (term "0"))
+ (rule "add_literals" (formula "8") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "8"))
+ (rule "mul_literals" (formula "8") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "9"))
+ (rule "polySimp_rightDist" (formula "6") (term "0,0"))
+ (rule "mul_literals" (formula "6") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "6") (term "0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "6"))
+ (rule "polySimp_mulLiterals" (formula "6") (term "0"))
+ (rule "polySimp_elimOne" (formula "6") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "2") (term "1,0,0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0"))
+ (rule "add_zero_right" (formula "2") (term "0,0,1,0,0"))
+ (rule "qeq_literals" (formula "2") (term "0,1,0,0"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6"))
+ (rule "times_zero_1" (formula "5") (term "0,0"))
+ (rule "add_zero_left" (formula "5") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "nnf_ex2all" (formula "33"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "1") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0"))
+ (rule "nnf_notAnd" (formula "1") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0"))
+ (rule "commute_or" (formula "16") (term "0,0"))
+ (rule "arrayLengthIsAShort" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "commute_and" (formula "16") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "j_0 = 0 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "2"))
+ (rule "add_literals" (formula "7") (term "1"))
+ (rule "applyEq" (formula "6") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "6"))
+ (rule "times_zero_2" (formula "6") (term "1,0"))
+ (rule "add_zero_right" (formula "6") (term "0"))
+ (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "2"))
+ (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "3") (term "0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "5"))
+ (rule "mul_literals" (formula "5") (term "1"))
+ (rule "ex_pull_out3" (formula "12") (term "0"))
+ (rule "cnf_rightDist" (formula "12") (term "0,0"))
+ (rule "commute_or" (formula "12") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "12") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "1,0,0,0"))
+ (rule "commute_and_2" (formula "12") (term "0,0"))
+ (rule "commute_and" (formula "12") (term "0,0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1"))
+ (rule "eqSymm" (formula "1") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "10"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "allLeft" (formula "12") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "exLeft" (formula "12") (inst "sk=k_0"))
+ (rule "andLeft" (formula "12"))
+ (rule "andLeft" (formula "12"))
+ (rule "inEqSimp_commuteGeq" (formula "14") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "12") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "13") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "13") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "13") (term "0,0"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_contradInEq1" (formula "12") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "12") (term "0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "pullOutSelect" (formula "12") (term "1") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "12"))
+ (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "33")))
+ (rule "simplifySelectOfAnon" (formula "13"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "34")))
+ (rule "elementOfArrayRangeConcrete" (formula "12") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "leq_literals" (formula "12") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "dismissNonSelectedField" (formula "13") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "13") (term "0,1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "ifthenelse_negated" (formula "12") (term "0"))
+ (rule "elementOfArrayRangeConcrete" (formula "13") (term "0,0"))
+ (rule "replace_known_right" (formula "13") (term "0,0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "simplifySelectOfStore" (formula "13"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "castDel" (formula "13") (term "1,0"))
+ (rule "eqSymm" (formula "13") (term "0,0,0"))
+ (rule "eqSymm" (formula "13") (term "1,0,0"))
+ (rule "replace_known_right" (formula "13") (term "0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "applyEqReverse" (formula "12") (term "1") (ifseqformula "13"))
+ (rule "hideAuxiliaryEq" (formula "13"))
+ (rule "dismissNonSelectedField" (formula "12") (term "0,0,0"))
+ (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "pullOutSelect" (formula "12") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "12"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "castDel" (formula "12") (term "0"))
+ (rule "applyEqReverse" (formula "13") (term "0") (ifseqformula "12"))
+ (rule "hideAuxiliaryEq" (formula "12"))
+ (rule "applyEq" (formula "30") (term "0") (ifseqformula "12"))
+ (rule "eqSymm" (formula "30"))
+ (rule "applyEq" (formula "1") (term "3,0,0,0,0,1,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "15") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "12"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "12"))
+ (rule "allLeft" (formula "1") (inst "t=k_0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "15"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35")))
+ (rule "eqSymm" (formula "31"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "j_0 = 0 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "30"))
+ (rule "add_zero_right" (formula "5") (term "1"))
+ (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "5"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "29") (term "1,0,0"))
+ (rule "add_zero_right" (formula "29") (term "0,0"))
+ (rule "leq_literals" (formula "29") (term "0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "false_right" (formula "29"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4"))
+ (rule "leq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "ex_pull_out3" (formula "14") (term "0"))
+ (rule "cnf_rightDist" (formula "14") (term "0,0"))
+ (rule "commute_or" (formula "14") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "14") (term "0,0,0"))
+ (rule "commute_or" (formula "14") (term "1,0,0,0"))
+ (rule "commute_and_2" (formula "14") (term "0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1"))
+ (rule "eqSymm" (formula "1") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
(rule "add_zero_right" (formula "1") (term "0,0,0"))
- (rule "polySimp_homoEq" (formula "36"))
- (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0"))
- (rule "polySimp_rightDist" (formula "9") (term "1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0"))
- (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0"))
- (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "1,1,0"))
- (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
- (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "1,1,0"))
- (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0"))
- (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0"))
- (rule "mul_literals" (formula "36") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "9") (term "0"))
- (rule "inEqSimp_ltRight" (formula "32"))
- (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
- (rule "polySimp_addComm0" (formula "1") (term "0"))
- (rule "polySimp_addAssoc" (formula "36") (term "1,0"))
- (rule "polySimp_pullOutFactor3b" (formula "36") (term "0,1,0"))
- (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "36") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "30"))
- (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "27"))
- (rule "times_zero_1" (formula "27") (term "1,0,0"))
- (rule "add_zero_right" (formula "27") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "28"))
- (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "4"))
- (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "11"))
- (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "13") (term "0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "26"))
- (rule "times_zero_1" (formula "26") (term "1,0,0"))
- (rule "add_zero_right" (formula "26") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "36") (term "0,0"))
- (rule "polySimp_addComm1" (formula "36") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0"))
- (rule "add_literals" (formula "36") (term "1,1,0,0"))
- (rule "polySimp_addComm0" (formula "36") (term "0,0,0"))
- (rule "close" (formula "36") (ifseqformula "10"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "commute_and" (formula "14") (term "0,0,0"))
+ (rule "allLeft" (formula "14") (inst "t=j_0"))
+ (rule "replaceKnownSelect_taclet0100010012010012_9" (formula "14") (term "1,1,0,0,0"))
+ (rule "replaceKnownAuxiliaryConstant_taclet10100010012010012_12" (formula "14") (term "1,1,0,0,0"))
+ (rule "exLeft" (formula "14") (inst "sk=k_0"))
+ (rule "andLeft" (formula "14"))
+ (rule "andLeft" (formula "14"))
+ (rule "inEqSimp_commuteGeq" (formula "16") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "14") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "15") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0,0") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "14") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0,0") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "16") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "5"))
+ (rule "qeq_literals" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0"))
+ (rule "add_literals" (formula "14") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "14") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "14") (term "0,0,0"))
+ (rule "leq_literals" (formula "14") (term "0,0"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0,0"))
+ (rule "leq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "7"))
+ (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0"))
+ (rule "leq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "14"))
+ (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "36")))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15"))
+ (rule "hideAuxiliaryEq" (formula "15"))
+ (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0,0"))
+ (rule "replace_known_right" (formula "14") (term "0,0,0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "dismissNonSelectedField" (formula "14") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "14") (term "0,0,0") (ifseqformula "20"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "14"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "castDel" (formula "14") (term "1,0"))
+ (rule "eqSymm" (formula "15"))
+ (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15"))
+ (rule "hideAuxiliaryEq" (formula "15"))
+ (rule "eqSymm" (formula "14") (term "1,0,0"))
+ (rule "eqSymm" (formula "14") (term "0,0,0"))
+ (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "33"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "eqSymm" (formula "14"))
+ (rule "applyEq" (formula "32") (term "0") (ifseqformula "14"))
+ (rule "eqSymm" (formula "32"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "14"))
+ (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16"))
+ (rule "polySimp_mulComm0" (formula "15") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "15"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1"))
+ (rule "polySimp_rightDist" (formula "15") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "15") (term "1,1"))
+ (rule "mul_literals" (formula "15") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "15") (term "1,1"))
+ (rule "allLeft" (formula "17") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "17") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "exLeft" (formula "17") (inst "sk=k_1"))
+ (rule "andLeft" (formula "17"))
+ (rule "andLeft" (formula "17"))
+ (rule "inEqSimp_commuteGeq" (formula "19") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "18") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "17") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "pullOutSelect" (formula "17") (term "1") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "17"))
+ (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "38")))
+ (rule "simplifySelectOfAnon" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "39")))
+ (rule "dismissNonSelectedField" (formula "17") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,1,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0,0"))
+ (rule "replace_known_right" (formula "18") (term "0,0,0,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "leq_literals" (formula "17") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "simplifySelectOfStore" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "castDel" (formula "17") (term "0"))
+ (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "17"))
+ (rule "hideAuxiliaryEq" (formula "17"))
+ (rule "dismissNonSelectedField" (formula "17") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "pullOutSelect" (formula "17") (term "0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfStore" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "castDel" (formula "17") (term "1,0"))
+ (rule "eqSymm" (formula "18"))
+ (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "eqSymm" (formula "17") (term "1"))
+ (rule "eqSymm" (formula "17") (term "0,0"))
+ (rule "eqSymm" (formula "17") (term "1,0"))
+ (rule "replace_known_right" (formula "17") (term "0,0") (ifseqformula "36"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "applyEq" (formula "20") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "1") (term "3,0,0,0,0,1,0") (ifseqformula "17"))
+ (rule "applyEq" (formula "20") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "17"))
+ (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "19"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1"))
+ (rule "mul_literals" (formula "18") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,1"))
+ (rule "allLeft" (formula "20") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "leq_literals" (formula "20") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "leq_literals" (formula "20") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "exLeft" (formula "20") (inst "sk=k_2"))
+ (rule "andLeft" (formula "20"))
+ (rule "andLeft" (formula "20"))
+ (rule "inEqSimp_commuteGeq" (formula "22") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "20") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "21") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "8"))
+ (rule "qeq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "pullOutSelect" (formula "20") (term "1") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "42")))
+ (rule "simplifySelectOfAnon" (formula "20"))
+ (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "41")))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0,0"))
+ (rule "replace_known_right" (formula "21") (term "0,0,0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "leq_literals" (formula "20") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "simplifySelectOfStore" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "castDel" (formula "21") (term "1,0"))
+ (rule "eqSymm" (formula "21") (term "1,0,0"))
+ (rule "eqSymm" (formula "21") (term "0,0,0"))
+ (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "40"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "21"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "ifthenelse_negated" (formula "20") (term "0"))
+ (rule "dismissNonSelectedField" (formula "20") (term "0,0,0"))
+ (rule "replace_known_left" (formula "20") (term "0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfStore" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "castDel" (formula "20") (term "0"))
+ (rule "applyEqReverse" (formula "21") (term "0") (ifseqformula "20"))
+ (rule "hideAuxiliaryEq" (formula "20"))
+ (rule "eqSymm" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22"))
+ (rule "polySimp_mulComm0" (formula "21") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "21") (term "0"))
+ (rule "polySimp_addComm0" (formula "21") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "21"))
+ (rule "polySimp_mulComm0" (formula "21") (term "1"))
+ (rule "polySimp_rightDist" (formula "21") (term "1"))
+ (rule "mul_literals" (formula "21") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "21") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "21") (term "1,1"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "eqSymm" (formula "39"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "38"))
+ (rule "allLeft" (formula "1") (inst "t=k_0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "17"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "16"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")))
+ (rule "eqSymm" (formula "39"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "27"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")))
+ (rule "closeFalse" (formula "1"))
)
)
- (branch
- (rule "impRight" (formula "36"))
- (rule "polySimp_homoEq" (formula "2") (term "0,0"))
- (rule "times_zero_2" (formula "2") (term "1,0,0,0"))
- (rule "add_zero_right" (formula "2") (term "0,0,0"))
- (rule "polySimp_homoEq" (formula "10"))
- (rule "polySimp_mulComm0" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,1,0"))
- (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0"))
- (rule "mul_literals" (formula "10") (term "0,0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0"))
- (rule "polySimp_addAssoc" (formula "10") (term "0,0"))
- (rule "polySimp_addComm0" (formula "10") (term "0,0,0"))
- (rule "inEqSimp_ltRight" (formula "37"))
- (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "1") (term "0"))
- (rule "inEqSimp_ltRight" (formula "34"))
+ (branch "Case 2"
+ (rule "hide_left" (formula "22") (userinteraction))
+ (rule "hide_left" (formula "1") (userinteraction))
+ (rule "hide_left" (formula "1") (userinteraction))
+ (rule "hide_left" (formula "10") (userinteraction))
+ (rule "allRight" (formula "32") (inst "sk=j_0"))
+ (rule "impRight" (formula "32"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_homoEq" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0"))
+ (rule "mul_literals" (formula "9") (term "0,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0,0"))
+ (rule "inEqSimp_ltRight" (formula "30"))
(rule "polySimp_mulComm0" (formula "1") (term "0,0"))
(rule "polySimp_addComm0" (formula "1") (term "0"))
- (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0"))
- (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0"))
- (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0"))
- (rule "add_literals" (formula "15") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1,0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0"))
+ (rule "polySimp_addComm1" (formula "28") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "28") (term "0,0,0"))
+ (rule "add_literals" (formula "28") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "28") (term "0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_ltToLeq" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1,0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "25"))
+ (rule "times_zero_1" (formula "25") (term "1,0,0"))
+ (rule "add_zero_right" (formula "25") (term "0,0"))
+ (rule "inEqSimp_gtToGeq" (formula "24"))
+ (rule "times_zero_1" (formula "24") (term "1,0,0"))
+ (rule "add_zero_right" (formula "24") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "polySimp_addComm1" (formula "26") (term "0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0"))
(rule "inEqSimp_ltToLeq" (formula "3"))
(rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
- (rule "polySimp_addAssoc" (formula "3") (term "0"))
- (rule "polySimp_addComm1" (formula "3") (term "0,0"))
- (rule "add_literals" (formula "3") (term "0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "30"))
- (rule "polySimp_mulComm0" (formula "30") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "29"))
- (rule "times_zero_1" (formula "29") (term "1,0,0"))
- (rule "add_literals" (formula "29") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "13"))
- (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "32"))
- (rule "polySimp_mulComm0" (formula "32") (term "1,0,0"))
- (rule "inEqSimp_ltToLeq" (formula "6"))
- (rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
- (rule "inEqSimp_gtToGeq" (formula "28"))
- (rule "times_zero_1" (formula "28") (term "1,0,0"))
- (rule "add_literals" (formula "28") (term "0,0"))
- (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
- (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0"))
- (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0"))
- (rule "polySimp_addComm1" (formula "15") (term "0,1,0"))
+ (rule "polySimp_addComm1" (formula "3") (term "0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0,0,0"))
+ (rule "add_literals" (formula "26") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "26") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "30"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0"))
(rule "polySimp_addAssoc" (formula "30") (term "0"))
- (rule "polySimp_addComm1" (formula "30") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0"))
- (rule "polySimp_addComm1" (formula "32") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "30") (term "0,0,0"))
- (rule "add_literals" (formula "30") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "30") (term "0,0,0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
- (rule "add_literals" (formula "32") (term "0,0,0,0"))
- (rule "add_zero_left" (formula "32") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "34") (term "0"))
- (rule "polySimp_mulComm0" (formula "34") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
- (rule "mul_literals" (formula "34") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "34") (term "0,0"))
- (rule "polySimp_addComm0" (formula "34") (term "0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0"))
- (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0"))
- (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0"))
- (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0"))
- (rule "add_literals" (formula "5") (term "0,0,0,1,0,0"))
- (rule "add_zero_left" (formula "5") (term "0,0,1,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0"))
- (rule "mul_literals" (formula "5") (term "1,0,0,0,0"))
- (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0"))
- (rule "add_literals" (formula "5") (term "0,0,0,0,0"))
- (rule "inEqSimp_homoInEq0" (formula "34") (term "1"))
- (rule "polySimp_mulComm0" (formula "34") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "1,0,1"))
- (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,1"))
- (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,1"))
- (rule "polySimp_addAssoc" (formula "34") (term "0,1"))
- (rule "polySimp_addComm0" (formula "34") (term "0,0,1"))
- (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0"))
- (rule "mul_literals" (formula "4") (term "1,0,0"))
- (rule "polySimp_sepNegMonomial" (formula "12"))
- (rule "polySimp_mulLiterals" (formula "12") (term "0"))
- (rule "polySimp_elimOne" (formula "12") (term "0"))
- (rule "applyEq" (formula "34") (term "0,1,0,1") (ifseqformula "12"))
- (rule "polySimp_mulComm0" (formula "34") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "1,0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0,1"))
- (rule "mul_literals" (formula "34") (term "0,0,0,1,0,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0,1"))
- (rule "polySimp_addComm1" (formula "34") (term "0,1"))
- (rule "polySimp_addAssoc" (formula "34") (term "0,0,1"))
- (rule "polySimp_addComm0" (formula "34") (term "0,0,0,1"))
- (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1"))
- (rule "add_literals" (formula "34") (term "1,1,0,0,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "2"))
- (rule "polySimp_mulComm0" (formula "2") (term "1"))
- (rule "polySimp_rightDist" (formula "2") (term "1"))
- (rule "polySimp_mulAssoc" (formula "2") (term "0,1"))
- (rule "polySimp_mulComm0" (formula "2") (term "0,0,1"))
- (rule "polySimp_mulLiterals" (formula "2") (term "0,1"))
- (rule "polySimp_elimOne" (formula "2") (term "0,1"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0"))
+ (rule "polySimp_sepNegMonomial" (formula "10"))
+ (rule "polySimp_mulLiterals" (formula "10") (term "0"))
+ (rule "polySimp_elimOne" (formula "10") (term "0"))
+ (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "10"))
+ (rule "polySimp_mulComm0" (formula "30") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1,0"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "30") (term "0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "30") (term "0"))
+ (rule "polySimp_addAssoc" (formula "30") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "30") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0"))
+ (rule "add_literals" (formula "30") (term "1,1,0,0"))
(rule "inEqSimp_sepNegMonomial1" (formula "1"))
(rule "polySimp_mulLiterals" (formula "1") (term "0"))
(rule "polySimp_elimOne" (formula "1") (term "0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0"))
- (rule "mul_literals" (formula "15") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "3"))
- (rule "polySimp_mulComm0" (formula "3") (term "1"))
- (rule "polySimp_rightDist" (formula "3") (term "1"))
- (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
- (rule "mul_literals" (formula "3") (term "0,1"))
- (rule "polySimp_elimOne" (formula "3") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "29"))
- (rule "mul_literals" (formula "29") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "13"))
- (rule "polySimp_mulComm0" (formula "13") (term "1"))
- (rule "polySimp_rightDist" (formula "13") (term "1"))
- (rule "mul_literals" (formula "13") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
- (rule "polySimp_elimOne" (formula "13") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "6"))
- (rule "polySimp_mulComm0" (formula "6") (term "1"))
- (rule "polySimp_rightDist" (formula "6") (term "1"))
- (rule "mul_literals" (formula "6") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "6") (term "1,1"))
- (rule "polySimp_elimOne" (formula "6") (term "1,1"))
- (rule "inEqSimp_sepPosMonomial1" (formula "28"))
- (rule "mul_literals" (formula "28") (term "1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
- (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
- (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
- (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
- (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
- (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
- (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0"))
- (rule "polySimp_elimOne" (formula "15") (term "0,1,0"))
- (rule "inEqSimp_sepPosMonomial0" (formula "30"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1"))
+ (rule "polySimp_rightDist" (formula "11") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1"))
+ (rule "mul_literals" (formula "11") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "28"))
+ (rule "polySimp_mulComm0" (formula "28") (term "1"))
+ (rule "polySimp_rightDist" (formula "28") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "28") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "28") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "28") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "25"))
+ (rule "mul_literals" (formula "25") (term "1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "24"))
+ (rule "mul_literals" (formula "24") (term "1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "3"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "polySimp_mulComm0" (formula "26") (term "0,1"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "30"))
(rule "polySimp_mulComm0" (formula "30") (term "1"))
(rule "polySimp_rightDist" (formula "30") (term "1"))
(rule "polySimp_mulLiterals" (formula "30") (term "1,1"))
(rule "polySimp_elimOne" (formula "30") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "30") (term "0,1"))
- (rule "inEqSimp_sepPosMonomial0" (formula "32"))
- (rule "polySimp_mulComm0" (formula "32") (term "1"))
- (rule "polySimp_rightDist" (formula "32") (term "1"))
- (rule "polySimp_mulLiterals" (formula "32") (term "1,1"))
- (rule "polySimp_elimOne" (formula "32") (term "1,1"))
- (rule "polySimp_mulComm0" (formula "32") (term "0,1"))
- (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0"))
- (rule "polySimp_mulLiterals" (formula "34") (term "0,0"))
- (rule "polySimp_elimOne" (formula "34") (term "0,0"))
- (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "3"))
- (builtin "One Step Simplification" (formula "34"))
- (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0"))
- (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0"))
- (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0"))
- (rule "mul_literals" (formula "5") (term "1,0,0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "34"))
- (rule "polySimp_mulComm0" (formula "34") (term "1"))
- (rule "polySimp_rightDist" (formula "34") (term "1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,1"))
- (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1"))
- (rule "polySimp_elimOne" (formula "34") (term "1,0,1"))
- (rule "polySimp_rightDist" (formula "34") (term "0,0,1"))
- (rule "mul_literals" (formula "34") (term "0,0,0,1"))
- (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6"))
- (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
- (rule "polySimp_mulComm0" (formula "8") (term "1,0,0"))
- (rule "polySimp_rightDist" (formula "8") (term "1,0,0"))
- (rule "mul_literals" (formula "8") (term "0,1,0,0"))
- (rule "polySimp_addAssoc" (formula "8") (term "0,0"))
- (rule "polySimp_addComm0" (formula "8") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
- (rule "add_literals" (formula "8") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "8") (term "1,0,0"))
- (rule "add_zero_right" (formula "8") (term "0,0"))
- (rule "qeq_literals" (formula "8") (term "0"))
- (builtin "One Step Simplification" (formula "8"))
- (rule "true_left" (formula "8"))
- (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "3"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1"))
+ (rule "polySimp_elimOne" (formula "30") (term "1,0,1"))
+ (rule "polySimp_rightDist" (formula "30") (term "0,0,1"))
+ (rule "mul_literals" (formula "30") (term "0,0,0,1"))
+ (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4"))
(rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
(rule "polySimp_mulComm0" (formula "6") (term "1,0,0"))
(rule "polySimp_rightDist" (formula "6") (term "1,0,0"))
(rule "mul_literals" (formula "6") (term "0,1,0,0"))
(rule "polySimp_addAssoc" (formula "6") (term "0,0"))
- (rule "polySimp_addComm1" (formula "6") (term "0,0,0"))
- (rule "add_literals" (formula "6") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "6") (term "0,0,0"))
(rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
(rule "add_literals" (formula "6") (term "1,1,0,0"))
(rule "times_zero_1" (formula "6") (term "1,0,0"))
@@ -8644,98 +14698,988 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "qeq_literals" (formula "6") (term "0"))
(builtin "One Step Simplification" (formula "6"))
(rule "true_left" (formula "6"))
- (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "3"))
+ (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11"))
+ (rule "polySimp_mulComm0" (formula "9") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "9") (term "0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "9") (term "1"))
+ (rule "polySimp_rightDist" (formula "9") (term "1"))
+ (rule "mul_literals" (formula "9") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "9") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "9") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "qeq_literals" (formula "20") (term "0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "true_left" (formula "20"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5"))
(rule "mul_literals" (formula "6") (term "0,0"))
(rule "polySimp_addAssoc" (formula "6") (term "0"))
(rule "add_literals" (formula "6") (term "0,0"))
(rule "inEqSimp_sepPosMonomial1" (formula "6"))
(rule "mul_literals" (formula "6") (term "1"))
- (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6"))
- (rule "leq_literals" (formula "27") (term "0"))
- (builtin "One Step Simplification" (formula "27"))
- (rule "true_left" (formula "27"))
- (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30"))
- (rule "mul_literals" (formula "27") (term "0,0"))
- (rule "polySimp_addAssoc" (formula "27") (term "0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "27"))
- (rule "polySimp_mulComm0" (formula "27") (term "1"))
- (rule "polySimp_rightDist" (formula "27") (term "1"))
- (rule "polySimp_mulLiterals" (formula "27") (term "1,1"))
- (rule "mul_literals" (formula "27") (term "0,1"))
- (rule "polySimp_elimOne" (formula "27") (term "1,1"))
- (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27"))
- (rule "inEqSimp_homoInEq0" (formula "21") (term "0"))
- (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0"))
- (rule "add_literals" (formula "21") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "21") (term "1,0,0"))
- (rule "add_zero_right" (formula "21") (term "0,0"))
- (rule "qeq_literals" (formula "21") (term "0"))
- (builtin "One Step Simplification" (formula "21"))
- (rule "true_left" (formula "21"))
+ (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "6"))
+ (rule "leq_literals" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
(rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9"))
(rule "mul_literals" (formula "8") (term "0,0"))
(rule "inEqSimp_sepPosMonomial1" (formula "8"))
(rule "mul_literals" (formula "8") (term "1"))
- (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "30"))
- (rule "polySimp_rightDist" (formula "2") (term "0,0"))
- (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0"))
- (rule "polySimp_elimOne" (formula "2") (term "1,0,0"))
- (rule "polySimp_mulComm0" (formula "2") (term "0,0,0"))
- (rule "polySimp_addComm1" (formula "2") (term "0"))
- (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
- (rule "polySimp_addComm0" (formula "2") (term "0,0,0"))
- (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0"))
- (rule "add_literals" (formula "2") (term "1,1,0,0"))
- (rule "times_zero_1" (formula "2") (term "1,0,0"))
- (rule "add_zero_right" (formula "2") (term "0,0"))
- (rule "inEqSimp_sepPosMonomial1" (formula "2"))
- (rule "polySimp_mulLiterals" (formula "2") (term "1"))
- (rule "polySimp_elimOne" (formula "2") (term "1"))
- (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28"))
- (rule "polySimp_rightDist" (formula "32") (term "0,0"))
- (rule "polySimp_addComm1" (formula "32") (term "0"))
- (rule "polySimp_rightDist" (formula "32") (term "0,0,0"))
- (rule "polySimp_addComm1" (formula "32") (term "0,0"))
- (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0"))
- (rule "mul_literals" (formula "32") (term "0,0,0,0,0"))
- (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0"))
- (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0,0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0"))
- (rule "add_literals" (formula "32") (term "1,1,0,0,0,0"))
- (rule "times_zero_1" (formula "32") (term "1,0,0,0,0"))
- (rule "add_literals" (formula "32") (term "0,0,0,0"))
- (rule "inEqSimp_sepNegMonomial1" (formula "32"))
- (rule "polySimp_mulLiterals" (formula "32") (term "0"))
- (rule "polySimp_elimOne" (formula "32") (term "0"))
- (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "2"))
- (rule "andLeft" (formula "32"))
- (rule "inEqSimp_homoInEq1" (formula "32"))
- (rule "polySimp_mulComm0" (formula "32") (term "1,0"))
- (rule "polySimp_rightDist" (formula "32") (term "1,0"))
- (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0"))
- (rule "polySimp_elimOne" (formula "32") (term "1,1,0"))
- (rule "polySimp_rightDist" (formula "32") (term "0,1,0"))
- (rule "mul_literals" (formula "32") (term "0,0,1,0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0"))
- (rule "polySimp_addComm1" (formula "32") (term "0,0"))
- (rule "polySimp_pullOutFactor2b" (formula "32") (term "0"))
- (rule "add_literals" (formula "32") (term "1,1,0"))
- (rule "times_zero_1" (formula "32") (term "1,0"))
- (rule "add_zero_right" (formula "32") (term "0"))
- (rule "polySimp_addAssoc" (formula "32") (term "0"))
- (rule "polySimp_addComm0" (formula "32") (term "0,0"))
- (rule "polySimp_pullOutFactor1b" (formula "32") (term "0"))
- (rule "add_literals" (formula "32") (term "1,1,0"))
- (rule "times_zero_1" (formula "32") (term "1,0"))
- (rule "add_literals" (formula "32") (term "0"))
- (rule "leq_literals" (formula "32"))
- (rule "closeFalse" (formula "32"))
+ (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0"))
+ (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "27"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "31") (term "0,0"))
+ (rule "polySimp_rightDist" (formula "31") (term "0,0,0,0"))
+ (rule "mul_literals" (formula "31") (term "0,0,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_elimOne" (formula "31") (term "1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "31") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0"))
+ (rule "add_literals" (formula "31") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "31") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "31") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "31"))
+ (rule "polySimp_mulLiterals" (formula "31") (term "0"))
+ (rule "polySimp_elimOne" (formula "31") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "29"))
+ (rule "mul_literals" (formula "26") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "26") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "26"))
+ (rule "polySimp_mulComm0" (formula "26") (term "1"))
+ (rule "polySimp_rightDist" (formula "26") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "26") (term "1,1"))
+ (rule "mul_literals" (formula "26") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "26") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "10"))
+ (rule "polySimp_rightDist" (formula "5") (term "0,0"))
+ (rule "mul_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "5"))
+ (rule "polySimp_mulLiterals" (formula "5") (term "0"))
+ (rule "polySimp_elimOne" (formula "5") (term "0"))
+ (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "32"))
+ (rule "mul_literals" (formula "27") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0"))
+ (rule "polySimp_addAssoc" (formula "27") (term "0,0"))
+ (rule "add_literals" (formula "27") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "27"))
+ (rule "polySimp_mulLiterals" (formula "27") (term "0"))
+ (rule "polySimp_elimOne" (formula "27") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "15") (term "0,0,0"))
+ (rule "add_literals" (formula "15") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "times_zero_1" (formula "4") (term "0,0"))
+ (rule "add_zero_left" (formula "4") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "26"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1"))
+ (rule "mul_literals" (formula "13") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "12") (term "0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0"))
+ (rule "add_literals" (formula "12") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "12") (term "1,0,0"))
+ (rule "add_zero_right" (formula "12") (term "0,0"))
+ (rule "qeq_literals" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "true_left" (formula "12"))
+ (rule "nnf_ex2all" (formula "37"))
+ (rule "nnf_imp2or" (formula "16") (term "0"))
+ (rule "nnf_notAnd" (formula "1") (term "0"))
+ (rule "nnf_notAnd" (formula "16") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "16") (term "0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0"))
+ (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "1,1,0,0"))
+ (rule "nnf_notAnd" (formula "1") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0"))
+ (rule "commute_or" (formula "16") (term "0,0"))
+ (rule "arrayLengthNotNegative" (formula "25") (term "0"))
+ (rule "arrayLengthIsAShort" (formula "25") (term "0"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "true_left" (formula "25"))
+ (rule "arrayLengthIsAShort" (formula "24") (term "0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "true_left" (formula "24"))
+ (rule "arrayLengthNotNegative" (formula "24") (term "0"))
+ (rule "commute_and" (formula "16") (term "0,0,1,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "j_0 = 0 TRUE"
+ (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEq" (formula "3") (term "0,1,0,0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0"))
+ (rule "times_zero_2" (formula "3") (term "1,0,1,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,1,0,0"))
+ (rule "applyEqRigid" (formula "3") (term "0,0,0,0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "5"))
+ (rule "times_zero_2" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "2"))
+ (rule "add_zero_right" (formula "6") (term "1"))
+ (rule "applyEq" (formula "4") (term "0") (ifseqformula "2"))
+ (rule "qeq_literals" (formula "4"))
+ (rule "true_left" (formula "4"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "ex_pull_out3" (formula "12") (term "0"))
+ (rule "cnf_rightDist" (formula "12") (term "0,0"))
+ (rule "commute_or" (formula "12") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "12") (term "0,0,0"))
+ (rule "commute_or" (formula "12") (term "1,0,0,0"))
+ (rule "commute_and_2" (formula "12") (term "0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1"))
+ (rule "eqSymm" (formula "1") (term "0,1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "commute_and" (formula "12") (term "0,0,0"))
+ (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0"))
+ (rule "inEqSimp_invertInEq1" (formula "1") (term "0,0"))
+ (rule "times_zero_2" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "28"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "25"))
+ (rule "qeq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "31") (term "0") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36")))
+ (rule "eqSymm" (formula "32"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "34"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32")))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch "j_0 = 0 FALSE"
+ (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_strengthen1" (formula "4") (ifseqformula "34"))
+ (rule "add_zero_right" (formula "4") (term "1"))
+ (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "2"))
+ (rule "inEqSimp_contradEq7" (formula "34") (ifseqformula "4"))
+ (rule "times_zero_1" (formula "34") (term "1,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0"))
+ (rule "leq_literals" (formula "34") (term "0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "false_right" (formula "34"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "4"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8"))
+ (rule "mul_literals" (formula "4") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "4") (term "0"))
+ (rule "add_literals" (formula "4") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "4"))
+ (rule "mul_literals" (formula "4") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "4"))
+ (rule "leq_literals" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "ex_pull_out3" (formula "15") (term "0"))
+ (rule "cnf_rightDist" (formula "15") (term "0,0"))
+ (rule "commute_or" (formula "15") (term "1,0,0"))
+ (rule "cnf_rightDist" (formula "15") (term "0,0,0"))
+ (rule "commute_or" (formula "15") (term "1,0,0,0"))
+ (rule "commute_and_2" (formula "15") (term "0,0"))
+ (rule "ifthenelse_split" (formula "2") (term "0"))
+ (branch "j_0 ≤ -1 + count TRUE"
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2"))
+ (rule "mul_literals" (formula "6") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "6") (term "0"))
+ (rule "add_literals" (formula "6") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "6"))
+ (rule "mul_literals" (formula "6") (term "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "4"))
+ (rule "leq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "commute_and" (formula "15") (term "0,0,0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1"))
+ (rule "eqSymm" (formula "1") (term "0,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "27"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "allLeft" (formula "15") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "15") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "exLeft" (formula "15") (inst "sk=k_0"))
+ (rule "andLeft" (formula "15"))
+ (rule "andLeft" (formula "15"))
+ (rule "inEqSimp_commuteGeq" (formula "17") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "15") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "16") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "inEqSimp_contradInEq1" (formula "15") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "15") (term "0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "pullOutSelect" (formula "15") (term "1") (inst "selectSK=arr_5"))
+ (rule "simplifySelectOfAnon" (formula "15"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "40")))
+ (rule "simplifySelectOfAnon" (formula "16"))
+ (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "41")))
+ (rule "elementOfArrayRangeConcrete" (formula "15") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "leq_literals" (formula "15") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0,0"))
+ (rule "replace_known_right" (formula "16") (term "0,0,0,0,0") (ifseqformula "39"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "ifthenelse_negated" (formula "15") (term "0"))
+ (rule "ifthenelse_negated" (formula "16") (term "0"))
+ (rule "dismissNonSelectedField" (formula "15") (term "0,0,0"))
+ (rule "replace_known_left" (formula "15") (term "0,0") (ifseqformula "23"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "simplifySelectOfStore" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "castDel" (formula "15") (term "0"))
+ (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "15"))
+ (rule "hideAuxiliaryEq" (formula "15"))
+ (rule "dismissNonSelectedField" (formula "15") (term "0,0,0"))
+ (rule "replace_known_left" (formula "15") (term "0,0") (ifseqformula "21"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "pullOutSelect" (formula "15") (term "0") (inst "selectSK=arr_6"))
+ (rule "simplifySelectOfStore" (formula "15"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "castDel" (formula "15") (term "1,0"))
+ (rule "eqSymm" (formula "16"))
+ (rule "applyEqReverse" (formula "15") (term "1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "hideAuxiliaryEq" (formula "16"))
+ (rule "eqSymm" (formula "15") (term "1"))
+ (rule "eqSymm" (formula "15") (term "0,0"))
+ (rule "eqSymm" (formula "15") (term "1,0"))
+ (rule "replace_known_right" (formula "15") (term "0,0") (ifseqformula "38"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "applyEq" (formula "18") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "1") (term "3,0,0,0,0,1,0") (ifseqformula "15"))
+ (rule "applyEq" (formula "18") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "15"))
+ (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17"))
+ (rule "polySimp_mulComm0" (formula "16") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1"))
+ (rule "mul_literals" (formula "16") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "16") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "qeq_literals" (formula "16") (term "0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "true_left" (formula "16"))
+ (rule "allLeft" (formula "18") (inst "t=Z(0(#))"))
+ (rule "leq_literals" (formula "18") (term "0,0,1,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "leq_literals" (formula "18") (term "0,0,1,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "leq_literals" (formula "18") (term "0,0,0,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "exLeft" (formula "18") (inst "sk=k_1"))
+ (rule "andLeft" (formula "18"))
+ (rule "andLeft" (formula "18"))
+ (rule "inEqSimp_commuteGeq" (formula "20") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "19") (term "0"))
+ (rule "inEqSimp_commuteGeq" (formula "18") (term "0"))
+ (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "19") (term "0,0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "10"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "pullOutSelect" (formula "18") (term "1") (inst "selectSK=arr_7"))
+ (rule "simplifySelectOfAnon" (formula "19"))
+ (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "44")))
+ (rule "simplifySelectOfAnon" (formula "18"))
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "43")))
+ (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0,0"))
+ (rule "replace_known_right" (formula "19") (term "0,0,0,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "leq_literals" (formula "18") (term "0,0,0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "ifthenelse_negated" (formula "19") (term "0"))
+ (rule "dismissNonSelectedField" (formula "18") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "18") (term "0,0,0") (ifseqformula "26"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "simplifySelectOfStore" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "castDel" (formula "18") (term "0"))
+ (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18"))
+ (rule "hideAuxiliaryEq" (formula "18"))
+ (rule "dismissNonSelectedField" (formula "18") (term "0,0,0"))
+ (rule "replace_known_left" (formula "18") (term "0,0") (ifseqformula "24"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20"))
+ (rule "polySimp_mulComm0" (formula "19") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0"))
+ (rule "polySimp_addComm0" (formula "19") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "19"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1"))
+ (rule "polySimp_rightDist" (formula "19") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "19") (term "1,1"))
+ (rule "mul_literals" (formula "19") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "19") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "19") (term "0"))
+ (rule "polySimp_mulComm0" (formula "19") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "19") (term "1,0,0"))
+ (rule "mul_literals" (formula "19") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "19") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "19") (term "0,0,0"))
+ (rule "add_literals" (formula "19") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0"))
+ (rule "add_literals" (formula "19") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "19") (term "1,0,0"))
+ (rule "add_zero_right" (formula "19") (term "0,0"))
+ (rule "qeq_literals" (formula "19") (term "0"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "true_left" (formula "19"))
+ (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_8"))
+ (rule "simplifySelectOfStore" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "castDel" (formula "18") (term "1,0"))
+ (rule "eqSymm" (formula "19"))
+ (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "19"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "hideAuxiliaryEq" (formula "19"))
+ (rule "eqSymm" (formula "18") (term "0,0"))
+ (rule "eqSymm" (formula "18") (term "1,0"))
+ (rule "replace_known_right" (formula "18") (term "0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "33"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "1") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "1") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "leq_literals" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=arr_9"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "45")))
+ (rule "eqSymm" (formula "41"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "25"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "simplifySelectOfStore" (formula "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "castDel" (formula "1") (term "1,0"))
+ (rule "eqSymm" (formula "1") (term "0,0,0"))
+ (rule "eqSymm" (formula "1") (term "1,0,0"))
+ (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "43"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "allLeft" (formula "21") (inst "t=j_0"))
+ (rule "exLeft" (formula "21") (inst "sk=k_2"))
+ (rule "andLeft" (formula "21"))
+ (rule "andLeft" (formula "21"))
+ (rule "inEqSimp_commuteGeq" (formula "23") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "21") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0,0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "22") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "1,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "23") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "23") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "1,0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "1,1,0,0,1,0"))
+ (rule "times_zero_1" (formula "21") (term "1,0,0,1,0"))
+ (rule "add_literals" (formula "21") (term "0,0,1,0"))
+ (rule "leq_literals" (formula "21") (term "0,1,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "8"))
+ (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0"))
+ (rule "leq_literals" (formula "22") (term "0,0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "23") (term "0,0"))
+ (builtin "One Step Simplification" (formula "23"))
+ (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "6"))
+ (rule "qeq_literals" (formula "21") (term "0,0"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_10"))
+ (rule "simplifySelectOfAnon" (formula "21"))
+ (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "47")))
+ (rule "eqSymm" (formula "22"))
+ (rule "simplifySelectOfAnon" (formula "22"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "46")))
+ (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0,0"))
+ (rule "replace_known_right" (formula "21") (term "0,0,0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "2")))
+ (rule "ifthenelse_negated" (formula "21") (term "0"))
+ (rule "dismissNonSelectedField" (formula "22") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "22") (term "0,1,0,0") (ifseqformula "29"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "dismissNonSelectedField" (formula "21") (term "0,0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "28"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "simplifySelectOfStore" (formula "21"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "castDel" (formula "21") (term "1,0"))
+ (rule "eqSymm" (formula "21") (term "1,0,0"))
+ (rule "eqSymm" (formula "21") (term "0,0,0"))
+ (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "45"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21"))
+ (rule "hideAuxiliaryEq" (formula "21"))
+ (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0"))
+ (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "6"))
+ (builtin "One Step Simplification" (formula "21"))
+ (rule "applyEq" (formula "43") (term "0") (ifseqformula "21"))
+ (rule "eqSymm" (formula "43"))
+ (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "21"))
+ (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "23"))
+ (rule "polySimp_mulComm0" (formula "22") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0"))
+ (rule "polySimp_addComm0" (formula "22") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "22"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1"))
+ (rule "polySimp_rightDist" (formula "22") (term "1"))
+ (rule "mul_literals" (formula "22") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "22") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "22") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "22") (term "0"))
+ (rule "polySimp_mulComm0" (formula "22") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "22") (term "1,0,0"))
+ (rule "mul_literals" (formula "22") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "22") (term "0,0"))
+ (rule "polySimp_addComm1" (formula "22") (term "0,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0"))
+ (rule "add_literals" (formula "22") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "22") (term "1,0,0"))
+ (rule "add_literals" (formula "22") (term "0,0"))
+ (rule "qeq_literals" (formula "22") (term "0"))
+ (builtin "One Step Simplification" (formula "22"))
+ (rule "true_left" (formula "22"))
+ (rule "allLeft" (formula "24") (inst "t=offset_0"))
+ (rule "exLeft" (formula "24") (inst "sk=k_3"))
+ (rule "andLeft" (formula "24"))
+ (rule "andLeft" (formula "24"))
+ (rule "inEqSimp_commuteGeq" (formula "26") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0"))
+ (rule "pullOutSelect" (formula "24") (term "1,1") (inst "selectSK=arr_11"))
+ (rule "simplifySelectOfAnon" (formula "24"))
+ (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "49")))
+ (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "dismissNonSelectedField" (formula "24") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "24") (term "0,1,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "25") (term "0,1") (inst "selectSK=arr_12"))
+ (rule "simplifySelectOfAnon" (formula "25"))
+ (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "51")))
+ (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0,0"))
+ (rule "replace_known_right" (formula "25") (term "0,0,0,0,0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "32"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "simplifySelectOfStore" (formula "25"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "castDel" (formula "25") (term "1,0"))
+ (rule "eqSymm" (formula "25") (term "1,0,0"))
+ (rule "eqSymm" (formula "25") (term "0,0,0"))
+ (rule "replace_known_right" (formula "25") (term "0,0,0") (ifseqformula "49"))
+ (builtin "One Step Simplification" (formula "25"))
+ (rule "applyEqReverse" (formula "26") (term "0,1") (ifseqformula "25"))
+ (rule "hideAuxiliaryEq" (formula "25"))
+ (rule "pullOutSelect" (formula "24") (term "2,0") (inst "selectSK=arr_13"))
+ (rule "simplifySelectOfStore" (formula "24"))
+ (builtin "One Step Simplification" (formula "24"))
+ (rule "castDel" (formula "24") (term "1,0"))
+ (rule "eqSymm" (formula "24") (term "0,0"))
+ (rule "commute_or_2" (formula "28"))
+ (rule "commute_or_2" (formula "27"))
+ (rule "commute_or" (formula "28") (term "0"))
+ (rule "commute_or" (formula "27") (term "0"))
+ (rule "allLeft" (formula "29") (inst "t=k_0"))
+ (rule "exLeft" (formula "29") (inst "sk=k_4"))
+ (rule "andLeft" (formula "29"))
+ (rule "andLeft" (formula "29"))
+ (rule "inEqSimp_commuteGeq" (formula "31") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "29") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "30") (term "1,0"))
+ (rule "pullOutSelect" (formula "29") (term "1,1") (inst "selectSK=arr_14"))
+ (rule "simplifySelectOfAnon" (formula "29"))
+ (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "54")))
+ (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "dismissNonSelectedField" (formula "29") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "29") (term "0,1,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "30") (term "0,1") (inst "selectSK=arr_15"))
+ (rule "simplifySelectOfAnon" (formula "30"))
+ (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "56")))
+ (rule "dismissNonSelectedField" (formula "30") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "30") (term "0,1,0,0") (ifseqformula "37"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "elementOfArrayRangeConcrete" (formula "30") (term "0,0"))
+ (rule "replace_known_right" (formula "30") (term "0,0,0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "simplifySelectOfStore" (formula "30"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "castDel" (formula "30") (term "1,0"))
+ (rule "eqSymm" (formula "30") (term "1,0,0"))
+ (rule "eqSymm" (formula "30") (term "0,0,0"))
+ (rule "replace_known_right" (formula "30") (term "0,0,0") (ifseqformula "54"))
+ (builtin "One Step Simplification" (formula "30"))
+ (rule "applyEqReverse" (formula "31") (term "0,1") (ifseqformula "30"))
+ (rule "hideAuxiliaryEq" (formula "30"))
+ (rule "pullOutSelect" (formula "29") (term "2,0") (inst "selectSK=arr_16"))
+ (rule "simplifySelectOfStore" (formula "29"))
+ (builtin "One Step Simplification" (formula "29"))
+ (rule "castDel" (formula "29") (term "1,0"))
+ (rule "eqSymm" (formula "29") (term "0,0"))
+ (rule "commute_or_2" (formula "33"))
+ (rule "commute_or_2" (formula "32"))
+ (rule "allLeft" (formula "34") (inst "t=add(add(Z(neglit(1(#))), begin), step)"))
+ (rule "exLeft" (formula "34") (inst "sk=k_5"))
+ (rule "andLeft" (formula "34"))
+ (rule "andLeft" (formula "34"))
+ (rule "inEqSimp_commuteGeq" (formula "36") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "34") (term "1,0"))
+ (rule "inEqSimp_commuteGeq" (formula "35") (term "1,0"))
+ (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0"))
+ (rule "add_literals" (formula "36") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "36") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0"))
+ (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0"))
+ (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0"))
+ (rule "add_literals" (formula "35") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "35") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "36") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "36") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "35") (term "0,0,0"))
+ (rule "pullOutSelect" (formula "34") (term "0,1") (inst "selectSK=arr_17"))
+ (rule "simplifySelectOfAnon" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "60")))
+ (rule "eqSymm" (formula "35") (term "1"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "34") (term "0,1,0,0") (ifseqformula "41"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0"))
+ (rule "replace_known_right" (formula "34") (term "0,0,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "simplifySelectOfStore" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "castDel" (formula "34") (term "1,0"))
+ (rule "eqSymm" (formula "34") (term "1,0,0"))
+ (rule "eqSymm" (formula "34") (term "0,0,0"))
+ (rule "replace_known_right" (formula "34") (term "0,0,0") (ifseqformula "58"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "applyEqReverse" (formula "35") (term "1,1") (ifseqformula "34"))
+ (rule "hideAuxiliaryEq" (formula "34"))
+ (rule "pullOutSelect" (formula "34") (term "0,1") (inst "selectSK=arr_18"))
+ (rule "simplifySelectOfAnon" (formula "34"))
+ (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "59")))
+ (rule "eqSymm" (formula "35") (term "1"))
+ (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "dismissNonSelectedField" (formula "34") (term "0,0,1,0,0"))
+ (rule "replace_known_left" (formula "34") (term "0,1,0,0") (ifseqformula "42"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "add_literals" (formula "34") (term "0,0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "34") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0"))
+ (rule "pullOutSelect" (formula "34") (term "2,0") (inst "selectSK=arr_19"))
+ (rule "simplifySelectOfStore" (formula "34"))
+ (builtin "One Step Simplification" (formula "34"))
+ (rule "castDel" (formula "34") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "34") (term "0,0"))
+ (rule "mul_literals" (formula "34") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "34") (term "0,0,0"))
+ (rule "polySimp_sepPosMonomial" (formula "34") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "34") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "34") (term "1,0,0"))
+ (rule "mul_literals" (formula "34") (term "0,1,0,0"))
+ (rule "commute_or_2" (formula "38"))
+ (rule "commute_or_2" (formula "37"))
+ (rule "commute_or" (formula "38") (term "0"))
+ (rule "commute_or" (formula "37") (term "0"))
+ (rule "allLeft" (formula "1") (inst "t=offset_0"))
+ (rule "replaceKnownSelect_taclet011100010012010012_25" (formula "1") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet011100010012010012_27" (formula "1") (term "0,0,1"))
+ (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "59"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "allLeft" (formula "1") (inst "t=k_2"))
+ (rule "replaceKnownSelect_taclet011100010012010012_28" (formula "1") (term "0,0,1"))
+ (rule "replaceKnownAuxiliaryConstant_taclet011100010012010012_31" (formula "1") (term "0,0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (term "1") (ifseqformula "24"))
+ (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1"))
+ (rule "add_literals" (formula "1") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "1") (term "1,0,0,1"))
+ (rule "add_literals" (formula "1") (term "0,0,1"))
+ (rule "leq_literals" (formula "1") (term "0,1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_contradInEq0" (formula "23") (ifseqformula "1"))
+ (rule "andLeft" (formula "23"))
+ (rule "inEqSimp_homoInEq1" (formula "23"))
+ (rule "polySimp_mulComm0" (formula "23") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "23") (term "1,0"))
+ (rule "mul_literals" (formula "23") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "23") (term "0"))
+ (rule "polySimp_addComm0" (formula "23") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "23") (term "0"))
+ (rule "add_literals" (formula "23") (term "1,1,0"))
+ (rule "times_zero_1" (formula "23") (term "1,0"))
+ (rule "add_literals" (formula "23") (term "0"))
+ (rule "leq_literals" (formula "23"))
+ (rule "closeFalse" (formula "23"))
+ )
+ (branch "j_0 ≤ -1 + count FALSE"
+ (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "2"))
+ (rule "hideAuxiliaryEq" (formula "2"))
+ (rule "inEqSimp_leqRight" (formula "33"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_literals" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
)
)
- (branch "Case 2"
- (builtin "SMTRule")
- )
)
(branch "Case 2"
(rule "allRight" (formula "36") (inst "sk=j_0") (userinteraction))
@@ -8747,7 +15691,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "closeFalse" (formula "3"))
)
)
- (branch
+ (branch "Case 2"
(rule "allRight" (formula "36") (inst "sk=f_0"))
(rule "allRight" (formula "36") (inst "sk=o_0"))
(rule "orRight" (formula "36"))
@@ -8951,7 +15895,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "closeFalse" (formula "1"))
)
)
- (branch
+ (branch "Case 2"
(rule "polySimp_homoEq" (formula "1") (term "0,0"))
(rule "times_zero_2" (formula "1") (term "1,0,0,0"))
(rule "add_zero_right" (formula "1") (term "0,0,0"))
@@ -11312,7 +18256,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "polySimp_mulComm0" (formula "31") (term "1,0,0"))
(rule "polySimp_rightDist" (formula "31") (term "1,0,0"))
(rule "mul_literals" (formula "31") (term "0,1,0,0"))
- (rule "elimGcdLeq" (formula "31") (term "1,0") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=end") (inst "elimGcdRightDiv=Z(0(#))"))
+ (rule "elimGcdLeq" (formula "31") (term "1,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=end") (inst "elimGcd=Z(2(#))"))
(rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,1,0"))
(rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,0,0,0,1,0"))
(rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,1,0"))
@@ -11351,7 +18295,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "polySimp_mulComm0" (formula "32") (term "1,1,0"))
(rule "polySimp_rightDist" (formula "32") (term "1,1,0"))
(rule "mul_literals" (formula "32") (term "0,1,1,0"))
- (rule "elimGcdGeq" (formula "32") (term "0,0") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcdRightDiv=Z(1(#))"))
+ (rule "elimGcdGeq" (formula "32") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))"))
(rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,0"))
(rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0,0,0,0"))
(rule "sub_literals" (formula "32") (term "0,0,0,0,0,0,0,0,0"))
@@ -11908,7 +18852,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0"))
(rule "mul_literals" (formula "24") (term "0,1,0,0,0"))
(rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0"))
- (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "j=j") (inst "i=i_1"))
(builtin "One Step Simplification" (formula "23"))
(rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0"))
(rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0"))
@@ -12635,7 +19579,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "18") (term "0"))
(rule "replace_known_left" (formula "18") (term "0,1") (ifseqformula "19"))
(builtin "One Step Simplification" (formula "18") (ifInst "" (formula "32")) (ifInst "" (formula "11")))
- (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1") (inst "j=j"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i_1"))
(builtin "One Step Simplification" (formula "19"))
(rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,1,0"))
(rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,1,0"))
@@ -13246,7 +20190,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
(rule "mul_literals" (formula "9") (term "0,1,0,0,0"))
(rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0"))
(rule "commute_or" (formula "1"))
- (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "8") (term "0") (inst "i=i") (inst "j=j"))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "8") (term "0") (inst "j=j") (inst "i=i"))
(builtin "One Step Simplification" (formula "8"))
(rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0"))
(rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0"))
diff --git a/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__fallback_sort((I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__fallback_sort((I,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..f516bb6
--- /dev/null
+++ b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__fallback_sort((I,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,1475 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Wed Oct 25 16:20:54 CEST 2023
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[Labels]UseOriginLabels=true
+[NewSMT]Axiomatisations=false
+[NewSMT]NoTypeHierarchy=false
+[NewSMT]Presburger=false
+[NewSMT]identifier=OPEN
+[NewSMT]sqrtSMTTranslation=SMT
+[SMTSettings]SelectedTaclets=
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[SMTSettings]integersMaximum=2147483645
+[SMTSettings]integersMinimum=-2147483645
+[SMTSettings]invariantForall=false
+[SMTSettings]maxGenericSorts=2
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[SMTSettings]useUninterpretedMultiplication=true
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER
+[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[Strategy]MaximumNumberOfAutomaticApplications=10000
+[Strategy]Timeout=-1
+"
+}
+
+\javaSource "../../java";
+
+\proofObligation "#Proof Obligation Settings
+#Wed Oct 25 16:20:54 CEST 2023
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:fallback_sort([I,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:fallback_sort([I,int,int)].JML normal_behavior operation contract.0
+";
+
+\proof {
+(keyLog "0" (keyUser "Wolfram" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "41646")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "translateJavaSubInt" (formula "1") (term "2,2,0,0,0,0,1,0,1,1"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "notLeft" (formula "6"))
+(rule "andLeft" (formula "4"))
+(rule "eqSymm" (formula "8") (term "1,0,0,1,0,1"))
+(rule "eqSymm" (formula "8") (term "0,0,1,0,0,0,1"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "8") (term "2,2,0,0,0,0,1,0,1"))
+(rule "mul_literals" (formula "8") (term "1,2,2,0,0,0,0,1,0,1"))
+(rule "polySimp_addComm0" (formula "8") (term "2,2,0,0,0,0,1,0,1"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "elementOfArrayRange" (formula "8") (term "0,0,0,0,1,0,1") (inst "iv=iv"))
+(rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1,0,0,0,0,1,0,1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_fallback_sort,savedHeapBefore_fallback_sort"))
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "Use Operation Contract" (formula "8") (newnames "heapBefore_insertion_sort,exc_77,heapAfter_insertion_sort,anon_heap_insertion_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::insertion_sort([I,int,int)].JML normal_behavior operation contract.0"))
+(branch "Post (insertion_sort)"
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0"))
+ (rule "andLeft" (formula "8"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "andLeft" (formula "10"))
+ (rule "polySimp_elimSub" (formula "8") (term "2,1,0"))
+ (rule "mul_literals" (formula "8") (term "1,2,1,0"))
+ (rule "polySimp_addComm0" (formula "8") (term "2,1,0"))
+ (rule "narrowSelectArrayType" (formula "10") (term "2,1") (ifseqformula "1") (ifseqformula "12"))
+ (rule "methodCallEmpty" (formula "13") (term "1"))
+ (rule "tryEmpty" (formula "13") (term "1"))
+ (rule "emptyModality" (formula "13") (term "1"))
+ (rule "andRight" (formula "13"))
+ (branch "Case 1"
+ (rule "andRight" (formula "13"))
+ (branch "Case 1"
+ (rule "andRight" (formula "13"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "13") (userinteraction))
+ (rule "narrowSelectArrayType" (formula "13") (term "2,1") (ifseqformula "1") (ifseqformula "12") (userinteraction))
+ (rule "close" (formula "13") (ifseqformula "10") (userinteraction))
+ )
+ (branch "Case 2"
+ (rule "andRight" (formula "13"))
+ (branch "Case 1"
+ (builtin "One Step Simplification" (formula "13") (userinteraction))
+ (rule "allRight" (formula "13") (inst "sk=element_0") (userinteraction))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (userinteraction))
+ (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "13") (term "1") (inst "i=i") (userinteraction))
+ (rule "seqPermCountsInt" (formula "10") (inst "element=element") (inst "iv=iv") (userinteraction))
+ (rule "lenOfSeqDef" (formula "10") (term "1,0,0") (userinteraction))
+ (rule "lenOfSeqDef" (formula "10") (term "1,1,0") (userinteraction))
+ (rule "ifthenelse_split" (formula "10") (term "1,1,0") (userinteraction))
+ (branch "begin < end TRUE"
+ (rule "replace_known_left" (formula "11") (term "0,1,0,0") (ifseqformula "10") (userinteraction))
+ (builtin "One Step Simplification" (formula "11") (userinteraction))
+ (rule "instAll" (formula "14") (term "1,0,2,0") (ifseqformula "11") (userinteraction))
+ (rule "hide_left" (formula "12") (userinteraction))
+ (rule "bsum_shift_index" (formula "14") (term "0") (inst "uSub1=uSub1") (userinteraction))
+ (rule "bsum_shift_index" (formula "14") (term "1") (inst "uSub1=uSub1") (userinteraction))
+ (rule "eqTermCut" (formula "14") (term "0") (inst "s=bsum{int iv;}(Z(0(#)),
+ sub(end, begin),
+ \\if (( any::seqGet(seqDef{int j;}(begin,
+ end,
+ int::select(heap,
+ values,
+ arr(j))),
+ iv)
+ = element_0)<>)
+ \\then (Z(1(#)))
+ \\else (Z(0(#)))<>)") (userinteraction))
+ (branch "Assume bsum{int uSub1;}(0, end - begin, if (values[uSub1 + begin] = element_0) then (1) else (0)) = bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, values[j])[iv] = element_0) then (1) else (0))"
+ (rule "eqTermCut" (formula "15") (term "1") (inst "s=bsum{int iv;}(Z(0(#)),
+ sub(end, begin),
+ \\if (( any::seqGet(seqDef{int j;}(begin,
+ end,
+ any::select(heapAfter_insertion_sort,
+ values,
+ arr(j))),
+ iv)
+ = element_0)<>)
+ \\then (Z(1(#)))
+ \\else (Z(0(#)))<>)") (userinteraction))
+ (branch "Assume bsum{int uSub1;}(0, end - begin, if ( values[uSub1 + begin]@heapAfter_insertion_sort = element_0) then (1) else (0)) = bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, any::select(heapAfter_insertion_sort, values, arr(j)))[iv] = element_0) then (1) else (0))"
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1"))
+ (rule "getOfSeqDef" (formula "3") (term "0,0,2,1"))
+ (rule "castDel" (formula "3") (term "2,0,0,2,1"))
+ (rule "castDel" (formula "3") (term "1,0,0,2,1"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,0,0,0,2,1"))
+ (rule "getOfSeqDef" (formula "2") (term "0,0,2,1"))
+ (rule "castDel" (formula "2") (term "2,0,0,2,1"))
+ (rule "castDel" (formula "2") (term "1,0,0,2,1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "getOfSeqDef" (formula "3") (term "0,0,2,0"))
+ (rule "castDel" (formula "3") (term "2,0,0,2,0"))
+ (rule "castDel" (formula "3") (term "1,0,0,2,0"))
+ (rule "polySimp_elimSub" (formula "3") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "1,1,0,0,0,2,0"))
+ (rule "getOfSeqDef" (formula "1") (term "0,0,2,1"))
+ (rule "castDel" (formula "1") (term "1,0,0,2,1"))
+ (rule "castDel" (formula "1") (term "2,0,0,2,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "eqSymm" (formula "3"))
+ (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "3"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0,2,1"))
+ (rule "eqSymm" (formula "3"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,2,0"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "13"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0"))
+ (rule "polySimp_elimOne" (formula "13") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "3") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "eqSymm" (formula "3"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "16") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "13"))
+ (rule "inEqSimp_homoInEq0" (formula "8") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0"))
+ (rule "add_literals" (formula "8") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "8") (term "1,0,0"))
+ (rule "add_zero_right" (formula "8") (term "0,0"))
+ (rule "qeq_literals" (formula "8") (term "0"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "true_left" (formula "8"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "13") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10"))
+ (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "15")) (ifInst "" (formula "9")) (ifInst "" (formula "14")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "13") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10"))
+ (rule "replace_known_right" (formula "13") (term "0,0,0") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "4")) (ifInst "" (formula "9")) (ifInst "" (formula "14")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "13") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10"))
+ (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17")) (ifInst "" (formula "9")) (ifInst "" (formula "14")))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0"))
+ (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "13") (term "0"))
+ (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10"))
+ (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17")) (ifInst "" (formula "9")) (ifInst "" (formula "14")))
+ (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j"))
+ (builtin "One Step Simplification" (formula "14"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,1,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0"))
+ (rule "nnf_imp2or" (formula "14") (term "0,1,0"))
+ (rule "nnf_notAnd" (formula "14") (term "0,0,1,0"))
+ (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0"))
+ (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,1,0"))
+ (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,1,0"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0"))
+ (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,1,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,1,0"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,1,0"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "13") (term "0"))
+ (rule "nnf_notAnd" (formula "13") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0"))
+ (rule "commute_or" (formula "13") (term "0,0,1,0"))
+ (rule "bsum_equal_split3" (formula "16"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "bsum_lower_equals_upper" (formula "16") (term "0,1,1"))
+ (rule "bsum_lower_equals_upper" (formula "16") (term "1,2,1"))
+ (rule "less_literals" (formula "16") (term "0,1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "polySimp_elimSub" (formula "16") (term "2,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0"))
+ (rule "times_zero_2" (formula "16") (term "1,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "16") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0"))
+ (rule "add_literals" (formula "16") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "16") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "16") (term "0,0,0"))
+ (rule "qeq_literals" (formula "16") (term "0,0"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "equal_bsum1" (formula "17"))
+ (rule "allRight" (formula "17") (inst "sk=uSub1_0"))
+ (rule "impRight" (formula "17"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "19"))
+ (rule "replace_known_left" (formula "19") (term "0,0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "replace_known_left" (formula "19") (term "0,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "19"))
+ (rule "eqSymm" (formula "19"))
+ (rule "pullOutSelect" (formula "19") (term "0,0,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "13"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")) (ifInst "" (formula "8")))
+ (rule "eqSymm" (formula "20") (term "0,0"))
+ (rule "eqSymm" (formula "20"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "20") (term "1,0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "19") (term "0,1"))
+ (rule "eqSymm" (formula "19"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "bsum_equal_split1" (formula "20"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "bsum_lower_equals_upper" (formula "20") (term "1,1,1"))
+ (rule "bsum_lower_equals_upper" (formula "20") (term "0,2,1"))
+ (rule "eqSymm" (formula "20") (term "2,1"))
+ (rule "polySimp_elimSub" (formula "20") (term "2,0,1,1"))
+ (rule "replace_known_right" (formula "20") (term "1,1") (ifseqformula "18"))
+ (rule "polySimp_elimSub" (formula "20") (term "2,0,2,1"))
+ (rule "polySimp_addComm0" (formula "20") (term "2,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "20") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "20") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "20") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "20") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "20") (term "0,0,1"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "20") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "20") (term "0,0,1"))
+ (rule "leq_literals" (formula "20") (term "0,1"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0"))
+ (rule "times_zero_2" (formula "20") (term "1,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "20") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "20") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "20") (term "0") (ifseqformula "14"))
+ (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0"))
+ (rule "add_literals" (formula "20") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "20") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "20") (term "0,0,0"))
+ (rule "qeq_literals" (formula "20") (term "0,0"))
+ (builtin "One Step Simplification" (formula "20"))
+ (rule "arrayLengthIsAShort" (formula "10") (term "0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "arrayLengthNotNegative" (formula "10") (term "0"))
+ (rule "equal_bsum2" (formula "22") (ifseqformula "4"))
+ (rule "allRight" (formula "22") (inst "sk=uSub1_1"))
+ (rule "impRight" (formula "22"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "24"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "pullOutSelect" (formula "24") (term "0,0,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "16"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21")) (ifInst "" (formula "10")))
+ (rule "eqSymm" (formula "25") (term "0,0"))
+ (rule "eqSymm" (formula "25"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "25") (term "1,0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "24") (term "0,1"))
+ (rule "eqSymm" (formula "24"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "equal_bsum2" (formula "25") (ifseqformula "7"))
+ (rule "allRight" (formula "25") (inst "sk=iv_0"))
+ (rule "impRight" (formula "25"))
+ (rule "andLeft" (formula "1"))
+ (rule "replace_known_left" (formula "27") (term "0,0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "replace_known_left" (formula "27") (term "0,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "27"))
+ (rule "pullOutSelect" (formula "27") (term "0,0,1") (inst "selectSK=arr_2"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "12")))
+ (rule "eqSymm" (formula "28") (term "0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "28") (term "1,0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "27") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "pullOutSelect" (formula "27") (term "0,0,0") (inst "selectSK=arr_3"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "18"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "12")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "11") (ifseqformula "23"))
+ (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "17") (ifseqformula "23"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "28") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "28"))
+ (rule "closeTrue" (formula "28"))
+ )
+ (branch "Assume bsum{int uSub1;}(0, end - begin, if ( values[uSub1 + begin]@heapAfter_insertion_sort = element_0) then (1) else (0)) != bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, any::select(heapAfter_insertion_sort, values, arr(j)))[iv] = element_0) then (1) else (0))"
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "1,1"))
+ (rule "getOfSeqDef" (formula "1") (term "0,0,2,1"))
+ (rule "castDel" (formula "1") (term "1,0,0,2,1"))
+ (rule "castDel" (formula "1") (term "2,0,0,2,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "getOfSeqDef" (formula "2") (term "0,0,2,0"))
+ (rule "castDel" (formula "2") (term "1,0,0,2,0"))
+ (rule "castDel" (formula "2") (term "2,0,0,2,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "getOfSeqDef" (formula "14") (term "0,0,2,1"))
+ (rule "castDel" (formula "14") (term "2,0,0,2,1"))
+ (rule "castDel" (formula "14") (term "1,0,0,2,1"))
+ (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "12"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "12") (term "0"))
+ (rule "getOfSeqDef" (formula "2") (term "0,0,2,0"))
+ (rule "castDel" (formula "2") (term "1,0,0,2,0"))
+ (rule "castDel" (formula "2") (term "2,0,0,2,0"))
+ (rule "polySimp_elimSub" (formula "2") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,2,1,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "2") (term "1,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,0,2,0"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "1"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "12"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "0"))
+ (rule "polySimp_elimOne" (formula "12") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "14") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "14") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "applyEq" (formula "16") (term "1") (ifseqformula "2"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "12") (term "0"))
+ (rule "nnf_notAnd" (formula "12") (term "0,0"))
+ (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "12") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0"))
+ (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0"))
+ (rule "mul_literals" (formula "12") (term "0,1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0"))
+ (rule "equal_bsum1" (formula "13"))
+ (rule "allRight" (formula "13") (inst "sk=uSub1_0"))
+ (rule "impRight" (formula "13"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "replace_known_left" (formula "15") (term "0,0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "replace_known_left" (formula "15") (term "0,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "pullOutSelect" (formula "15") (term "0,0,1") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")) (ifInst "" (formula "7")))
+ (rule "eqSymm" (formula "16") (term "0,1"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "16") (term "1,0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "15") (term "0,1"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "pullOutSelect" (formula "15") (term "0,0,0") (inst "selectSK=arr_1"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")) (ifInst "" (formula "7")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "11") (ifseqformula "18"))
+ (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "6") (ifseqformula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "16") (term "0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeTrue" (formula "16"))
+ )
+ )
+ (branch "Assume bsum{int uSub1;}(0, end - begin, if (values[uSub1 + begin] = element_0) then (1) else (0)) != bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, values[j])[iv] = element_0) then (1) else (0))"
+ (rule "notLeft" (formula "1"))
+ (rule "eqSymm" (formula "15"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,0"))
+ (rule "polySimp_elimSub" (formula "15") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,2,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "1,1"))
+ (rule "getOfSeqDef" (formula "1") (term "0,0,2,0"))
+ (rule "castDel" (formula "1") (term "1,0,0,2,0"))
+ (rule "castDel" (formula "1") (term "2,0,0,2,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "getOfSeqDef" (formula "13") (term "0,0,2,1"))
+ (rule "castDel" (formula "13") (term "2,0,0,2,1"))
+ (rule "castDel" (formula "13") (term "1,0,0,2,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "0,2,1,0,0,2,1"))
+ (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "11") (term "0"))
+ (rule "getOfSeqDef" (formula "1") (term "0,0,2,0"))
+ (rule "castDel" (formula "1") (term "1,0,0,2,0"))
+ (rule "castDel" (formula "1") (term "2,0,0,2,0"))
+ (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1"))
+ (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,0"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "11"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "0"))
+ (rule "polySimp_elimOne" (formula "11") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "13") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "13") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,0"))
+ (rule "eqSymm" (formula "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1"))
+ (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1"))
+ (rule "eqSymm" (formula "1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaAddInt" (formula "11") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_elimSub" (formula "11") (term "1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "1,1,1,0,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0"))
+ (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "nnf_imp2or" (formula "11") (term "0"))
+ (rule "nnf_notAnd" (formula "11") (term "0,0"))
+ (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0"))
+ (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0"))
+ (rule "add_literals" (formula "11") (term "0,0,0,1,0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0"))
+ (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0"))
+ (rule "mul_literals" (formula "11") (term "0,1,1,0,0"))
+ (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0"))
+ (rule "equal_bsum1" (formula "14"))
+ (rule "allRight" (formula "14") (inst "sk=uSub1_0"))
+ (rule "impRight" (formula "14"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "pullOutSelect" (formula "16") (term "0,0,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "11"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")) (ifInst "" (formula "6")))
+ (rule "eqSymm" (formula "17") (term "0,0"))
+ (rule "eqSymm" (formula "17"))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_literals" (formula "1") (term "1,0,0,0,0,0"))
+ (rule "times_zero_1" (formula "1") (term "0,0,0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0,0,0"))
+ (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "applyEqReverse" (formula "17") (term "1,0,1") (ifseqformula "1"))
+ (rule "hideAuxiliaryEq" (formula "1"))
+ (rule "eqSymm" (formula "16") (term "0,1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2"))
+ (rule "times_zero_1" (formula "1") (term "0,0"))
+ (rule "add_zero_left" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "bsum_equal_split3" (formula "17"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "bsum_lower_equals_upper" (formula "17") (term "1,2,1"))
+ (rule "bsum_lower_equals_upper" (formula "17") (term "0,1,1"))
+ (rule "less_literals" (formula "17") (term "0,1"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "polySimp_elimSub" (formula "17") (term "2,0,1"))
+ (rule "polySimp_addComm0" (formula "17") (term "2,0,1"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0"))
+ (rule "times_zero_2" (formula "17") (term "1,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "17") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "17") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "17") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0"))
+ (rule "add_literals" (formula "17") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "17") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "17") (term "0,0,0"))
+ (rule "qeq_literals" (formula "17") (term "0,0"))
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "bsum_equal_split1" (formula "18"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "bsum_lower_equals_upper" (formula "18") (term "0,2,1"))
+ (rule "bsum_lower_equals_upper" (formula "18") (term "1,1,1"))
+ (rule "eqSymm" (formula "18") (term "2,1"))
+ (rule "polySimp_elimSub" (formula "18") (term "2,0,1,1"))
+ (rule "polySimp_elimSub" (formula "18") (term "2,0,2,1"))
+ (rule "polySimp_addComm0" (formula "18") (term "2,0,1,1"))
+ (rule "replace_known_right" (formula "18") (term "1,1") (ifseqformula "17"))
+ (rule "inEqSimp_ltToLeq" (formula "18") (term "0,1"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1"))
+ (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0,0,0,1"))
+ (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0,0,0,1"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0,0,0,1"))
+ (rule "polySimp_elimOne" (formula "18") (term "0,1,0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0,0,1"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0,0,1"))
+ (rule "polySimp_pullOutFactor2b" (formula "18") (term "0,0,1"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "18") (term "0,0,1"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,1"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,1"))
+ (rule "add_zero_right" (formula "18") (term "0,0,1"))
+ (rule "leq_literals" (formula "18") (term "0,1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0"))
+ (rule "times_zero_2" (formula "18") (term "1,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0"))
+ (rule "polySimp_mulLiterals" (formula "18") (term "1,0"))
+ (rule "polySimp_elimOne" (formula "18") (term "1,0"))
+ (rule "inEqSimp_subsumption1" (formula "18") (term "0") (ifseqformula "12"))
+ (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0"))
+ (rule "add_literals" (formula "18") (term "1,1,0,0,0"))
+ (rule "times_zero_1" (formula "18") (term "1,0,0,0"))
+ (rule "add_zero_right" (formula "18") (term "0,0,0"))
+ (rule "qeq_literals" (formula "18") (term "0,0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "equal_bsum1" (formula "14"))
+ (rule "allRight" (formula "14") (inst "sk=uSub1_1"))
+ (rule "impRight" (formula "14"))
+ (rule "andLeft" (formula "1"))
+ (rule "eqSymm" (formula "16"))
+ (rule "replace_known_left" (formula "16") (term "0,0,0,0,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "inEqSimp_ltToLeq" (formula "2"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0,0"))
+ (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "polySimp_rightDist" (formula "2") (term "0,1"))
+ (rule "mul_literals" (formula "2") (term "0,0,1"))
+ (rule "replace_known_left" (formula "16") (term "0,0,0,0") (ifseqformula "2"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "closeTrue" (formula "16"))
+ )
+ )
+ (branch "begin < end FALSE"
+ (rule "bsum_lower_equals_upper" (formula "10") (term "1,0"))
+ (rule "eqSymm" (formula "14"))
+ (rule "eqSymm" (formula "10") (term "0,2,0,0"))
+ (rule "replace_known_right" (formula "10") (term "0,1,0,0") (ifseqformula "12"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "bsum_lower_equals_upper" (formula "10") (term "0,0"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "true_left" (formula "10"))
+ (rule "inEqSimp_ltRight" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_antiSymm" (formula "6") (ifseqformula "1"))
+ (rule "applyEq" (formula "8") (term "1") (ifseqformula "6"))
+ (rule "applyEq" (formula "7") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq1" (formula "7"))
+ (rule "polySimp_pullOutFactor1" (formula "7") (term "0"))
+ (rule "add_literals" (formula "7") (term "1,0"))
+ (rule "times_zero_1" (formula "7") (term "0"))
+ (rule "leq_literals" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "applyEq" (formula "1") (term "0") (ifseqformula "6"))
+ (rule "inEqSimp_homoInEq0" (formula "1"))
+ (rule "polySimp_pullOutFactor1" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,0"))
+ (rule "times_zero_1" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "5"))
+ (rule "bsum_lower_equals_upper" (formula "12") (term "0"))
+ (rule "eqSymm" (formula "12"))
+ (rule "applyEq" (formula "10") (term "3,0") (ifseqformula "5"))
+ (rule "applyEq" (formula "8") (term "1,2,1,0") (ifseqformula "5"))
+ (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "5"))
+ (rule "bsum_lower_equals_upper" (formula "12") (term "0"))
+ (builtin "One Step Simplification" (formula "12"))
+ (rule "closeTrue" (formula "12"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "11")))
+ (rule "closeTrue" (formula "13"))
+ )
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "closeTrue" (formula "13"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "allRight" (formula "13") (inst "sk=f_0"))
+ (rule "allRight" (formula "13") (inst "sk=o_0"))
+ (rule "orRight" (formula "13"))
+ (rule "orRight" (formula "13"))
+ (rule "selectOfAnonEQ" (formula "10") (term "2,0") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "12")) (ifInst "" (formula "2")))
+ (rule "elementOfArrayRange" (formula "10") (term "0,2,0") (inst "iv=iv"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "selectOfAnonEQ" (formula "15") (term "1") (ifseqformula "8"))
+ (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "14")))
+ (rule "elementOfArrayRange" (formula "15") (term "0,0,1") (inst "iv=iv"))
+ (builtin "SMTRule")
+ )
+)
+(branch "Exceptional Post (insertion_sort)"
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "10"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0"))
+ (rule "andLeft" (formula "8"))
+ (rule "selectCreatedOfAnonAsFormulaEQ" (formula "9") (term "1,0") (ifseqformula "8"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "11"))
+ (rule "notLeft" (formula "9"))
+ (rule "close" (formula "12") (ifseqformula "11"))
+)
+(branch "Pre (insertion_sort)"
+ (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "7")) (ifInst "" (formula "1")) (ifInst "" (formula "7")) (ifInst "" (formula "2")))
+ (builtin "SMTRule")
+)
+)
+}
diff --git a/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof
new file mode 100644
index 0000000..95e2d29
--- /dev/null
+++ b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof
@@ -0,0 +1,73257 @@
+\profile "Java Profile";
+
+\settings {
+"#Proof-Settings-Config-File
+#Fri Oct 27 20:17:19 CEST 2023
+[NewSMT]NoTypeHierarchy=false
+[Labels]UseOriginLabels=true
+[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
+[NewSMT]Presburger=false
+[SMTSettings]invariantForall=false
+[Strategy]ActiveStrategy=JavaCardDLStrategy
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
+[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
+[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L
+[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_INVARIANT
+[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
+[SMTSettings]UseBuiltUniqueness=false
+[SMTSettings]explicitTypeHierarchy=false
+[SMTSettings]instantiateHierarchyAssumptions=true
+[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
+[SMTSettings]SelectedTaclets=
+[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF
+[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
+[Strategy]MaximumNumberOfAutomaticApplications=20000
+[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
+[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
+[SMTSettings]useConstantsForBigOrSmallIntegers=true
+[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE
+[Strategy]Timeout=-1
+[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF
+[SMTSettings]useUninterpretedMultiplication=true
+[NewSMT]sqrtSMTTranslation=SMT
+[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL
+[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
+[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
+[NewSMT]identifier=OPEN
+[SMTSettings]maxGenericSorts=2
+[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON
+[NewSMT]Axiomatisations=false
+[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
+[SMTSettings]integersMinimum=-2147483645
+[StrategyProperty]VBT_PHASE=VBT_SYM_EX
+[SMTSettings]integersMaximum=2147483645
+"
+}
+
+\javaSource "../../java";
+
+\proofObligation "#Proof Obligation Settings
+#Fri Oct 27 20:17:19 CEST 2023
+contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0
+name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0
+class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
+";
+
+\proof {
+(keyLog "0" (keyUser "mattias" ) (keyVersion "e1a85b31e7"))
+
+(autoModeTime "326875")
+
+(branch "dummy ID"
+ (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f"))
+(rule "translateJavaSubInt" (formula "1") (term "2,2,0,0,0,0,1,0,1,1"))
+(rule "impRight" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "3"))
+(rule "andLeft" (formula "1"))
+(rule "andLeft" (formula "4"))
+(rule "notLeft" (formula "6"))
+(rule "andLeft" (formula "4"))
+(rule "eqSymm" (formula "8") (term "1,0,0,1,0,1"))
+(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "7"))
+ (builtin "One Step Simplification" (formula "2"))
+(rule "polySimp_elimSub" (formula "8") (term "2,2,0,0,0,0,1,0,1"))
+(rule "mul_literals" (formula "8") (term "1,2,2,0,0,0,0,1,0,1"))
+(rule "polySimp_addComm0" (formula "8") (term "2,2,0,0,0,0,1,0,1"))
+(rule "inEqSimp_commuteLeq" (formula "6"))
+(rule "inEqSimp_commuteLeq" (formula "5"))
+(rule "inEqSimp_commuteLeq" (formula "4"))
+(rule "assignment" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "elementOfArrayRange" (formula "8") (term "0,0,0,0,1,0,1") (inst "iv=iv"))
+(rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1,0,0,0,0,1,0,1"))
+(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_insertion_sort,savedHeapBefore_insertion_sort,_beginBefore_insertion_sort,_endBefore_insertion_sort,_valuesBefore_insertion_sort"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "ifUnfold" (formula "8") (term "1") (inst "#boolv=x"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "x"))
+(rule "compound_less_than_comparison_1" (formula "8") (term "1") (inst "#v0=x_1"))
+(rule "variableDeclarationAssign" (formula "8") (term "1"))
+(rule "variableDeclaration" (formula "8") (term "1") (newnames "x_1"))
+(rule "assignmentSubtractionInt" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "translateJavaSubInt" (formula "8") (term "0,1,0"))
+(rule "polySimp_elimSub" (formula "8") (term "0,1,0"))
+(rule "polySimp_addComm0" (formula "8") (term "0,1,0"))
+(rule "less_than_comparison_simple" (formula "8") (term "1"))
+ (builtin "One Step Simplification" (formula "8"))
+(rule "ifSplit" (formula "8"))
+(branch "if x true"
+ (builtin "One Step Simplification" (formula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "methodCallEmptyReturn" (formula "9") (term "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "tryEmpty" (formula "9") (term "1"))
+ (rule "emptyModality" (formula "9") (term "1"))
+ (rule "andRight" (formula "9"))
+ (branch
+ (rule "andRight" (formula "9"))
+ (branch
+ (rule "andRight" (formula "9"))
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeTrue" (formula "9"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltToLeq" (formula "1"))
+ (rule "mul_literals" (formula "1") (term "1,0,0"))
+ (rule "add_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "9") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0"))
+ (rule "allRight" (formula "9") (inst "sk=i_0"))
+ (rule "impRight" (formula "9"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "11") (term "0,2,1"))
+ (rule "polySimp_addComm0" (formula "2") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "11"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0"))
+ (rule "add_literals" (formula "3") (term "0,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3"))
+ (rule "polySimp_mulComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "2"))
+ (rule "andLeft" (formula "5"))
+ (rule "inEqSimp_homoInEq1" (formula "5"))
+ (rule "polySimp_mulComm0" (formula "5") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "5") (term "1,0"))
+ (rule "mul_literals" (formula "5") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "5") (term "0"))
+ (rule "polySimp_addComm1" (formula "5") (term "0,0"))
+ (rule "add_literals" (formula "5") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "5") (term "0"))
+ (rule "add_literals" (formula "5") (term "1,1,0"))
+ (rule "times_zero_1" (formula "5") (term "1,0"))
+ (rule "add_zero_right" (formula "5") (term "0"))
+ (rule "leq_literals" (formula "5"))
+ (rule "closeFalse" (formula "5"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeTrue" (formula "9"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeTrue" (formula "9"))
+ )
+)
+(branch "if x false"
+ (builtin "One Step Simplification" (formula "9"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "9") (term "1"))
+ (rule "variableDeclaration" (formula "9") (term "1") (newnames "k"))
+ (rule "assignmentAdditionInt" (formula "9") (term "1"))
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "translateJavaAddInt" (formula "9") (term "0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "0,1,0"))
+ (rule "for_to_while" (formula "9") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0"))
+ (rule "elim_double_block_3" (formula "9") (term "1"))
+ (builtin "Loop Invariant" (formula "9") (newnames "variant,b,heapBefore_LOOP,kBefore_LOOP,k_0,heap_After_LOOP,anon_heap_LOOP,o,f"))
+ (branch "Invariant Initially Valid"
+ (rule "andRight" (formula "9"))
+ (branch
+ (rule "andRight" (formula "9"))
+ (branch
+ (rule "andRight" (formula "9"))
+ (branch
+ (rule "andRight" (formula "9"))
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeTrue" (formula "9"))
+ )
+ (branch
+ (rule "andRight" (formula "9"))
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltRight" (formula "7"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "9"))
+ (rule "polySimp_rightDist" (formula "1") (term "0,0"))
+ (rule "mul_literals" (formula "1") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltRight" (formula "7"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "9"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "2"))
+ (rule "inEqSimp_homoInEq0" (formula "7") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0"))
+ (rule "add_literals" (formula "7") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "7") (term "1,0,0"))
+ (rule "add_zero_right" (formula "7") (term "0,0"))
+ (rule "qeq_literals" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2"))
+ (rule "andLeft" (formula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "1"))
+ (rule "polySimp_pullOutFactor1b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "leq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "closeTrue" (formula "9"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "9"))
+ (rule "inEqSimp_ltRight" (formula "7"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "1"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1"))
+ (rule "polySimp_rightDist" (formula "1") (term "1"))
+ (rule "mul_literals" (formula "1") (term "0,1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "1,1"))
+ (rule "polySimp_elimOne" (formula "1") (term "1,1"))
+ (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq0" (formula "6") (term "0"))
+ (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0"))
+ (rule "add_literals" (formula "6") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "6") (term "1,0,0"))
+ (rule "add_zero_right" (formula "6") (term "0,0"))
+ (rule "qeq_literals" (formula "6") (term "0"))
+ (builtin "One Step Simplification" (formula "6"))
+ (rule "true_left" (formula "6"))
+ (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "8") (term "0"))
+ (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "3"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "9")))
+ (rule "true_left" (formula "1"))
+ (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "8") (term "0") (inst "i=i"))
+ (builtin "One Step Simplification" (formula "8"))
+ (rule "translateJavaAddInt" (formula "8") (term "0,2,1,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "1,1,0,0"))
+ (rule "allRight" (formula "8") (inst "sk=i_0"))
+ (rule "impRight" (formula "8"))
+ (rule "andLeft" (formula "1"))
+ (rule "polySimp_elimSub" (formula "2") (term "1"))
+ (rule "mul_literals" (formula "2") (term "1,1"))
+ (rule "polySimp_addComm0" (formula "10") (term "0,2,1"))
+ (rule "polySimp_addComm1" (formula "2") (term "1"))
+ (rule "add_literals" (formula "2") (term "0,1"))
+ (rule "add_zero_left" (formula "2") (term "1"))
+ (rule "inEqSimp_leqRight" (formula "10"))
+ (rule "polySimp_mulComm0" (formula "1") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0"))
+ (rule "inEqSimp_commuteLeq" (formula "2"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "3"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1"))
+ (rule "polySimp_rightDist" (formula "3") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "3") (term "1,1"))
+ (rule "mul_literals" (formula "3") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "3") (term "1,1"))
+ (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "3"))
+ (rule "andLeft" (formula "2"))
+ (rule "inEqSimp_homoInEq1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "2") (term "1,0"))
+ (rule "mul_literals" (formula "2") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "2") (term "0"))
+ (rule "polySimp_addComm0" (formula "2") (term "0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "2") (term "0"))
+ (rule "add_literals" (formula "2") (term "1,1,0"))
+ (rule "times_zero_1" (formula "2") (term "1,0"))
+ (rule "add_zero_right" (formula "2") (term "0"))
+ (rule "leq_literals" (formula "2"))
+ (rule "closeFalse" (formula "2"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "1")))
+ (rule "closeTrue" (formula "9"))
+ )
+ )
+ (branch "Body Preserves Invariant"
+ (builtin "One Step Simplification" (formula "8"))
+ (builtin "One Step Simplification" (formula "11"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0,1,0"))
+ (rule "translateJavaSubInt" (formula "8") (term "2,1,0,2,0,0,0,0"))
+ (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,0,1,1,0,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "2,2,0,0,0,0,1,0,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1,1"))
+ (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,1,0,0"))
+ (rule "andLeft" (formula "8"))
+ (rule "impRight" (formula "12"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "9"))
+ (rule "andLeft" (formula "10"))
+ (rule "eqSymm" (formula "16") (term "1,0,1,0,0,0,1,1,0,1"))
+ (rule "eqSymm" (formula "16") (term "1,0,0,1,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "13") (term "2,1,0,0"))
+ (rule "mul_literals" (formula "13") (term "1,2,1,0,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "16") (term "2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "mul_literals" (formula "16") (term "1,2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "polySimp_elimSub" (formula "1") (term "2,1,0,1,1,0"))
+ (rule "mul_literals" (formula "1") (term "1,2,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "16") (term "2,1,0,1,0,1,1,0"))
+ (rule "mul_literals" (formula "16") (term "1,2,1,0,1,0,1,1,0"))
+ (rule "polySimp_elimSub" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "mul_literals" (formula "12") (term "1,2,1,0,0,1,0"))
+ (rule "polySimp_elimSub" (formula "9") (term "2,1,0,2,0"))
+ (rule "mul_literals" (formula "9") (term "1,2,1,0,2,0"))
+ (rule "polySimp_addComm0" (formula "13") (term "2,1,0,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "2,2,0,0,0,0,1,0,1,1,0,1"))
+ (rule "polySimp_addComm0" (formula "1") (term "2,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "16") (term "2,1,0,1,0,1,1,0"))
+ (rule "polySimp_addComm0" (formula "12") (term "2,1,0,0,1,0"))
+ (rule "polySimp_addComm0" (formula "9") (term "2,1,0,2,0"))
+ (rule "narrowSelectArrayType" (formula "9") (term "2,1") (ifseqformula "2") (ifseqformula "15"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1,0,0,0,1,1,0,1"))
+ (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0"))
+ (rule "variableDeclarationAssign" (formula "1") (term "1"))
+ (rule "variableDeclarationAssign" (formula "16") (term "1"))
+ (rule "variableDeclaration" (formula "1") (term "1") (newnames "b_1"))
+ (rule "variableDeclaration" (formula "16") (term "1") (newnames "exc_25"))
+ (rule "assignment" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "variableDeclaration" (formula "16") (term "1") (newnames "thrownExc"))
+ (rule "blockThrow" (formula "16") (term "1,0,0,1"))
+ (rule "elementOfArrayRange" (formula "16") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv"))
+ (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1"))
+ (rule "boxToDiamond" (formula "1") (term "1"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "notLeft" (formula "1"))
+ (rule "commute_and" (formula "11") (term "0,0"))
+ (rule "less_than_comparison_simple" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "methodCallEmpty" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "emptyModality" (formula "13") (term "1"))
+ (builtin "One Step Simplification" (formula "13"))
+ (rule "notRight" (formula "13"))
+ (rule "ifUnfold" (formula "16") (term "1") (inst "#boolv=x"))
+ (rule "variableDeclaration" (formula "16") (term "1") (newnames "x_2"))
+ (rule "less_than_comparison_simple" (formula "16") (term "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "replace_known_left" (formula "16") (term "0,0,1,0") (ifseqformula "1"))
+ (builtin "One Step Simplification" (formula "16"))
+ (rule "arrayLengthIsAShort" (formula "7") (term "0"))
+ (builtin "One Step Simplification" (formula "7"))
+ (rule "true_left" (formula "7"))
+ (rule "arrayLengthNotNegative" (formula "7") (term "0"))
+ (rule "ifSplit" (formula "17"))
+ (branch "if x_2 true"
+ (builtin "One Step Simplification" (formula "18"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "true_left" (formula "1"))
+ (rule "variableDeclarationAssign" (formula "17") (term "1"))
+ (rule "variableDeclaration" (formula "17") (term "1") (newnames "value"))
+ (rule "assignment_array2" (formula "17"))
+ (branch "Normal Execution (_values != null)"
+ (builtin "One Step Simplification" (formula "17"))
+ (rule "pullOutSelect" (formula "17") (term "0,1,0") (inst "selectSK=arr_0"))
+ (rule "simplifySelectOfAnon" (formula "1"))
+ (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17")) (ifInst "" (formula "4")))
+ (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0"))
+ (builtin "One Step Simplification" (formula "1"))
+ (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0"))
+ (rule "variableDeclarationAssign" (formula "18") (term "1"))
+ (rule "variableDeclaration" (formula "18") (term "1") (newnames "hole"))
+ (rule "assignment" (formula "18") (term "1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "for_to_while" (formula "18") (term "1") (inst "#outerLabel=_label3") (inst "#innerLabel=_label2"))
+ (rule "variableDeclarationAssign" (formula "18") (term "1"))
+ (rule "variableDeclaration" (formula "18") (term "1") (newnames "i"))
+ (rule "assignmentSubtractionInt" (formula "18") (term "1"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaSubInt" (formula "18") (term "0,1,0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0,1,0"))
+ (rule "mul_literals" (formula "18") (term "1,0,1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0,1,0"))
+ (rule "elim_double_block_3" (formula "18") (term "1"))
+ (builtin "Loop Invariant" (formula "18") (newnames "variant_0,b_0,heapBefore_LOOP_0,iBefore_LOOP,holeBefore_LOOP,i_0,hole_0,heap_After_LOOP_0,anon_heap_LOOP_0,o,f"))
+ (branch "Invariant Initially Valid"
+ (rule "andRight" (formula "18"))
+ (branch "Case 1"
+ (rule "andRight" (formula "18"))
+ (branch "Case 1"
+ (rule "andRight" (formula "18"))
+ (branch
+ (rule "andRight" (formula "18"))
+ (branch
+ (rule "andRight" (formula "18"))
+ (branch
+ (rule "andRight" (formula "18"))
+ (branch
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaAddInt" (formula "18") (term "1"))
+ (rule "polySimp_homoEq" (formula "18"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "1,0"))
+ (rule "times_zero_1" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeTrue" (formula "18"))
+ )
+ (branch
+ (rule "andRight" (formula "18"))
+ (branch
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaSubInt" (formula "18") (term "0"))
+ (rule "polySimp_elimSub" (formula "18") (term "0"))
+ (rule "mul_literals" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "16"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_leqRight" (formula "18"))
+ (rule "polySimp_rightDist" (formula "1") (term "1,0,0"))
+ (rule "mul_literals" (formula "1") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0,0"))
+ (rule "add_literals" (formula "1") (term "0,0,0"))
+ (rule "add_zero_left" (formula "1") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0"))
+ (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1,0,0"))
+ (rule "inEqSimp_ltToLeq" (formula "14"))
+ (rule "polySimp_mulComm0" (formula "14") (term "1,0,0"))
+ (rule "polySimp_addComm1" (formula "14") (term "0"))
+ (rule "inEqSimp_sepPosMonomial1" (formula "2"))
+ (rule "polySimp_mulComm0" (formula "2") (term "1"))
+ (rule "polySimp_rightDist" (formula "2") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "2") (term "1,1"))
+ (rule "mul_literals" (formula "2") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "2") (term "1,1"))
+ (rule "inEqSimp_sepNegMonomial1" (formula "1"))
+ (rule "polySimp_mulLiterals" (formula "1") (term "0"))
+ (rule "polySimp_elimOne" (formula "1") (term "0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0"))
+ (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0"))
+ (rule "mul_literals" (formula "16") (term "0,1,0,0,0"))
+ (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0"))
+ (rule "inEqSimp_sepPosMonomial0" (formula "4"))
+ (rule "polySimp_mulComm0" (formula "4") (term "1"))
+ (rule "polySimp_rightDist" (formula "4") (term "1"))
+ (rule "polySimp_mulLiterals" (formula "4") (term "1,1"))
+ (rule "mul_literals" (formula "4") (term "0,1"))
+ (rule "polySimp_elimOne" (formula "4") (term "1,1"))
+ (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "inEqSimp_sepNegMonomial0" (formula "14"))
+ (rule "polySimp_mulLiterals" (formula "14") (term "0"))
+ (rule "polySimp_elimOne" (formula "14") (term "0"))
+ (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "4"))
+ (rule "inEqSimp_homoInEq0" (formula "15") (term "0"))
+ (rule "polySimp_mulComm0" (formula "15") (term "1,0,0"))
+ (rule "polySimp_rightDist" (formula "15") (term "1,0,0"))
+ (rule "mul_literals" (formula "15") (term "0,1,0,0"))
+ (rule "polySimp_addAssoc" (formula "15") (term "0,0"))
+ (rule "polySimp_addComm0" (formula "15") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0"))
+ (rule "add_literals" (formula "15") (term "1,1,0,0"))
+ (rule "times_zero_1" (formula "15") (term "1,0,0"))
+ (rule "add_zero_right" (formula "15") (term "0,0"))
+ (rule "qeq_literals" (formula "15") (term "0"))
+ (builtin "One Step Simplification" (formula "15"))
+ (rule "true_left" (formula "15"))
+ (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "1"))
+ (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0"))
+ (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0"))
+ (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0"))
+ (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0"))
+ (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0"))
+ (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0"))
+ (rule "add_literals" (formula "3") (term "1,1,0,0,0,0"))
+ (rule "times_zero_1" (formula "3") (term "1,0,0,0,0"))
+ (rule "add_zero_right" (formula "3") (term "0,0,0,0"))
+ (rule "leq_literals" (formula "3") (term "0,0,0"))
+ (builtin "One Step Simplification" (formula "3"))
+ (rule "hideAuxiliaryEq" (formula "3"))
+ (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "1"))
+ (rule "andLeft" (formula "13"))
+ (rule "inEqSimp_homoInEq1" (formula "13"))
+ (rule "polySimp_mulComm0" (formula "13") (term "1,0"))
+ (rule "polySimp_rightDist" (formula "13") (term "1,0"))
+ (rule "mul_literals" (formula "13") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "13") (term "0"))
+ (rule "polySimp_addComm1" (formula "13") (term "0,0"))
+ (rule "add_literals" (formula "13") (term "0,0,0"))
+ (rule "polySimp_pullOutFactor1b" (formula "13") (term "0"))
+ (rule "add_literals" (formula "13") (term "1,1,0"))
+ (rule "times_zero_1" (formula "13") (term "1,0"))
+ (rule "add_zero_right" (formula "13") (term "0"))
+ (rule "leq_literals" (formula "13"))
+ (rule "closeFalse" (formula "13"))
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "inEqSimp_ltRight" (formula "16"))
+ (rule "mul_literals" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "inEqSimp_ltRight" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_addAssoc" (formula "1") (term "0"))
+ (rule "polySimp_addComm0" (formula "1") (term "0,0"))
+ (rule "polySimp_pullOutFactor2b" (formula "1") (term "0"))
+ (rule "add_literals" (formula "1") (term "1,1,0"))
+ (rule "times_zero_1" (formula "1") (term "1,0"))
+ (rule "add_zero_right" (formula "1") (term "0"))
+ (rule "qeq_literals" (formula "1"))
+ (rule "closeFalse" (formula "1"))
+ )
+ )
+ )
+ (branch
+ (rule "orRight" (formula "18"))
+ (builtin "One Step Simplification" (formula "19"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "translateJavaAddInt" (formula "19") (term "3,0"))
+ (rule "translateJavaSubInt" (formula "18") (term "1"))
+ (rule "eqSymm" (formula "18"))
+ (rule "polySimp_elimSub" (formula "18") (term "0"))
+ (rule "mul_literals" (formula "18") (term "1,0"))
+ (rule "polySimp_homoEq" (formula "18"))
+ (rule "polySimp_mulComm0" (formula "18") (term "1,0"))
+ (rule "polySimp_addComm0" (formula "19") (term "3,0"))
+ (rule "polySimp_addComm0" (formula "18") (term "1,1,0"))
+ (rule "polySimp_rightDist" (formula "18") (term "1,0"))
+ (rule "mul_literals" (formula "18") (term "0,1,0"))
+ (rule "polySimp_addAssoc" (formula "18") (term "0"))
+ (rule "polySimp_addComm1" (formula "18") (term "0,0"))
+ (rule "add_literals" (formula "18") (term "0,0,0"))
+ (rule "add_zero_left" (formula "18") (term "0,0"))
+ (rule "polySimp_pullOutFactor1" (formula "18") (term "0"))
+ (rule "add_literals" (formula "18") (term "1,0"))
+ (rule "times_zero_1" (formula "18") (term "0"))
+ (builtin "One Step Simplification" (formula "18"))
+ (rule "closeTrue" (formula "18"))
+ )
+ )
+ (branch
+ (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "15")))
+ (rule "closeTrue" (formula "18"))
+ )
+ )
+ (branch "Case 2"
+ (builtin "One Step Simplification" (formula "18") (userinteraction))
+ (rule "eqTermCut" (formula "11") (term "0") (inst "s=de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin,
+ end,
+ any::select(anon(heap,
+ arrayRange(values,
+ begin,
+ add(Z(neglit(1(#))),
+ end)),
+ anon_heap_LOOP<